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ABSTRACT

We investigate the use of deep neural networks to control complex nonlinear dy-
namical systems, specifically the movement of a rigid body immersed in a fluid.
We solve the Navier Stokes equations with two way coupling, which gives rise
to nonlinear perturbations that make the control task very challenging. Neural
networks are trained to act as controllers with desired characteristics through a
process of learning from a differentiable simulator. Here we introduce a set of
physically interpretable loss terms to let the networks learn robust and stable in-
teractions. We demonstrate that controllers trained in a canonical setting with
quiescent initial conditions reliably generalize to varied and challenging environ-
ments such as previously unseen inflow conditions and forcing. Further, we show
that controllers trained with our approach outperform a variety of classical and
learned alternatives in terms of evaluation metrics and generalizing capabilities.

1 INTRODUCTION

Control of tasks of physical systems are a ubiquitous challenge in science. In particular, fluids
create very difficult environments which manifest themselves in simulations via the nonlinearities
arising from the Navier Stokes (NS) equations. However, advancements in this field are important
for society, and impact areas such as energy, transportation and biology (Barlas & Kuik, 2007; Ho
et al., 2003; Lord et al., 2000). Traditionally, open and closed loop control techniques were inves-
tigated (Collis et al., 2004). The latter have clear advantages thanks to their conditioning on state
measurements. We investigate and analyze a novel way to train closed loop controllers, namely via
deep neural networks recurrently trained in a differentiable simulation environment with physics-
based losses. This approach is motivated by the classical challenges of closed loop control for
Navier-Stokes environments: fluid flows are typically complex and chaotic. Moreover, the number
of degrees of freedom in numerical solvers often is too large, making heavily reduced represen-
tations necessary (Sipp & Schmid, 2016; Noack et al., 2004; Bergmann & Cordier, 2008; Proctor
et al., 2016). Instead, training with a differentiable simulator provides access to the full, unmodified
physical environment, and provides reliable and diverse training feedback in the form of gradients.

More specifically, we investigate steering an actuated rigid body immersed in fluid systems with
two way coupling, i.e. the rigid body influences the fluid around it and vice-versa. We focus on
objectives that require the rigid body to reach specific target configurations, i.e. center of mass
location and orientation. In this context, the differentiable simulations makes it possible to learn
controllers without providing ground truth control signals.

An ubiquitous challenge for neural network approaches is generalization to conditions beyond the
training distribution (Goodfellow et al., 2016). We show that although training takes place in a qui-
escent flow condition, i.e. a fluid initially at rest, the networks trained via differentiable simulators
are able to find control strategies that reliably handle more complex setups than those seen at train-
ing time. Their control characteristics are dictated by a set of physically interpretable loss terms,
making it possible to favor desired aspects of the control, e.g., the amount of overshoot, tracking
speed or maximum control effort. The performance of our networks is assessed in four different
test scenarios with increasing levels of complexity. We show their advantages over a range of base-
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line algorithms, from linear controllers such as PID and loop shaping (McFarlane & Glover, 1990;
Kwakernaak, 2002), to supervised and reinforcement learning algorithms (Haarnoja et al., 2018a).

2 RELATED WORK

Many recent works have been investigating different ways of coupling control and deep learning.
Since neural networks are good universal approximators (Hornik et al., 1989), many have inves-
tigated using them as a reduced order model of a complex dynamical system (Eivazi et al., 2020;
Hasegawa et al., 2020; Nair & Goza, 2020), which can then be used as an inexpensive solver for
known closed loop control techniques such as model predictive control (Bieker et al., 2020; Morton
et al., 2018; Chen et al., 2021). Achieving linear-to-nonlinear mappings through learned Koopman
operators has also been studied in recent works (Yeung et al., 2019; Li et al., 2020).

Another way of using deep learning for control purposes is through reinforcement learning (Verma
et al., 2018; Paris et al., 2021; Ren et al., 2021; Novati et al., 2019; Ma et al., 2018). In this case
a neural network typically receives a representation of the multi dimensional state describing the
system at a given time, e.g. velocity probes and scalar variables, and outputs the control efforts. This
is achieved by training the network to maximize a reward function that describes a control objective.
In recent years, a variety of refined reinforcement learning variants were proposed (Schulman et al.,
2015; Ho & Ermon, 2016; Schulman et al., 2017; Haarnoja et al., 2018b).

Recently, differentiable solvers for numerous fields, such as robotics (Toussaint et al., 2019) and
biology (Ingraham et al., 2019), were constructed to take advantage of deep learning tools via au-
tomatic differentiation. Since the gradients regarding a cost function are available, it is possible to
directly find solve for approporiate control efforts of a given task. This task could be placing a piece
of cloth into a target container (Liang et al., 2019), pouring liquids (Schenck & Fox, 2018), moving
a fluid to a specified region (Holl et al., 2020) or generating a specified velocity field from an im-
mersed body (Takahashi et al., 2021). To accomplish the control task, a full optimization needs to be
performed for every timestep of a simulation to compute a suitable control signal. However, this is
typically much too slow for practical applications with real time requirements. In this work we only
use the gradients from the differentiable solver to train a network to act as a controller, which only
relies on a sparse set of measurements from the environment and can be evaluated very efficiently.

3 METHODOLOGY

In physics and engineering the evolution of a physical system η(x, t) is often described by a partial
differential equation (PDE) as

∂nη

∂tn
= F

(
η,

∂η

∂x
, . . . ,

∂mη

∂xm
,
∂η

∂t
, . . . ,

∂n−1η

∂tn−1
, ω(t, η)

)
(1)

where F models the physical behavior of the system and ω(t, η) represents variables that influence
it such as boundary conditions. If the system depends only on time as ξ(t) then equation 1 reduces
to an ordinary differential equation (ODE) as

∂nξ
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Given a generic control policy P̂(t | θ) parametrized by θ, an external actuation can be inserted into
a system described by equation 2 according to

∂nξ

∂tn
= G

(
ξ,

∂ξ

∂t
, . . . ,

∂n−1ξ

∂tn−1
, ω(t)

)
+ P̂(t | θ) (3)

In this work, we target a coupled PDE-ODE system, interacting via boundary conditions ω and the
control policy P̂ . Integrating equation 3 over time yields a state modified by the policy, ξ(t, P̂), and
the control task to reach ξobj is given by the minimization problem

argmin
θ

∥ξobj − ξ(t, P̂(t | θ))∥. (4)
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More specifically, we use the incompressible Navier Stokes equations, which is a form of equation 1
with n = 1, that describes how a velocity field evolves given specified boundary conditions as the
following

∂u

∂t
= −u · ∇u− ∇p

ρ
+ ν∇2u (5)

where u is the velocity field, p is the pressure, ρ is the density and ν = û L̂
Re is the kinematic viscosity,

where Re is the Reynolds number and û and L̂ are a reference velocity and length, respectively. We
additionally target rigid objects immersed in the fluid. Their linear and angular movement can be
described by equation 2 with n = 2 as

∂2xr

∂t2
=

1

m

∑
F (6)

∂2α

∂t2
=

1

I

∑
T (7)

where xr is the body position, m the body mass, α the body angle and I its moment of inertia.
The terms

∑
F and

∑
T denote the forces and torques that are acting upon the body, respectively.

When using both equation 6 and equation 7 the system has 3 degrees of freedom (DOF). In a few
cases below we will omit equation 7, yielding a 2 DOF scenario. When dealing with a rigid body
immersed in a fluid, these terms reduce to∑

F = −
∮
S

p n⃗(s) ds (8)∑
T = −

∮
S

r⃗(s)× p n⃗(s) ds (9)

where S is the body surface, n⃗ is the surface normal, r⃗ maps the surface location to the local coor-
dinate system of the body, with the origin being the center of mass. Dirichlet boundary conditions
for the NS simulation are imposed on the velocity field via u = ∂xr/∂t at rigid body cells.

Together, equation 6 and equation 7 represent a coupled dynamical system subjected to nonlinear
perturbations derived from the interaction between rigid body and fluid. Control efforts after exerted
via forces: ∑

F = −
∮
S

p n⃗(s) ds+ Fcontrol (10)∑
T = −

∮
S

r⃗(s)× p n⃗(s) ds+ Tcontrol (11)

The specific control problem can then be formulated by finding the control efforts through
[Fcontrol, Tcontrol]

T = P(t | θ) so that

argmin
θ

∥exy∥+ ∥eα∥ (12)

exy = xobj − xr(t,P(t | θ)) (13)
eα = αobj − α(t,P(t | θ)) (14)

where xobj and αobj are an objective position and angle, respectively. Therefore the control task
investigated can be summarized as controlling an ODE (rigid body movement equations) with highly
nonlinear disturbances that emerge from a PDE (NS equations), which is also influenced by the ODE
solution.

4 NEURAL NETWORKS AS CONTROL POLICIES

We investigate how to use neural networks to represent a policy P(z(t) | θ) for the control task
described by equation 12, where z(t) is a set of discrete state variables, which we denote with z
for brevity, and θ denotes the weights of the network. The network acting as a policy receives the
current and previous np states as input, and has the objective of infering appropriate control efforts
for a given learning objective. Each state consists of the spatial error exy , angular error eα, rigid
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Figure 1: A schematic of the differentiable solver training: Blue arrows represent the forward pass
while red ones illustrate the flow of gradients. Importantly, the loss signal is backpropagated through
l simulation steps to provide policy P with long-term feedback about the flow environment.

body linear velocity ∂xr

∂t , rigid body angular velocity ∂α
∂t and control efforts Fcontrol and Tcontrol.

For clarity, we will refer to the latter simply as F and T . Also ∂xr

∂t and ∂α
∂t will be referred to as ẋ

and α̇, respectively. exy , ẋ and F are expressed in the local reference frame of the rigid body. We
denote states at a discrete time t with a superscript t. In this way, the input for the networks at a
time t can be expressed as z = [wt, wt−1, . . . , wt−np ], where wt = [etxy, ẋ

t, F t, etα, α̇
t, T t]T .

In the following, a range of different learning procedures are investigated: differentiable physics,
supervised and reinforcement learning.

4.1 LEARNING VIA A DIFFERENTIABLE SOLVER

Our method employs a fully differentiable solver. Hence, based on the following loss formulations,
we can provide gradients to the neural network policy Pdiff(z | θ) about reactions of the physical
system from policy actions and its temporal evolution. This policy can be trained without the need
to pre-compute potentially sub-optimal training data. Rather, the network is left to discover the best
possible policy over the course of the training. Our loss formulation include a time horizon of l time
steps as a central parameter. The evaluations across this time interval leads to training signals that
take into account how outputs of the policy network influence the future states of the environment.
Via the differentiable solver, the loss signals are recurrently backpropagated to the policy, allowing
it to ”plan ahead”, e.g., to avoid overshooting. This process is illustrated in figure 1. Instead of
pre-computing training data, we make use of a loss function that combines three objectives. The
objective term O typically dominates, and ensures that the body reaches the target state:

O =
βxy

l

l−1∑
n=0

∥enxy∥2 +
βα

l

l−1∑
n=0

∥enα∥2, (15)

where the β are hyperparameters that weigh the different terms. However, a loss function with this
term alone results in a controller with tendencies of overshoot since it does not account for the rigid
body velocity. Hence we introduce a velocity term V :

V =
βẋ

l

l−1∑
n=0

∥ẋn∥2
βprox∥enxy∥2 + 1

+
βα̇

l

l−1∑
n=0

∥α̇n∥2
βprox∥enα∥2 + 1

(16)

Far away from the target, larger spatial and angular errors in the denominators lead to smaller values
of V . Closer to the target objective these errors approach zero, and hence V becomes an L2 norm of
the linear and angular velocities. As a consequence the optimization guides the policy to slow down
the body near the target, thus reducing overshooting effects. Following previous work (Bieker et al.,
2020), we additionally include a term to avoid large control efforts as well as abrupt changes

E =
βF

l

l−1∑
n=0

∥Fn∥2 + βT

l

l−1∑
n=0

∥Tn∥2+

β∆F

l

l−1∑
n=0

∥Fn − Fn−1∥2 + β∆T

l

l−1∑
n=0

∥Tn − Tn−1∥2 (17)
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Finally the combined loss function for the differentiable solver training can be written as

L = O + V + E (18)

Above, the β hyperparameters regulate the relative impact of each term for the controller. Because of
the direct physical impact of each hyperparameter, adjusting them is straight forward. For example,
spatial tracking can be more precise by increasing βxy or the angular tracking can be accelerated by
decreasing βα̇. However, overly large values can result in overshooting. The hyperparameters for
this work were chosen aiming for an overall balance of the objectives .

4.2 SUPERVISED LEARNING

As a baseline for learning, we include a fully supervised learning approach. Due to a lack of optimal,
ground-truth control policies, we construct a dataset in the following manner: we manually prescribe
velocities to the rigid body so that it reaches an arbitrary target. We then compute the fluid forces
acting upon the body and calculate the control efforts to cancel them and yield the acceleration of
the prescribed trajectory. In this way, we obtain a set of states z with paired, expected control efforts
[F̂ (z), T̂ (z)]T . Training with these precomputed forces can be performed in a fully supervised way
with the loss

L = ∥[F̂ (z), T̂ (z)]T − Psup(z | θ)∥2. (19)

4.3 REINFORCEMENT LEARNING

Additionally, we include a reinforcement learning algorithm that works without making use of the
solver gradients. We use the Soft Actor Critic (SAC) algorithm (Haarnoja et al., 2018b), a recent
state-of-the-art approach. SAC is a model-free variant that has the added benefit of being off-policy.
Thus, past experiences can be stored in a replay buffer and are not invalidated by policy updates.
As the simulation process is computationally very expensive, this increase in sample efficiency is
highly beneficial. The actor, which is also represented by a neural network, has the objective of
maximizing the predicted Q values. Additionally, SAC introduces an entropy term into the objective
of the policy as regularization. It discourages overly confident decisions while also controlling the
trade-off between exploration and exploitation inside the action space. In our setting, the actor
represents a control policy, and hence we refer to it as PRL(z | θ). Following equation 12, the
reward at a time t is calculated using the squared distance objective

rt = −||etxy||2 − ||e0xy||2
||e0xy||2

+ g(etxy), (20)

with g(etxy) yielding a constant G if ||etxy|| ≤ ϵ, and zero otherwise. We normalize rt by the starting
error e0 from the beginning of a sequence in order to reduce the variance between different trajec-
tories and make the reward independent from the initial state. We present in this paper preliminary
results and other reward functions are still being investigated.

5 EXPERIMENTS

We perform a series of experiments with increasing degrees of complexity to assess the gen-
eralization capabilities of the considered approaches. Below we explain the default parameters
which are applicable unless noted otherwise. Details and deviating parameters for all experi-
ments are provided in the appendix. Source code used in this work can be found on https:
//github.com/brenerrr/PhiFlow/tree/two_way_coupling.

Datasets and Test Scenarios The training data consists of simulations with only one objective and
parameters Ba2 or Ba3 from Table 1 for systems with 2 and 3 DOF, respectively, using a quiescent
flow (u = 0) as initial conditions. Since the fluid is initially at rest, all the fluid perturbations
are created from the rigid body movement. The validation datasets for Ba2 and Ba3 consist of 20
simulations with the same parameters as training but different objectives. To evaluate generalization
of 2 DOF networks, we employ Buo2 , which increases the difficulty by introducing a lighter fluid
source that disrupts the flow through buoyancy. For 3 DOF networks trained on Ba3 , we use the
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Table 1: Main parameters of experimental setups. IC denotes initial conditions which are shown in
the appendix.

ID Domain DOF Re ∆t Buoyancy Inflow IC

Ba2 80 × 80 2 1000 0.1 × × A
Buo2 80 × 80 2 1000 0.05

√
× A

Ba3 80 × 80 3 1000 0.1 × × B
In3 175 × 110 3 3000 0.05 ×

√
C

InBuo3 175 × 110 3 3000 0.05
√ √

C
InBuoAg3 175 × 110 3 5000 0.05

√ √
D

scenarios In3 , InBuo3 and InBuoAg3 . For In3 , the fluid is less viscous (higher Re) and ∆t is
smaller. Correspondingly, the controllers are sampled once every two timesteps. Setup InBuo3
introduces buoyancy forces as well an inflow while a second rotating obstacle is additionally present
in InBuoAg3 . These test environments were designed to deviate more and more strongly from
the quiescent training conditions. Unless stated otherwise, the test datasets are comprised of 5
simulations with different trajectories, created by changing the objectives after ∆t = 100. The
supervised learning approach uses a separate, pre-computed dataset for training. It is comprised of
100 simulations from which 80 are used for training and 20 for validation and each simulation has
500 time steps.

Neural Network Representation and Training The underlying network architecture for all of
them is kept constant: two dense layers with ReLU activation, followed by a third dense layer.
For the latter, the networks trained via differentiable physics and reinforcement learning have a
hyperbolic tangent activation to ensure that the control efforts are bounded. As we achieved a better
performance for the supervised case without the activation of the last layer, it was omitted there.
Training the differentiable physics networks starts with a simulation with quiescent initial condition,
gathering objectives from an uniform random distribution. After advancing the simulation so that
np past states exist, the network training is activated and its outputs are used as control efforts.
Once l = 16 time steps are available, we compute a loss and update θ. A discussion about how
we choose l can be found in section C.1.3. After 1000 simulation steps we restart the simulation
until ni training iterations are performed. We choose ni = 1000 and ni = 5000 when training
a network for 2 and 3 DOF systems, respectively. For supervised training, in total ni = 150,000
and ni = 200,000 training iterations are performed for the network used for systems with 2 and 3
DOF, respectively. The reinforcement learning approach uses the same simulation environment as
the differentiable training. After each simulated time step a batch of 128 samples is drawn from the
replay buffer and used for training. In total, ni = 300,000 training iterations are performed.

Evaluation Metrics As error metrics for comparing results we primarily use absolute errors in
position and orientation, ||exy|| and ||eα||. We also compute an average steady state error ∥e∥ss that
can assess the steady-state performance of the controllers without their initial transient phases. It is
calculated using the last 3/4 of the time interval in which an objective was being tracked. For bar
plots of ∥e∥ss we also display one standard deviation for illustrating the spread of the error values.

6 RESULTS

We first perform a broad comparison of the different algorithms, before moving on to more complex
cases and generalization tasks.

6.1 ALGORITHMIC COMPARISON

Baseline Algorithms Two types of linear controllers are tested as a reference to help assess the
performance of the learned versions: a classic proportional-integrator-derivative (PID) PPID and a
loop shaping controller PLS designed through a blend of mixed-sensitivity design and the Glover-
McFarlane method.
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Figure 2: Average spatial steady state errors (left), trajectories of one of the test simulations (right)
and their error norms (middle) with parameters Buo2 . When compared to the other approaches Pdiff
exhibit less oscillations and a lower average steady state error.

Figure 3: Average steady state errors (left), trajectories of one of the test simulations (right) and
their error norms (middle) with parameters In3 . Trajectories are colored by lighter fluid (t = 295).
All approaches accomplish a similar angle tracking performance but Pdiff has a better spatial one.

2 DOF Validation First, we consider a validation with the setup Ba2 (same simulation parameters
as training but with different targets). The goal is to make sure all the controllers are functioning
correctly for the conditions seen at training time. All the approaches considered are able to achieve
a low error given sufficient time, which confirms they work as intended in conditions they were
designed to operate in. Details can be found in the appendix.

Increased Difficulty Next we perform a test with the setup Buo2 , which includes perturbations
from a lighter fluid and a longer time window. The interaction between buoyancy and rigid body
creates oscillatory flow structures and the control task becomes more challenging. As a consequence,
∥exy∥ss is much larger for all approaches except for Pdiff. The latter exhibits an error more than
three times smaller than the second best (PID), as shown in figure 2. The trajectories clearly show
the amount of undesirable oscillations and overshooting present in the PLS, Psup and PPID. Both PLS
and PRL exhibit a poor performance, with the latter still being preliminary results and not able to
finish all test simulations. Hence, we will omit these two methods for further tests.

6.2 INCREASED COMPLEXITY AND GENERALIZATION

We now evaluate the performance of the remaining methods for a rectangular body with orientation
(3 DOF). The additional degree of freedom adds a significant amount of complexity to the control
task, and we use a set of more complex test cases to evaluate generalization. In line with the 2
DOF case, we first perform an evaluation with validation cases, i.e. from Ba3 . All three remaining
methods fare well for these environments, and yield stable controllers (details are provided in the
appendix).

Generalization Tests Modified Inflow Conditions. Next, a test with the In3 setup is performed
to assess the generalization capabilities of the considered controllers. Here the environments are
changed substantially by introducing an inflow from the left side of the domain and utilizing a
smaller viscosity (higher Re). The inflow together with the rigid body movement creates unsteady
flow structures that vary depending on the box angle. Pdiff is able to maintain a smaller ∥exy∥ss
compared to the other controllers as can be seen in figure 3. Very noticeable oscillations around
the objective locations are present in the trajectory of Psup and PPID. Instead, Pdiff produces a
stable orientation, showing that this policy successfully counteracts the perturbations caused by the
strongly varying flow.

Inflow and Buoyancy. Next, we introduce a source of lighter fluid that rises due to buoyancy at the
bottom of the domain with parameters InBuo3 . This test has the goal of assessing the robustness
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Figure 4: Average steady state errors (left), trajectories of one of the test simulations (right) and their
error norms (middle) with parameters InBuo3 . Trajectories are colored by lighter fluid (t = 195).
Buoyancy worsens the performance of controllers but Pdiff still maintains low steady state errors.

Figure 5: Average steady state errors (left), trajectories of one of the test simulations (right) and their
error norms (middle) with parameters InBuoAg3 . Trajectories are colored by vorticity (t = 295).
Although the flow is fairly chaotic, Pdiff is able to maintain low steady state errors and good tracking.

of the controllers further, since the fluid source tends to create higher frequency oscillations, which
makes the control task harder. While the Psup and PPID have a considerable worsening in their
performance with higher steady state errors, they also display undesirable oscillations. On the other
hand, Pdiff maintains low values for ∥exy∥ss and ∥eα∥ss while rejecting most of the perturbations as
shown in figure 4.

Agitated Inflow with Buoyancy. The last test introduces a second rigid body which spins close to the
left boundary, together with a higher Re = 5000. These characteristics contribute to a more chaotic
flow, with stronger high frequency perturbations resulting in a very challenging test scenario. Espe-
cially when considering the spatial error, it is clear that Pdiff is able to stabilize most perturbations
and maintain a low steady state error as shown in figure 5. The approach can maintain a stable path
despite the changed flow conditions, while the other approaches fail to do so.

6.3 DISCUSSION

Taken together, the previous set of tests show the advantages of the proposed training via differ-
entiable simulations. It is able to provide a neural network with feedback to control a dynamical
system subjected to nonlinear perturbations for long periods of time, even when training took place
in a different, simplified environment. Pdiff is able to handle new situations without the strongly
deteriorated tracking performance of the other controllers, with our tests indicating that this is a
consequence of the differentiable solver, which provides a varied learning signal and results in a
neural network that robustly handles a large variety of conditions. It is also appealing to be able
to use the original set of equations of a system, even if they are as nonlinear as the NS equations
because reduced representations often do not portrait well nonlinear behaviors. Instead, the differen-
tiable simulation approach allows training the controller using the full set of model equations, such
that it can adapt to the subtleties of the environment.

7 CONCLUSIONS

We have studied the use of differentiable simulations to train neural networks acting as controllers
for complex dynamical systems. The considered system describes the movement of a rigid body
subjected to nonlinear perturbations derived from the Navier Stokes equations, posing a very chal-
lenging control task. The proposed approach, which introduced a set of physically interpretable loss
terms, is able to train robust controllers without the need to provide reference data for training. It
is able to produce controllers that generalizes very well to substantially different, challenging flow
conditions. Numerous interesting venues for future research exist based on our results, such as
exploring the transfer of synthetically trained controllers to real-world environments.
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A LINEAR CONTROLLERS

A.1 PID

The P gain was adjusted so that the maximum control effort from the PID controller is in the same
order of magnitude as the one from the network controllers. The D gain is then tuned to be as low
as possible while still avoiding overshoot and the same is done for the I gain. The gains for the
controllers for each setup are displayed in Table 2 and the control effort U is obtained by

U t = Pet +D
et − ei−1

0.1
+ 0.1

i∑
n=0

enI (21)

Table 2: Gains of PID controller.

P D I

Cylinder - Forces 1 8 0.001
Box - Forces 2 15 0.001
Box - Torque 100 1000 0.01

A.2 LOOP SHAPING

Loop Shaping design consists of finding a controller K so that the open loop response K ∗ P ,
where P is the system plant. It should be as close as possible to the open loop response of a transfer
function P ′, which is chosen by the user.

A common choice for P ′ is P ′(s) = ωb

s where ωb is the control bandwidth and s is a complex
frequency. This function has the property of having high gains for low frequencies and low gains
for high frequencies. In other words, an input signal with frequency higher than wb (noise) will be
dampened and an input signal with frequency lower than wb (perturbations) will be amplified.

We use a combination of two loop-shaping methods: mixed-sensitivity-design, which favors perfor-
mance, and the Glover-McFarlane method, which favors robustness to plant uncertainty, as imple-
mented by the Matlab loopsyn() function. It features a parameter α: For α = 0 the controller has
the best performance and while α = 1 favors robustness. From a range of experiments with our
physical environment, we choose α = 0.95 and wb = 0.2. After converting the found controller
from the Laplace domain to the discrete one, we obtain the coefficients shown in Table 3 and the
control effort U is calculated according to

U t =

2∑
p=0

ei−pnp −
2∑

p=1

U i−pdp (22)
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Figure 6: Visualization of the neural network architecture.

where i is the index of the current time step, e is the error and n and d are the controller coefficients.

Table 3: Loop shaping coefficients.

p np dp

0 1.1700924033918623e00 -
1 −1.4694211940919182e00 −1.2306775904257603e00
2 3.0598060140064326e−01 2.6726488821832250e−01

B NETWORKS ARCHITECTURE DETAILS

The dimensions of the considered neural network layers are given in Table 4, and its architecture
is visualized in figure 6. The network of the 2 DOF setup has a total of 2206 trainable parameters
while the one used in the 3 DOF setup has 2243 trainable parameters.

Table 4: Input/output sizes of neural network layers.

Layer 2 DOF 3 DOF

0 [16, 38] [33, 32]
1 [38, 38] [32, 32]
2 [38, 2] [32, 3]

C TRAINING DETAILS

C.1 DIFFERENTIABLE PHYSICS

The network training parameters for all setups investigated with differentiable physics can be found
in Table 5. A learning rate of 0.01 was used in our tests. Additionally, learning rate decay is used so
that the learning rate drops to half of its initial value every 100 and 1000 training iterations for the
2 DOF and 3 DOF setups, respectively. The networks inputs and outputs are normalized based on a
set of measured simulation statistics.

C.1.1 EFFECT OF TIME HORIZON L

The effect of training with different time horizons l is also investigated. A test consisting of one
simulation with parameters InBuoAg3 and a N shaped trajectory is conducted and the performance
of networks trained with different values of l can be seen in figure 7. Small values of l mean that
loss and backpropagation are performed for short physical timespans during training, i.e. a small
temporal lookahead, which produces a controller with a deteriorated performance. In addition,
performance does not change significantly beyond l = 16. Since the same number of iterations
were conducted for all runs, using larger time horizons only increases training time. Therefore, we
choose l = 16 since it provides a good balance between performance and training time.
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Table 5: Parameters of network trained with differentiable physics.

Hyperparameter 2 DOF 3 DOF

βxy 15 5
βẋ 5 5
βF 0.1 0.1
β∆F 0 1
βprox 0.1 0.1
βα - 30
βα̇ - 0.05
β∆T - 1
ni 1000 5000
l 16 16

Figure 7: Steady state errors (left) and errors norms (right) for a test with InBuoAg3 parameters.
Training with small time horizons l produces poor performant controllers. When using a very large
time horizon, such as l = 32, the gains are not worth the doubled amount of training time.

C.1.2 SENSITIVITY TO WEIGHTS INITIALIZATION

In order to evaluate how the performance from the network trained with differentiable physics is
influenced by the networks weights initial values, we perform three training runs with different ini-
tial seeds. We run a test simulation with parameters from InBuoAg3 and objectives that describe
a N shape trajectory. Despite minor differences the error norms for all seeds have a similar track-
ing performance. This is especially apparent when comparing it to other controllers, as shown in
figure 8.

C.1.3 ABLATION STUDIES

We present an evaluation study with InBuo3 to assess the influence of the terms introduced in sec-
tion 4.1. One simulation is performed for each combination of loss terms. When using only the O
term, the training is severely under constrained, and as a consequence the network learns to exert
overly large forces. This destabilizes the simulations preventing a successful training. Therefore we
compare the performance of networks trained with the combinations: OVE (all terms), OV (objective
and velocity terms) and OE (objective and effort terms). Networks trained with OVE and OV exhibit
similar error curves and trajectories as shown in figure 9. The network trained with OE is also able
to achieve low error values but it exhibits an uneven decay, which is an undesirable behavior. When
analyzing the control efforts it can be seen that OE provides a network that produces maximum
control efforts more often, which means it uses more energy. When considering OV, there are no
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Figure 8: Steady state errors (left) and errors norms (right) for a test with InBuoAg3 parameters. The
networks have the same parameters but different initialization seeds. Similar tracking performance
is achieved for all of them, with Seed 2 having a slightly worse angular tracking.
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Figure 9: From top to bottom: errors norm, control efforts norm and trajectories of controllers
colored by vorticity at t = 95 on test with InBuo3 parameters (bottom). All loss terms are necessary
in order to accomplish steady error decay and maintain small and smooth control efforts.

constraints on control efforts and consequently it learns a control policy that modulates the control
efforts with a high frequency - an undesirable behavior in practice.
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Figure 10: Steady state errors (left) and errors norms (right) for a test with InBuoAg3 parameters.
A bigger dataset does not improve model performance.

C.2 SUPERVISED LEARNING

A learning rate of 0.01 is used with learning rate decay. Every 15,000 iterations it drops to half of its
size. Training with more data is examined for assessing if the performance of the controller acquired
via supervised learning could be improved. A dataset with 200 simulations (double the size of the
original one) is generated with 180 simulations being used for training and 20 for validation. Then
a test simulation with parameters from InBuoAg3 and objectives describing a N shaped trajectory is
conducted. It can be seen that adding more data did not result in clear improvements, as shown in
figure 10.

C.3 REINFORCEMENT LEARNING

We use the SAC implementation from stable-baselines3 (Raffin et al., 2021). We use a fixed learning
rate of 0.0003 and a reward discount factor γ of 0.99. The parameter τ controlling the Polyak
Averaging of the two Q-Functions within the critic is set to 0.05.

C.4 HARDWARE AND SOFTWARE

All optimization procedures were conducted utilizing the PyTorch framework (Paszke et al., 2019)
on a GeForce RTX 2080 Ti. Approximate training times are displayed in Table 6.

Table 6: Training times.

Algorithm 2 DOF 3 DOF

Reinforcement 17h -
Supervised 0.5h 1h

Diff. Physics 0.6h 4h

D ADDITIONAL RESULTS

In the following we present a collection of additional results that were not shown in the main body
of the paper. For all simulations, the cylinder has m = 11.78 and radius r̂ = 5 while the box has
m = 36, I = 4000, width w = 20 and height h = 6.
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Figure 11: x component of velocity field of initial conditions.

Table 7: Spatial steady state error and standard deviation of the considered tests.

Test RL LS Sup PID Diff

Validation 2 DOF 0.5047± 0.1065 0.5797± 0.7233 0.0563± 0.0203 0.1386± 0.0227 0.1363± 0.1257
Validation 3 DOF - - 0.1540± 0.2053 0.2206± 0.2124 0.7762± 0.6004

Test with Buo2 - 9.2907± 1.9833 2.9562± 0.6263 2.2148± 0.4577 0.5153± 0.3002
Test with In3 - - 3.5010± 0.7599 3.7965± 0.7141 1.4081± 1.3670

Test with InBuo3 - - 7.1072± 1.1612 8.0952± 1.2625 1.5611± 1.3261
Test with InBuoAg3 - - 7.2815± 1.7926 8.7141± 2.1694 1.7167± 1.3238

Table 8: Angular steady state error and standard deviation of tests.

Test Sup PID Diff

Validation 3 DOF 0.0149± 0.0241 0.0163± 0.0271 0.0183± 0.0239
Test with In3 0.0553± 0.0184 0.0596± 0.0187 0.0399± 0.0369

Test with InBuo3 0.1593± 0.0452 0.1662± 0.0343 0.0775± 0.0348
Test with InBuoAg3 0.1643± 0.0602 0.1564± 0.0607 0.0702± 0.0399
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Figure 12: Targets of 2 DOF validation (top-left) and 3 DOF validation (top-right) tests as well
as angle targets of 3 DOF validation test (bottom) . The rigid body initial position is located at
(x, y) = (40, 40).
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Figure 13: Average spatial error norm with Ba2 parameters (top-left) and average steady state error
(top-right). All controllers achieve spatial steady state errors smaller than one. Vorticity contours of
one simulation from 2 DOF validation test (bottom).

Figure 14: Average angular steady state errors of tests performed with In3 , InBuo3 and InBuoAg3
parameters (from left to right, respectively).
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Figure 15: Average steady state errors (top-left, middle-left), trajectories of one of the simulations
(bottom) and their error norms (top-right, middle-right) with parameters Ba3 . All controllers are
able to achieve low steady state errors. The increased spatial steady state error from Pdiff is caused
by its slower spatial tracking.
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Figure 16: Density contours of lighter fluid (top) of one simulation from test with Buo2 . Fluid and
control forces (bottom) from Pdiff run.
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Figure 17: Vorticity contours (top) of one simulation from test with In3 . Fluid and control forces
(middle) and torques (bottom) from Pdiff run.
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Figure 18: Density contours of lighter fluid (top) of one simulation from test with InBuo3 . Fluid
and control forces (middle) and torques (bottom) from Pdiff run.
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Figure 19: Vorticity contours (top) of one simulation from test with InBuoAg3 . Fluid and control
forces (middle) and torques (bottom) from Pdiff run.
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