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Abstract
In this paper, we observe and address the chal-001
lenges of the coordination recognition task.002
Most existing methods rely on syntactic parsers003
to identify the coordinators in a sentence and004
detect the coordination boundaries. However,005
state-of-the-art syntactic parsers are slow and006
suffer from errors, especially for long and com-007
plicated sentences. To better solve the prob-008
lems, we propose a pipeline model COordina-009
tion RECognizer (CoRec). It composes of two010
components: coordinator identifier and con-011
junct boundary detector. The experimental re-012
sults on datasets from various domains demon-013
strate the effectiveness and efficiency of the pro-014
posed method. Further experiments show that015
CoRec positively impacts downstream tasks,016
improving the yield of state-of-the-art Open IE017
models.018

1 Introduction019

Coordination is a common syntactic phenomenon020

in various corpora. Based on our counting,021

39.4% of the sentences in OntoNotes Release 5.0022

(Weischedel et al., 2013) contain at least one coor-023

dination. The frequently appeared conjunctive sen-024

tences bring many challenges to various NLP tasks,025

including Natural Language Inference (NLI) (Saha026

et al., 2020), Named Entity Recognition (NER)027

(Dai et al., 2020), and text simplification (Xu et al.,028

2015). Specifically, in Open Information Extrac-029

tion (Open IE) tasks, researchers find that ineffec-030

tive processing of conjunctive sentences will result031

in substantial yield lost (Corro and Gemulla, 2013;032

Saha and Mausam, 2018; Kolluru et al., 2020),033

where yield is essential since Open IE tasks aim034

to obtain a comprehensive set of structured infor-035

mation. Thus processing conjunctive sentences is036

important to improve the performance of Open IE037

models.038

It is a common practice to apply constituency039

parsers or dependency parsers to identify the coor-040

dination structures of a sentence. However, there041

are several drawbacks. First, the state-of-the-art 042

syntactic parsers confront an increase of errors 043

when processing conjunctive sentences, especially 044

when the input sentence contains complex coordi- 045

nation structures. Second, applying parsers can be 046

slow, which will make the identification of coordi- 047

nation less efficient. Existing coordination bound- 048

ary detection methods rely on the results of syn- 049

tactic parsers (Ficler and Goldberg, 2016, 2017; 050

Saha and Mausam, 2018) and thus still face similar 051

drawbacks. 052

In this work, we approach the coordina- 053

tion recognition problem without using syntactic 054

parsers and propose a simple yet effective pipeline 055

model COordination RECognizer (CoRec). CoRec 056

composes of two steps: coordinator identification 057

and conjunct boundary detection. For coordinator 058

identification, we consider three types of coordina- 059

tor spans: contiguous span coordinators (e.g. ‘or’ 060

and ‘as well as’), paired span coordinators (e.g. ‘ei- 061

ther...or...’), and coordination with ‘respectively’. 062

Given each identified coordinator span, we formu- 063

late the conjunct boundary detection task as a se- 064

quence labeling task and design a position-aware 065

BIOC labeling schema based on the unique char- 066

acteristics of this task. We also present a simple 067

trick called coordinator markers that can greatly 068

improve the model performance. 069

Despite CoRec’s simplicity, we find it to be 070

both effective and efficient in the empirical stud- 071

ies: CoRec consistently outperforms state-of-the- 072

art models on benchmark datasets from both gen- 073

eral domain and biomedical domain. Further exper- 074

iments demonstrate that processing the conjunctive 075

sentences with CoRec can enhance the yield of 076

Open IE models. 077

In summary, our main contributions are: 078

• We propose a pipeline model CoRec, a spe- 079

cialized coordination recognizer without using syn- 080

tactic parsers. 081

• We formulate the conjunct boundary detec- 082
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tion task as a sequence labeling task with position-083

aware labeling schema.084

• Empirical studies on three benchmark datasets085

from various domains demonstrate the efficiency086

and effectiveness of CoRec, and its impact on yield087

of Open IE models.088

2 Related Work089

For the tasks of coordination boundary detection090

and disambiguation, earlier heuristic, non-learning-091

based approaches design different types of features092

and principles based on syntactic and lexical anal-093

ysis (Hogan, 2007; Shimbo and Hara, 2007; Hara094

et al., 2009; Hanamoto et al., 2012; Corro and095

Gemulla, 2013). Ficler and Goldberg (2016) are096

the first to propose a neural-network-based model097

for coordination boundary detection. This model098

operates on top of the constituency parse trees, and099

decomposes the trees to capture the syntactic con-100

text of each word. Teranishi et al. (2017, 2019)101

design similarity and replaceability feature vectors102

and train scoring models to evaluate the possible103

boundary pairs of the conjuncts. Since these meth-104

ods are designed to work on conjunct pairs, they105

have natural shortcomings to handle more than two106

conjuncts in one coordination.107

Researchers in the Open Information Extraction108

domain also consider coordination analysis to be109

important to improve model performance. CALM,110

proposed by Saha and Mausam (2018), improves111

upon the conjuncts identified from dependency112

parsers. It ranks conjunct spans based on the ‘re-113

placeability’ principle and uses various linguistic114

constraints to additionally restrict the search space.115

OpenIE6 (Kolluru et al., 2020) also has a coordi-116

nation analyzer called IGL-CA, which utilizes a117

novel iterative labeling-based architecture. How-118

ever, its labels only focus on the boundaries of the119

whole coordination and do not utilize the position120

information of the specific conjuncts.121

3 Methodology122

3.1 Task Formulation123

Given a sentence S = {x1, x2, ..., xn}, we de-124

compose the coordination recognition task into125

two sub-tasks, coordinator identification and con-126

junct boundary detection. The coordinator identi-127

fier aims to detect all potential target coordinator128

spans from S. The conjunct boundary detector129

takes the positions of all the potential target coor-130

dinator spans as additional input and detects the131

conjuncts coordinated by each target coordinator 132

span. 133

3.2 Label Formulation 134

Since the coordinator spans are usually short, we 135

adopt simple binary labels for the coordinator iden- 136

tification sub-task. Tokens inside coordinator spans 137

are labeled as ‘C’ and all other tokens are labeled 138

as ‘O’. 139

For the conjunct boundary detection sub-task, 140

conjuncts can be long and more complicated. Thus 141

we formulate this sub-task as a sequence labeling 142

task. Specifically, inspired by the BIO (Beginning- 143

Inside-Outside) (Ramshaw and Marcus, 1995) la- 144

beling schema of the NER task, we also design 145

a position-aware labeling schema, as previous re- 146

searches have shown that using a more expressive 147

labeling schema can improve model performance 148

(Ratinov and Roth, 2009; Dai et al., 2015). 149

The proposed labeling schema contains both po- 150

sition information for each conjunct and position 151

information for each coordination. For each con- 152

junct, we use ‘B’ to label the beginning token and 153

‘I’ to label the following tokens. For each coordi- 154

nation structure, we further append ’before’ and 155

’after’ tags to indicate the relative positions to the 156

target coordinator token(s), which is/are labeled as 157

‘C’. More details can be found in Appendix A. 158

3.3 Coordinator Identifier 159

As mentioned above, the coordinator identification 160

sub-task is formulated as a binary classification 161

problem. Our coordinator identifier uses a BERT 162

(Devlin et al., 2019) encoder to encode a sentence 163

S = {x1, x2, ..., xn}, and the output is: 164

[hc
1, ...,h

c
n] = Enc1([x1, ..., xn]). (1) 165

A linear projection layer is then added. We de- 166

note coordinator spans detected by the coordinator 167

identifier as P = {p1, p2, ..., pk}. 168

3.4 Conjunct Boundary Detector 169

The conjunct boundary detector then processes 170

each target coordinator span pt ∈ P independently 171

to find all coordinated conjuncts in sentence S. 172

To inject the target coordinator span information 173

into the encoder, we insert coordinator markers, 174

‘[C]’ token, before and after the target coordina- 175

tor span, respectively. The resulting sequence is 176

Sm = {x1, ..., [C], pt, [C]..., xn}. For simplicity 177

we denote Sm = {w1, ..., wm}. 178
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The marked sequence Sm is fed into a BERT179

encoder:180

[hcbd
1 , ...,hcbd

m ] = Enc2([w1, ..., wm]). (2)181

The position information of all the coordinators182

found by the coordinator identifier can help the183

model to understand the sentence structure. Thus184

we encode such information into a vector bi to185

indicate if wi is part of a detected coordinator186

span. Given wi ∈ Sm, we concatenate its en-187

coder output and coordinator position encoding188

as ho
i = [hcbd

i ; bi].189

Finally, we use a CRF (Lafferty et al., 2001)190

layer to ensure the constraints on the sequential191

rules of labels and decode the best path in all possi-192

ble label paths.193

3.5 Training & Inference194

The coordinator identifier and the conjunct bound-195

ary detector are trained using task-specific losses.196

For both, we fine-tune the two pre-trained197

BERTbase encoders. Specifically, we use cross-198

entropy loss:199

Lc = −
∑
xi∈S

logPc(t
∗
i |xi), (3)200

Lcbd = −
∑

wi∈Sm

logPcbd(z
∗
i |wi), (4)201

where t∗i , z∗i represent the ground truth labels. Dur-202

ing inference, we first apply the coordinator identi-203

fier and obtain:204

yc(xi) = argmax
ti∈T

Pc(ti|xi). (5)205

Then we use its prediction yc(xi) with the original206

sentence as input to the conjunct boundary detector207

and obtain:208

y = argmax
[z1,...,zm],zi∈Z

Pcbd([z1, ..., zm]|[w1, ..., wm]),

(6)209

where T and Z represent the set of possible labels210

of each model respectively.211

3.6 Data Augmentation212

We further automatically augment the training data.213

The new sentences are generated following the the214

symmetry rule, by switching the first and last con-215

juncts of each original training sentence. Since216

all sentences are augmented once, the new data217

distribution only slightly differs from the original218

one, which will not lead to a deterioration in per-219

formance (Xie et al., 2020).220

4 Experiments 221

Training Setup The proposed CoRec is trained 222

on the training set (WSJ 0-18) of Penn Treebank1 223

(Marcus et al., 1993) following the most common 224

split, and WSJ 19-21 are used for validation and 225

WSJ 22-24 for testing. The ground truth con- 226

stituency parse trees containing coordination struc- 227

tures are pre-processed to generate labels for the 228

two sub-tasks as follows. If a constituent is tagged 229

with ‘CC’ or ‘CONJP’, then it is considered a co- 230

ordinator span. For each coordinator span, we first 231

extract the constituents which are siblings to the 232

coordinator span, and each constituent is regarded 233

as a conjunct coordinated by that coordinator span. 234

We automatically generate labels as described in 235

Section 3.2. We also manually check and correct 236

labels for complicated cases. 237

Testing Setup We use three testing datasets to 238

evaluate the performance of the proposed CoRec 239

model. The first dataset, ontoNotes, contains 240

1,000 randomly selected conjunctive sentences 241

from the English portion of OntoNotes Release 242

5.02 (Weischedel et al., 2013). The second dataset, 243

Genia, contains 802 conjunctive sentences from 244

the testing set of GENIA3 (Ohta et al., 2002), a 245

benchmark dataset from biomedical domain. The 246

third dataset, Penn, contains 1,625 conjunctive sen- 247

tences from Penn Treebank testing set (WSJ 22-24). 248

These three datasets contain the gold standard con- 249

stituency parsing annotations. We convert them 250

into the OC and BIOC labels in the same way as 251

described in 4. 252

Baseline Methods We compare the proposed 253

CoRec with two categories of baseline meth- 254

ods: parsing-based and learning-based methods. 255

Parsing-based methods convert the constituency 256

parsing results and regard constituents at the same 257

depth with the target coordinator spans as coor- 258

dinated conjuncts. We adopt two state-of-the-art 259

constituency parsers, AllenNLP (Joshi et al., 2018) 260

and Stanford (Qi et al., 2019) parsers, for this cate- 261

gory. For learning-based methods, we choose two 262

state-of-the-art models for coordination boundary 263

detection, Teranishi+19 (Teranishi et al., 2019), 264

and IGL-CA (Kolluru et al., 2020). All results are 265

obtained using their official released code. 266

1https://catalog.ldc.upenn.edu/LDC99T42
2https://catalog.ldc.upenn.edu/LDC2013T19
3http://www.geniaproject.org/genia-corpus/

treebank
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ontoNotes (Simple) Genia (Simple) Penn (Simple)
Model P R F1 Time P R F1 Time P R F1 Time

AllenNLP 74.2 68.4 71.2 452s 79.7 47.7 59.7 1059s 88.7 67.7 76.8 823s
Stanford 56.9 53.4 55.1 763s 73.8 72.2 73.0 1722s 81.8 79.3 80.6 1387s

Teranishi+19 68.3 60.8 64.7 167s 76.4 65.2 70.3 136 s 74.2 75.5 75.4 217s
IGL-CA 77.6 59.7 67.5 17s 78.0 64.3 71.0 27s 87.9 86.9 87.4 17s

CoRec (our) 72.4 75.8 74.1 32s 82.0 81.2 81.6 15s 88.3 89.2 88.8 57s
ontoNotes (Complex) Genia (Complex) Penn (Complex)

AllenNLP 84.6 49.4 62.4 105s 82.3 25.7 39.2 370s 90.2 61.7 73.2 363 s
Stanford 62.4 34.5 44.4 248 s 64.3 32.9 43.5 831s 86.1 69.7 77.1 530 s

CoRec (our) 73.1 79.3 76.0 4s 67.7 56.7 61.7 9s 91.5 89.5 90.5 10s
Table 1: Performance Comparison (average over 5 runs)

Evaluation Metrics We evaluate both the effec-267

tiveness and efficiency of different methods. We268

evaluate effectiveness using span level precision,269

recall, and F1 scores. A predicted span is correct270

only if it is an exact match of the corresponding271

span in the ground truth.272

For efficiency evaluation, we report the infer-273

ence time of each method. All experiments are274

conducted on a computer with Intel(R) Core(TM)275

i7-11700k 3.60GHz CPU, NVIDIA(R) RTX(TM)276

3070 GPU, and 40GB memory.277

4.1 Main Results278

The results are shown in Table 1. Note that each test279

set is further split into a simple set and a complex280

set. Simple set contains instances with ‘and’, ‘but’,281

‘or’ as target coordinators only. The remaining in-282

stances go into the complex set. The learning-based283

baseline methods cannot handle the complex set.284

In terms of effectiveness, CoRec’s recall and F1285

scores are higher than all baseline methods on all286

datasets, and the improvement on F1 scores is 2.9,287

8.6, and 1.4 for ontoNotes, Genia, and Penn com-288

pared to the best baseline methods, respectively.289

Although CoRec is not trained on a biomedical290

corpus, it still demonstrates superior performance.291

The inference time of CoRec is also competitive.292

4.2 Impact of CoRec on Open IE Tasks293

To show the effect of CoRec on downstream tasks,294

we implement a sentence splitter that generates295

simple, non-conjunctive sub-sentences based on296

CoRec’s output. Then we apply two state-of-the-297

art Open IE models, Stanford OpenIE (Angeli et al.,298

2015) and OpenIE6 (Kolluru et al., 2020), to extract299

unique relation triples on the Penn dataset before300

and after our sentence splitting. The results are301

shown in Table 2. The yield of unique extractions302

has a significant increase for both models after sen-303

tence splitting. Though OpenIE6 implements the304

Model Before After Yield
Stanford 12210 21284 +74.3%
OpenIE6 8084 12085 +58.4%

Table 2: The impact of CoRec on Open IE Yield

Model Precision Recall F1
BERT 78.73 85.46 81.96

+[C] mark 87.15 88.92 88.03
+CRF 88.36 89.35 88.85
+aug 89.28 90.21 89.74

Table 3: Ablation Study

coordination boundary detection method IGL-CA, 305

the coordination structure still negatively impacts 306

the Open IE yield. 307

4.3 Ablation Study 308

We conduct an ablation study to examine the con- 309

tribution of different components in terms of per- 310

formance gain. The base model only uses BERT 311

encoder, then coordinator markers, CRF, and data 312

augmentation are incrementally added. The testing 313

results on Penn dataset are shown in Table 3. From 314

the results, we can see that all of the components 315

can improve the performance in terms of precision 316

and recall. 317

5 Conclusions 318

In this paper, we develop CoRec, a simple yet ef- 319

fective coordination recognizer without using syn- 320

tactic parsers. We approach the problem by formu- 321

lating a pipeline of coordinator identification and 322

conjunct boundary detection. CoRec can not only 323

detect the boundaries of more than two coordinated 324

conjuncts but also handle multiple coordination in 325

one sentence. It can also deal with both simple and 326

complex cases of coordination. Experimental re- 327

sults show that CoRec outperforms state-of-the-art 328

models on datasets from various domains. Further 329

experiments imply that CoRec can improve the per- 330

formance of state-of-the-art Open IE models. 331
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A Labeling Details508

CoRec handles three types of coordinator spans:509

contiguous span coordinators, paired span coordi-510

nators, and coordination with ‘respectively’. In511

this section, we use simple examples to show the512

labeling details of each type.513

Contiguous Span Coordinators Processing con-514

tiguous span coordinator is straightforward. Take515

the sentence "My sister likes apples, pears, and516

grapes." as an example, following Section 3.2 we517

should generate one instance with labels as shown518

in Table 4.519

Paired Span Coordinators Each paired span co-520

ordinator consists of two coordinator spans: the left521

coordinator span, which appears at the beginning522

of the coordination, and the right coordinator span,523

which appears in the middle. The right coordinator524

span stays more connected with the conjuncts due525

to relative position. Therefore, we choose to detect526

the conjuncts only when targeting the right coordi-527

nator span. Take the sentence "She can have either528

green tea or hot chocolate." as an example, follow-529

ing Section 3.2 we should generate two instances530

with labels as shown in Table 5.531

Coordination with ‘Respectively’ The conjunc-532

tive sentence with ‘respectively’ usually has the533

structure ‘...and...and...respectively...’, where the534

first and the second coordination have the same535

number of conjuncts. In order not to confuse536

CoRec, we process the sentence as an ordinary537

contiguous span instance when targeting the first538

or second ‘and’. When targeting ‘respectively’, we539

aim to detect conjunct boundaries of the first and540

second coordination together. Thus we can match541

the conjuncts one by one during sentence splitting.542

Take the sentence "The dog and the cat were named543

Jack and Sam respectively." as an example, follow-544

ing Section 3.2 we should generate three instances545

with labels as shown in Table 6.546

B Error Analysis547

To better understand the bottleneck of CoRec, we548

conduct a case study to investigate the errors that549

CoRec makes. We randomly selected 50 wrong550

predictions and analyzed their reasons. We identify551

four major types of errors as follows (for detailed552

examples check Table 7):553

Ambiguous Boundaries (38%) The majority of554

the errors occurred when the detected boundaries555

are ambiguous. In this case, although our predic- 556

tion is different from the gold standard result, they 557

can both be treated as true. We identify two com- 558

mon types of ambiguous boundaries: ambiguous 559

shared heads (28%) and ambiguous shared tails 560

(10%). The former is usually signaled by ‘a/an/the’ 561

and shared modifiers. The latter is usually signaled 562

by prepositional phrases. 563

Errors without Obvious Reasons (32%) Many 564

errors occurred without obvious reasons. However, 565

we observe that CoRec makes more mistakes when 566

the original sentences contain a large amount of 567

certain symbols (e.g., ‘-’, ‘.’). 568

Wrong Number of Conjuncts (22%) Some- 569

times CoRec detects most conjuncts in the gold 570

standard set but misses a few conjuncts. In some 571

other cases, CoRec would detect additional con- 572

juncts to the correct conjuncts. 573

Low-Quality Gold Labels (8%) We find there 574

may also be some low-quality ground truth parse 575

trees, thus generating incorrect gold labels. In this 576

case CoRec may make a correct prediction that is 577

different from the ground truth. 578

C Limitations 579

Language Limitation The proposed CoRec 580

model works mostly for languages with limited 581

morphology, like English. Our conclusions may 582

not be generalized to all languages. 583

Label Quality Limitation We use ground truth 584

constituency parse trees from Penn Treebank, GE- 585

NIA, and OntoNotes Release 5.0 (Marcus et al., 586

1993; Weischedel et al., 2013; Ohta et al., 2002) to 587

generate the labels. Since the parsing does not tar- 588

get for the coordination recognition task, we apply 589

rules for the conversion. A single author inspected 590

the labels for complicated cases but did not inspect 591

all the labels. There could be erroneous labels in 592

the training and testing data. 593

Comparison Limitation Comparison to the 594

parsing-based methods may not be precise. Parsers 595

are not specialized in the coordination recognition 596

task. Our task and datasets may not be the best fit 597

for their models. 598
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My sister likes apples , pears , [C] and [C] grapes .
O O O B-before I-before B-before I-before C C C B-after O

Table 4: An example conjunctive sentence labeling with contiguous span coordinator ‘and’

She can have [C] either [C] green tea or hot chocolate .
O O O C C C O O O O O O

She can have either green tea [C] or [C] hot chocolate .
O O O C B-before I-before C C C B-after I-after O

Table 5: An example conjunctive sentence labeling with paired span coordinator ‘either...or...’

The dog [C] and [C] the cat were named Jack and Sam respectively .
B-before I-before C C C B-after I-after O O O O O O

The dog and the cat were named Jack [C] and [C] Sam respectively .
O O O O O O O B-before C C C B-after O

The dog and the cat were named Jack and Sam [C] respectively [C] .
B-before I-before C B-after I-after O O B-before C B-after C C C O

Table 6: An example conjunctive sentence labeling with ‘respectively’

Category Ground Truth CoRec
Ambiguous Boundaries I’m not going to worry about

one day’s decline, said Kenneth
Olsen, digital equipment corp.
president, who was leisurely
strolling through the bright [or-
ange] and [yellow] leaves of the
mountains here after his com-
pany’s shares plunged $5.75 to
close at $86.5.

I’m not going to worry about
one day’s decline, said Kenneth
Olsen, digital equipment corp.
president, who was leisurely
strolling through [the bright or-
ange] and [yellow] leaves of the
mountains here after his com-
pany’s shares plunged $5.75 to
close at $86.5.

Errors without Obvious Reasons For example, the delay in sell-
ing people’s heritage savings,
Salina Kan, with $1.7 billion
in assets, has forced the RTC
to consider selling off the thrift
[branch-by-branch,] instead of
[as a whole institution].

For example, the delay in sell-
ing people’s heritage savings,
Salina Kan, with $1.7 billion in
assets, has forced the RTC to
consider [selling off the thrift
branch-by-branch,] instead of
[as a whole institution].

Wrong Number of Conjuncts Sales of Pfizer’s important
drugs, [Feldene for treating
arthritis,] and [Procardia, a heart
medicine], have shrunk because
of increased competition.

Sales of [Pfizer’s important
drugs,] [Feldene for treating
arthritis,] and [Procardia, a heart
medicine], have shrunk because
of increased competition.

Low-Quality Gold Labels The executives were remarkably
unperturbed by the plunge even
though it [lopped billions of dol-
lars off the value of their com-
panies] and [millions off their
personal fortunes].

The executives were remarkably
unperturbed by the plunge even
though it lopped [billions of dol-
lars off the value of their com-
panies] and [millions off their
personal fortunes].

Table 7: Case study of conjunct boundary detection results on the Penn dataset. For each case, the ground truth
conjuncts are colored red and the CoRec detected conjuncts are colored blue.
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