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ABSTRACT

Large Language Models (LLMs) have shown remarkable ability to converse with
humans and solve a wide range of tasks. They have also been extended to make
use of external tools or services through API calls. This is commonly achieved by
fine-tuning the model, or with the use of in-context learning, where instructions
and descriptions of those external APIs, along with examples of how to call them,
are given to the LLM via its prompt. Given the limited context available in the
LLM prompt and other latency constraints, scaling up to a large number of tools
is challenging and requires the help of an external shortlisting process to prepare
instructions and examples from a large number of APIs to a smaller set of relevant
ones. In this work, we propose a new way for an LLM to generate the right API
calls without the need to shortlist instructions or examples. Rather, we do this
by allowing the LLM to hallucinate meaningful output while grounding the gen-
eration to an available set of APIs using a finite state machine-based constrained
decoding algorithm. We call our approach FARS (FSM-Augmentation to make
LLMs hallucinate the Right APIS). FARS allows us to ground LLMs to a large set
of APIs with semantically meaningful names without using an external retriever
or exemplars. We also demonstrate that with FARS, LLMs can seamlessly switch
between conversation and API calling during multi-turn dialogs. We show that
this can be achieved without any additional fine-tuning over the standard instruc-
tion tuning typically performed to train LLMs. This allows us to pave the way to
build a truly powerful AI assistant using LLMs. We demonstrate the effectiveness
of FARS for API calling on two public task-oriented API datasets: SNIPS and
MultiWOZ, and a very challenging in-house Smart Home Control dataset.

1 INTRODUCTION

Large Language Models (LLMs) have shown remarkable ability in conversing with humans and
performing a range of complex tasks. More recently, there has been an increasing trend towards
adapting them to call various tools or APIs to further augment their abilities (Schick et al., 2023; Patil
et al., 2023; Qin et al., 2023; Shen et al., 2023). On the commercial front, ChatGPT Plugins 1 and
Bard Extensions 2 are examples of this tool augmentation, allowing an LLM to answer current affairs
questions, and be able to make API calls to handle user requests. Amazon recently demonstrated
a version of its Alexa voice assistant, powered by an LLM but also capable of grounding itself to
real-time API calls to fetch weather information and control smart home functions 3.

To allow LLMs to work with APIs, in-context learning is used to show the LLM how to make API
calls via descriptions of the API calls and demonstrations of how to use them in response to user
requests. However, this method is less applicable to real world applications where the number of
available APIs is too large to present as instructions or demonstrations to the LLM in its prompt.
To overcome this challenge, a prompt with instructions and examples is dynamically constructed
through an external shortlisting process based on the current context (Patil et al., 2023).

In this work, we propose a new way to perform the aforementioned task without the need for an
external shortlisting process of API information. Rather, we take advantage of the LLM’s ability to

1https://openai.com/blog/chatgpt-plugins
2https://bard.google.com/extensions
3https://www.aboutamazon.com/news/devices/amazon-alexa-generative-ai
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hallucinate meaningful output while grounding this hallucination in a Finite State Machine (FSM)
describing valid API calls.

Hallucination is a well-documented problem with LLMs. Despite fine-tuning and grounding with
examples, they have been known to generate incorrect but logically plausible facts and completions.
In the case of API calls, this results in LLMs making up API calls with arguments that sound plau-
sible yet don’t match any from the actual API catalog. We take advantage of this ability and ground
the generation of the LLM to a catalog of available APIs using a finite state machine-based con-
strained decoding algorithm. The finite state machine consists of various states in the process of
API generation and a full trace in this machine from the start state to finish state represents a valid
API call. We thus effectively use the LLM to reason over state transitions and generate a trace from
the FSM that corresponds to a valid API call.

We call our approach FSM-Augmentation to make LLMs hallucinate the Right APIS or FARS in
short. FARS allows us to ground LLMs to a large set of APIs with semantically meaningful names
without using an external retriever or exemplars. Figure 1 shows a simplified scenario in which
FARS works to generate an API call from the two available APIs - Weather and Volume, to handle
a user request about weather. As typically used with LLMs, the user request is augmented with a
prompt to instruct the model generate API calls along with some demonstrations. However, this
prompt is static and is not a result of a retrieval process. The whole grounding process happens via
constraining the generation of the LLM via an FSM containing API definitions.

A key aspect of API calls in addition to the name, arguments, and structure, is the actual argument
values, which can be fixed, such as volumeLevel in a device control API, or mostly free text, such
as location in a weather API. In the figure, the LLM generation is demonstrated with fixed value
arguments but we also present a modification to our FSM to enable it to visit intermediate free text
states and therefore generate free text arguments within the API call structure. This dual ability of
being able to generate free text arguments while also having the ability to sometimes constrain the
argument values is another advantage of FARS. This modification is also used to allow the chat-
enabled LLM to respond to users directly with free text in addition to making API calls. Full details
of our FSM approach and modifications are in Section 2.

We demonstrate the ability of FARS to generate the right API calls on two popular task-oriented
API datasets - SNIPS (Coucke et al., 2018) and MultiWOZ (Budzianowski et al., 2018), and a chal-
lenging in-house Smart Home Control dataset. While SNIPS is a single-turn dataset, MultiWOZ is a
complex multi-turn dataset that requires the model to reason across multiple turns in a conversation.
We show that with FARS, we can achieve 93% Intent-Accuracy on SNIPS with a simple prompt
without any carefully selected exemplars. An unconstrained model, with the same prompt, achieves
3%. On MultiWOZ, FARS achieves 52% Exact Match accuracy, matching fine-tuned SOTA models,
while an unconstrained model gets only 26%. FARS can also be used in conjunction with retrieval
and exemplars, where it resembles a few-shot constrained decoding method, but with API-specific
nuances in the decoding algorithm. In this setting, FARS achieves 97% on SNIPS, compared to
an unconstrained LLM that achieves 91%. We further demonstrate how FARS enables an LLM to
generate both free text responses and API calls on the MultiWOZ test set. With our in-house Smart
Home Control dataset, we demonstrate the API generation ability of FARS and also its ability to
reason and ground itself to a large list of available devices. We achieve 46% improvement on slot
accuracy and 16% on intent accuracy over unconstrained LLM with in-context instructions.

2 FARS: FSM-AUGMENTATION TO MAKE LLMS HALLUCINATE THE RIGHT
APIS

Instruct-tuned Large Language Models have been shown to follow user requests quite well with the
right information specified in the input prompt (Brown et al., 2020; Ouyang et al., 2022). If they
are instructed to generate APIs, they do a good job making up a reasonable API call. They get
even better when they are specified with a few relevant exemplars showing the exact APIs that are
available. In both cases however, there is no guarantee that the model will generate a valid API call
from the catalog of available APIs. In the exemplar case, the model will most likely do a good job
adapting the seen API call, quite possible a valid one, but this very much depends on the retriever
doing a good job fetching the calls.

2



Under review as a conference paper at ICLR 2024

Figure 1: Grounding the LLM to generate a valid API using FARS. Generation is constrained by the
simplified finite state machine shown on the right. In this instance of the user requesting information
about the weather, the LLM generation is traced through the green states and transitions and the
resultant text with the correct API call is at the bottom.

In this section, we first describe how an LLM typically behaves for API generation and then describe
our finite state machine-augmented approach to make it generate the right APIs. We use the publicly
available Vicuna-33B model (Zheng et al., 2023) as the base instruct-tuned LLM for the examples
specified in this section. Although we observed similar results with our in-house instruction-tuned
LLM, we share results with Vicuna-33B for reproducibility.

2.1 LLM HALLUCINATIONS ARE NOT ALL THAT BAD

As mentioned earlier, despite the LLM hallucinating API calls and arguments, these hallucinations
make logical sense. For example, take the following simplified scenario, where the API catalog
consists of the following APIs.

- InfoQuery to query for information about current events or specific knowledge.
Arguments: question.

- Weather for getting weather information. Arguments: field, location.
- Search.Local for searching for places in an area.

Arguments: placeName, location, time
(assume these have an allowed set of values such as hospital, grocery, post office etc.)

- Volume to set volume. Arguments: level (1-10)
- Exit to leave the conversation. Arguments: none

Now, with the following system prompt,

A chat between a user and an artificial intelligence assistant that can make API calls.
The assistant generates API calls to handle various user requests such as volume, weather,
local search, info query etc.

E.g. 1:
USER: who sang blank space
ASSISTANT: InfoQuery(question="who sang blank space")

E.g. 2:

we see that Vicuna-33B generates the following API calls to user requests.

USER: find me a med emergency room in new york for tomorrow
ASSISTANT: LocalSearch(query="medical emergency room in New York for tomorrow")

USER: set volume to 50%
ASSISTANT: Volume(action="set volume to 50%")

USER: is it going to rain in new york
ASSISTANT: Weather(location="New York", queryType="forecast")

USER: okay quit
ASSISTANT: Goodbye

USER: what is the population of boston
ASSISTANT: InfoQuery(question="what is the population of boston")

These calls look reasonable but do not match the API catalog. Volume and Weather have incorrect
arguments, the LocalSearch API call is wrong, and the model doesn’t make the exit API call. This
led us to believe that if we could constrain the generation to guide the model to only generate valid
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API calls and arguments, we should be able to generate the right API calls. With simple trie-based
constraining with preset argument values, the same LLM generates the following API calls for the
same user requests with the same prompt. These API calls now exactly match the catalog.
USER: find me a med emergency room in new york for tomorrow
ASSISTANT: Search.Local(placeName="hospital", location="New York", time="tomorrow")

USER: set volume to 50%
ASSISTANT: Volume(level=5)

USER: is it going to rain in new york
ASSISTANT: Weather(field="rain", location="New York")

USER: okay quit
ASSISTANT: Exit()

USER: what is the population of boston
ASSISTANT: InfoQuery(question="what is the population of boston")

2.2 CONSTRAINED GENERATION WITH A FINITE STATE MACHINE

To fully extend this constrained decoding approach to real world APIs with dynamic selection of
arguments, and free-text argument values, we turn to finite state machines.

A finite state machine consists of a set of finite states, and transitions between pairs of states, trig-
gered by specific inputs. We model API generation as a finite state machine as follows.

1. We have a begin state B, and end state E. From the begin state, we are only allowed to
generate an available API.

2. There are m API states corresponding to each of the m available API calls. We transition
to a particular API state when the model generates that particular API call to start.

3. For each API call APIi (0 ≤ i < m) with ni possible arguments, there are an additional
at

∑ni

k=1
niPk = O(en) ARG states corresponding to each permutation of possible argu-

ments for that call. Each of these states corresponds to the state of that particular API call
with a certain number of arguments filled out in a certain order, making the state space the
partial permutation set of all arguments. For example, for the Weather API call from the
previous scenario with arguments field and location, there are four new states - one corre-
sponding to generating field as the first argument, one for location as the first argument, one
for generating field first and location second, and one for generating location first and field
second. We chose this design instead of having just a single fixed order of all arguments in
the API call since we experimentally found that the LLM does a better job when we let it
choose the order and subset of arguments to predict.

4. To allow the model to skip arguments, we allow transitions from every ARG state to the
end stateE. This way, the API call will consist only of arguments generated until that state.

5. Argument values can either be chosen from a set of predetermined values such as levels
for the Volume API, or can be completely free-text such as the question for an InfoQuery
call. We therefore have, for each ARG state, an additional value state - either V fix for
generating an argument value from a fixed set, or V un to allow unconstrained generation.
From each ARG state, we transition to the V state when we start generating the value.
Once generation is complete, we can transition to the next ARG state or the end state E.

6. To allow generation of multiple concurrent API calls, e.g., switching off the light and re-
ducing air temperature, we introduce final state F . After the API end state E, we can either
transition to the begin state B to generate another API call or transition to this final end
state F to signal the end of the whole API generation process.

In total, given m APIs, each with ni arguments, the complete set of states S is given by
S = {B,E, F} ∪ {APIi : 0 ≤ i < m} ∪ {ARGis : 0 ≤ i < m, s ∈ ψ({0, 1, . . . ni})}

∪ {V un|fix
is : 0 ≤ i < m, s ∈ ψ({0, 1, . . . ni})}

where ψ(X) is the set of all partial permutations of elements in set X.

Figure 2 shows a graphical representation of the FSM we just described. The begin, end, and
final states are marked in green. The API states are marked in blue. We expanded two of them
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Figure 2: An example Finite State Machine for API generation. States corresponding to two APIs
and two of their arguments are shown expanded while all the other states are collapsed with dots.

- GetWeather and SetVolume here. All the ARG states are marked in orange. As shown, we can
transition to any of the allowed argument states from the API state first and from there, we can
then transition to one of the remaining argument states. The argument value states are all marked
in yellow as V . Unconstrained value states allow generating free text (e.g. location) and the ones
with a fixed set of values (e.g. level) only allow generation of those values. When we attach this
finite state machine to the LLM while decoding, the generation is constrained to only allow feasible
tokens that make up valid API calls due to the fixed states and state transitions.

While the FSM enforces structure, it doesn’t perform any reasoning on which of the available API
calls or arguments to generate. That is completely left up to the parametric knowledge of the LLM.
In order to describe the some of the other logical transitions of the FSM, such as how to end free text
argument value generation, we need to describe that to the LLM through instructions in the prompt.
We describe further implementation details in Section 3.1

Integrating with a Conversational Experience The FSM just described, once engaged, always
forces the LMM to predict an API call from the catalog. However, in an AI assistant application,
the LLM would also generate responses to the user in addition to making API calls. To facilitate
this, we augment the FSM with a non-API state which allows unconstrained free-text generation.
We can choose to allow the LLM to follow the non-API route or API-grounding route. With this
modification, we enable the LLM to both respond directly or generate a valid API when necessary.

3 EXPERIMENTAL DETAILS

3.1 IMPLEMENTING AND OPTIMIZING FARS

In this section we describe how to efficiently implement FARS using a constrained decoding algo-
rithm that relies on a trie structure, dynamically built to follow the FSM defined earlier.

We first store all APIs, corresponding arguments, their types (categorical/free-text), and possible
values in an API bank. From this, we construct our trie. A trie is a type of k-ary search tree that is
used to efficiently store all possible sequences in a set. It can be used to query the possible next items
given a certain prefix, akin to a compact hash-table. Our trie is defined at the token level to work
with LLM generation, and it determines the allowed next tokens that the model can generate based
on the prefix of tokens generated so far, following the constraints of the FSM, defined by the schema
in the API bank. Built dynamically, the trie contains holes that correspond to the unconstrained state
in the FSM where we allow free text generation to generate free-text argument values. Each hole
is defined by a special hole-start and hole-end token in the trie, conditioned on the argument it is
generating the value for. When the LLM generates the hole-start token for that particular argument,
we relax the constraints and let the model generate free text until it generates the hole-end token.
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We use a dynamic trie since a simple trie with a predetermined set of all possible sequences is pro-
hibitively large due to a) the exponential combinations of arguments - O(en), and b) the infinite
possibilities while generating multiple API calls in the same turn. With the dynamic trie, we over-
come these issues by building it dynamically for only a few steps until the next argument or the next
API call is ready to be generated. When the LLM is ready to generate further, we extend the trie to
include the possible next set of arguments or API calls to choose from. This reduces the overall size
of the trie to a polynomial O(n2). Algorithm 1 describes the pseudocode of our approach. In our
implementation, we initialize the trie to cover all API call names. During inference, other arguments
and possible API calls are chosen from the API bank and added on dynamically. For any changes to
the API schema such as adding or modifying API names, arguments, or values, we simply need to
update the API bank and re-initialize the trie with the new set of API names.

Algorithm 1 Constrained API Generation with a Dynamic Trie with Holes
Input: Trie T , LLM M , Generated Sequence S = [ ], Unconstrained start and end tokens Us, Ue

def Next(M,S, T ∗) - Returns next token generated by M , constrained by T , with prefix S.
def Complete(S, T ) - Returns True if S is complete w.r.t sequences in T .
def GenerateAnotherARG(S) - Returns True if S is ready to generate another argument.
def GenerateAnotherAPI(S) - Returns True if S is ready to generate another API.

Steps:
1: Initialize T with all possible API names
2: constrained = True
3: while not Complete(S, T ) do
4: if constrained then
5: ct = next(M,S, T )
6: else
7: ct = next(M,S)
8: end if
9: S = S + [ct]

10: if ct == Us then
11: constrained = False
12: else if ct == Ue then
13: constrained = True
14: end if
15: if GenerateAnotherARG(S) then
16: Extend T by one step to include each of the remaining args
17: end if
18: if GenerateAnotherAPI(S) then
19: Extend T by one step to include all possible API names
20: end if
21: end while

3.2 BASE LLM, SETTINGS, AND EVALUATION DATASETS

Although we obtain similar results with an in-house LLM, we present results using Vicuna-33B
since it is publicly available and helps in reproducing our results. We keep the wording of the
prompt that the Vicuna model is fine-tuned with, but modify it to include information about API
generation. Our base prompt for API evaluation for all the datasets is the following. Information
about the API calls and examples (indicated by xxx) is filled out specifically for each dataset.
A chat between a user and an artificial intelligence assistant that can make API calls.
The assistant generates API calls to handle various user requests such as xxx.

E.g 1:
USER: xxx
ASSISTANT: xxx

E.g 2:

We evaluate FARS on three datasets - SNIPS (Coucke et al., 2018), MultiWOZ (Budzianowski et al.,
2018), and an in-house Smart Home Control Dataset. SNIPS consists of single-turn user utterances
and target API calls across seven different intents such as weather, music, restaurant etc. MultiWOZ
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IA SR SF1 IA SR SF1 IA SR SF1 IA SR SF1
Playlist Restaurant Weather Music

No API retrieval

Unconstrained LLM 5.0 10.0 65.8 0.0 1.0 14.9 8.0 8.0 41.7 6.0 11.0 41.7
FARS (Ours) 100.0 56.0 72.8 90.0 35.0 61.4 99.0 43.0 66.9 94.0 43.0 50.4

With API retrieval

Unconstrained LLM 91.0 59.0 70.3 91.0 37.0 63.7 95.0 45.0 70.3 87.0 38.0 48.6
FARS (Ours) 100.0 77.0 82.7 97.0 47.0 68.0 100.0 55.0 72.2 99.0 51.0 63.7

Book Creative Screening Overall
No API retrieval

Unconstrained LLM 2.0 0.0 0.0 0.0 0.0 0.0 0.0 7.0 25.2 3.0 5.3 27.0
FARS (Ours) 100.0 55.0 75.1 94.0 75.0 77.1 78.0 37.0 53.4 93.6 49.1 65.3

With API retrieval

Unconstrained LLM 98.0 56.0 75.8 82.0 71.0 72.6 96.0 54.0 49.7 91.4 51.4 64.4
FARS (Ours) 100.0 55.0 80.2 86.0 74.0 73.8 99.0 60.0 69.4 97.3 59.9 72.9

Table 1: Intent Accuracy (IA), Slot Recall (SR), and Slot F1 (SF1) metrics on SNIPS comparing
FARS and an unconstrained LLM, with and without API exemplar retrieval.

is a more complex dataset that consists of multi-turn user conversations with API calls and also
assistant responses after API call execution. We primarily report numbers on API call performance
but also show some examples of how we can disengage our FSM and allow the model to generate
responses freely. Finally, we evaluate FARS on a challenging in-house Smart Home control dataset
consisting of around 60 different API calls and a large number of devices as arguments.

4 RESULTS

4.1 MAKING SINGLE-TURN API CALLS - SNIPS

We evaluate our approach by employing two inference settings on the SNIPS dataset: (1) No API
retrieval where there are no relevant exemplars or API descriptions. (2) With API retrieval where
there are API descriptions and domain-specific exemplars. We benchmark FARS against the uncon-
strained model, our baseline. We report intent accuracy, slot recall, and slot F1 score on SNIPS. Slot
recall measures whether all the gold slots have been predicted correctly by the model.

As seen in Table 1, without API retrieval, FARS significantly outperforms unconstrained LLM by
90.6, 43.9 and 38.3 absolute points averaged across 7 intents on intent accuracy, slot recall and slot
F1 score respectively. We observe drastic improvements in performance as an unconstrained LLM
without available API information in the prompt severely hallucinates incorrect intents and slots
whereas our approach effectively predicts correct hypotheses as it is grounded by the FSM.

In the case where we retrieve and provide relevant API exemplars in the prompt, the unconstrained
LLM improves as the model is now aware of the API calls. Our retrieval is based on sentence
similarity scores between the API description and user utterance but we also make it an oracle setting
where the right API call is always inserted, giving us an upper bound. FARS without API retrieval
achieves similar performance to the unconstrained LLM with oracle API retrieval, emphasizing the
effectiveness and efficiency of our approach. We find that a big portion of errors in FARS are
from the screening domain, where it is worse than the unconstrained LLM with retrieval. Upon
further error analysis, we discovered that this domain has certain arguments that weren’t easy for
the model to predict without explicit examples. For example, object_type with values such as movie
schedules and movie times. When provided with API exemplars, FARS further improves upon its
unconstrained counterpart by 5.9, 8.4 and 8.4 absolute points on the same metrics, showing that
FARS still provides an advantage when combined with retrieval.

4.2 SMART HOME API CALLS WITH DEVICE CONTROL

We report intent accuracy and slot accuracy on our internal Smart Home Control dataset. Since this
is a proprietary dataset, we report relative numbers. This dataset contains single turn queries for
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Intent Slot
All devices

Unconstrained LLM baseline
FARS (Ours) +15.9 +46.3

With top-k device retrieval

Unconstrained LLM +16.4 +9.2
FARS (Ours) +27.2 +56.2

Table 2: Intent and Slot Accuracy for Smart Home Control APIs. We show relative improvement
over baseline unconstrained LLM in two scenarios - with and without shortlisting top-k devices.

controlling various home devices. Each device has its respective APIs, sometimes shared among
devices. Given this setup each home may have K devices and M (>> K) APIs. This is an espe-
cially hard dataset since there are many semantically similar APIs such as Adjust_Setting, Bright-
ness_Increase, and different set of slots for each API e.g. (mode, level) v/s (setting, setting_value).

Table 2 shows that by constraining LLM with FARS, we see an improvement of 46.3 points on slot
accuracy and 16 points on intent accuracy. Reducing search space by shortlisting top devices and
APIs further improves performance. With reduced search space, an unconstrained LLM matches
performance of the full search space FARS on intent accuracy. However, FARS vastly outperforms
it in slot accuracy since each API has slightly different slots names, and by constraining with an
FSM, our approach is able to handle these nuances better. FARS with reduced search space is the
best overall model providing a further 10 point improvement over FARS with full search space.

4.3 MULTI-TURN API CALLS AND RESPONSES - MULTIWOZ

On the MultiWOZ 2.2 dataset, we evaluate FARS without any special exemplar retrieval and find
that we match the turn-level Full-Signature (exact match) accuracy of three SOTA models4 with
a score of 52.2 as seen in Table 3. We also report intent accuracy and slot recall of our model
for reference. We achieve these scores without additional training and by simply engaging the
FSM during generation at each turn in the conversation where we need to generate an API. An
unconstrained LLM achieves a score of 26.3, so FARS helps us double the score.

In addition to API calling, we also enable the LLM to generate direct assistant responses when
required by disengaging the FSM. Since we do not train the model and only constrain it during
generation, it retains its generic instruction following and conversational ability and we see this on
display during the prediction of assistant responses. We achieve an average BERTScore (Zhang
et al., 2020) of 0.90. Additionally, we often found that our model responses were of higher quality
than the reference. Take the following turn for example. Our model, being a powerful instruction
following model with chat abilities, generates a more helpful answer than the gold response by
fetching information from previous turns in the conversation.

...conversation about address and information on the varsity restaurant...
USER: I do not need a reservation for the restaurant just information.
GOLD ASSISTANT: Ok. Do you need anything else then?
PRED ASSISTANT: I apologize for the confusion. Here is the information you requested:
The Varsity Restaurant, 35 Saint Andrews Street City Centre, Postcode: cb23ar
Phone: 01223356060
Please let me know if there is anything else I can help you with.

During our error analysis for API calling, we found a fair amount of noise in the test dataset, based
on which our model predictions were penalized. There were many turns with multiple API calls
where the additional call wasn’t warranted and there were also turns that had a logically different
structure. Take the following turn for example.

...conversation about visiting Magdalene College on Magdalene Street and Dojo Noodle bar...
USER: No, I was just curious. I am also looking for a taxi between those two places.
GOLD ASSISTANT: Taxi.find_taxi()
PRED ASSISTANT: Taxi.find_taxi(destination="magdalene street", departure="dojo noodle bar")

4Scores for the SOTA models were fetched from the MultiWOZ 2.2 paper (Zang et al., 2020)
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Intent Slot Full-Signature
Unconstrained LLM 55.9 31.8 26.3
FARS (Ours) 85.0 61.9 52.2

TRADE (Wu et al., 2019) - - 45.4
SGD-Baseline (Rastogi et al., 2020) - - 42.0
DS-DST (Zhang et al., 2019) - - 51.7

Table 3: Metrics on MultiWOZ conversational dataset comparing FARS to SOTA models. We match
SOTA models on full-signature accuracy with no training or retrieval.

Our model was penalized here for inferring the departure and destination arguments from earlier in
the conversation. In the gold conversation, these were explicitly elicited from the user in the next
turn. Our model, knowing the arguments, fills them in without an additional turn.

5 RELATED WORK

There is an increasing amount of literature exploring API tool usage with LLMs. This includes work
such as Toolformer Schick et al. (2023), Gorilla (Patil et al., 2023), ToolLLM (Qin et al., 2023),
HuggingGPT (Shen et al., 2023), and TaskMatrix (Liang et al., 2023). Most of these approaches
rely on including examplars and instructions in the input prompt to the LLM. This makes them
dependent on a retriever or shortlister to fetch a few examples to include in the prompt. With FARS,
we don’t need to do this. The finite state machine contains information about the API catalog and
we can simply engage it during generation and include simple instructions in the prompt.

Our constrained decoding algorithm is similar to the work on autoregressive entity retrieval by
De Cao et al. (2020), in which the authors ground the generation of a trained autoregressive model to
generate entity links from an existing catalog of entities. In our work, we follow a similar approach
to grounding, but tackle the problem of API call generation. We also integrate this approach with
instruct-tuned LLMs to completely skip any training and simply guide the model during inference.

Constrained Decoding for semantic parsing is another closely related field of work (Shin et al., 2021;
Wu et al., 2021; Rongali et al., 2022). Here, the focus is primarily on using constrained decoding
to enforce structure after training, or in an in-context learning setting, which requires fine-grained
retrieval. The style of constraining in these works, using a simple trie, also doesn’t generalize to API
calling and free-text holes for arguments. We propose a more general framework and show how to
combine it with an instruct-tuned LLM, which can then be prompted to generate the right APIs.

6 CONCLUSION AND FUTURE WORK

We propose FARS, an FSM-augmented approach to make LLMs generate API calls from a catalog
without any retrieval. Our approach allows us to ground LLM generation to a large set of APIs
with semantically meaningful names. We provide a formal framework for FARS and also describe
our implementation in detail. We demonstrate the effectiveness of our approach on three different
datasets - SNIPS, MultiWOZ (multi-turn), and an in-house Smart Home Control dataset, where we
show that FARS achieves massive improvements over an unconstrained LLM.

An important limitation of FARS currently is that the model generation is always grounded to the
available API catalog. So, if a user requests an action that isn’t covered by the catalog, the model
will generate the closest one from the existing APIs. This scenario can be handled better by explor-
ing confidence scores of generated API calls and determining whether the grounding is reasonable.
Further, we briefly demonstrated how to enable both free text response generation and grounded
API calling using MultiWOZ but these decisions were predetermined i.e. we knew when to en-
gage the FSM and when to not. An important next step would be to demonstrate how to allow the
model to make this decision by providing some instructions in the prompt and setting up the FSM
appropriately. We leave these directions to future work.
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A APPENDIX: INFERENCE DETAILS

We use HuggingFace generation inference for our experiments. We create a lambda function and
pass it to the prefix_allowed_tokens_function argument in generate function. The lamda function is
initialized from the trie, which is in turn initialized from our API bank schema, and consists of API
name sequences at the start. The lambda function contains logic that dynamically adjusts the trie
and queries the latest state of the trie to return the valid set of tokens for generation at each step. We
use greedy decoding with beam size 1 for API generation in all our experiments, both constrained
and unconstrained, so there is no sampling or temperature set. We set the max_new_tokens to 200.

B APPENDIX: LATENCY ANALYSIS

There are some caveats to our implementation which prevent an easy, straightforward comparison
between FARS and an unconstrained LLM. A quick note, since we use HuggingFace generation
inference for our experiments, it may not reflect the run-time usage of models, which usually takes
place on a more optimized inference engine. Coming to the caveats, first, we noticed that constrained
generation ensures the model terminates right after finishing an API call with the proper set of
arguments but an unconstrained model may generate a lot more words - sometimes it hallucinates
additional arguments and sometimes it just does not terminate and generates new conversation turns.
In such cases, we saw smaller times for constrained generation, in spite of the additional processing
required for constraining. Second, the majority of our processing time is in building the dynamic
trie to avoid the n! explosion that comes with pre-building the entire trie. Once built however, the
additional overhead is just a trie lookup, which is extremely fast and practically adds no overhead.
We see this in our evaluation on a dataset where in the first few examples where the trie is being
built, there is a larger overhead but later, the differences disappear.

Now, under similar conditions with similar token lengths generated and no post-API turn hallucina-
tion with unconstrained models, with HuggingFace inference, we found that there was no difference
between constrained and unconstrained models. On SNIPS, the average time per sample for uncon-
strained was 4.27 seconds while for constrained, it was 4.39 seconds (3% higher). Table 4 provides
further breakdown of these times. In a production setting, where the trie already contains most of
the sequences, there would be practically no overhead from just a sequence of trie lookups and con-
straining could in fact be faster since the model isn’t allowed to hallucinate too many additional
arguments. Furthermore, despite not being implemented in our current work, there is an opportunity
to skip model generation and fast-track the generated sequence whenever there is only one possible
path in the trie. This has potential to greatly speed up generation time further.
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Intent Unconstrained Constrained (FARS)
Avg. Time SPM Avg. Time SPM

Playlist 3.86 15.53 3.96 15.15
Restaurant 5.98 10.03 6.27 9.57
Weather 4.33 13.84 4.67 12.84
Book 4.28 14.01 4.38 13.69
Creative 2.44 24.55 2.51 23.94
Screening 5.08 11.82 5.08 11.81
Music 3.94 15.24 3.87 15.50

Overall 4.27 15.00 4.39 14.64

Table 4: Average Time and Samples per minute (SPM) comparing unconstrained generation and
constrained FARS generation on examples from the SNIPS dataset with HuggingFace inference.
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