
LISA: Learning Interpretable Skill Abstractions from
Language

Anonymous Author(s)
Affiliation
Address
email

Abstract

Learning policies that effectually utilize language instructions in complex, multi-1

task environments is an important problem in imitation learning. While it is2

possible to condition on the entire language instruction directly, such an approach3

could suffer from generalization issues. To encode complex instructions into skills4

that can generalize to unseen instructions, we propose Learning Interpretable Skill5

Abstractions (LISA), a hierarchical imitation learning framework that can learn6

diverse, interpretable skills from language-conditioned demonstrations. LISA uses7

vector quantization to learn discrete skill codes that are highly correlated with8

language instructions and the behavior of the learned policy. In navigation and9

robotic manipulation environments, LISA outperforms a strong non-hierarchical10

baseline in the low data regime and is able to compose learned skills to solve11

tasks containing unseen long-range instructions. Our method demonstrates a more12

natural way to condition on language in sequential decision-making problems and13

achieve interpretable and controllable behavior with the learned skills.14

1 Introduction15

“pull the handle and
move black mug right”

Skill code z

time

0 1 2 3 4 K

VQ Codebook

31 1 333

1

1
3

3
3

Figure 1: Overview of LISA. Given a language
instruction, our method learns discrete skill ab-
stractions z, picked from a codebook C. The policy
conditioned on the skill code learns to execute dis-
tinct behaviors and solve different sub-goals. See
GIF.

Intelligent machines should be able to solve a variety16

of complex, long-horizon tasks in an environment17

and generalize to novel scenarios. In the sequential18

decision-making paradigm, provided expert demon-19

strations, an agent can learn to perform these tasks20

via multi-task imitation learning (IL). As humans, it21

is desirable to specify tasks to an agent using a con-22

venient, yet expressive modality and the agent should23

solve the task by taking actions in the environment.24

There are several ways for humans to specify tasks25

to an agent, such as task IDs, goal images, and goal26

demonstrations. However, these specifications tend27

to be ambiguous, require significant human effort,28

and can be cumbersome to curate and provide at test29

time. One of the most natural and versatile ways for30

humans to specify tasks is via natural language.31

The goal of language-conditioned IL is to solve tasks32

in an environment given language-conditioned trajec-33

tories at training time and a natural language instruc-34

tion at test time. This becomes challenging when the35

task involves completing several sub-tasks sequen-36

tially, like the example shown in Figure 1. A crucial37

step towards solving this problem is exploiting the inherent hierarchical structure of natural language.38

https://gifyu.com/image/Sbtpm

For example, given the task specification “pull the handle and move black mug right”, we can split39

it into two independent skills, i.e. “pull the handle” and “move black mug right”. If we are able to40

decompose the problem of solving these complex tasks into learning skills, we can compose these41

skills to generalize to unseen tasks in the future. This is especially useful in the low-data regime,42

since we may not see all possible tasks given the limited dataset, but may see all the constituent43

sub-tasks. One of the main goals of language conditioned IL is to utilise language effectively so that44

we can learn skills as the building blocks of complex behaviours.45

Utilising language effectively to learn skills is a non-trivial problem and raises several challenges. (i)46

The process of learning skills from language-conditioned trajectories is unsupervised as we may not47

have knowledge about which parts of the trajectory corresponds to each skill. (ii) We need to ensure48

that the learned skills are useful, i.e. encode behavior that can be composed to solve new tasks. (iii)49

We would like the learned skills to be interpretable by humans, both in terms of the language and50

the behaviours they encode. There are several benefits of interpretability. For example, it allows us51

to understand which skills our model is good at and which skills it struggles with. In safety critical52

settings such as robotic surgery or autonomous driving, knowing what each skill does allows us53

to pick and choose which skills we want to run at test time. It also provides a visual window into54

a neural network policy which is extremely desirable [54]. There have been prior works such as55

[38, 47, 13] that have failed to address these challenges and condition on language in a monolithic56

fashion without learning skills. As a result, they tend to perform poorly on long-horizon composition57

tasks such as the one in Figure 1.58

To this end, we propose Learning Interpretable Skill Abstractions from language (LISA), a hierarchi-59

cal imitation learning framework that can learn interpretable skills from language-conditioned60

offline demonstrations. LISA uses a two-level architecture – a skill predictor that predicts quantized61

skill codes and a policy that uses these skill codes to predict actions. The discrete skill codes learned62

from language are interpretable (see Figure 3) and can be composed to solve long-range tasks. Using63

skill quantization maximizes code reuse and enforces a bottleneck to pass information from the64

language to the policy, enabling unsupervised learning of interpretable skills. We perform experiments65

on grid world navigation and robotic manipulation tasks and show that our hierarchical method can66

outperform a strong non-hierarchical baseline in the low-data regime. We analyse these skills qualita-67

tively and quantitatively and find them to be highly correlated to language and behaviour. Finally,68

using these skills to perform long-range composition tasks on a robotic manipulation environment69

results in performance that is nearly 2x better than the non-hierarchical version.70

Concretely, our contributions are as follows:71

• We introduce LISA, a novel hierarchical imitation framework conditioned on language to72

decompose complex tasks into skills.73

• We demonstrate the effectiveness of our approach in the low-data regime where its crucial74

to break down complex tasks to generalize well.75

• We show our method performs well in long-range composition tasks where we may need to76

perform multiple skills sequentially.77

• We also show that the learned skills are highly correlated to language and behaviour and can78

easily be interpreted by humans.79

2 Related Work80

2.1 Imitation Learning81

Imitation learning (IL) has a long history, with early works using behavioral cloning [41–43] to82

learn policies via supervised learning on expert demonstration data. Recent methods have shown83

significant improvements via learning reward functions [21] or Q-functions [18] from expert data84

to mimic expert behavior. Nevertheless, these works typically consider a single task. An important85

problem here is multi-task IL, where the imitator is trained to mimic behavior on a variety of training86

tasks with the goal of generalizing the learned behaviors to test tasks. A crucial variable in the87

multi-task IL set-up is how the task is specified, e.g vectorized representations of goal states [37], task88

IDs [24], and single demonstrations [56, 14, 16, 57]. In contrast, we focus on a multi-task IL setup89

with task-specification through language, one of the most natural and versatile ways for humans to90

communicate desired goals and intents.91

2

2.2 Language Grounding92

Several prior works have attempted to ground language with tasks or use language as a source of93

instructions for learning tasks with varying degrees of success ([32, 55, 4, 39, 5]). [27] is a good94

reference for works combining language with sequential-decision making.95

But apart from a few exceptions, most algorithms in this area use the language instruction in a96

monolithic fashion and are designed to work for simple goals that requires the agent to demonstrate a97

single skill. ([40, 9, 20, 6]) or tasks where each constituent sub-goal has to be explicitly specified ([10,98

46, 34, 3, 52, 50, 17, 35, 31]). Some recent works have shown success on using play data [28]99

or pseudo-expert data such as LOReL [38] and CLIPORT [47]. LOReL and CLIPORT are not100

hierarchical techniques. [28] can be interpreted as a hierarchical technique that generates latent101

sub-goals as a function of goal images, language instructions and task IDs but the skills learned102

by LISA are purely a function of language and states alone and do not require goal images or task103

IDs. [23, 22] and [49] are some examples of works that use a two-level architecture for language104

conditioned tasks but neither of these methods learn skills that are interpretable.105

2.3 Latent-models and Hierarchical Learning106

Past works have attempted to learn policies conditioned on latent variables and some of them can107

be interpreted as hierarchical techniques. For example, [15] learns skills using latent variables that108

visit different parts of the environment’s state space. [45] improved on this by learning skills that109

were more easily predictable using a dynamics model. But these fall more under the category of skill110

discovery than hierarchical techniques since the skill code is fixed for the entire trajectory, as is the111

case with [15]. [29] and [26] are other works that use a latent-variable approach to IL. But these112

approaches don’t necessarily learn a latent variable with the intention of breaking down complex113

tasks into skills. With LISA, we sample several skills per trajectory with the clear intention of each114

skill corresponding to completing a sub-task for the whole trajectory. Also, none of the methods115

mentioned here condition on language.116

There has been some work on hierarchical frameworks for RL to learn high-level action abstractions,117

called options [51], such as [25, 58, 36] but these works are not goal-conditioned. Unlike LISA, these118

works don’t use language and the options might lack diversity and not correspond to any concrete or119

interpretable skills. Furthermore, none have used the VQ technique to learn options and often suffer120

from training instabilities.121

3 Approach122

The key idea of LISA is to learn quantized skill representations that are informative of both language123

and behaviors, which allows us to break down high-level instructions, specified via language, into124

discrete, interpretable and composable codes (see Fig. 5 and Fig. 7 for visualizations). These codes125

enable learning explainable and controllable behaviour, as shown in Fig. 1 and Fig. 3.126

Section 3.1 describes the problem formulation, an overview of our framework, and presents our127

language-conditioned model. Section 3.2 provides details on the training approach.128

3.1 Language-conditioned Skill Learning129

3.1.1 Problem Setup130

We consider general multi-task environments, represented as a task-augmented Markov decision131

process (MDP) with a family of different tasks T . A task Ti can be a union of other tasks in T . For132

example, in a navigation environment, a task could be composed of two or more sub-tasks - “pick up133

ball”, “open door” - in any hierarchical order. S,A represent state and action spaces. We assume134

that each full task has a single natural language description l ∈ L, where L represents the space of135

language instructions. Any sub-goals for the task are encoded within this single language instruction.136

We assume access to an offline dataset D of trajectories obtained from an optimal policy for a137

variety of tasks in an environment with only their language description available. Each trajectory138

τ i = (li, {(si1, ai1), (si2, ai2), ..., (siT , aiT)}) consists of the language description and the observations139

sit ∈ S, actions ait ∈ A taken over T timesteps. The trajectories are not labeled with any rewards.140

Our aim is to predict the expert actions at, given a language instruction and past observations.141

Note that each trajectory in the training dataset can comprise of any number of sub-tasks. For example,142

we could have a trajectory to “open a door” and another to “pick up a ball and close the door” in the143

3

Algorithm 1 Training LISA
Input: Dataset D of language-paired trajectories
Input: Num skills K and horizon H

1: Initialize skill predictor fϕ, policy πθ

2: Vector Quantization op q(·)
3: while not converged do
4: Sample τ = (l, {s0, s1, s2...sT }, {a0, a1, a2...aT })
5: Initialize S = {s0} ▷ List of seen states
6: for k = 0..

⌊
T
H

⌋
do ▷ Sample a skill every H steps

7: z ← q(fϕ(l, S))
8: for step t = 1..H do
9: akH+t ← πθ(z, S[: −H]) ▷ Use recent H steps

10: S ← S ∪ {skH+t} ▷ Append last state
11: end for
12: Train fϕ, πθ using objective LLISA

13: end for
14: end while

training data. With LISA we aim to solve the task “open a door and pick up the ball” at test time even144

though we haven’t seen this task at training time. In a trajectory with multiple sub-tasks, the training145

dataset does not give us information about where one sub-task ends and where another one begins.146

LISA must learn how to identify and stitch together these sub-tasks learned during training, in order147

to solve a new language instruction such as the one shown in Fig. 1 at test time.148

3.1.2 Hierarchical Skill Abstractions149

Skill Predictor 𝒇

Policy 𝜋

Instruction Observations

Lang Encoder Obs Encoder

Actions

Vector Quantization

Skills

VQ Codebook

0 1 2 3 4 K

Figure 2: LISA Architecture: The skill predictor f
gets the language instruction and a sequence of observa-
tions as the input, processed through individual encoders.
It predicts quantized skill codes z using a learnable cook-
book C, that encodes different sub-goals, and passes
them to the policy π. LISA is trained end-to-end.

We visualize the working of LISA in Figure 2.150

Our framework consists of two modules: a skill151

predictor f : L × S → C and a policy π :152

S × C → A. Here, C =
{
z1, . . . , zK

}
is a153

learnable codebook of K quantized skill codes.154

Our key idea is to break learning behavior from155

language in two stages: 1) Learn discrete codes156

z, representing skills, from the full-language157

instruction to decompose the task into smaller158

sub-goals 2) Learn a policy π conditioned only159

on these discrete codes. In LISA, both stages160

are trained end-to-end.161

Given an input τ = (l, {st, at}Tt=1), the skill162

predictor f predicts a skill code at a timestep163

t as z̃ = f(l, (st, st−1, ...)). These codes are164

discretized using a vector quantization operation165

q(·) that maps a code z̃ to its closest codebook166

entry z = q(z̃). The quantization operation q(·)167

helps in learning discrete codes and acts as a168

bottleneck on passing language information. We169

detail its operation in Sec. 3.2.170

The chosen skill code z, is persisted for H timesteps where H is called the horizon. After H timesteps,171

the skill predictor is invoked again to predict a new skill. This enforces the skill to act as a temporal172

abstraction, i.e. options [51]. The policy π predicts the action at at each timestep t conditioned on173

a single skill code z that is active at that timestep. For π to correctly predict the original actions, it174

needs to use the language information encoded in the skill codes.175

LISA learns quantized skill codes in a codebook instead of continuous embeddings as this encourages176

reusing and composing these codes together to pass information from the language input to the177

actual behavior. Our learnt discrete skill codes adds interpretability and controllability to the policy’s178

behavior.179

4

𝑧 = 14

Figure 3: Behavior with fixed LISA options. We show the word clouds and the behavior of the policy obtained
by using a fixed skill code z = 14 for an entire episode. We find that this code encodes the skill “closing the
drawer”, as indicated by the word cloud. The policy executes this skill with a high degree of success when
conditioned on this code for the entire trajectory, across different environment initializations and seeds.

3.2 Training LISA180

Learning Discrete Skills. LISA uses Vector Quantization (VQ), inspired from [53]. It is a natural
and widely-used method to map an input signal to a low-dimensional discrete learnt representation.
VQ learns a codebook C ∈

{
z1, . . . , zK

}
of K embedding vectors. Given an embedding z̃ from the

skill predictor f , it maps the embedding to the closest vector in the codebook:

z = q(z̃) =: argmin
zk∈C

∥z̃ − zk∥F

This can be classically seen as learning K cluster centers via k-means [19].181

Backpropagation through the non-differentiable quantization operation is achieved by a straight-182

through gradient estimator, which simply copies the gradients from the decoder to the encoder, such183

that the model and codebook can be trained end-to-end.184

VQ enforces each learnt skill z to lie in C, which can be thought as learning K prototypes or cluster185

centers for the language embeddings using the seen states. This acts as a bottleneck that efficiently186

decomposes a language instruction into sub-parts encoded as discrete skills.187

LISA Objective. LISA is trained end-to-end using an objective LLISA = LBC + λLVQ, where188

LBC is the behavior-cloning loss on the policy πθ, λ is the VQ loss weight and LVQ is the vector189

quantization loss on the skill predictor fϕ given as:190

LVQ(f) = Eτ [∥sg [q(z̃)]− z̃∥22] (1)

with z̃ = fϕ(l, (st, st−1, ..)).191

sg [·] denotes the stop-gradient operation. LVQ is also called commitment loss. It minimizes the192

conditional entropy of the skill predictor embeddings given the codebook vectors, making the193

embeddings stick to a single codebook vector.194

The codebook vectors are learnt using an exponential moving average update, same as [53].195

Avoiding language reconstruction. LISA avoids auxiliary losses for language reconstruction and196

it’s not obvious why the skill codes are properly encoding language. It’s known that given a signal X197

and a code Z. Reconstructing the signal X̃ = f(Z) using cross-entropy loss amounts to maximizing198

a lower bound to the Mutual Information (MI) I(X,Z) between X and Z [1, 7]. In our case, we can199

write the MI between the skill codes and language using entropies as: I(z, l) = H(z) −H(z | l),200

whereas methods that attempt to reconstruct language apply the following decomposition: I(z, l) =201

H(l)−H(l | z) (where H(l), the entropy of language, is independent from LISA’s skill encoder).202

Thus we can avoid language reconstruction via cross-entropy loss by maximizing I(z, l) directly. In203

LISA, Lvq = −H(z | l), and we don’t observe a need to place a constraint on H(z) as the codes are204

diverse, needing to encode enough information to correctly predict the masked actions.1205

As a result, LISA can maximize the MI between the learnt skills and languages without auxiliary206

losses and enforcing only Lvq on the skill codes. We empirically estimate the MI and find that our207

experiments confirm this in Sec 4.5.208

1In experiments, we tried enforcing a constraint on H(z) by using extra InfoNCE loss term without success.

5

3.2.1 LISA Implementation209

LISA can be be implemented using different network architectures, such as Transformers or MLPs.210

In our experiments, we use Transformer architectures with LISA, but we find that out method is211

effective even with simple architectures choices such as MLPs, as shown in the appendix section212

F.4. Even when using Transformers for both the skill predictor and the policy network, our compute213

requirement is comparable to the non-hierarchical Flat Transformer policy as we can get away with214

using fewer layers in each module.215

Language Encoder. We use a pre-trained DistilBERT [44] encoder to generate language embeddings216

from the text instruction. We further fine-tune the language encoder to the vocabulary of the environ-217

ment. We use the full language embedding for each word token, and not a pooled representation of218

the whole text.219

Observation Encoder. For image observations, we use convolution layers to generate embeddings.220

For simple state representations, we use MLPs.221

Skill Predictor. The skill predictor network f is implemented as a small Causal Transformer network222

that takes in the language embeddings and the observation embeddings at each time step. The223

language embeddings are concatenated at the beginning of the observation embeddings before being224

fed into the skill predictor. The network applies a causal mask hiding the future observations.225

Policy Network. Our policy network π, also implemented as a small Causal Transformer inspired by226

Decison Transformer (DT) [11]. However, unlike DT, our policy is not conditioned on any reward227

signal, but on the skill code. The sequence length of π is the horizon H of the skills which is much228

smaller compared to the length of the full trajectory.229

Flat Baseline. Our flat baseline is implemented similar to LISA, but without a skill predictor230

network. The policy here is a Causal Transformer that directly takes the language instruction and231

past observations as inputs to predict the policy. We found this baseline to be in-efficient at handling232

long-range language instructions, needing sequence lengths of 1000 on complex environments such233

as BabyAI-BossLevel in our experiments.234

Table 1: Imitation Results: We show our success rates (in %) compared to the original method and a flat
non-hierarchical baseline on each dataset. LISA outperforms all other methods in the low-data regime, and
reaches similar performance as the number of demonstrations increases. Best method shown in bold.

Task Num Demos Original Flat Baseline LISA

BabyAI GoToSeq 1k 33.3± 1.3 49.3± 0.7 59.4± 0.9
BabyAI GoToSeq 10k 40.4± 1.2 62.1± 1.2 65.4± 1.6
BabyAI GoToSeq 100k 47.1± 1.1 74.1± 2.3 77.2± 1.7

BabyAI SynthSeq 1k 12.9± 1.2 42.3± 1.3 46.3± 1.2
BabyAI SynthSeq 10k 32.6± 2.5 52.1± 0.5 53.3± 0.7
BabyAI SynthSeq 100k 40.4± 3.3 64.2± 1.3 61.2± 0.6

BabyAI BossLevel 1k 20.7± 4.6 44.5± 3.3 49.1± 2.4
BabyAI BossLevel 10k 28.9± 1.3 60.1± 5.5 58± 4.1
BabyAI BossLevel 100k 45.3± 0.9 72.0± 4.2 69.8± 3.1

LOReL - States (fully obs.) 50k 6± 1.2* 33.3± 5.6 66.7± 5.2
LOReL - Images (partial obs.) 50k 29.5± 0.07 15± 3.4 40± 2.0

4 Experiments235

In this section, we evaluate LISA on grid-world navigation and robotic manipulation tasks. We236

compare the performance of LISA with a strong non-hierarchical baseline in the low-data regime. We237

then analyse our learnt skill abstractions in detail – what they represent, how we can interpret them238

and how they improve performance on downstream composition tasks. Finally, we show ablation239

studies on important hyperparameters and architecture choices.240

4.1 Datasets241

Several language-conditioned datasets have been curated as off late. [46, 48, 13, 38, 33, 2, 10, 12]242

are some examples. Nevertheless, a lot of these datasets focus on complex-state representations and243

navigation in 3D environments, making them challenging to train on and qualitatively analyze our244

6

skills as shown in Fig. 3. We found BabyAI, a grid-world navigation environment and LOReL, a245

robotic manipulation environment as two diverse test beds that were very different from each other246

and conducive for hierarchical skill learning as well as detailed qualitative and quantitative analysis247

of our learned skills and we use them for our experiments.248

BabyAI Dataset. The BabyAI dataset [13] contains 19 levels of increasing difficulty where each249

level is set in a grid world and an agent sees a partially observed ego-centric view in a square of size250

7x7. The agent must learn to perform various tasks of arbitrary difficulty such as moving objects251

between rooms, opening or closing doors, etc. all with a partially observed state and a language252

instruction. The language instructions for easy levels are quite simple but get exponentially more253

challenging for harder levels and contain several skills that the agent must complete in sequence254

(examples in appendix section C.1). The dataset provides 1 million expert trajectories for each of the255

19 levels, but we use 0.1− 10% of these trajectories to train our models. We evaluate our policy on256

100 different instructions from the gym environment for each level, which very likely contains unseen257

environments and language instructions given the limited data we use for training. More details about258

this dataset can be found in the appendix and in the BabyAI paper.259

LOReL Sawyer Dataset. This dataset [38] consists of pseudo-expert trajectories (play data) collected260

from a replay buffer of a random RL policy and has been labeled with post-hoc crowd-sourced261

language instructions. Hence, the trajectories complete the language instruction provided but may not262

necessarily be optimal. Play data is inexpensive to collect [30] in the real world and it is important for263

algorithms to be robust to such datasets as well. However, due to the randomness in the trajectories,264

this makes the dataset extremely difficult to use in a behavior cloning (BC) setting. Despite this, we265

are able to achieve good performance on this benchmark and are able to learn some very useful skills.266

The LOReL Sawyer dataset contains 50k trajectories of length 20 on a simulated environment with a267

Sawyer robot. We evaluate on the same set of 6 tasks that the original paper does for our results in268

Table 10: close drawer, open drawer, turn faucet right, turn faucet left, move black mug right, move269

white mug down. More details can be found in the appendix section C.2 and in the LOReL paper.270

4.2 Baselines271

Original. These refer to the baselines from the original paper for each dataset. For BabyAI, we272

trained their non-hierarchical RNN based method on different number of trajectories. Similarly, on273

LOReL we compare with the performance of language-conditioned BC. The original LOReL method274

uses a planning algorithm on a learned reward function to get around the sub-optimal nature of the275

trajectories. We found the BC baseline as a more fair comparison, as LISA is trained using BC as276

well. Nonetheless, we compare with the original LOReL planner in Section 4.7 for composition277

tasks. LOReL results in Table 10 refer to the performance on the 6 seen instructions in the LOReL278

evaluation dataset, same as ones reported in the original paper.279

Flat Baseline. We implement a non-hierarchical baseline using Transformers, the details of which280

are in section 3.2.1.281

4.3 How does the performance of LISA compare with non-hierarchical baselines in a282

low-data regime?283

We consider three levels from the BabyAI environment and the LOReL Sawyer environment. From284

the BabyAI environment, we consider the GoToSeq, SynthSeq and BossLevel tasks since they are285

challenging and require performing several sub-tasks one after the other. Since these levels contain286

instructions that are compositional in nature, when we train on limited data, the algorithm must be287

able to learn the skills which form these complex instructions to generalize well to unseen instructions288

at test time. Our results are given in Table 10. We train the models on a random sample of 1k, 10k289

and 100k trajectories on the BabyAI dataset and 50k trajectories on the LOReL dataset. We use290

more data from the LOReL dataset because of the sub-optimal nature of the trajectories. On all291

the environments, our method is competitive to or outperforms the strong non-hierarchical decision292

transformer baseline. The gap grows larger as we reduce the number of trajectories we train on,293

indicating that our method is able to leverage the common sub-task structures better and glean more294

information from limited data. As expected, with larger amounts of training data, it becomes hard to295

beat the flat baseline since the Transformer sees more compositions during training and can generalize296

better at test time [8]. As mentioned above, we evaluate on the same 6 seen instructions the original297

*We optimized a language-conditioned BC model following the details in the appendix of the LOReL paper
to the best of our abilities but could not get better performance.

7

Figure 4: LISA Skill Heat map on LOReL. The sparsity and the bright spots show that specific options
correspond to specific language tokens and by extension, skills

LOReL paper did. We also evaluated the performance on varying the language instructions, similar298

to the original paper with results in appendix section E.299

We were pleasantly surprised that LISA is 2x better than the flat baseline on LOReL tasks, reaching300

40% success rate despite the sub-optimal nature of the data. One explanation for this is that the301

discrete skill codes are able to capture different ways of doing the same task, thereby allowing LISA302

to learn an implicit multi-modal policy. This is not possible with the flat version as it has no way to303

compartmentalize these noisy trajectories, and perhaps tends to overfit on this noisy data, leading to304

performance degradation.305

4.4 What skills does LISA learn? Are they diverse?306

Figure 5: Word clouds on LOReL: We
show the most correlated words for 4 differ-
ent learnt skill codes on LOReL. We can see
that the codes represent interpretable and dis-
tinguishable skills. For e.g, the code on the
top left corresponds to closing the drawer.
(note that container is a synonym for drawer
in the LOReL dataset)

To answer this question, we analyse the skills produced307

by LISA and the language tokens corresponding to each308

skill. We plot a heat map in Figure 4 corresponding to the309

correlation between the language tokens and skill codes.310

Here, we plot the map corresponding to the LOReL dataset.311

From the figure, we can see that certain skill codes cor-312

respond very strongly to certain language tokens and by313

extension, tasks. We also see the sparse nature of the heat314

maps which indicates that each skill corresponds to distinct315

language tokens. We also plot word clouds corresponding316

to four different options in the LOReL environment in317

figure 5 and we notice that different options are triggered318

by different language tokens. From the figure, it is clear319

that the skill on the top left corner corresponds to close320

the drawer and the skill on the top right corresponds to321

turn faucet left. Similar word clouds and heat maps for the322

BabyAI environments are in the appendix section B.3.323

4.5 Do the skills learned by LISA correspond to interpretable behavior?324

Figure 6: MI between language and skill codes: We show the
Mutual Information over training iterations for various settings of
LISA on the BabyAI BossLevel environment

We have seen that the different skills325

correspond to different language to-326

kens, but do the policies conditioned327

on these skills behave according to the328

language tokens? To understand this,329

we fix the skill code for the entire tra-330

jectory and run the policy i.e. we are331

shutting off the skill predictor and al-332

ways predicting the same skill for the333

entire trajectory. As we can see from334

the word cloud and the correspond-335

ing GIF in Figure 3, the behaviour for336

skill code 14 is exactly what we can337

infer from the language tokens in the338

word cloud – close the drawer. More such images and GIFs can be found in the appendix section B.5.339

8

4.6 Why do the skills learned by LISA have such a strong correlation to language?340

As mentioned in section 3.2, the commitment loss from VQ acts as a way to increase the MI between341

the language and the skill codes during training. This allows the codes to be highly correlated with342

language without any reconstruction losses. To analyze this, we plot the MI between the options343

and the language during training on the BabyAI BossLevel with 1k trajectories and the plot can be344

seen in figure 6. The plots show the MI increasing over training for a wide range of settings as we345

vary the number of skills and the horizon. In the ablation studies below, we report the success rate346

corresponding to each of these curves and we notice that there’s almost a direct correlation with347

increasing MI and task performance. This is very encouraging since it clearly shows that the skills348

are encoding language and that directly impacts the performance of the behavior cloning policy.349

4.7 Can we use the learned skills to perform new composition tasks?350

Table 2: LISA Composition Results: We show our performance
on the LOReL Sawyer environment compared to baselines

Method Success Rate (in %)

Flat 13.66 ± 1.10
LOReL Planner 18.38 ± 2.18
LISA (Ours) 21.06 ± 2.13

To test our composition performance,351

we evaluate on LOReL composition352

tasks using images. To this end, we353

handcraft 15 composition instructions,354

some of which are from the LOReL355

training data and some of which are356

unseen. We have listed these instruc-357

tions in the appendix table 4 but one such example is “pull the handle and move black mug down”.358

As we can see, over 10 different runs, our performance is nearly 2x that of the non-hierarchical359

baseline. We also compare with the original LOReL planner on these composition tasks and we360

notice that we perform slightly better despite them having access to a reward function and a dynamics361

model trained on a lot more data. We set the time horizon to 40 from the usual 20 for all the methods362

while performing these experiments because of the compositional nature of the tasks.363

Note that results in Table 10 show compositionality performance on the BabyAI dataset as we train364

with 0.1%-10% of the data. We evaluate on the gym environment generating any possible language365

instruction from the BabyAI grammar for a level and come across several unseen compositions at366

evaluation time.367

5 Limitations and Future Work368

We present LISA, a hierarchical imitation learning framework that can be used to learn interpretable369

skill abstractions from language-conditioned expert demonstrations. We showed that the skills are370

diverse and can be used to solve long-range language tasks and that our method outperforms a strong371

non-hierarchical baseline in the low-data regime.372

However, there are several limitations to LISA and plenty of scope for future work. One limitation of373

LISA is that there are several hyperparameters to tune that may affect performance like the number374

of options and the horizon for each option. It certainly helps to have a good idea of the task to decide375

these hyperparameters even though the ablations show that the method is fairly robust to these choices.376

Its also useful to learn the horizon for each skill by learning a termination condition and we leave this377

for future work.378

Although our method has been evaluated on the language-conditioned imitation learning setting, its379

not difficult to modify this method to make it work for image goals or demos, and in the RL setting380

as well. Its interesting to see if the vector quantization trick can be used to learn goal-conditioned381

skills in a more general framework.382

References383

[1] Felix Agakov and David Barber. Variational information maximization for neural coding. In Nikhil Ranjan384

Pal, Nik Kasabov, Rajani K. Mudi, Srimanta Pal, and Swapan Kumar Parui, editors, Neural Information385

Processing, pages 543–548, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. ISBN 978-3-540-30499-386

9. 5387

[2] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid, Stephen388

Gould, and Anton van den Hengel. Vision-and-language navigation: Interpreting visually-grounded389

navigation instructions in real environments. In Proceedings of the IEEE Conference on Computer Vision390

and Pattern Recognition (CVPR), 2018. 6391

9

[3] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid, Stephen392

Gould, and Anton van den Hengel. Vision-and-language navigation: Interpreting visually-grounded393

navigation instructions in real environments, 2018. 3394

[4] Dilip Arumugam, Siddharth Karamcheti, Nakul Gopalan, Lawson Wong, and Stefanie Tellex. Accurately395

and efficiently interpreting human-robot instructions of varying granularities. Robotics: Science and396

Systems XIII, Jul 2017. doi: 10.15607/rss.2017.xiii.056. URL http://dx.doi.org/10.15607/RSS.397

2017.XIII.056. 3398

[5] Dilip Arumugam, Siddharth Karamcheti, Nakul Gopalan, Edward C. Williams, Mina Rhee, Lawson L.399

Wong, and Stefanie Tellex. Grounding natural language instructions to semantic goal representations400

for abstraction and generalization. Auton. Robots, 43(2):449–468, feb 2019. ISSN 0929-5593. doi:401

10.1007/s10514-018-9792-8. URL https://doi.org/10.1007/s10514-018-9792-8. 3402

[6] Valts Blukis, Nataly Brukhim, Andrew Bennett, Ross A. Knepper, and Yoav Artzi. Following high-level403

navigation instructions on a simulated quadcopter with imitation learning, 2018. 3404

[7] Malik Boudiaf, Jérôme Rony, Imtiaz Masud Ziko, Eric Granger, Marco Pedersoli, Pablo Piantanida, and405

Ismail Ben Ayed. A unifying mutual information view of metric learning: cross-entropy vs. pairwise losses.406

In European Conference on Computer Vision, pages 548–564. Springer, 2020. 5407

[8] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind408

Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,409

Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens410

Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack411

Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language412

models are few-shot learners. CoRR, abs/2005.14165, 2020. URL https://arxiv.org/abs/2005.413

14165. 7414

[9] Devendra Singh Chaplot, Kanthashree Mysore Sathyendra, Rama Kumar Pasumarthi, Dheeraj Rajagopal,415

and Ruslan Salakhutdinov. Gated-attention architectures for task-oriented language grounding, 2018. 3416

[10] Howard Chen, Alane Suhr, Dipendra Misra, Noah Snavely, and Yoav Artzi. Touchdown: Natural language417

navigation and spatial reasoning in visual street environments, 2020. 3, 6418

[11] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel,419

Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence modeling,420

2021. 6421

[12] Valerie Chen, Abhinav Gupta, and Kenneth Marino. Ask your humans: Using human instructions to422

improve generalization in reinforcement learning, 2021. 6423

[13] Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,424

Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of grounded425

language learning, 2019. 2, 6, 7, 18426

[14] Yan Duan, Marcin Andrychowicz, Bradly Stadie, Openai Jonathan Ho, Jonas Schneider, Ilya Sutskever,427

Pieter Abbeel, and Wojciech Zaremba. One-Shot imitation learning. In I Guyon, U V Luxburg, S Bengio,428

H Wallach, R Fergus, S Vishwanathan, and R Garnett, editors, Advances in Neural Information Processing429

Systems 30, pages 1087–1098. Curran Associates, Inc., 2017. 2430

[15] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need: Learning431

skills without a reward function, 2018. 3432

[16] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. One-shot visual imitation433

learning via meta-learning, 2017. 2434

[17] Daniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach, Jacob Andreas, Louis-Philippe Morency,435

Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein, and Trevor Darrell. Speaker-follower models for436

vision-and-language navigation, 2018. 3437

[18] Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano Ermon. Iq-learn: Inverse438

soft-q learning for imitation. In Thirty-Fifth Conference on Neural Information Processing Systems, 2021.439

URL https://openreview.net/forum?id=Aeo-xqtb5p. 2440

[19] R.M. Gray and D.L. Neuhoff. Quantization. IEEE Transactions on Information Theory, 44(6):2325–2383,441

1998. doi: 10.1109/18.720541. 5442

10

http://dx.doi.org/10.15607/RSS.2017.XIII.056
http://dx.doi.org/10.15607/RSS.2017.XIII.056
http://dx.doi.org/10.15607/RSS.2017.XIII.056
https://doi.org/10.1007/s10514-018-9792-8
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://openreview.net/forum?id=Aeo-xqtb5p

[20] Karl Moritz Hermann, Felix Hill, Simon Green, Fumin Wang, Ryan Faulkner, Hubert Soyer, David443

Szepesvari, Wojciech Marian Czarnecki, Max Jaderberg, Denis Teplyashin, Marcus Wainwright, Chris444

Apps, Demis Hassabis, and Phil Blunsom. Grounded language learning in a simulated 3d world, 2017. 3445

[21] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning, 2016. 2446

[22] Hengyuan Hu, Denis Yarats, Qucheng Gong, Yuandong Tian, and Mike Lewis. Hierarchical decision447

making by generating and following natural language instructions, 2019. 3448

[23] Yiding Jiang, Shixiang Gu, Kevin Murphy, and Chelsea Finn. Language as an abstraction for hierarchical449

deep reinforcement learning, 2019. 3450

[24] Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski, Chelsea451

Finn, Sergey Levine, and Karol Hausman. Mt-opt: Continuous multi-task robotic reinforcement learning452

at scale, 2021. 2453

[25] Alexander C. Li, Carlos Florensa, Ignasi Clavera, and Pieter Abbeel. Sub-policy adaptation for hierarchical454

reinforcement learning, 2020. 3455

[26] Yunzhu Li, Jiaming Song, and Stefano Ermon. Infogail: Interpretable imitation learning from visual456

demonstrations, 2017. 3457

[27] Jelena Luketina, Nantas Nardelli, Gregory Farquhar, Jakob Foerster, Jacob Andreas, Edward Grefenstette,458

Shimon Whiteson, and Tim Rocktäschel. A survey of reinforcement learning informed by natural language,459

2019. 3460

[28] Corey Lynch and Pierre Sermanet. Language conditioned imitation learning over unstructured data.461

Robotics: Science and Systems, 2021. URL https://arxiv.org/abs/2005.07648. 3462

[29] Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and Pierre463

Sermanet. Learning latent plans from play. Conference on Robot Learning (CoRL), 2019. URL https:464

//arxiv.org/abs/1903.01973. 3465

[30] Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and Pierre466

Sermanet. Learning latent plans from play. Conference on Robot Learning (CoRL), 2019. URL https:467

//arxiv.org/abs/1903.01973. 7468

[31] Chih-Yao Ma, Jiasen Lu, Zuxuan Wu, Ghassan AlRegib, Zsolt Kira, Richard Socher, and Caiming Xiong.469

Self-monitoring navigation agent via auxiliary progress estimation, 2019. 3470

[32] Matt MacMahon, Brian Stankiewicz, and Benjamin Kuipers. Walk the talk: Connecting language,471

knowledge, and action in route instructions. In Proceedings of the 21st National Conference on Artificial472

Intelligence - Volume 2, AAAI’06, page 1475–1482. AAAI Press, 2006. ISBN 9781577352815. 3473

[33] Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin - a benchmark for language-474

conditioned policy learning for long-horizon robot manipulation tasks. arXiv preprint arXiv:2112.03227,475

2021. 6476

[34] Dipendra Misra, John Langford, and Yoav Artzi. Mapping instructions and visual observations to actions477

with reinforcement learning, 2017. 3478

[35] Dipendra Misra, Andrew Bennett, Valts Blukis, Eyvind Niklasson, Max Shatkhin, and Yoav Artzi. Mapping479

instructions to actions in 3d environments with visual goal prediction, 2019. 3480

[36] Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical reinforcement481

learning, 2018. 3482

[37] Ashvin Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual reinforce-483

ment learning with imagined goals, 2018. 2484

[38] Suraj Nair, Eric Mitchell, Kevin Chen, Brian Ichter, Silvio Savarese, and Chelsea Finn. Learning language-485

conditioned robot behavior from offline data and crowd-sourced annotation, 2021. 2, 3, 6, 7, 19486

[39] Junhyuk Oh, Satinder Singh, Honglak Lee, and Pushmeet Kohli. Zero-shot task generalization with487

multi-task deep reinforcement learning, 2017. 3488

[40] Chris Paxton, Yonatan Bisk, Jesse Thomason, Arunkumar Byravan, and Dieter Fox. Prospection: Inter-489

pretable plans from language by predicting the future, 2019. 3490

11

https://arxiv.org/abs/2005.07648
https://arxiv.org/abs/1903.01973
https://arxiv.org/abs/1903.01973
https://arxiv.org/abs/1903.01973
https://arxiv.org/abs/1903.01973
https://arxiv.org/abs/1903.01973
https://arxiv.org/abs/1903.01973

[41] Dean A Pomerleau. Efficient training of artificial neural networks for autonomous navigation. Neural491

computation, 3(1):88–97, 1991. ISSN 0899-7667. 2492

[42] Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Proceedings of the493

thirteenth international conference on artificial intelligence and statistics, pages 661–668, 2010.494

[43] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured495

prediction to no-regret online learning. In Proceedings of the fourteenth international conference on496

artificial intelligence and statistics, pages 627–635, 2011. 2497

[44] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of bert:498

smaller, faster, cheaper and lighter, 2020. 6499

[45] Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware500

unsupervised discovery of skills, 2020. 3501

[46] Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke502

Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions for everyday503

tasks, 2020. 3, 6504

[47] Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Cliport: What and where pathways for robotic manipula-505

tion, 2021. 2, 3506

[48] Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew507

Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning, 2021. 6508

[49] Simon Stepputtis, Joseph Campbell, Mariano Phielipp, Stefan Lee, Chitta Baral, and Heni Ben Amor.509

Language-conditioned imitation learning for robot manipulation tasks, 2020. 3510

[50] Alane Suhr and Yoav Artzi. Situated mapping of sequential instructions to actions with single-step reward511

observation, 2018. 3512

[51] Richard Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework for513

temporal abstraction in reinforcement learning. 1999. 3, 4514

[52] Hao Tan, Licheng Yu, and Mohit Bansal. Learning to navigate unseen environments: Back translation with515

environmental dropout, 2019. 3516

[53] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning,517

2018. 5518

[54] Jesse Vig. A multiscale visualization of attention in the transformer model. In Proceedings of the 57th519

Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 37–42,520

Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-3007. URL521

https://www.aclweb.org/anthology/P19-3007. 2522

[55] Sida I. Wang, Percy Liang, and Christopher D. Manning. Learning language games through interaction,523

2016. 3524

[56] Danfei Xu, Suraj Nair, Yuke Zhu, Julian Gao, Animesh Garg, Li Fei-Fei, and Silvio Savarese. Neural task525

programming: Learning to generalize across hierarchical tasks. In 2018 IEEE International Conference on526

Robotics and Automation (ICRA), pages 3795–3802. IEEE, 2018. 2527

[57] Tianhe Yu, Chelsea Finn, Annie Xie, Sudeep Dasari, Tianhao Zhang, Pieter Abbeel, and Sergey Levine.528

One-shot imitation from observing humans via domain-adaptive meta-learning, 2018. 2529

[58] Jesse Zhang, Haonan Yu, and Wei Xu. Hierarchical reinforcement learning by discovering intrinsic options,530

2021. 3531

Checklist532

1. For all authors...533

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contribu-534

tions and scope? [Yes]535

(b) Did you describe the limitations of your work? [Yes] See section 5536

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See appendix section537

A538

12

https://www.aclweb.org/anthology/P19-3007

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]539

2. If you are including theoretical results...540

(a) Did you state the full set of assumptions of all theoretical results? [N/A]541

(b) Did you include complete proofs of all theoretical results? [N/A]542

3. If you ran experiments...543

(a) Did you include the code, data, and instructions needed to reproduce the main experimental544

results (either in the supplemental material or as a URL)? [Yes] We will provide a zip file of545

code with the supplementary material546

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)?547

[Yes] See appendix section D548

(c) Did you report error bars (e.g., with respect to the random seed after running experiments549

multiple times)? [Yes] Tables 10 and 2 are both over 3 seeds.550

(d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs,551

internal cluster, or cloud provider)? [Yes] This information is in the Training details section of552

section 5553

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...554

(a) If your work uses existing assets, did you cite the creators? [Yes]555

(b) Did you mention the license of the assets? [N/A]556

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]557

(d) Did you discuss whether and how consent was obtained from people whose data you’re us-558

ing/curating? [N/A] The datasets we use are not collected with the help of humans559

(e) Did you discuss whether the data you are using/curating contains personally identifiable in-560

formation or offensive content? [N/A] The datasets we use are not collected with the help of561

humans562

5. If you used crowdsourcing or conducted research with human subjects...563

(a) Did you include the full text of instructions given to participants and screenshots, if applicable?564

[N/A]565

(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB)566

approvals, if applicable? [N/A]567

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on568

participant compensation? [N/A]569

13

Appendix570

A Broader Societal Impact571

We introduce a new method for language-conditioned imitation learning to perform complex navigation and572

manipulation tasks. Our intention is for this algorithm to be used in a real-world setting where humans can573

provide natural language instructions to robots that can carry them out. However, we must ensure that the574

language commands that we provide to these agents must be well aligned with the objectives of humans and575

must ensure that we are aware of what actions the agent could take given said command.576

B More visualizations577

B.1 Generating heat maps and word clouds578

To generate heat maps and word clouds, for each evaluation instruction, we run the model and record all the579

skill codes used in the trajectory generated. We now tokenize the instruction and for each skill code used in the580

trajectory, record all the tokens from the language instruction. Once we have this mapping from skills to tokens,581

we can plot heat maps and word clouds. This is the best we can do since we don’t know exactly which tokens in582

the instruction correspond to the skills chosen. Therefore, these plots can tend to be a little noisy but we still see583

some clear patterns. Especially in BabyAI, since the vocabulary is small, we see that several skills correspond584

to the same tokens because many instructions contain the same tokens. But in LOReL because each task uses585

almost completely different words, we can see a very sparse heat map with clear correlations.586

For reader viewability and aiding the interpretability on the LISA skills, we show below the unnormalized587

heatmaps showing the skill-word correlations, the column normalized heatmaps showing word frequencies for588

each skill as well as the row normalized showing the skill frequencies for each word.589

B.2 BabyAI590

Figure 7: Skill Heat map on BabyAI BossLevel

14

Figure 8: Word Freq. for each skill on BabyAI BossLevel (column normalized)

Figure 9: Skill Freq. for each word on BabyAI BossLevel (row normalized)

B.3 WordClouds591

Due to the small vocabulary in BabyAI environment, its hard to generate clean word clouds, nevertheless, we592

hope they help with interpreting LISA skills.593

Figure 10: Word Cloud on BabyAI BossLevel for z = 1

15

Figure 11: Word Cloud on BabyAI BossLevel for z = 13

Figure 12: Word Cloud on BabyAI BossLevel for z = 37

B.4 LOReL Sawyer594

Figure 13: Skill Heat map on LOReL Sawyer

16

Figure 14: Word Freq. for each skill on LOReL Sawyer (column normalized)

Figure 15: Skill Freq. for each word on LOReL Sawyer (row normalized)

B.5 Behavior with fixed skills595

Figure 16: Behavior and language corresponding to skill code 4: “turn faucet left”

17

Figure 17: Behavior and language corresponding to skill code 15: “move white mug right”

Figure 18: LOReL Composition task: “close drawer and turn faucet left”

C Datasets596

C.1 BabyAI Dataset597

Figure 19: BabyAI BossLevel

The BabyAI dataset [13] contains 19 levels of increasing difficulty where each level is set in a grid world where598

an agent has a partially observed state of a square of side 7 around it. The agent must learn to perform various599

tasks of arbitrary difficulty such as moving objects between rooms, opening doors or closing them etc. all with a600

partially observed state and a language instruction.601

Each level comes with 1 million language conditioned trajectories, and we use a small subset of these for our602

training. We evaluate our model on the environment provided with each level that generates a new language603

instruction and grid randomly.604

We have provided details about the levels we evaluated on below. More details can be found in the original paper.605

18

C.1.1 GoToSeq606

Sequencing of go-to-object commands.607

Example command: “go to a box and go to the purple door, then go to the grey door”608

Demo length: 72.7± 52.2609

C.1.2 SynthSeq610

Example command: “put a purple key next to the yellow key and put a purple ball next to the red box on your611

left after you put a blue key behind you next to a grey door”612

Demo length: 81.8± 61.3613

C.1.3 BossLevel614

Example command: “pick up a key and pick up a purple key, then open a door and pick up the yellow ball”615

Demo length: 84.3± 64.5616

C.2 LOReL Sawyer Dataset617

Figure 20: LOReL Sawyer Environment

This dataset [38] consists of pseudo-expert trajectories collected from a RL buffer of a a random policy and618

has been labeled with post-hoc crowd-sourced language instructions. Therefore, the trajectories complete the619

language instruction provided but may not necessarily be optimal. The Sawyer dataset contains 50k language620

conditioned trajectories on a simulated environment with a Sawyer robot of demo length 20.621

We evaluate on the same set of instructions the original paper does for 10, which can be found in the appendix of622

the original paper. These consist of the following 6 tasks and rephrasals of these tasks where they change only623

the noun, only the verb, both noun and verb and rewrite the entire task (human provided). This comes to a total624

of 77 instructions for all 6 tasks combined. An example is shown below and the full list of instructions can be625

found in the original paper.626

1. Close drawer627

2. Open drawer628

3. Turn faucet left629

4. Turn faucet right630

5. Move black mug right631

6. Move white mug down632

Table 3: LOReL Example rephrasals for the instruction “close drawer”
Seen Unseen Verb Unseen Noun Unseen Verb + Noun Human Provided

close drawer shut drawer close container shut container push the drawer shut

For the composition instructions, we took these evaluation instructions from the original paper and combined633

them to form 12 new composition instructions as shown below.634

19

Table 4: LOReL Composition tasks
Instructions

open drawer and move black mug right
pull the handle and move black mug down

move white mug right
move black mug down

close drawer and turn faucet right
close drawer and turn faucet left

turn faucet left and move white mug down
turn faucet right and close drawer

move white mug down and turn faucet left
open drawer and turn faucet counterclockwise

slide the drawer closed and then shift white mug down
turn faucet left and move white mug down

move white mug down and move black mug right
turn faucet right and open cabinet

move black mug right and turn faucet right

We included the instructions “move white mug right” and “move black mug down” as composition tasks here in635

the hope that we may have skills corresponding to colors like black and white or directions like right and down636

that can be composed to form these instructions but we did not observe such behaviour.637

D Training details638

We plan to release our code on acceptance. Here we include all hyper-parameters we used. We implement our639

models in PyTorch. Our original flat baseline implementation borrows from Decision Transformer codebase640

which uses GPT2 to learn sequential behavior. However, we decided to start from scratch in order to implement641

LISA to make our code modular and easily support hierarchy. We use 1 layer Transformer networks for both the642

skill predictor and the policy network in our experiments for the main paper. We tried using large number of643

layers but found them to be too computationally expensive without significant performance improvements. In644

BabyAI and LOReL results we train all models for three seeds.645

For BossLevel environment we use 50 skill codes, for other environments we used the settings detailed in the646

table below:647

D.1 LISA648

Table 5: LISA Hyperparameters
Hyperparameter BabyAI LORL
Transformer Layers 1 1
Transformer Embedding Dim 128 128
Transformer Heads 4 4
Skill Code Dim 16 16
Number of Skills 20 20
Dropout 0.1 0.1
Batch Size 128 128
Policy Learning Rate 1e− 4 1e− 4
Skill Predictor Learning Rate 1e− 5 1e− 5
Language Model Learning Rate 1e− 6 1e− 6
VQ Loss Weight 0.25 0.25
Horizon 10 10
VQ EMA Update 0.99 0.99
Optimizer Adam Adam

D.2 Baselines649

Table 6: Flat Baseline Hyperparameters
Hyperparameter BabyAI LORL
Transformer Layers 2 2
Transformer Embedding Dim 128 128
Transformer Heads 4 4
Dropout 0.1 0.1
Batch Size 128 128
Policy Learning Rate 1e− 4 1e− 4
Language Model Learning Rate 1e− 6 1e− 6
Optimizer Adam Adam

20

For the original baseline for BabyAI, we used the code from the original repository. For the LOReL baseline, we650

used the numbers from the paper for LOReL Images. For LOReL States BC baseline, we implemented it based651

on the appendix section of the paper. We ran the LOReL planner from the original repository for the composition652

instructions.653

D.3 Ablations654

As mentioned in the paper, all our ablations were performed on BabyAI BossLevel with 1k trajectories over a655

single seed for the sake of time. Unless otherwise specified, we use the following settings. We use a 1-layer,656

4-head transformer for both the policy and the skill predictor. We use 50 options and a horizon of 10. We use a657

batch size of 128 and train for 2500 iterations. We use a learning rate of 1e-6 for the language model and 1e-4658

for the other parameters of the model. We use 2500 warm-up steps for the DT policy. Training was done on659

Titan RTX GPUs.660

E Detailed LOReL Sawyer results661

We provide details results on the LOReL evaluation instructions below for LISA and the flat baseline in the same662

format as the original paper. The results are averaged over 10 runs. The time horizon used was 20 steps.663

Table 7: Task-wise success rates (in %) on LOReL Sawyer.
Task Flat LISA

close drawer 10 100
open drawer 60 20
turn faucet left 0 0
turn faucet right 0 30
move black mug right 20 60
move white mug down 0 30

Table 8: Rephrasal-wise success rates (in %) on LOReL Sawyer.
Rephrasal Type Flat LISA

seen 15 40
unseen noun 13.33 33.33
unseen verb 28.33 30
unseen noun+verb 6.7 20
human 26.98 27.35

F More experiments664

F.1 Ablation Studies665

For the sake of time, all our ablations were performed with a 1-layer, 4-head transformer for the skill predictor666

and for the policy. All our ablations are on the BabyAI-BossLevel environment with 1k expert trajectories.667

Our first experiment varies the horizon of the skills. The table below shows the results on BabyAI BossLevel668

for 4 different values of the horizon. We see that the method is fairly robust to the different choices of horizon669

unless we choose a very small horizon. For this case, we notice that a horizon of 5 performs best, but this could670

vary with different tasks.671

Table 9: Ablation on horizon. We fixed the number of options to be 50 for these experiments

Horizon 1 5 10 50

Success Rate (in %) 32 52 47 47

We also tried varying the number of skills the skill-predictor can choose from and found that this hyperparameter672

is fairly robust as well unless we choose an extremely high or low value. We suspect using more skills worsens673

performance because it leads to a harder optimization problem and the options don’t clearly correspond to674

specific language skills.675

Table 10: Ablation on number of options. We fixed the horizon to be 10 for these experiments

Number of Options 10 20 50 100

Success Rate (in %) 47 47 47 43

F.2 Can we leverage the interpretability of the skills produced by LISA for manual planning?676

Since our skills are so distinct and interpretable, its tempting to try and manually plan over the skills based on677

the language tokens they encode. In the LOReL environment, using the same composition tasks as section above,678

21

we observe the word clouds of options and simply plan by running the fixed option code corresponding to a679

task for a certain horizon and then switch to the next option corresponding to the next task. This means we are680

using a manual (human) skill predictor as opposed to our trained skill predictor. While this doesn’t work as681

well because skills are a function of both language and trajectory and we can only interpret the language part as682

humans, it still shows how interpretable our skills are as humans can simply observe the language tokens and683

plan over them to complete tasks. We show a successful example and a failure case below for the instruction684

“close drawer and turn faucet right” in figure 21. We first observe that the two skills we want to compose are685

Z = 14 and Z = 2 as shown by the word clouds. We then run skill 14 for 20 steps and skill 2 for 20 steps. In686

the failure case, the agent closes the drawer but then pulls it open again when trying to turn the faucet to the687

right.688

Figure 21: We show a successful manual planning and unsuccessful manual planning example for the
instruction “close the drawer and turn the faucet right”

F.3 Do the skills learned transfer effectively to similar tasks?689

We want to ask the question whether we can use the skills learned on one task as a initialization point for a690

similar task or even freeze the learned skills for the new task. To this end, we set up experiments where we691

trained LISA on the BabyAI GoTo task with 1k trajectories and tried to transfer the learned options to the692

GoToSeq task with 1k trajectories. Similarly we trained LISA on GoToSeq with 1k trajectories and tried to693

transfer to BossLevel with 1k trajectories. The results are shown in figures 22 and 23 respectively.694

As we can see from the GoToSeq experiment in figure 22, there is no major difference between the three methods.695

We notice that we can achieve good performance even by holding the learned option codes from GoTo frozen.696

This is because the skills in GoTo and GoToSeq are very similar except that GoToSeq composes these skills as697

tasks. We also notice that finetuning doesn’t make a big difference – once again probably because the skills are698

similar for both environments.699

22

Figure 22: Transferring skills on the BabyAI GoToSeq environment

Figure 23: Transferring skills on the BabyAI BossLevel environment

In the BossLevel case in 23, however, we do notice that the frozen skills perform slightly worse than the other700

two methods. This is because the BossLevel contains more skills than those from GoToSeq. We also notice701

that the performance of finetuning and starting from scratch is nearly the same. This could be because the702

meta-controller needs to adapt to use the new skills in the BossLevel environment anyway and there is no benefit703

from loading learned options here.704

23

F.4 State-based skill-predictor705

We have already spoken in section 3.2 about the fact that our method using two transformers doesn’t necessarily706

mean its more compute-heavy than the non-hierarchical counterpart. But to test whether we really need two707

transformers, we perform an ablation study that replaces the skill predictor to be just a state-based selector708

MLP as opposed to a trajectory-based transformer. Our results show that the performance is only slightly worse709

when using a state-based skill predictor in this case, but once again this may not be the case in more complex710

environments. However, we notice that the skills collapsed in this case and the model tends to use fewer skills711

than normal as shown in figure 24. This is expected because the skill predictor is now predicting skills with712

much less information.713

Table 11: Comparing state-based MLP skill predictor vs trajectory-based transformer skill predictor. We
fixed the number of options to be 50 and horizon as 10 for these experiments

Skill Predictor Architecture Success Rate

State-based MLP 46%
Trajectory-based Transformer 47%

Figure 24: State-based skill predictor heat map shows that the model tends to use fewer options
compared to figure 7

F.5 Continuous skill codes714

We also compare to the non-quantized counterpart where we learn skills from a continuous distribution as715

opposed to a categorical distribution. We expect this to perform better because the skill predictor has access716

to a larger number of skill codes to choose from and this is what we observe in table 12. However, this comes717

at the price of interpretability and its harder to interpret and choose continuous skill codes than discrete codes.718

We also observe that on the LOReL with states environment, using discrete codes performs better than using719

continuous codes (table 13). This could be because learning a multi-modal policy with discrete skills is an easier720

optimization problem than learning one with continuous skills (see the end of section 4.3).721

Table 12: Ablation on Quantization on BabyAI BossLevel. We fix number of options to 50 and horizon to 10
Skill codes Success Rate (in %)

Continuous 51
Discrete 47

Table 13: Ablation on Quantization on LOReL with states on seen tasks. We fix number of options to 20
and horizon to 10

Skill codes Success Rate (in %)

Continuous 60.0
Discrete 66.7

24

