
Finding Wasserstein Ball Center: Efficient Algorithm and The Applications in
Fairness

Yuntao Wang * 1 Yuxuan li * 2 Qingyuan Yang 1 Hu Ding 1

Abstract

Wasserstein Barycenter (WB) is a fundamental
geometric optimization problem in machine learn-
ing, whose objective is to find a representative
probability measure that minimizes the sum of
Wasserstein distances to given distributions. WB
has a number of applications in various areas.
However, WB may lead to unfair outcome to-
wards underrepresented groups in some applica-
tions (e.g., a “minority” distribution may be far
away from the obtained WB under Wasserstein
distance). To address this issue, we propose an
alternative objective called “Wasserstein Ball Cen-
ter (WBC)”. Specifically, WBC is a distribution
that encompasses all input distributions within
the minimum Wasserstein distance, which can
be formulated as a “minmax” optimization prob-
lem. We show that the WBC problem with fixed
support is equivalent to solving a large-scale lin-
ear programming (LP) instance, which is quite
different from the previously studied LP model
for WB. By incorporating some novel observa-
tions on the induced normal equation, we propose
an efficient algorithm that accelerates the inte-
rior point method by O(min{N2m,Nm2,m4})
times (“N” is the number of distributions and “m”
is the support size). Finally, we conduct a set
of experiments on both synthetic and real-world
datasets, demonstrating the computational effi-
ciency of our algorithm, and showing its ability
to provide more fairness for input distributions.

*Equal contribution 1School of Computer Science and Technol-
ogy, University of Science and Technology of China, Hefei, China
2School of Artificial Intelligence and Data Science, University of
Science and Technology of China, Hefei, China. Correspondence
to: Hu Ding <huding@ustc.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
To find a representative of several given probability distribu-
tions is a natural problem in machine learning. One popular
approach is to compute the geometric center on probability
space with induced distances between probabilities, such as
the seminal Wasserstein distance in the field of optimal trans-
port (Villani, 2021). Given a non-negative weight vector
(ω1, ω2, . . . , ωN) with N ≥ 2, the Wasserstein barycenter
(WB) of N probability measures {µk}Nk=1 under norm p is
defined as the weighted Fréchet Means mean under Wasser-
stein distance. Namely, it is the solution of the following
problem

min
µ∈Pp(Ω)

N∑
t=1

ωtW
p
p (µ, µt), (1)

where Pp(Ω) is the set of Borel probability measure on Ω
with finite p-th moment, and Wp is the Wasserstein distance
under norm p, which will be formally defined in Section 2.
WB has found various applications in many fields, such
as economics (Carlier & Ekeland, 2010; Chiappori, 2017),
physics (Benamou et al., 2014; Koehl et al., 2019), statis-
tics (Kroshnin et al., 2021; Backhoff-Veraguas et al., 2022;
Goldfeld et al., 2024), medical imaging (Gramfort et al.,
2015; Nadeem et al., 2020), and machine learning (Qin
et al., 2021; Zhuang et al., 2022; Lin & Ruszczynski, 2023).

As the Fréchet mean under Wasserstein distance, WB tends
to assign more measure to the region where the input density
functions “cluster”. In other words, to minimize the average
distance from the barycenter to the input probabilities, if the
support of most distribution is concentrated with high prob-
ability in a region, then the WB should also have measure
concentrated in that region. But this property may behave
“unfairly” to “minority”, i.e. the distributions with support
deviated from the majority of others could be too far away
from the WB. Fig. 1 gives an intuitive demonstration for
this issue.

The unfairness could cause negative impact in some scenar-
ios (Mehrabi et al., 2021; Caton & Haas, 2024). In medical
applications, datasets usually reflect societal biases or histor-
ical inequities in healthcare access. If a deep learning model
is trained on biased data, it can propagate or even amplify
these biases, leading to unequal treatment outcomes. For

1

Finding Wasserstein Ball Center

Figure 1. Left: four probability measures (cloud 1-3, and an outlier cloud), with their WB (computed by (1)) enclosed in purple ellipse,
WBC (computed by (2)) enclosed in brown ellipse. The red cloud (i.e., the outlier cloud) has measure distributed distinctly from the other
three clouds. In the histogram on the right, the “WBC” bin denotes the maximal Wasserstein distance from WBC to four clouds, and each
of the other four bins denotes the Wasserstein distance from WB to the corresponding cloud. From this histogram, we can see that WBC
treats the outlier more equally (for example, the “WBC” bin is significantly lower than the “Outlier” bin).

instance, many skin lesion datasets predominantly contain
images from lighter-skinned individuals (Bhardwaj & Rege,
2021; Adegun & Viriri, 2021). As a result, AI systems
trained on such data often perform poorly on darker-skinned
patients, leading to underdiagnosis or misdiagnosis in cer-
tain populations (Montoya et al., 2025). In addition, the
medical data may come from different sources, therefore a
fair alignment can also enhance model’s accuracy (Aayush-
man et al., 2024; Lin et al., 2023).

To address this unfair issue, we propose a different objec-
tive function. Rather than minimizing the summation of
Wasserstein distances, we try to find a distribution that is of
minimal distance from the farthest input distribution:

min
µ∈Pp(Ω)

max
1≤t≤N

Wp(µ, µt). (2)

From a geometric perspective, we can think of it as the
center of the ball in Wasserstein space, who covers all in-
put distributions with minimum radius. In this setting, the
output distribution does not put extra measure to the region
where input distributions cluster with high density. Please
see Fig. 1 for an illustrative comparison. We call the solu-
tion for Problem (2) the Wasserstein Ball Center (WBC),
and aim to design an efficient algorithm to solve it. It should
be noted that “Wasserstein ball” is not a new concept and
actually has been studied by several works before (Yue et al.,
2022; Pesenti & Jaimungal, 2023; Chen et al., 2024), yet
these previous works usually assume the ball center is
given and take the ball as a feasible region for constraining
some optimization objective. But in this paper, we focus on
how to compute an optimal center so that the induced radius
(under Wasserstein distance) is minimized.

The WBC model (2) also shares the similar “minmax” prop-
erty with the recently proposed clustering problem under
the notion of group fairness, called social fairness or eq-
uitable group representation (Abbasi et al., 2021; Ghadiri

et al., 2021). In this framework, the data set for clustering
consists of a set of groups, where each group contains a set
of data items. Standard clustering algorithms could incur
higher clustering costs for certain protected groups (e.g., the
groups that are defined by a sensitive attribute such as gen-
der or race). This lack of fairness has motivated the study
of clustering that minimizes the maximum clustering cost
across different demographic groups, such as gender, race,
high socioeconomic status, etc. The sensitive groups thus
can obtain more equitable attention in the algorithm. Com-
paring with the traditional clustering models (e.g., k-means
or k-median clustering s), the main difference (which is also
the main challenge) lies in this “minmax” objective.

1.1. Our Main Contributions

Similar with the aforementioned socially fair clustering
problems, solving Problem (2) is also not easy due to its
inherent “minmax” nature. When all distributions are of
discrete support, the problem can be formulated as a linear
programming (LP) problem, where the details are shown
in Section 2. Partly inspired by the recent developments
of interior point method (IPM) and their various applica-
tions (Gondzio, 2012) (e.g., the IPM algorithm for solving
WB (Ge et al., 2019)), we also consider developing an effi-
cient IPM based algorithm for the WBC problem, though
its formulation is much more complicated than WB due to
the minimax issue.

Technically, there are several significant challenges for di-
rectly applying IPM to the WBC problem, e.g., the compu-
tational cost and space complexity are both very large. The
linear programming formulation of WBC has m

∑N
i=1 mi+

m+N+1 variables and Nm+
∑N

i=1 mi+N+1 constraints,
where the integer N denotes number of distributions, mi

and m denote the support sizes for the i-th distribution and
WBC respectively. This brings the challenge for computing

2

Finding Wasserstein Ball Center

the inner loop of IPM, which requires a time complexity as
large as O((Nm+

∑N
i=1 mi+N)2(m

∑N
i=1 mi+m+N)).

To tackle this difficulty, we grind the intrinsic information
of constraint matrix to simplify the Newton normal equa-
tion, which is a linear system with a large positive definite
constraint matrix, and is also the most expensive part in
each inner loop of IPM. Specifically, we simplify the matrix
inverse occurred in the solution of Newton path, based on
an important observation:

After performing some carefully designed transforma-
tions, the seemingly dense coefficient matrix of normal equa-
tion (a core part in our IPM framework) can be converted
into a block-diagonal matrix in a particularly efficient way,
where the inverse of each block is also easy to obtain.

Through this observation, we obtain an
O(Nm3 +N2m2 +N3) time complexity for each
iteration, whereas the vanilla IPM requires O(N3m4) by
straight matrix inversion (for simplicity we just assume
mi = O(m) here). The latter one is often beyond accept-
able scope in real-world scenarios. For example, assume
we are given an instance that N = 1000 and m = 100.
In each loop of IPM, the complexity of our algorithm is
O(1010), while the vanilla IPM requires O(1017), which
is O(107) times higher. The strict description on this
result is presented in Theorem 3.2. As for the practical
effectiveness, our algorithm is significantly faster than the
popular commercial solver “Gurobi” (Gurobi Optimization,
LLC, 2024), which provides a concurrent optimizer
that run different state-of-the-art optimization methods
simultaneously. In particular for LP models, Gurobi
simultaneously runs the “dual simplex”, “parallel barrier”,
and “primal simplex” algorithms in independent threads.
In other words, our proposed algorithm runs faster than
all these commonly used LP algorithms. In Section 4, we
provide a set of experiments on numerical performance and
applications.

1.2. Related works

We present an overview on several important related works,
and the detailed introduction is placed in Appendix A.

Wasserstein distance Wasserstein distance is a classic topic
in machine learning (Rüschendorf, 1985). Cuturi (2013)
introduced the “Sinkhorn Distance”, which incorporates an
entropic regularization term to smooth the transportation
problem, offering paralleled and significantly faster solu-
tions than exact computation of the discrete Wasserstein
distance. Following Cuturi’s work, recent years have seen
the development of several improved Sinkhorn algorithms
(Lin et al., 2019; Altschuler et al., 2019; Benamou et al.,
2015; Altschuler et al., 2017). The discrete Wasserstein
distance is also closely related to the min-cost max flow

problem (Ahuja et al., 1994). In the past years, a number of
elegant algorithms have been proposed in theoretical com-
puter science, such as (Orlin, 1988; Lee & Sidford, 2014;
Sherman, 2017), and the ones focusing on Euclidean space
(Khesin et al., 2021; Fox & Lu, 2023) or parallelism (Lahn
et al., 2023).

Wassertein barycenter. The computation for Wasserstein
barycenter is an NP-hard problem (Altschuler & Boix-
Adsera, 2022). Cuturi & Doucet (2014) showed that the
computation for WB can be improved by using an entropic
regularization. Further progress includes iterative Breg-
man projection (IBP) algorithm (Benamou et al., 2015), the
semi-dual gradient descent (Cuturi & Peyré, 2018), accel-
erated primal-dual gradient descent (APDAGD) (Kroshnin
et al., 2019), alternating direction method of multipliers
(ADMM) (Ye et al., 2017), deterministic IBP (Lin et al.,
2020), and the IPM algorithm MAAIPM (Ge et al., 2019).
In Euclidean space, WB can be solved in polynomial time
with fixed dimension (Altschuler & Boix-Adsera, 2021;
Agarwal et al., 2025).

Interior Point Method. Dikin (1967) proposed the first inte-
rior point method. Further, Karmarkar (1984) proposed the
first polynomial time method for linear programming called
“Karmarkar’s algorithm”. Mehrotra’s predictor-corrector
algorithm (Mehrotra, 1992) provides the basis for most im-
plementations of this class of methods, which is also the
type of IPM applied in this paper (the details of predictor-
corrector IPM are presented in Section 3.2). The seminal
Mizuno-Todd-Ye predictor-corrector method has quadratic
convergence (Mizuno et al., 1993; Ye et al., 1993). For
more details on IPM, we refer the reader to the survey pa-
per (Gondzio, 2012). Recently, there are also several new
studies on reducing the IPM complexity (Jiang et al., 2021;
Cohen et al., 2021), which rely on a technique called “matrix
maintenance” to reduce the update time of each iteration.

2. Preliminaries
Some notations. Throughout this paper, we always use
low case letter to denote scalar value, and bold low case
letter to denote vector; also, we use “[n]” to denote the set
{1, 2, · · · , n}. Let “1m” be the all-one vector in Rm. For
two discrete probability vectors u ∈ Rm1 and v ∈ Rm2

with m1 and m2 being their support sizes, define the set
of matrices M(u,v) = {Π ∈ Rm1×m2

+ : Π1m2
=

u,Π⊤1m1
= v} as the coupling matrices, which con-

sists of all joint distributions of margin u and v. Let
Q = {(ai, qi) : i ∈ [m1]} denote the discrete probabil-
ity measure supported on m1 points q1, . . . , qm1

in Rd with
weights a1, . . . , am1

respectively. Another probability mea-
sure P = {(bj ,pj) : j ∈ [m2]} is defined similarly. The
p-norm Wasserstein distance of these two discrete proba-

3

Finding Wasserstein Ball Center

bility measures Q and P is

Wp(Q,P) := min
{
(

m1∑
i=1

m2∑
j=1

πij∥qi − pj∥pp)
1
p :

Π =
(
πij

)
(m1×m2)

∈M(a, b)
}

(OT)

where a = (a1, . . . , am1
)⊤ and b = (b1, . . . , bm2

)⊤. The
coupling matrix achieving the minimum value can be seen as
an alignment between the two distributions, which provides
the optimal transportation (OT) plan between their supports.

Now, we consider the scenario where there are multiple prob-
ability measures in the same space, {P(t), t = 1,∈ [N]}
(N ≥ 2), where each P(t) = {(a(t)i , q

(t)
i) : i ∈ [mt]} with

probability vector a(t) = (a
(t)
1 , . . . , a

(t)
mt)

⊤. The optimal
Wasserstein ball center (WBC) Popt = {(wi,xi) : i ∈
[m]} is another probability measure such that the maximum
Wasserstein distance to these given N probability measures
is minimized, as defined in the objective function (2) when
Ω = {x1, · · · ,xm}. The probability w = (w1, · · · , wm)⊤

of Popt and its coupling matrices with {a(t) : t ∈ [N]}
must be in the solution set S ={
(w,Π(1), . . . ,Π(N)) ∈ Rm

+ × Rm×m1
+ × · · · × Rm×mN

+ :

1⊤
mw = 1,w ≥ 0︸ ︷︷ ︸

constraint (i)

;

Π(t)1mt
= w,

(
Π(t)

)⊤
1m= a(t),Π(t) ≥ 0, t ∈ [N]︸ ︷︷ ︸

constraint (ii)

}
, (3)

where “≥” means each entry of the vector/matrix is non-
negative, the constraint (i) guarantees w to be a feasi-
ble probability distribution, and the constraint (ii) fol-
lows the coupling condition in (OT). For a given sup-
port Ω, the distance matrices are defined as D(t)(Ω) =

(∥xi − q
(t)
j ∥pp)(i,j) ∈ Rm×mt for t = 1, . . . , N . Since in

most practical applications, the measures in {P(t)}Nt=1 have
finite support points, and we can assume the barycenter is
supported on a given finite set Ω (in general, Ω does not
need to be the same as the supports of P(t)s), the problem
WBC in (2) can be re-written as:

min
w

max
t∈[N]

min
Π(t)

〈
D(t),Π(t)

〉
s.t. (w,Π(1), . . . ,Π(N)) ∈ S

(4)
where “⟨·, ·⟩” denotes the inner product in Euclidean space,
and D(t) denotes Dt(Ω) for simplicity.

3. Our Optimization Framework for WBC
In this section, we introduce our optimization framework
for solving the Problem (4). Specifically, in Section 3.1 we
formalize Problem (4) to be the standard LP form, ensur-
ing that the constraint matrix is full row-rank so that the

IPM framework introduced in Section 3.2 can run properly.
In Section 3.3 we illustrate how to eliminate unnecessary
computations to speed up IPM, as the key part of our con-
tribution in the current article. We take advantage of some
critical observation on the symmetry behind the seemingly
dense constraint matrix. With that observation, we can sig-
nificantly reduce the complexity of the most time consuming
part in each loop of IPM, which is the inversing for a large
matrix.

3.1. From Minmax to LP

First, we apply a slack variable γ ∈ R, turning Problem (4)
into the following LP problem:

min
w,Π(t),γ

γ

s.t. (w,Π(1), . . . ,Π(N)) ∈ S, x1, . . . ,xm ∈ Rn〈
D(t)(X),Π(t)

〉
≤ γ, 1 ≤ t ≤ N.

(5)

In (5), the value γ indicates the maximal Wasserstein dis-
tance from the WBC to the given N probability measures.

Then, we conduct the following transformation on Prob-
lem (5). We use “vec(U)” to denote the vectorization of a
matrix U , which is a vector obtained by concatenating ev-
ery column of U to its predecessor. Let diag(U1, · · · , Um)
denote the block diagonal matrix with the i-th block Ui, and
“⊗” denote tensor product. Let “Im” be the identity matrix
of order m. To transform the problem to a standard LP form,
we vectorize the constraint (ii) in (3), “Π(t)1mt

= w” and
“
(
Π(t)

)⊤
1m = a(t)”, to be:

(1⊤
mt
⊗Im)vec(Π(t)) = w, (Imt

⊗1⊤
m)vec(Π(t)) = a(t),

for t = 1, · · · , N . We further define the following ma-
trices: E1 = diag(Im1 ⊗ 1⊤

m, ..., ImN
⊗ 1⊤

m), E2 =
diag(1⊤

m1
⊗ Im, ...,1⊤

mN
⊗ Im), E3 = −1N ⊗ Im and

D = diag(vec(D(1)), . . . , vec(D(N))). Through some
simple calculations, Problem (5) can be formulated as a
standard LP model:

min c⊤x s.t. Ax = b,x ≥ 0 (WBC-LP)

where x = (vec(Π(1)); ...; vec(Π(N));w; γ1; . . . ; γN , γ),
γi = γ − ⟨D(i),Π(i)⟩, b = (a(1); ...a(N);0m; ...;0m︸ ︷︷ ︸

N

; 1),

c = (0; 0; . . . ; 0; 1) and

A =


E1

E2 E3

1⊤
m

D IN −1N

 .

Let M :=
∑N

i=1 mi, and then the numbers of constraints
and variables are nc := Nm + M + N + 1 and nv :=

4

Finding Wasserstein Ball Center

Mm+m+N +1, respectively. For a visual demonstration
of these matrices, please see Eq. (12).

Preprocessing on (WBC-LP). To implement IPM, it is
essential that the constraint matrix A should be of full row-
rank, so that the problem’s complexity is reduced and IPM
is also guaranteed to work more efficiently. In particular,
the “full row-rank” property can simplify the procedure for
solving the “normal equation” in IPM (which is discussed
in next section). The following lemma eliminates all re-
dundant constraints, turning A into a full row-rank matrix
Ā. Specifically, Ā ∈ R(nc−N)×nv is the matrix obtained
from A by removing the (M + 1)-th, (M +m+ 1)-th, · · · ,
(M + (N − 1)m + 1)-th rows of A, and b̄ ∈ Rnc−N is
the vector obtained from b by removing the (M + 1)-th,
(M +m+1)-th, · · · , (M + (N − 1)m+1)-th entries of b.
Proposition 3.1. 1) Ā has full row-rank; 2) solving the
equation Ax = b in (WBC-LP) is equivalent to solving the
equation Āx = b̄.

We leave the proof to Appendix B. Due to Proposition 3.1,
we will focus on Ā instead of A in the following sections.

3.2. Predictor-Corrector IPM on WBC-LP

We choose the classic predictor-corrector scheme (Mehrotra,
1992), which is a variant of primal-dual IPM, that applies
the block coordinate descent on the Lagrangian of the linear
program smoothed by logarithm regularization. As a second
order method, it is proved to have quadratic convergence
rate (Ye et al., 1993), which surpasses first-order methods in
general (for a detailed analysis, please see (Wright, 1997)).

The high level idea. When we deal with a primal-dual sys-
tem of linear programming, from the Karush–Kuhn–Tucker
theory (Wright, 1997), we can update the primal and dual
variables step by step using a Newton-like method to the
Lagrangian of LP. In particular, the algorithm takes a loga-
rithm barrier function, which is determined by a coefficient
µ+ ≥ 0, to measure how close the current solution is to that
of the original problem described in WBC-LP.

Let y ∈ Rnc−N and s ∈ Rnv be the dual variables cor-
responding to the constraints “Āx = b̄” and “x ≥ 0”,
respectively. Writing in matrix form, the search direction at
the current primal-dual tuple (x,y, s) should be the solution
of the following nonlinear system of equations:0 Ā⊤ Inv

Ā 0 0
S 0 X

∆x
∆y
∆s

=−
 Ā⊤y + s− c

Āx− b
Xs+∆X∆s+ µ+1nv

 (6)

where the notation “∆” denotes the change when updating
some variable or matrix. For the vector x, in Eq. (6) we
use the capitalized letter “X” to denote the diagonal matrix
with Xii = xi, where xi is the i-th term of x. Similarly, we
also have the diagonal matrix S for the vector s in (6).

Because of the quadratic term “∆X∆s” on the right hand-
side (RHS), Eq. (6) does not have an explicit solution. To
reduce this nonlinear system to be a linear case, first we
obtain a predictor step by removing the “∆X∆s+µ+1nv

”
term on the RHS of Eq. (6), then compute the corrector step
by assigning the solution of predictor step to the quadratic
term in the RHS of Eq. (6). Through combining them to-
gether, we obtain the final update step, hence the name
“predictor-corrector”. The value µ+ is updated after each
loop, descending as the primal-dual gap narrows. When µ+

approaches to 0, the current position convergences to the
optimal solution of WBC-LP.

Built upon the above idea, both the predictor and corrector
steps can be obtained by sequentially computing ∆y,∆s
and ∆x, where the complete details are shown in Algo-
rithm 2 of Appendix C. Here, we only focus on the most
time consuming part, computing ∆y, as the solution of
normal equation (Wright, 1997). Namely, for both the
predictor and corrector steps, we need to solve a system of
linear equations as the following form:

(ĀRĀ⊤)∆y = f , (7)

where R = diag(s)−1X , and the symbol “f” represents
the vector obtained in either the predictor or corrector steps,
as shown in Eqs. (13) and (14) of Algorithm 2 (here, we can
temporarily ignore the detailed form of f since it does not
affect designing our algorithm for solving Eq. (7)).

Other parts in one loop of Algorithm 2 are just simple oper-
ations like matrix-vector multiplications, and thus the whole
time complexity is dominated by the cost for solving Eq. (7).
We can solve Eq. (7) by inverting the matrix applied to ∆y
(this requires Ā to be of full row-rank, and this is also the
reason why we need Proposition 3.1). However, ordinary
inverse to such a large matrix will take excessively high
complexity, as shown in Remark 3.3 later. This motivates us
to propose a new method to further improve the complexity
in next section.

3.3. Solving the Normal Equation (7) Efficiently

We introduce an efficient algorithm for solving the normal
equation (ĀRĀ⊤)∆y = f of Eq. (7), whose complexity is
summarized in the following theorem.
Theorem 3.2. In each inner iteration of IPM, the time
complexity in terms of flops is O(m2

∑N
i=1 mi + Nm3 +

N2m2 +N3), and the memory usage in terms of doubles is
O(m

∑N
i=1 mi +Nm2 +N2).

Remark 3.3. For comparison, a vanilla IPM takes O((Nm+∑N
i=1 mi+N)2(m

∑N
i=1 mi+m+N)) time and O((Nm+∑N

i=1 mi +N)(m
∑N

i=1 mi +m+N)) storage.

Roadmap of the proof for Theorem 3.2. It is worth noting
that we do not need to really compute the matrix (ĀRĀ⊤)−1

5

Finding Wasserstein Ball Center

for solving Eq. (7); instead, we only need to find an efficient
way to simplify the structure of ĀRĀ⊤, so that we can easily
compute the matrix-vector multiplication “(ĀRĀ⊤)−1f”.
Proposition 3.4 illustrates the detailed structure of ĀRĀ⊤,
which paves the way for designing the following transforma-
tions. Our method contains three steps. First, we transform
ĀRĀ⊤ to be a nearly block-diagonal matrix. Then, we re-
solve the most challenging part that hinders it from being
block-diagonal, as shown in Lemma 3.6. Finally, we obtain
the desired block-diagonal form for ĀRĀ⊤. Namely, to
compute the product (ĀRĀ⊤)−1f , we only need to care
about the inverses of several small matrices with sizes no
bigger than max{mi,m,N}. As a consequence, we save
the massive time and storage for inverting a matrix of size
O(Nm+N max

i
(mi)).

Let r be the nv-dimensional vector with its i-th entry
ri = Rii (recall that nv denotes the number of vari-
ables as defined in Section 3.1). Also recall that M =∑N

i=1 mi, and we further define M ′ = N(m − 1). Let
z = r(Mm+ 2 : Mm+m), the sub-vector of r includ-
ing from the (Mm+ 2)-th to (Mm+m)-th entries.

Proposition 3.4. ĀRĀT has the following form:

ĀRĀT =


B1 B2 0 K1

B⊤
2 B3 +B4 α K2

0 α⊤ l 0
K⊤

1 K⊤
2 0 W


where the sub-matrices are defined as follows (their illus-
trations are shown in Appendix D):

• B1 ∈ RM×M is a diagonal matrix with positive di-
agonal entries; B2 ∈ RM×M ′

is a block-diagonal
matrix with N blocks, where each i-th block is of size
mi×(m−1); B3 ∈ RM ′×M ′

is a diagonal matrix with
positive diagonal entries; B4 = (1N1⊤

N)⊗ diag(z);

• α = −1N ⊗ z; l = 1⊤
mr(nv −m+ 1 : nv −N);

• K1 ∈ RM×N is a block-diagonal matrix with N
blocks, with the i-th block being of size mi × 1;
K2 ∈ RM ′×N is a block-diagonal matrix with N
blocks, with the i-th block being of size (m− 1)× 1;

• W = W1 + rnv
1N1⊤

N , where rnv
is the nv-th term of

r, and W1 ∈ RN×N is a diagonal matrix with positive
diagonal entries.

We left the proof for Proposition 3.4 to Appendix D. Then,
we illustrate our idea for efficiently solving the normal equa-
tion (7) via three steps.

Step 1: transforming ĀRĀ⊤ to be nearly block-diagonal.
We simplify the coefficient matrix ĀRĀ⊤ by performing

several transformations. Relying on Proposition 3.4 we de-

sign the transformation matrix Q :=

[
IM

IM′
1

−K⊤
1 B−1

1 IN

]
·[

IM
IM′ −α/l

1
IN

]
·

[
IM

−B⊤
2 B−1

1 IM′
1
IN

]
, such that

Q · ĀRĀT ·Q⊤ =


B1

G1 +G2 K2

l

K
⊤
2 W

 , (8)

where G1 := B3−B⊤
2 B−1

1 B2, G2 := B4− 1
lαα⊤, W =

W −K⊤
1 B⊤

1 K1. See Appendix E for computation.

Step 2: dealing with (G1+G2)
−1. In the RHS of Eq. (8),

we can see that the transformed matrix is still not block-
diagonal due to the existence of “K2”. To further eliminate
K2, we need to design another transformation matrix that
involves the computation of (G1 +G2)

−1, the inverse of a
large matrix of size M ′ ×M ′. To find a way to compute
(G1 +G2)

−1 more efficiently, we have a useful observation
on the matrices G1 and G2, which indicates the specificity
of their structures (the proof of Proposition 3.5 is placed in
Appendix F).

Proposition 3.5. There exist positive definite matrices
Y,Gii ∈ R(m−1)×(m−1), i = 1, . . . , N , such that G1 =
diag(G11, · · · , GNN) and G2 = (1N1⊤

N)⊗ Y .

With the above observation, we achieve the following key
lemma.

Lemma 3.6. Let Z̄ = diag(z) − 1
l zz

⊤(z is defined
before Proposition 3.4), and G̃ = (1N1⊤

N) ⊗ (Z̄−1 +∑N
i=1 G

−1
ii)−1, then we have

(G1 +G2)
−1 = G−1

1 −G−1
1 G̃G−1

1 . (9)

Further, the flops needed for applying a vector to the RHS
of Eq. (9) is O(Nm2).

Proof. Since Y is positive definite, there should exit a ma-
trix U ∈ R(m−1)×(m−1), such that Y = U⊤U . Then,
from Proposition 3.5 we have G2 = (1N1⊤

N) ⊗ Y =
(1N ⊗ U⊤)(1⊤

N ⊗ U), and it implies

(G1 +G2)
−1
=
(
G1+(1N ⊗ U⊤)·(1⊤

N ⊗ U)
)−1

= G−1
1 −G−1

1 · (1N ⊗ U⊤)·(
Im−1 + (1⊤

N ⊗ U)G−1
1 (1N ⊗ U⊤)

)−1· (1⊤
N ⊗ U) ·G−1

1 ,

where the second equality is obtained by Woodbury ma-
trix identity (Hager, 1989), a commonly used equation in
linear algebra (see Appendix H). Noticing that both G1

and 1⊤
N ⊗ U are divided into N ×N sub-matrices of size

6

Finding Wasserstein Ball Center

Figure 2. The first two column figures are the computational time (s) and obtained objective value of Gurobi and our method. For (a) and
(c), we fix m = 100 and vary N . For (b) and (d), we fix N = 30 and vary m. The third column figures are the computational times of
our method when the problem scale is very large. For (e), we fix m = 50. For (f), we fix N = 10.

(m− 1)× (m− 1), together with Proposition 3.5, we can
simplify the RHS of the above equality to be

G−1
1 −G−1

1

(
(1N1⊤

N)⊗

(
U⊤(Im−1 +

N∑
i=1

UG−1
ii U⊤)−1U

))
G−1

1

=G−1
1 −G−1

1

(
(1N1⊤

N)⊗ (Y −1 +

N∑
i=1

G−1
ii)−1

)
G−1

1 .

Therefore, we obtain the equality (9).

As for the complexity, we notice the following two facts.
(1) G−1

1 is a block diagonal matrix with only N(m − 1)2

non-zero terms, thus the operation of multiplying a vector
to it takes no more than O(Nm2) time. (2) The matrix
G̃ can be viewed as an N × N matrix with every term
being (Z−1+

∑N
i=1 G

−1
ii)−1. That is, we only have to store

(Z−1+
∑N

i=1 G
−1
ii)−1, a square matrix of size m−1 instead

of G̃ with size N(m − 1). Immediately, if we multiply a
vector on the right of G̃, the i-th coordinate of the resulting
vector would be the same as the (i+m−1)-th coordinate for
any i ≤M ′− (m− 1). Therefore we only have to compute

the first m−1 rows, then copy them N times down to obtain
the multiplication. This part also takes O(Nm2) time.

Step 3: from nearly block-diagonal to block-diagonal,
and achieve the final solution ∆y. We design another
transformation matrix Q′ to eliminate K2 in the nearly block
diagonal matrix obtained in (8). Specifically, we let Q′ =[

IM
IM′

1

−K
⊤
2 (G1+G2)

−1 IN

]
. Through combining with the

transformation Q introduced in (8), we have

Q′ ·QĀRĀTQ⊤ ·Q′⊤ = diag(B1, G1+G2, l, W̃), (10)

where W̃ = W − K
⊤
2 (G1 + G2)

−1K2. Based on
Lemma 3.6, the construction of W̃ can be done in O(N2m2)
flops, since K2 has N columns.

Now, we can solve the normal equation (ĀRĀ⊤)∆y = f
of Eq. (7). Set ȳ as the solution to

diag(B1, G1 +G2, l, W̃)ȳ = Q′Qf , (11)

where the left coefficient matrix is from the obtained block-
diagonal matrix in (10). Similar with the method for comput-
ing W̃ , due to the term “G1 +G2” in the coefficient matrix

7

Finding Wasserstein Ball Center

0 20 40 60 80 100 120

Iteration

4

5

6

7

8

9

10

11

12

lo
g(

va
lu

e)

(a)

0 0.2 0.4 0.6 0.8 1

Imbalance factor

200

400

600

800

1000

1200

M
ax

 W
D

WBC
WB

(b) (c)

Figure 3. (a) N = 90,m = 2000. The objective value of our algorithm becomes stable after 80 iterations. For other settings of m and
N, see Appendix J. (b) The maximum Wasserstein distance between the barycenter (WBC or WB) and input distributions, with fixing
N = 20,m = 500. (c) The dark bin marked “WBC” is the maximum WD between WBC and all the faces, while the rest represent the
maximum WD from WB to the faces in different races.

of ȳ, we also need to apply Lemma 3.6 to obtain ȳ. After
that, from Eq. (10) it is easy to verify that ∆y = Q⊤Q′⊤ȳ.

Algorithm 1 summarizes the above steps. Due to the space
limit, we leave the detailed proof for the overall complexities
to Appendix G.

Algorithm 1 Solver for (ĀRĀ⊤)∆y = f

Input: R ∈ Rnv×nv ,f ∈ Rnc−N as described in Eq. (7)
Output: The solution ∆y
Step 1: Compute blocks of ĀRĀ⊤

1: Compute B1, B2, B3,K1,K2,W

Step 2: Simplify the constraint matrix into block diagonal
1: Compute Q
2: K2 ← K2 −B⊤

2 B−1
1 K1

3: W ←W −K⊤
1 B−1

1 K1 //Eliminate K1

4: Compute G1, G2

5: Decompose (G1 +G2)
−1 according to Lemma 3.6

6: Compute Q′

7: W̃ ←W −K
⊤
2 (G1 +G2)

−1K2 //Eliminate K2

Step 3: Solve ∆y

1: z1 ← Qf , z2 ← Q′z1
2: z3(1 : M)← B−1

1 z2(1 : M)
3: z3(nc −N + 1 : nc)← W̃−1z2(nc −N + 1 : nc)
4: z3(nc −N)← c−1z2(nc −N)
5: Solve (G1+G2)z4(M+1 : nc−N−1) = z3(M+1 :

nc −N − 1)
6: z5 ← Q′⊤z4, ∆y ← Q⊤z5

Return: ∆y

4. Experiments
We conduct four experiments to investigate the real perfor-
mance of our algorithm. (1) The first experiment demon-
strates our advantages on computational speed and memory

usage over the commercial solver Gurobi, a powerful opti-
mization solver widely used across various fields such as
operations research, finance, and data science. The baseline
we choose is Gurobi Optimizer version 11.0.0 (academic
license) . (2) The second experiment reflects the fairness
of WBC over the standard WB. For these two experiments,
we generate random datasets in Euclidean space, and the
weights of (q(t)1 , ..., q

(t)
m) in each distribution P(t) are gener-

ated uniformly at random. (3) The third experiment further
illustrates the performance on a real-world dataset FairFace
(Karkkainen & Joo, 2021) with diverse racial representa-
tion. We choose 700 (100 for each race) images includ-
ing seven racial groups of “Black”, “East Asian”, “Indian”,
“Latino-Hispanic”, “Middle Eastern”, “Southeast Asian” and
“White” as 700 distributions, where each image actually can
be regarded as a distribution of size 50× 50 in R2. (4) The
fourth experiment on 3D point-cloud gives a visual example
to the fairness of WBC as a barycenter. All the experiments
are implemented on a workstation, Intel(R) Core(TM) i5-
9400 CPU @ 2.90GHz and 8GB for RAM, equipped with
win64 - Windows 11+.0.

(1) Comparison with Gurobi. We set m of all distributions
to be equal for brevity. As shown in Fig. 2, our algorithm
is always faster than Gurobi, and the gap between the two
methods is expanding as the scale increases. Moreover,
Gurobi cannot solve the instance with m > 500 due to
memory limitation, which showcases the advantage of our
space complexity in Theorem 3.2. We also illustrate the
convergence speed of our algorithm. From Fig. 3(a) (and
Figs. 5 to 8 in appendix), we can see that our algorithm
converges in a super-linear rate, which is consistent with the
theoretical result of (Ye et al., 1993).

(2) Fairness of WBC. To evaluate the performance on fair-
ness, we first compare the maximum Wasserstein distance
(Max WD) between the obtained centers and input distri-

8

Finding Wasserstein Ball Center

Figure 4. WBC (left) and WB (middle) of 3 cars and one chair. WB looks just like a car while our proposed WBC preserves characteristics
of a chair, such as backrest and leg, indicating that WBC indeed places greater emphasis on fairness for the minority than WB.

butions. The experimental distributions are partitioned into
two families, with each family’s measure concentrated in
distinct regions that are quite distant from each other. To
quantify the disparity between these two families, we define
the imbalanced factor (“imf”) as the ratio of the smaller fam-
ily’s size to the larger one. For instance, “imf = 1” indicates
that both families contain an equal number of distributions.
As is shown in Fig. 3(b), the smaller the imf, the bigger the
difference of the Max WD between WB and WBC (except
for the case “imf=0”, since the smaller family is empty in
this case), indicating WBC’s potential as the alternative to
WB when fairness is concerned. Please see Appendix J.2
for the details of this part.

Another fairness measurement is the variance of Wasserstein
distances from the computed center to the input distributions,
denoted as var(WD), where smaller value indicates reduced
disparity among inputs. Across all 2,700 experiments (de-
tailed in Appendix J.2), WBC consistently achieves lower
var(WD) compared to WB. For example, in L1 space of
dimension 100, we sample the 30 supports uniformly in a
cube with side length 3, then translate 3 supports by adding
−1100, and translate 5 supports by adding 2 ∗1100, we have
var(WD)=58.35 for WB , while var(WD)=418.61 for WBC.
Those observations suggest that WBC not only improves
fairness for the minority distributions, but also could en-
hance fairness across all distributions by limiting disparities
between transport plans.

(3) Experiments on FairFace Dataset. From Fig. 3(c) ,
we can observe that the standard WB has a significant gap
between the object values in different races. The object
value of WB corresponding to “Middle Eastern” is 78.30,
which is far greater than the object value of our algorithm

(45.37). Meanwhile, our algorithm achieves the object value
only slightly higher than the average of WD to WB (38.70).

(4) 3D Point-cloud Averaging. WBC can be used to find
the mean shape of point-cloud shapes by casting a point
cloud into an empirical probability measure. We take the
ShapeNet Core-55 dataset (Chang et al., 2015), with each
cloud containing 2048 points in R3. As an example, in
Fig. 4 we show that compared with WB, the WBC preserves
more characteristics of the “chair” (which can regarded as
an outlier distribution from the other “car” clouds), such as
backrest and legs.

5. Conclusion
In this paper, we present an efficient algorithm to com-
pute Wasserstein ball center, an alternative of Wasserstein
barycenter with emphasis on minority distributions, which
makes it more suitable for the tasks that are sensitive to
fairness. For future work, it would be interesting to explore
more properties and applications of WBC in real world.
Moreover, it is also deserved to study other models for fair
ensembling different distributions in the field of machine
learning.

Acknowledgements
We want to thank the anonymous reviewers for their con-
structive comments. The research of this work was sup-
ported in part by the National Key Research and Develop-
ment Program of China (NO.2021YFA1000900), the Na-
tional Natural Science Foundation of China (NO.62272432,
NO.62432016) and the Natural Science Foundation of An-
hui Province (NO.2208085MF163).

9

Finding Wasserstein Ball Center

Impact Statement
The proposed algorithm provides an effective alternative to
the Wasserstein barycenter by offering a trade-off between
transport efficiency and fairness. However, practitioners
should be cautious of potential outliers arising from noise or
data errors. To ensure robust performance, data cleansing or
selection techniques should be applied prior to implement-
ing the WBC.

References
Aayushman, Gaddey, H., Mittal, V., Chawla, M., and Gupta,

G. R. Fair and accurate skin disease image classifica-
tion by alignment with clinical labels. In International
Conference on Medical Image Computing and Computer-
Assisted Intervention, pp. 394–404. Springer, 2024.

Abbasi, M., Bhaskara, A., and Venkatasubramanian, S. Fair
clustering via equitable group representations. In Pro-
ceedings of the 2021 ACM conference on fairness, ac-
countability, and transparency, pp. 504–514, 2021.

Adegun, A. and Viriri, S. Deep learning techniques for skin
lesion analysis and melanoma cancer detection: a survey
of state-of-the-art. Artificial Intelligence Review, 54(2):
811–841, 2021.

Agarwal, A., Dudı́k, M., and Wu, Z. S. Fair regression:
Quantitative definitions and reduction-based algorithms.
In International Conference on Machine Learning, pp.
120–129. PMLR, 2019.

Agarwal, P. K., Raghvendra, S., Shirzadian, P., and Yao, K.
Efficient approximation algorithm for computing wasser-
stein barycenter under euclidean metric. In Proceedings
of the 2025 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 4809–4826. SIAM, 2025.

Ahuja, R. K., Orlin, J. B., Stein, C., and Tarjan, R. E. Im-
proved algorithms for bipartite network flow. SIAM Jour-
nal on Computing, 23(5):906–933, 1994.

Altschuler, J., Niles-Weed, J., and Rigollet, P. Near-linear
time approximation algorithms for optimal transport via
sinkhorn iteration. Advances in neural information pro-
cessing systems, 30, 2017.

Altschuler, J., Bach, F., Rudi, A., and Niles-Weed, J. Mas-
sively scalable sinkhorn distances via the nyström method.
Advances in neural information processing systems, 32,
2019.

Altschuler, J. M. and Boix-Adsera, E. Wasserstein barycen-
ters can be computed in polynomial time in fixed dimen-
sion. Journal of Machine Learning Research, 22(44):
1–19, 2021.

Altschuler, J. M. and Boix-Adsera, E. Wasserstein barycen-
ters are np-hard to compute. SIAM Journal on Mathemat-
ics of Data Science, 4(1):179–203, 2022.

Backhoff-Veraguas, J., Fontbona, J., Rios, G., and Tobar, F.
Bayesian learning with wasserstein barycenters. ESAIM:
Probability and Statistics, 26:436–472, 2022.

Backurs, A., Indyk, P., Onak, K., Schieber, B., Vakilian, A.,
and Wagner, T. Scalable fair clustering. In International
Conference on Machine Learning, pp. 405–413. PMLR,
2019.

Benamou, J.-D., Froese, B. D., and Oberman, A. M. Numer-
ical solution of the optimal transportation problem using
the monge–ampère equation. Journal of Computational
Physics, 260:107–126, 2014.

Benamou, J.-D., Carlier, G., Cuturi, M., Nenna, L., and
Peyré, G. Iterative bregman projections for regularized
transportation problems. SIAM Journal on Scientific Com-
puting, 37(2):A1111–A1138, 2015.

Bhardwaj, A. and Rege, P. P. Skin lesion classification
using deep learning. In Advances in Signal and Data
Processing: Select Proceedings of ICSDP 2019, pp. 575–
589. Springer, 2021.

Borgwardt, S. An lp-based, strongly-polynomial 2-
approximation algorithm for sparse wasserstein barycen-
ters. Operational Research, 22(2):1511–1551, 2022.

Carlier, G. and Ekeland, I. Matching for teams. Economic
theory, 42:397–418, 2010.

Caton, S. and Haas, C. Fairness in machine learning: A
survey. ACM Computing Surveys, 56(7):1–38, 2024.

Chai, J. and Wang, X. Fairness with adaptive weights. In
International Conference on Machine Learning, pp. 2853–
2866. PMLR, 2022.

Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P.,
Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S.,
Su, H., et al. Shapenet: An information-rich 3d model
repository. arXiv preprint arXiv:1512.03012, 2015.

Chen, X., Fain, B., Lyu, L., and Munagala, K. Proportionally
fair clustering. In International Conference on Machine
Learning, pp. 1032–1041. PMLR, 2019.

Chen, Z., Kuhn, D., and Wiesemann, W. Data-driven chance
constrained programs over wasserstein balls. Operations
Research, 72(1):410–424, 2024.

Chiappori, P.-A. Matching with transfers: The economics
of love and marriage. Princeton University Press, 2017.

10

Finding Wasserstein Ball Center

Chierichetti, F., Kumar, R., Lattanzi, S., and Vassilvitskii,
S. Fair clustering through fairlets. Advances in neural
information processing systems, 30, 2017.

Cohen, M. B., Lee, Y. T., and Song, Z. Solving linear pro-
grams in the current matrix multiplication time. Journal
of the ACM (JACM), 68(1):1–39, 2021.

Cuturi, M. Sinkhorn distances: Lightspeed computation
of optimal transport. Advances in neural information
processing systems, 26, 2013.

Cuturi, M. and Doucet, A. Fast computation of wasserstein
barycenters. In International conference on machine
learning, pp. 685–693. PMLR, 2014.

Cuturi, M. and Peyré, G. Semidual regularized optimal
transport. SIAM Review, 60(4):941–965, 2018.

Dikin, I. Iterative solution of problems of linear and
quadratic programming. In Doklady Akademii Nauk, vol-
ume 174, pp. 747–748. Russian Academy of Sciences,
1967.

Dognin, P., Melnyk, I., Mroueh, Y., Ross, J., Santos, C. D.,
and Sercu, T. Wasserstein barycenter model ensembling.
In International Conference on Learning Representations,
2019.

Dwork, C., Hardt, M., Pitassi, T., Reingold, O., and Zemel,
R. Fairness through awareness. In Proceedings of the 3rd
innovations in theoretical computer science conference,
pp. 214–226, 2012.

Fox, E. and Lu, J. A deterministic near-linear time approx-
imation scheme for geometric transportation. In 2023
IEEE 64th Annual Symposium on Foundations of Com-
puter Science (FOCS), pp. 1301–1315. IEEE, 2023.

Ge, D., Wang, H., Xiong, Z., and Ye, Y. Interior-point
methods strike back: Solving the wasserstein barycenter
problem. Advances in neural information processing
systems, 32, 2019.

Ghadiri, M., Samadi, S., and Vempala, S. Socially fair k-
means clustering. In Proceedings of the Conference on
Fairness, Accountability, and Transparency, pp. 438–448,
2021.

Goldfeld, Z., Kato, K., Rioux, G., and Sadhu, R. Statistical
inference with regularized optimal transport. Informa-
tion and Inference: A Journal of the IMA, 13(1):iaad056,
2024.

Gondzio, J. Interior point methods 25 years later. European
Journal of Operational Research, 218(3):587–601, 2012.

Gong, J. and Kim, H. Rhsboost: Improving classification
performance in imbalance data. Computational Statistics
& Data Analysis, 111:1–13, 2017.

Gramfort, A., Peyré, G., and Cuturi, M. Fast optimal trans-
port averaging of neuroimaging data. In Information
Processing in Medical Imaging: 24th International Con-
ference, IPMI 2015, Sabhal Mor Ostaig, Isle of Skye,
UK, June 28-July 3, 2015, Proceedings 24, pp. 261–272.
Springer, 2015.

Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual, 2024. URL https://www.gurobi.com.

Hager, W. W. Updating the inverse of a matrix. SIAM
review, 31(2):221–239, 1989.

Huang, M., Ma, S., and Lai, L. Projection robust wasserstein
barycenters. In International Conference on Machine
Learning, pp. 4456–4465. PMLR, 2021.

Jang, T., Zheng, F., and Wang, X. Constructing a fair clas-
sifier with generated fair data. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35,
pp. 7908–7916, 2021.

Jiang, H. and Nachum, O. Identifying and correcting label
bias in machine learning. In International conference on
artificial intelligence and statistics, pp. 702–712. PMLR,
2020.

Jiang, S., Song, Z., Weinstein, O., and Zhang, H. A faster
algorithm for solving general lps. In Proceedings of
the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pp. 823–832, 2021.

Joseph, M., Kearns, M., Morgenstern, J. H., and Roth,
A. Fairness in learning: Classic and contextual bandits.
Advances in neural information processing systems, 29,
2016.

Karkkainen, K. and Joo, J. Fairface: Face attribute dataset
for balanced race, gender, and age for bias measurement
and mitigation. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pp. 1548–
1558, 2021.

Karmarkar, N. A new polynomial-time algorithm for linear
programming. In Proceedings of the sixteenth annual
ACM symposium on Theory of computing, pp. 302–311,
1984.

Khesin, A. B., Nikolov, A., and Paramonov, D. Precondi-
tioning for the geometric transportation problem. Journal
of Computational Geometry, 11(2):234–259, 2021.

Kim, K., Zhou, B., Zhu, C., and Chen, X. Sobolev gradient
ascent for optimal transport: Barycenter optimization and

11

https://www.gurobi.com

Finding Wasserstein Ball Center

convergence analysis. arXiv preprint arXiv:2505.13660,
2025.

Koehl, P., Delarue, M., and Orland, H. Statistical physics
approach to the optimal transport problem. Physical
review letters, 123(4):040603, 2019.

Kolouri, S., Nadjahi, K., Simsekli, U., Badeau, R., and
Rohde, G. Generalized sliced wasserstein distances. Ad-
vances in neural information processing systems, 32,
2019.

Krasanakis, E., Spyromitros-Xioufis, E., Papadopoulos, S.,
and Kompatsiaris, Y. Adaptive sensitive reweighting to
mitigate bias in fairness-aware classification. In Proceed-
ings of the 2018 world wide web conference, pp. 853–862,
2018.

Kroshnin, A., Tupitsa, N., Dvinskikh, D., Dvurechensky,
P., Gasnikov, A., and Uribe, C. On the complexity of
approximating wasserstein barycenters. In International
conference on machine learning, pp. 3530–3540. PMLR,
2019.

Kroshnin, A., Spokoiny, V., and Suvorikova, A. Statistical
inference for bures–wasserstein barycenters. The Annals
of Applied Probability, 31(3):1264–1298, 2021.

Lahn, N., Raghvendra, S., and Zhang, K. A combinato-
rial algorithm for approximating the optimal transport
in the parallel and mpc settings. Advances in Neural
Information Processing Systems, 36:21675–21686, 2023.

Lee, Y. T. and Sidford, A. Path finding methods for lin-
ear programming: Solving linear programs in o (vrank)
iterations and faster algorithms for maximum flow. In
2014 IEEE 55th Annual Symposium on Foundations of
Computer Science, pp. 424–433. IEEE, 2014.

Lin, L., Shi, W., Ye, J., and Li, J. Multisource single-cell
data integration by maw barycenter for gaussian mixture
models. Biometrics, 79(2):866–877, 2023.

Lin, T., Ho, N., and Jordan, M. On efficient optimal trans-
port: An analysis of greedy and accelerated mirror de-
scent algorithms. In International Conference on Ma-
chine Learning, pp. 3982–3991. PMLR, 2019.

Lin, T., Ho, N., Chen, X., Cuturi, M., and Jordan, M. Fixed-
support wasserstein barycenters: Computational hardness
and fast algorithm. Advances in neural information pro-
cessing systems, 33:5368–5380, 2020.

Lin, Z. and Ruszczynski, A. Fast dual subgradient optimiza-
tion of the integrated transportation distance between
stochastic kernels. arXiv preprint arXiv:2312.01432,
2023.

Lohaus, M., Perrot, M., and Von Luxburg, U. Too relaxed to
be fair. In International Conference on Machine Learning,
pp. 6360–6369. PMLR, 2020.

Makarychev, Y. and Vakilian, A. Approximation algorithms
for socially fair clustering. In Conference on Learning
Theory, pp. 3246–3264. PMLR, 2021.

Martinez, N., Bertran, M., and Sapiro, G. Minimax pareto
fairness: A multi objective perspective. In International
conference on machine learning, pp. 6755–6764. PMLR,
2020.

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., and
Galstyan, A. A survey on bias and fairness in machine
learning. ACM computing surveys (CSUR), 54(6):1–35,
2021.

Mehrotra, S. On the implementation of a primal-dual inte-
rior point method. SIAM Journal on optimization, 2(4):
575–601, 1992.

Mizuno, S., Todd, M. J., and Ye, Y. On adaptive-step
primal-dual interior-point algorithms for linear program-
ming. Mathematics of Operations research, 18(4):964–
981, 1993.

Montoya, L. N., Roberts, J. S., and Hidalgo, B. S. To-
wards fairness in ai for melanoma detection: Systemic
review and recommendations. In Future of Information
and Communication Conference, pp. 320–341. Springer,
2025.

Nadeem, S., Hollmann, T., and Tannenbaum, A. Multi-
marginal wasserstein barycenter for stain normalization
and augmentation. In Medical Image Computing and
Computer Assisted Intervention–MICCAI 2020: 23rd In-
ternational Conference, Lima, Peru, October 4–8, 2020,
Proceedings, Part V 23, pp. 362–371. Springer, 2020.

Nietert, S., Goldfeld, Z., Sadhu, R., and Kato, K. Statisti-
cal, robustness, and computational guarantees for sliced
wasserstein distances. Advances in Neural Information
Processing Systems, 35:28179–28193, 2022.

Orlin, J. A faster strongly polynomial minimum cost flow
algorithm. In Proceedings of the Twentieth annual ACM
symposium on Theory of Computing, pp. 377–387, 1988.

Pele, O. and Werman, M. Fast and robust earth mover’s
distances. In 2009 IEEE 12th international conference
on computer vision, pp. 460–467. IEEE, 2009.

Pesenti, S. M. and Jaimungal, S. Portfolio optimization
within a wasserstein ball. SIAM Journal on Financial
Mathematics, 14(4):1175–1214, 2023.

12

Finding Wasserstein Ball Center

Qin, R., Li, M., and Ding, H. Solving soft clustering en-
semble via k-sparse discrete wasserstein barycenter. Ad-
vances in Neural Information Processing Systems, 34:
900–913, 2021.

Rüschendorf, L. The wasserstein distance and approxima-
tion theorems. Probability Theory and Related Fields, 70
(1):117–129, 1985.

Sherman, J. Generalized preconditioning and undirected
minimum-cost flow. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 772–780. SIAM, 2017.

Song, S., Mo, G., Yang, Q., and Ding, H. Relax and merge:
A simple yet effective framework for solving fair k-means
and k-sparse wasserstein barycenter problems. arXiv
preprint arXiv:2411.01115, 2024.

Vaskevicius, T. and Chizat, L. Computational guarantees
for doubly entropic wasserstein barycenters. Advances in
Neural Information Processing Systems, 36, 2024.

Villani, C. Topics in optimal transportation, volume 58.
American Mathematical Soc., 2021.

Wang, F., Cheng, L., Guo, R., Liu, K., and Yu, P. S. Equal
opportunity of coverage in fair regression. Advances in
Neural Information Processing Systems, 36, 2024.

Wright, S. J. Primal-dual interior-point methods. SIAM,
1997.

Yang, Q. and Ding, H. Approximate algorithms for k-sparse
wasserstein barycenter with outliers. In Proceedings of
the Thirty-Third International Joint Conference on Artifi-
cial Intelligence, pp. 5316–5325, 2024.

Ye, J., Wu, P., Wang, J. Z., and Li, J. Fast discrete distribu-
tion clustering using wasserstein barycenter with sparse
support. IEEE Transactions on Signal Processing, 65(9):
2317–2332, 2017.

Ye, Y., Güler, O., Tapia, R. A., and Zhang, Y. A quadrati-
cally convergent o (l)-iteration algorithm for linear pro-
gramming. Mathematical programming, 59(1):151–162,
1993.

Yue, M.-C., Kuhn, D., and Wiesemann, W. On linear opti-
mization over wasserstein balls. Mathematical Program-
ming, 195(1):1107–1122, 2022.

Zhuang, Y., Chen, X., and Yang, Y. Wasserstein k-means for
clustering probability distributions. Advances in Neural
Information Processing Systems, 35:11382–11395, 2022.

13

Finding Wasserstein Ball Center

A. Related Works
Wasserstein distance The Wasserstein distance, also known as the Earth Mover’s distance when p = 1, quantifies the
disparity between two probability distributions, particularly when their supports are discrete sets. Computing the discrete
Wasserstein metric reduces to solving a minimum-cost maximum-flow optimization problem (Ahuja et al., 1994; Orlin,
1988). Consider a bipartite graph with n vertices, m edges, and maximum edge weight U . Lee & Sidford (2014) designed
an efficient general LP solver that can solve the minimum cost flow problem in O(n2.5poly(logU)). Lahn et al. (2023)
designed a combinatorial algorithm that computes an ϵ-approximate transport plan in O(n

2

ϵ2) sequential time and O(logn
ϵ2)

parallel time. Recently, Fox & Lu (2023) presented the first deterministic algorithm that computes optimal transportation in
Euclidean space with near-linear time.

Wasserstein distance is also a classic topic in machine learning (Rüschendorf, 1985; Pele & Werman, 2009; Dognin et al.,
2019). By using matrix scaling technique, Cuturi (2013) introduced the “Sinkhorn Distance”, which incorporates an entropic
regularization term to smooth the transportation problem, offering paralleled and significantly faster solutions than exact
computation of the discrete Wasserstein distance. Following Cuturi’s work, recent years have seen the development of
several improved Sinkhorn algorithms (Lin et al., 2019; Altschuler et al., 2019; Benamou et al., 2015; Altschuler et al.,
2017). Another practical variant is “sliced Wasserstein distance”, which saves computation time by taking expectation of
Wasserstein distance of the distributions projected from high dimension to one-dimensional space (Kolouri et al., 2019;
Nietert et al., 2022).

Wassertein barycenter. Different from Wasserstein distance, the computation for Wasserstein barycenter is an NP-hard
problem (Altschuler & Boix-Adsera, 2022). Cuturi & Doucet (2014) showed that the computation for WB can be improved
by using an entropic regularization, leading to a simple gradient-descent scheme that was later improved and generalized
under the iterative Bregman projection (IBP) algorithm (Benamou et al., 2015). Further progress includes the semi-dual
gradient descent (Cuturi & Peyré, 2018), accelerated primal-dual gradient descent (APDAGD) (Kim et al., 2025; Kroshnin
et al., 2019), alternating direction method of multipliers (ADMM) (Ye et al., 2017), deterministic IBP (Lin et al., 2020),
and the IPM algorithm MAAIPM (Ge et al., 2019). In Euclidean space, WB can be solved in polynomial time with fixed
dimension (Altschuler & Boix-Adsera, 2021). Vaskevicius & Chizat (2024) offers the first non-asymptotic convergence
guarantees for approximating Wasserstein barycenter between discrete point clouds in the free-support/grid-free setting.
Agarwal et al. (2025) gives the first polynomial algorithm for the case where the cost is L1-norm. In applications, we
sometimes need the support of WB to be sparse (Ye et al., 2017). Borgwardt (2022) proposed a strongly-polynomial
2-approximation algorithm for sparse Wasserstein barycenters. Yang & Ding (2024) investigated the case with outliers,
connecting this problem with k-means clustering.

Interior Point Method. Dikin (1967) proposed the first interior point method, which was reinvented in Karmarkar (1984)
which also proposed the first poly-time method for linear programming called “Karmarkar’s algorithm”. Since then IPM has
attracted a great amount of attention, where one of the most successful IPM methods is the class of primal-dual approaches,
which iteratively optimize the primal and the dual variable, until the dual gap converges to zero. In particular, Mehrotra’s
predictor-corrector algorithm (Mehrotra, 1992) provides the basis for most implementations of this class of methods, which
is also the type of IPM applied in this paper (the details of predictor-corrector IPM are presented in Section 3.2). The
seminal Mizuno-Todd-Ye predictor-corrector method has quadratic convergence (Mizuno et al., 1993; Ye et al., 1993). For
more details on IPM, we refer the reader to the survey paper (Gondzio, 2012). Recently, there are also some new studies on
reducing the exponent of IPM complexity in theoretical computer science (Jiang et al., 2021; Cohen et al., 2021), which
relies on a technique called “matrix maintenance” to reduce the update time of each iteration.

Fairness. The fairness issue has attracted a great amount of attention in computer science (Joseph et al., 2016; Mehrabi
et al., 2021; Caton & Haas, 2024). The proposed solutions include adjusting labels from sensitive groups to reconstruct
unbiased mapping (Dwork et al., 2012; Jiang & Nachum, 2020), and removing sensitive attributions (Krasanakis et al., 2018).
As is mentioned before, the WBC problem is also related with socially fair clustering (Abbasi et al., 2021; Ghadiri et al.,
2021). An (eO(p) log ℓ

log log ℓ)-approximation algorithm for socially fair clustering with the ℓp-objective is given by Makarychev
& Vakilian (2021). Unfairness can result from the issue of representation bias, which arises due to insufficient amount of
data in certain groups or subgroups (Lohaus et al., 2020; Chai & Wang, 2022). Existing methods include fair data generation
(Jang et al., 2021), multi-objective optimization (Martinez et al., 2020) and boosting (Gong & Kim, 2017). There are other
concepts on fairness studied in computer science, for example the problems of fair k-means (Chierichetti et al., 2017; Chen
et al., 2019; Backurs et al., 2019; Song et al., 2024) and fair regression (Agarwal et al., 2019; Wang et al., 2024).

14

Finding Wasserstein Ball Center

B. Proof of Proposition 3.1
We reformulate A as the following,

A =



F1

F2

. . .
FN

G
(0)
1 −Im

G
(0)
2 −Im

. . .
...

G
(0)
N −Im

1T
m

D1 e⊤1 −1
D2 e⊤2 −1

. . .
...

...
DN e⊤N −1



(12)

where Fi = Imi
⊗ 1⊤

m, G(0)
i = 1⊤

mi
⊗ Im, Di = vec(D(i)), ei ∈ RN is the indicator vector of the i-th coordinate, for

i = 1, ..., N .

Noticing that the last N rows are linearly independent, and are linearly independent to the linear space spanned by other
rows due to the last N + 1 rows, it suffices to prove that A0 := A(1 : nc −N, 1 : nv −N − 1) , the matrix consisting of
the non-zero columns of first nc − N rows in A, has full row rank. Now we only need to verify the following two fact:
a) After a series of row transformations, we can transform matrix A0 into a matrix Ā0 whose elements in (M + 1)-th,
(M +m+ 1)-th, · · · , (M + (N − 1)m+ 1)-th rows are zeros, and elements in other positions are the same as A0. b) The
matrix Ā0 has full row rank. The proof follows Lemma 3.1 of Ge et al. (2019), which we include here for completeness.

a). Define

e1 =


1
0
...
0


m×1

, Ti =


1 1 · · · 1


m×mi

, Si =


1 1 · · · 1

1
. . .

1


m×m

, i = 1, ..., N

and

L1 =



Im1

. . .
ImN

−T1 Im
.

−TN Im
1


, L2 =



Im1

. . .
ImN

S1 e1
. . .

...
SN e1

1


15

Finding Wasserstein Ball Center

Then

L2L1A0 =



F1

F2

. . .
FN

G
(1)
1 H(1)

G
(1)
2 H(1)

. . .
...

G
(1)
N H(1)

1T
m


,

where G(1)
i = SiG

(0)
i − SiTiFi, H(1) = e11

⊤
m − Si. Note that elements in the first rows of H(1) and G

(1)
i , i = 1, ..., N are

zeros. We have proved the claims in a).

b). Ā0 is obtained by removing the (M + 1)-th, (M +m+ 1)-th, · · · , (M + (N − 1)m+ 1)-th rows of A0. That is,

Ā0 =



F1

F2

. . .
FN

G
(2)
1 H(2)

G
(2)
2 H(2)

. . .
...

G
(2)
N H(2)

1⊤
m


where G

(2)
i = G

(1)
i (2 : m, :) = 1⊤

mi
⊗ [0m−1, Im−1], H(2) = H(1)(2 : m, :) = [0m−1,−Im−1] and Fi = Imi

⊗ 1⊤
m. Let

n′
row = M +N(m− 1) + 1.

For i = 1, ..., N , let

Ui = Imi
⊗


1 −1 · · · −1

1
. . .

1


m×m

, UN+1 =


1 −1 · · · −1

1
. . .

1


m×m

, R1 =


U1

U2

. . .
UN+1


then

Ā0R1 =



F
(3)
1

F
(3)
2

. . .
F

(3)
N

G
(3)
1 H(3)

G
(3)
2 H(3)

. . .
...

G
(3)
N H(3)

α⊤


where F

(3)
i = FiUi = Imi

⊗ [1,0⊤
m−1], G

(3)
i = G

(2)
i Ui = G

(2)
i = 1⊤

mi
⊗ [0m−1, Im−1], i = 1, ..., N , H(3) =

H(2)UN+1 = H(2) = [0m−1,−Im−1] and α⊤ = 1⊤
mUN+1 = [1,0⊤

m−1].

16

Finding Wasserstein Ball Center

Let

K̃ =


0
−1

. . .
−1


m×m

, Ki =


Im K̃ · · · K̃

Im
. . .

Im


mmi×mmi

, R2 =


K1

. . .
KN

Im



then

Ā0R1R2 =



F
(4)
1

F
(4)
2

. . .
F

(4)
N

G
(4)
1 H(3)

G
(4)
2 H(3)

. . .
...

G
(4)
N H(3)

α⊤



where F
(4)
i = F

(3)
i Ki = F

(3)
i = Imi

⊗ [1,0⊤
m−1], G

(4)
i = G

(3)
i Ki = [0m−1, Im−1,0(m−1)×(mmi−m)], i = 1, ..., N ,

Let Ã0 be the matrix comsisting of the first (mM + 1) columns of Ā0R1R2. That is,

Ã0 =



F
(4)
1

F
(4)
2

. . .
F

(4)
N

G
(4)
1

G
(4)
2

. . .
G

(4)
N

1



The matrix Ã0 possesses the following two properties:

1. Every row of Ã0 contains exactly one nonzero entry equal to 1, while all remaining entries are zero;

2. Every column of Ã0 contains no more than one nonzero entry.

Given these properties, we can establish the existence of permutation matrices P1 ∈ RM+M ′
and Q1 ∈ RmM+1 such that

the product P1Ã0Q1 yields the form [I(M+M ′),0, . . . ,0]. Consequently, we have rank(Ã0) = rank(P1Ã0Q1) = M +M ′,
which implies rank(Ā0) = M +M ′. This demonstrates that Ā0 achieves full row-rank.

17

Finding Wasserstein Ball Center

C. Algorithm for (WBC-LP): Predictor-Corrector Inner Point Method

Algorithm 2 Predictor-Corrector Inner Point Method for Linear Programming (WBC-LP)
1: Input: The standard LP form of Problem (WBC-LP)

min cTx

s.t. Āx = b, x ≥ 0

2: Initialization: Set initial feasible point (x0, y0, s0), where x0 > 0, s0 > 0 (dual variables). Choose tolerance ϵ > 0 and
set iteration counter k = 0.

3: while ∥rb∥ > ϵ and ∥rc∥ > ϵ do
4: Compute residuals:

rb = Āx− b (primal residual)

rc = ĀT y + s− c (dual residual)
rs = Xs (complementarity residual)

where X = diag(x), S = diag(s), and µ = xT s
n is the duality measure.

5: Predictor Step: Solve the linear system for affine scaling direction (∆xaff,∆yaff,∆saff):0 ĀT I
Ā 0 0
S 0 X

∆xaff

∆yaff

∆saff

 = −

rcrb
rs


We have

∆yaff = −(ĀRĀ⊤)−1(rc − ĀR(s− rb)), solved by calling Algorithm 1. (13)

∆saff = rb − Ā⊤∆yaff, ∆xaff = R(s−∆s).

6: Compute the step size αaff by finding the maximum step length that maintains x+αaff∆xaff ≥ 0 and s+αaff∆saff ≥ 0.
7: Corrector Step: Compute the corrector directions using central path perturbation with updated rs:

rs = rs +∆Xaff∆saff − µ1

and solve the system again to get (∆xcorr,∆ycorr,∆scorr):

∆ycorr = −(ĀRĀ⊤)−1Ā(S−1∆Xaff∆saff − µS−11), solved by calling Algorithm 1. (14)

∆scorr = −Ā⊤∆ycorr, ∆xcorr = S−1∆Xaff∆saff − µS−11.

8: Compute the total search direction:

∆x = ∆xaff +∆xcorr, ∆y = ∆ycorr, ∆s = ∆saff +∆scorr

9: Compute the step size α by updating with both predictor and corrector directions.
10: Update variables:

xk+1 = xk + α∆x, yk+1 = yk + α∆y, sk+1 = sk + α∆s.

11: Update the duality measure µ and increment the iteration counter k = k + 1.
12: end while
13: Output: Optimal solution (x∗, y∗, s∗).

18

Finding Wasserstein Ball Center

D. Proof of Proposition 3.4

Proof. Let M :=
∑N

i=1 mi and M ′ := N(m− 1). Using the same notation as the preceding section,

Ā =



F1

F2

. . .
FN

G
(2)
1 H(2)

G
(2)
2 H(2)

. . .
...

G
(2)
N H(2)

1⊤
m

D1 e⊤1 −1
D2 e⊤2 −1

. . .
...

...
DN e⊤N −1



where G
(2)
i = G

(1)
i (2 : m, :) = 1⊤

mi
⊗ [0m−1, Im−1], H(2) = H(1)(2 : m, :) = [0m−1,−Im−1] and Fi = Imi

⊗ 1⊤
m.

Let

Ḡ1 := Ā(1 : M, :) =


F1

F2

. . .
FN

 ,

Ḡ2 := Ā(M + 1 : M +M ′, :) =


G

(2)
1 H(2)

G
(2)
2 H(2)

. . .
...

G
(2)
N H(2)

 ,

Ā3 := Ā(M +M ′ + 1, :) =
[
0, 0, · · · , 0, 1⊤

m

]
,

Ā4 = Ā(M +M ′ + 2 : nc −N, :) =


D1 e⊤1 −1

D2 e⊤2 −1
. . .

...
...

DN e⊤N −1

 .

Then

Ā =


Ḡ1

Ḡ2

Ā3

Ā4

 and ĀRĀ⊤ =


Ḡ1RḠ⊤

1 Ḡ1RḠ⊤
2 Ḡ1RĀ⊤

3 Ḡ1RĀ⊤
4

Ḡ2RḠ⊤
1 Ḡ2RḠ⊤

2 Ḡ2RĀ⊤
3 Ḡ2RĀ⊤

4

Ā3RḠ⊤
1 Ā3RḠ⊤

2 Ā3RĀ⊤
3 Ā3RA⊤

4

Ā4RḠ⊤
1 Ā4RḠ⊤

2 Ā4RĀ⊤
3 Ā4RA⊤

4

 .

Now we analyze the structure of each sub-matrix ĀiRĀ⊤
j and rename them for conciseness. Let R = diag(R1, · · · , RN+3),

where Ri ∈ Rmmi×mmi , i = 1, . . . , N , RN+1 ∈ Rm×m, RN+2 ∈ RN×N , RN+3 = rnv
. Then

Ḡ1RḠ⊤
1 =

F1R1F
⊤
1

. . .
FNRNF⊤

N

 := B1.

19

Finding Wasserstein Ball Center

Each FiRiF
⊤
i is a diagonal matrix with positive diagonal entries.

Ḡ2RḠ⊤
1 =


G

(2)
1 R1F

⊤
1

. . .
G

(2)
N RNF⊤

N

 := B⊤
2 ,

Ḡ2RḠ⊤
2 =


G

(2)
1 R1G

(2)⊤
1

. . .
G

(2)
N RNG

(2)⊤
N

+

H
(2)RN+1H

(2)⊤ · · · H(2)RN+1H
(2)⊤

...
...

H(2)RN+1H
(2)⊤ · · · H(2)RN+1H

(2)⊤

 . (15)

where H(2)RN+1H
(2)⊤ and each G

(2)
i RiG

(2)⊤
i is a diagonal matrix with positive diagonal entries. We use B3 to denote

the first matrix in the right hand side of (15) and B4 to denote the second. In addition, other blocks of ĀRĀ⊤ are

Ā3RḠ⊤
1 = 0,

Ā3RḠ⊤
2 =

[
1⊤
mRN+1H

(2)⊤ · · · 1⊤
mRN+1H

(2)⊤] := α⊤,

Ā3RĀ⊤
3 = 1⊤

mRN+11m := l.

Ā4RḠ⊤
1 =

D1R1F
⊤
1

. . .
D

(2)
N RNF⊤

N

 := K⊤
1 ,

Ā4RḠ⊤
1 =


D

(2)
1 R1F

⊤
1

. . .
D

(2)
N RNF⊤

N

 := K⊤
2 ,

Ā4RĀ⊤
4 = diag(D1R1D

⊤
1 , D2R2D

⊤
2 , · · · , DNRND⊤

N) +RN+2 + rnv
1N1⊤

n := W,

here we have W1 := diag(D1R1D
⊤
1 , D2R2D

⊤
2 , · · · , DNRND⊤

N) +RN+2.

With all notations above, we have

ĀRĀT =


B1 B2 0 K1

B⊤
2 B3 +B4 α K2

0 α⊤ l 0
K⊤

1 K⊤
2 0 W



E. Derivation of Eq. (8)

[
IM

−B⊤
2 B−1

1 IM′
1
IN

]
· ĀRĀT ·

[
IM

−B⊤
2 B−1

1 IM′
1
IN

]⊤

=

 B1 0 K1

G1+B4 α K2

0 α⊤ l 0

K⊤
1 K

⊤
2 0 W


[

IM
IM′ −α/l

1
IN

] B1 0 K1

G1+B4 α K2

0 α⊤ l 0

K⊤
1 K

⊤
2 0 W

[
IM

IM′ −α/l
1

IN

]⊤

=

 B1 0 K1

G1+G2 0 K2

0 0⊤ l 0

K⊤
1 K

⊤
2 0 W


[

IM
IM′

1
−K⊤

1 B−1
1 IN

] B1 0 K1

G1+G2 0 K2

0 0⊤ l 0

K⊤
1 K

⊤
2 0 W

[
IM

IM′
1

−K⊤
1 B−1

1 IN

]⊤

=

[B1

G1+G2 K2

l

K
⊤
2 W

]
.

20

Finding Wasserstein Ball Center

F. Proof for Proposition 3.5
The proof follows the same approach of Lemma 4.2 in Ge et al. (2019), which is to prove positive definite property by
confirming strict diagonal dominance. This approach requires several foundational results about the underlying matrix
structure.

Lemma F.1. The block matrices B1, B2, B3, B4 possess the following fundamental properties:

(i) All entries are non-negative.

(ii) The identity B31M2 = B⊤
2 1M holds.

(iii) The strict inequality B11M −B21M2
> 0 is satisfied.

Proof. Property (i) follows directly from the construction using non-negative matrices Ā and R.

For property (ii), we compute:

B31M2
=


G

(2)
1 R1G

(2)⊤
1 1m−1

...
G

(2)
N RNG

(2)⊤
N 1m−1


and

B⊤
2 1M =


G

(2)
1 R1F

⊤
1 1m1

...
G

(2)
N RNF⊤

N 1mN


Using the definitions G(2)

i = 1⊤
mi
⊗ [0m−1, Im−1] and Fi = Imi

⊗1⊤
m, along with the diagonal structure of Ri, we establish

that G(2)
i RiF

⊤
i 1mi

= G
(2)
i RiG

(2)⊤
i 1m−1, yielding the desired identity.

For property (iii), observe that:

B11M =

 F1R1F
⊤
1 1m1

...
FNRNF⊤

N 1mN

 , B21M2
=


F1R1G

(2)⊤
1 1m−1

...
FNRNG

(2)⊤
N 1m−1


Since FiRiF

⊤
i 1mi

> FiRiG
(2)⊤
i 1m−1 for each block i, the component-wise strict inequality follows.

Now we proceed to establish Proposition 3.5.

Proof of Proposition 3.5. The block-diagonal structure of G1 is immediate from its construction. We establish positive
definiteness via contradiction.

Assume G1 is not positive definite. Then there exists an eigenvalue −λ ≤ 0, making the matrix λIM2
+G1 singular.

Consider the vector equation:

(λIM2 +G1)1M2 = λ1M2 +B31M2 − (B⊤
2 B−1

1 B2)1M2 (16)

Applying property (ii) from Lemma F.1:

= λ1M2
+B⊤

2 1M − (B⊤
2 B−1

1 B2)1M2

= λ1M2
+B⊤

2 B−1
1 B11M − (B⊤

2 B−1
1 B2)1M2

= λ1M2
+B⊤

2 B−1
1 (B11M −B21M2

) (17)

21

Finding Wasserstein Ball Center

Since B⊤
2 B−1

1 ≥ 0 with each row containing at least one strictly positive element, and property (iii) ensures B11M −
B21M2 > 0, we conclude:

(λIM2 +G1)1M2 > 0M2

Next, we analyze the structure of λIM2 +G1 = λIM2 +B3 −B⊤
2 B−1

1 B2. Since B1, B2, B3 ≥ 0 and B3 is diagonal, this
matrix has positive diagonal entries and non-positive off-diagonal entries.

Define the projection operators:

DM2
:= IM2

(diagonal mask) (18)

OM2
:= 1M2

1⊤
M2
− IM2

(off-diagonal mask) (19)

Then:

DM2
◦ |λIM2

+G1| = DM2
◦ (λIM2

+G1) (20)
OM2

◦ |λIM2
+G1| = −OM2

◦ (λIM2
+G1) (21)

where ◦ denotes the Hadamard product. This yields:

[DM2
◦ |λIM2

+G1| −OM2
◦ |λIM2

+G1|]1M2
= (λIM2

+G1)1M2
> 0M2

This establishes strict diagonal dominance of λIM2
+ G1, implying non-singularity and contradicting our assumption.

Therefore, G1 is positive definite.

As for G2, direct computation shows that:

G2 = (1N1⊤
N)⊗

(
diag(z)− 1

l
zz⊤

)

Given that l > 1⊤
m−1z and z ≥ 0 by construction, set Y = diag(z)− 1

l zz
⊤, we know that Y is positive definite by similar

proof as that of G1.

G. Algorithm Complexity
Proof of Theorem 3.2. We analyze the time and storage complexities of Algorithm 1 separately.

Time complexity. We list the most time consuming part of each step corresponding to Algorithm 1.

In step 1, computing of B1, B3,W,Q takes most flops of O(
∑N

i=1 m
2mi), achieved when computing B1 and B3.

In step 2, computing of (G1 +G2)
−1 takes most flops of O(Nm3), due to the need to invert Gii, i = 1, · · · , N ; computing

of W̃ takes O(N2m2) flops, which may exceed other procedures on time complexity when N is sufficiently large.

In step 3, computing W̃−1 takes O(N3) flops, while other part takes most O(Nm2).

To sum up, the total time complexity is O(m2
∑N

i=1 mi +Nm3 +N2m2 +N3).

Space complexity. For the implementation of the whole interior-point methods, the major data that should be kept in the
memory include the following four parts:

(a) Compute primal variables or dual variables. Note that the size of a primal variable is O(m(
∑N

i=1 mi)), and a dual
variable is of size O(M +M ′).

(b) Matrix Ā. According to the structure of Ā shown in appendix D, the matrix contains several sparse blocks, and we only
need to store the non-zero entries of each block. Overall, the space for storing Ā is bounded by 2m

∑N
i=1 mi+N(m−1)+m.

Since each column of E1 and E2 has at most one non-zero term, the total number of non-zero entries in E1 and E2 is
bounded by 2m

∑N
i=1 mi. In addition, E3 has m− 1 non-zero terms, D has m

∑N
i=1 mi non-zero terms as the i-th row of

it contains mmi non-zero terms. So the total number of non-zero terms in Ā is bounded by O(M).

22

Finding Wasserstein Ball Center

(c) Diagonals of matrices B1 and B3, and diagonal blocks of matrices K1,K2, B2 and G1. B1 and B3 takes nc −N =
O(M +M ′) doubles. The diagonal blocks of matrices B2 and G1 have m

∑N
i=1 mi elements and N(m− 1)2 elements,

respectively. Noticing that every row of D′ only has one non-zero term, we have K1 of size smaller than nnz(E1) = O(M),
the number of nonzero terms of E1, and K2 smaller than nnz(E2) = O(M).

(d) The matrix W, W̄ and W̃ . Takes no more than N2 to store.

(e) Other intermediate vectors or matrices, whose data scale is bounded by a constant time of the data scale in (a), (b), (c)
and (d).

With the analysis in (a) to (d), we know the memory usage of algorithm 1 is bounded by O(m
∑N

i=1 mi +Nm2 +N2).

H. Woodbury identity
Given the matrices A, T , C, and V , the standard formula for Woodbury identity (Hager, 1989) is

(A+ TCV)−1 = A−1 −A−1T (C−1 + V A−1T)−1V A−1.

In the proof of Lemma 3.6, the corresponding A, T , C, and V are G1,1N ⊗ U⊤, IM ′ ,1⊤
N ⊗ U , respectively.

I. The free support WBC
For the free support WB, many previous researches (Cuturi & Doucet, 2014; Ge et al., 2019; Huang et al., 2021) apply block
coordinate descent, which requires minimizing the

min
w,X,{Π(t)}

∑N
t=1

〈
D(X,Q(t)),Π(t)

〉
s.t. Π(t)1mt = w,

(
Π(t)

)⊤
1m = a(t),Π(t) ≥ 0,∀t = 1, · · · , N

1⊤
mw = 1,w ≥ 0

(22)

where w := (w1, · · · , wm)⊤ ∈ Rm
+ , X := [x1, · · · ,xm] ∈ Rd×mt , Π(t) ∈ Rm×mt

+ and D(X,Q(t)) := [∥xi − q
(t)
j ∥2] ∈

Rm×mt for t = 1, · · · , N . Problem (22) is a nonconvex problem, where one needs to find the optimal support points X and
the optimal weight vector w of a barycenter simultaneously. But i specified from the support points of {P(t)}Nt=1.

For the free support Wasserstein barycenter, many previous researches (Cuturi & Doucet, 2014; Ge et al., 2019; Huang et al.,
2021) apply block coordinate descent. For our Wasserstein ball center, the objective becomes:

‘

min
w,X,{Π(t)}

max
t∈[N]

〈
D(X,Q(t)),Π(t)

〉
s.t. Π(t)1mt

= w,
(
Π(t)

)⊤
1m = a(t),Π(t) ≥ 0,∀t = 1, · · · , N

1⊤
mw = 1,w ≥ 0

(23)

where w := (w1, · · · , wm)⊤ ∈ Rm
+ , X := [x1, · · · ,xm] ∈ Rd×mt , Π(t) ∈ Rm×mt

+ and D(X,Q(t)) := [∥xi − q
(t)
j ∥2] ∈

Rm×mt for t = 1, · · · , N . Problem (22) is a nonconvex problem. By block coordinate descent, one optimise the support set
X , and then the fixed support WBC to obtain the weight w of WBC and coupling matrices Π(t) alternately. The algorithm
will converges to a local minima. For instance, in l2 space, the minimization of X is min

X
max
t∈[N]

∑m
k=1

∑mt

j=1 ||xk−q(t)
j ||2π

(t)
kj .

This is a quadratically constrained quadratic program (QCQP) in that it can be reformulated as the following problem:

min
X,ζ

ζ

s.t.
m∑

k=1

mt∑
j=1

||xk − q
(t)
j ||

2π
(t)
kj ≤ ζ

(24)

Since the quadratic forms of X in the constraints is positive semidefinite, the problem is convex [1], thus can be efficiently
solved with convex programming, such as interior point method. Note that the size of variable X, ζ is m+ 1, the number of
constraints is N , the scale of solving X is much smaller than solving the fixed support WBC.

23

Finding Wasserstein Ball Center

J. Supplementary Experiment

0 20 40 60 80 100 120 140 160 180

Iteration

6

7

8

9

10

11

12

13

14

15

16

lo
g(

va
lu

e)

Figure 5. N=10, m=6000

0 20 40 60 80 100 120 140 160 180

Iteration

4

5

6

7

8

9

10

lo
g(

va
lu

e)

Figure 6. N=2000, m=300

Figure 7. N=3, m=30000 Figure 8. N=500, m=500

J.1. Super-linearity of our algorithm

A sequence {xn} is said to converge super-linearly to a limit x∗ if:

lim
n→∞

|xn+1 − x∗|
|xn − x∗|

= 0

This means that the error |xn − x∗| decreases at a rate faster than linear convergence. With our logarithmic coordinate of
objective value, we have shown that our algorithm converges in super-linearly speed,

In both case when m≫ N and m≪ N , the super-linear convergence speed maintains.

J.2. Fairness of WBC

To compare the imf, we set all distributions to be on support [m] ⊂ R1. For distributions in family 1, we assign the points
in {1, 2, · · · , 10} with probability proportional to independent samples from U([3, 4]), the uniform distribution on [3, 4],
and other points with probability proportional to samples from U([0, 1]). For a distribution in family 2, we assign the
points in {m− 9, · · · ,m} with probability proportional to independent samples U([3, 4]), and other points with probability
proportional to samples from U([0, 1]). See Fig. 9 for the instance tested in Fig. 3(b): We also conduct several other
experiments with different settings, see Figs. 10 and 11.

To evaluate and compare the var(WD), we consider a comprehensive set of experimental configurations. The experiments
are conducted across the following settings:

24

Finding Wasserstein Ball Center

Figure 9. The left histogram shows a probability in family 1 on [20], whose density is concentrated in [10]. The right is a probability in
family 2, concentrated in [m− 9,m].

• Ground space dimensions: 3, 10, and 100.

• Ground metrics: ℓ1, ℓ2, and ℓ∞.

• Support selection regimes:

– Uniform sampling within a cube;
– Gaussian sampling;

Each sampling regime is further augmented with cluster-diversifying transformations, which divide the support points
into 1, 2, or 3 clusters.

For every combination of the above three parameter categories, we generate 50 independent instances, resulting in a total
of 2700 experimental runs. Every instance consists of 30 probability distributions, each of which has weights sampled
uniformly and support size of 200.

0 0.2 0.4 0.6 0.8 1

Imbalance factor

500

1000

1500

M
ax

 W
D

WBC
WB

Figure 10. N=40, m=150

0 0.2 0.4 0.6 0.8 1

Imbalance factor

500

1000

1500

M
ax

 W
D

WBC
WB

Figure 11. N=15, m=600

J.3. The Point cloud data

This is a free-support problem.We select the support with a two-step strategy: firstly, choose the support from a combination
of a dense grid and samples from a normal distribution with large variance, computing the weight of WBC; then update
the support of WBC by adding the support in last step with samples near the points who have particular large weights,
computing the final WBC. Both WB and WBC are given grey scales proportional to the weight of the point, so more weight
means paler color.

25

Finding Wasserstein Ball Center

Figure 12. WBC (left) and WB (middle) of 3 airplane, one of which is a biplane (with a double-decker wing structure), while the other
two are both monoplanes. Compared to the WB, the WBC retains more characteristics of the biplane.

26

