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ABSTRACT

We propose LLM-Interleaved (LLM-I), a flexible and dynamic framework that
reframes interleaved image-text generation as a tool-use problem. LLM-I is de-
signed to overcome the “one-tool” bottleneck of current unified models, which are
limited to synthetic imagery and struggle with tasks requiring factual grounding
or programmatic precision. Our framework empowers a central LLM or MLLM
agent to intelligently orchestrate a diverse toolkit of specialized visual tools, in-
cluding online image search, diffusion-based generation, code execution, and im-
age editing. The agent is trained to select and apply these tools proficiently via
a Reinforcement Learning (RL) framework that features a hybrid reward system
combining rule-based logic with judgments from LLM and MLLM evaluators.
Trained on a diverse new dataset using four different model backbones, LLM-I
demonstrates state-of-the-art performance, outperforming existing methods by a
large margin across four benchmarks. We also introduce a novel test-time scaling
strategy that provides further performance gains.

1 INTRODUCTION

AI is shifting from single-modality systems to multimodal ones that can process mixed data like
text, images, and sound. A key frontier is interleaved image-text generation (Ge et al., 2024; Tian
et al., 2024; Xie et al., 2025; Zhou et al., 2025b; Xia et al., 2025; Chen et al., 2025): producing a
coherent, alternating sequence of text and images from a single prompt. However, the task is tech-
nically demanding, requiring high-fidelity text and images with strict cross-modal consistency. This
involves maintaining narrative coherence, consistent visual style and entities, and strong semantic
alignment between each image and its accompanying text.

To address these challenges, the research community has largely converged on two dominant ar-
chitectural paradigms for interleaved image-text generation. The first, a two-stage or compositional
approach, leverages the distinct strengths of separate, state-of-the-art models (Zhou et al., 2025b)
or add decoders (Ge et al., 2024) after the text generation. In this paradigm, a powerful LLM, such
as GPT-4o (Hurst et al., 2024), acts as a high-level reasoning engine. It interprets the user’s request
to produce a sequence of textual narratives, which are then passed to a separate, high-fidelity text-
to-image diffusion model, such as DALL-E (Betker et al., 2023) or Seedream (Gao et al., 2025),
for visual synthesis. However, it often suffers from a “semantic gap”, where the LLM’s textual
representation of a desired image may not perfectly align with the diffusion model’s interpretation,
leading to inconsistencies. Furthermore, these systems lack flexibility, as they are typically restricted
to generating a fixed number of images per response.

Seeking to close this gap and achieve greater architectural elegance, a significant research effort has
been directed towards developing unified, end-to-end models (Xie et al., 2025; Zhou et al., 2025a;
Deng et al., 2025) that handle both multimodal understanding and generation within a single, inte-
grated framework. Despite their notable advancements, current unified models for interleaved gen-
eration suffer from a critical and largely unaddressed limitation: the “one-tool” bottleneck. While
these unified models excel at generating novel, high-fidelity synthetic imagery from textual prompts,
they are inherently ill-suited for tasks that require factual grounding such as real-world images or
programmatic precision such as data analysis and visualizations. This architectural commitment
creates a rigid system that forces a single tool to solve all visual generation problems, regardless
of its suitability. This “one-tool” bottleneck reflects a deeper paradigm choice in AI development:
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the pursuit of an “omniscient solver” that embeds all knowledge within its parameters, rather than
a “proficient tool-user” that knows how to leverage external resources. The latter approach is in-
herently more flexible, scalable, and robust. A tool-augmented system can be easily updated with
new capabilities by simply adding a new tool to its repertoire, whereas a monolithic model requires
complete and computationally prohibitive retraining to acquire new skills.

In this paper, we introduce LLM-Interleaved (LLM-I), a flexible and dynamic framework that em-
ploys an LLM or MLLM as an agentic planner. This central agent leverages its sophisticated reason-
ing and multimodal understanding capabilities to intelligently orchestrate a diverse suite of external,
specialized visual tools for image generations. Our framework equips the central agent with a toolkit
of four distinct and complementary visual tools which are online image search, diffusion-based gen-
eration, code generation and execution, and image edit tool. To ensure the agent uses these tools
proficiently, we develope a Reinforcement Learning (RL) framework that incorporates a hybrid re-
ward design, combining rule-based rewards and LLM and MLLM judges. We build a diverse dataset
for training and evaluate LLM-I using four different backbone models, finding that it outperforms
state-of-the-art methods by a large margin across four benchmarks. Additionally, we propose a novel
test-time scaling strategy that improves performance even further.

We summarize our key contributions as follows:

1. Novel Framework for Interleaved Generation: We propose a new and flexible paradigm, LLM-
I, for interleaved image-text generation. Our framework recasts the LLM/MLLM not as an end-
to-end generator but as an intelligent agent that orchestrates a toolkit of external, specialized
visual models. This approach decouples high-level reasoning from low-level synthesis, enabling
unprecedented flexibility and context-appropriateness in the generated multimodal content.

2. New Dataset and Benchmark: We introduce a diverse dataset and difficult benchmark for in-
terleaved image-text generation. Our work moves beyond the scope of previous datasets by
requiring multiple forms of images, including retrieved real-world photos, synthetic visuals, and
programmatic visualizations.

3. Strong Performance: LLM-I outperforms previous SOTA methods by a large margin across four
benchmarks. Through test-time scaling, the performance is further improved.

2 METHODOLOGY

2.1 TOOL USAGE

2.1.1 MOTIVATION

As we discussed above, current methods (Chern et al., 2024; Wu et al., 2024; Zhou et al., 2025a; Xie
et al., 2025) are locked into a single mode of creation, limiting the scope, factuality, and utility of the
narratives they can produce. It is instructive to consider how humans approach a similar task, such
as authoring a blog post or a technical report. When a writer needs to insert an image, they rarely
create it from scratch. Instead, they act as an intelligent agent, selecting the best external tool for the
job. If they need a picture of the Eiffel Tower, they use a search engine to find a real photograph. To
display quarterly sales data, they would use software like PowerPoint or a coding library to generate
a precise chart. They might also use an image editing tool like Photoshop to make adjustments, such
as cropping a photo, adjusting its colors, or adding annotations to highlight key information. This
human workflow is not monolithic; it is dynamic, flexible, and tool-centric. The writer’s primary
skill is not drawing but reasoning and orchestrating a diverse set of specialized tools to achieve their
goal.

Therefore, we argue that a paradigm that mimics this human-like, tool-using strategy holds signifi-
cant advantages over current monolithic models. An AI system that can intelligently invoke external
tools is inherently more flexible, scalable, and robust. It can ground its generations in factual reality
by searching the web, provide precise data visualizations through code execution, and still retain
the ability for other tasks. This approach directly overcomes the “one-tool” bottleneck, moving be-
yond the limited “omniscient solver” paradigm towards a more powerful and practical “proficient
tool-user”.
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2.1.2 TOOLKIT

Motivated by this insight, we introduce a flexible and dynamic framework where an LLM or MLLM
serves as an agentic planner. We empower this central agent to intelligently orchestrate a suite of
distinct visual tools to construct rich, interleaved content. Specifically, our framework equips the
agent with capabilities for online image search, diffusion-based generation, code execution for data
visualization, and image editing.

1. Online Image Search: Invoked for requests demanding factual grounding, such as specific real-
world entities, landmarks, or current events. This tool ensures visual authenticity and provides
access to up-to-date information beyond the model’s training data cutoff. In our paper, we use
Google Search API (Google, 2025b).

2. Diffusion-based Generation: Selected for tasks requiring the creative synthesis of novel or
abstract concepts, or complex compositions that do not exist in reality. We support Seedream
3.0 (Gao et al., 2025) in our paper.

3. Code Execution: Utilized primarily for generating data visualizations like charts, graphs, and
plots from structured data. We use Python as the programming language and build a controlled
sandbox environment.

4. Image Editing: Engaged to perform modifications on existing visual content, whether inputted,
retrieved or generated. We support Seededit 3.0 (Wang et al., 2025) in our project.

2.1.3 HOW TO CALL A TOOL?

To empower the LLM to dynamically orchestrate our suite of visual tools, we design a robust and
flexible tool invocation framework. Instead of complex, multi-turn interactions or fine-tuning on
specific API call formats, our approach is guided by a system prompt that instructs the model to
embed a specific placeholder tag wherever a visual element is required in the narrative. This method
allows the LLM to autonomously decide when and how to use a tool within a single generative pass.

The core of our framework is the structured tag, <imgen>{...}</imgen>, which encapsulates
all the necessary information for generating or retrieving an image. When the LLM determines that
an image is needed, it generates this tag in the following JSON-like format:

<imgen>{"source":"<source type>", "description":"<general title>",
"params":{...}}</imgen>
For search, the params contains a single key query which holds a practical and concise search string
for a web image search engine. For diffusion, it contains the key prompt, which provides a descrip-
tive text prompt for the generative model. For code, it contains the key code which holds the raw
Python code snippet required to generate a plot or visualization. For edit, it contains two keys, img
index, the 0-based index of a previously image in the sequence to be modified, and prompt, a textual
instruction describing the desired edit.

When the tag is detected in the generated sequence, a parser processes this output, identifies each
tag, and dispatches a call to the corresponding external tool using the provided parameters. The
tag is then replaced in the text with the image returned by the tool, resulting in the final, seamless
multimodal document.

2.2 RL RECIPE

2.2.1 DATASET CONSTRUCTION

To train our model, we construct a high-quality RL dataset of approximately 4,000 samples with
a “tool-oriented” design philosophy. The dataset is bifurcated into text-only and text-and-image
inputs. The generation process is automated to produce implicit prompts that describe a desired
outcome without naming the specific tool required, thereby encouraging the model to reason about
tool selection.

Each sample undergoes a rigorous validation pipeline to ensure high quality and fidelity. A critical
feature of this dataset is the annotation of each prompt with an image number constraint, which
guides the RL training process by specifying the rules for image generation. This constraint falls
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Figure 1: Overview of the LLM-I framework.

into one of four categories: images are disallowed (-1), their use is unconstrained (0), a precise
quantity n is required (n > 0), or at least one image is mandatory (Inf). Further details on the
generation and validation process are provided in the Appendix B.

2.2.2 REWARD

With the instruction dataset in place, we employ an RL strategy to fine-tune the model’s ability
to appropriately call and parameterize the visual tools. Our approach is distinguished by a multi-
faceted reward function that combines deterministic rules Rrule with sophisticated judgments from
both LLM Rllm and MLLM Rmllm. This composite reward signal not only provides a holistic
assessment of the generated output but also decreases reward hacking.

The first component is a deterministic, rule-based reward Rrule that enforces adherence to genera-
tion constraints and ensures the correctness of the <imgen> tag format. In Section 2.2.1, we set a
required image number Nreq for each single item. For categorical constraints, the reward is binary.
When images are disallowed (Nreq = −1) or when at least one is required (Nreq = inf), the model
receives a score of 1 for compliance and 0 for violation. When there is no constraint (Nreq = 0),
the score is always 1, as any output is considered valid. For quantitative constraints where a precise
number of images n is required (Nreq = n), the reward is designed to penalize both under- and
over-generation:

Rrule =

{
Ngen

Nreq
if 0 ≤ Ngen ≤ Nreq

max(0, 1− α · (Ngen −Nreq)) if Ngen > Nreq

(1)

where Ngen is the number of generated images in the model response and α is the penalty factor of
extra images which is set to 0.3 by default.

The second component Rllm leverages an external LLM as a judge to assess the quality of the
language and the logic of the tool invocation. This judge evaluates two criteria on a 1-to-5 scale: (i)
the fluency, coherence, and relevance of the textual narrative, and (ii) the quality of the tool-use tags,
including the naturalness of their placement and the semantic appropriateness of the chosen source
and params.

The third reward component Rmllm employs an MLLM to evaluate the final interleaved output.
After the images are generated and integrated, this judge scores three key aspects of multimodal
quality on a 1-to-5 scale: (i) the technical and aesthetic quality of the image itself, (ii) the semantic
alignment between the image and its surrounding text, and (iii) the relevance of the image to the
overall task objective.

The scores from the LLM and MLLM judges are normalized to a [0, 1] range. The final reward
signal R, is then composed from all three components. Notably, the rule-based reward Rrule, acts
as a multiplicative gate on the MLLM reward Rmllm. This formulation ensures that visual quality
is considered only if the model has first satisfied the explicit image count constraint. The composite
reward is thus defined as:

R = wruleRrule + wllmRllm + wmllmRmllmRrule (2)
where wrule, wllm, and wmllm are the trade-offs between the three losses.
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Figure 2: Overview of test-time scaling framework for LLM-I.

2.3 TEST-TIME SCALING

To further enhance the performance of our agentic framework, we introduce a test-time scaling (Snell
et al., 2025; Muennighoff et al., 2025) paradigm that leverages additional computational resources
during inference. The goal is to improve both the reliability of tool usage and the overall quality of
the final multimodal response. The workflow is illustrated in Figure 2.

Given a user query, the model first generates multiple complete candidate responses through stochas-
tic sampling. Each candidate may contain tool calls (e.g., search, diffusion, code, or editing), inter-
leaved with natural language. The initial n candidates are passed through a “Tool Call Check” filter.
This stage validates the structural integrity and executability of the tool invocations. Responses with
malformed or failed tool calls are discarded. From the pool of successful candidates, a selector
model (an LLM/MLLM) evaluates their overall quality and relevance to the prompt, selecting the
top-k most promising responses for further enhancement. Then, each of the k selected candidates
undergoes a targeted enhancement process based on the type of tool used. When a response requests
an image, we concurrently query both the online image search module and the diffusion model.
The resulting candidates are evaluated by an MLLM, which selects the most semantically aligned
option. If code execution fails, the erroneous code and the associated error message are provided to
a model. The model revises the code, which is then re-executed in a sandboxed environment until
a valid visualization is obtained or exceeding a fixed number of attempts. After the enhancement,
the k refined interleaved multimodal responses are passed to an MLLM for polishing. This step im-
proves the coherence and alignment between modalities, ensuring that visual outputs are seamlessly
integrated with textual explanations. Finally, a selector model ranks the polished candidates and
chooses the single best response as the final output.

3 BENCHMARK

To rigorously evaluate models on generating sophisticated, interleaved text-image reports, we intro-
duce a new benchmark LLMI-Bench. It is designed to address two primary limitations of existing
benchmarks (Liu et al., 2024; Zhou et al., 2025b; Chen et al., 2025): (1) overly simplistic prompts
that require only decorative, low-information images, and (2) unreliable, subjective evaluation pro-
tocols that rely on forgiving LLM judges.

Our benchmark overcomes these challenges through two innovations. First, we reframe the gener-
ation task as a “mini-project,” where prompts provide specific data or context that necessitates the
creation of images with high informational value (e.g., data visualizations, scientific illustrations).
In this paradigm, images are an indispensable, synergistic component of the report. Second, we re-
place broad rubrics with a sample-specific, objective evaluation protocol. For each task, we design
a unique set of concrete, verifiable criteria. An LLM evaluator then scores the output against these
specific rules, transforming the assessment from a subjective judgment into a more objective and
reliable measurement. Further details can be found in Appendix C.

4 EXPERIMENTS

4.1 SETUP

Data and Benchmarks: We train our model using the data constructed in Section 2.2.1, which is
split into a training set and an in-domain test set containing over 200 samples. For a comprehensive

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Results on the OpenING benchmark. † is evaluated with text-only input samples. IT Co-
herency refers to image-text conherency and MS consistency means multi-step consistency. Qwen
series are all evaluated with tools.

Model Completeness Quality Richness Correctness Human Alignment IT Coherency MS Consistency Overall

GPT4o+DALLE3 8.66 8.01 7.42 7.98 8.77 8.15 8.38 8.20
Gemini+FLUX 7.58 7.26 6.48 7.03 7.98 6.98 7.33 7.23

NExT-GPT 3.89 4.25 3.35 3.61 5.35 3.32 3.85 3.95
Show-o 4.37 4.79 3.83 3.76 5.78 4.04 4.33 4.41
SEED-X 5.65 6.07 4.92 5.77 7.03 5.72 5.72 5.84
Anole 6.27 6.02 5.28 5.06 6.91 4.90 5.81 5.75

Qwen2.5-VL-7B 2.97 3.90 2.50 3.07 4.37 2.03 3.82 3.24
Qwen2.5-VL-32B 6.78 6.82 5.89 6.34 7.25 5.69 7.15 6.56
MLLM-I-7B 6.00 6.75 5.53 5.85 7.24 5.85 6.50 6.25
MLLM-I-32B 8.35 8.07 7.48 7.79 8.44 7.35 8.38 7.98

Qwen3-4B-Instruct† 6.26 6.88 5.55 6.09 6.95 5.11 6.86 6.24
Qwen3-30B-Instruct† 8.05 7.63 7.09 7.56 8.12 6.90 8.13 7.64
LLM-I-4B† 8.63 8.03 7.54 8.03 8.69 7.87 8.45 8.18
LLM-I-30B† 9.19 8.44 8.08 8.61 8.99 8.40 8.91 8.66

evaluation, we utilize this in-domain test set along with three out-of-domain (OOD) benchmarks.
On the in-domain set, we employ the same metrics used during training: a rule-based metric, LLM-
based judgments, and MLLM-based judgments. For OOD evaluation, we use the public OpenING
benchmark (Zhou et al., 2025b), which has 5,400 samples (2,491 text-only and 2,909 multimodal
inputs), and adopt the seven metrics from the original paper. Besides, we use the public benchmark
ISG (Chen et al., 2025), which has over 1,000 samples, and adopt the four metrics from the original
paper. Additionally, we introduce our novel and much more difficult LLMI-Bench, whose man-
ageable size enables a multifaceted evaluation through a rubric-based scoring rate from GPT-4o, a
rule-based metric to measure tool-call success, and a rigorous human evaluation. For this human
assessment, we design a five-point Likert scale with detailed criteria for each point and calculate the
final metric as the average overall scoring rate.

Table 2: Results on the LLMI-Bench. † is
evaluated with text-only input samples. Tool
Acc refers the success rate of tool invocation.

Model Rubric Human Tool Acc Overall

GPT-5 wTool 53.8 48.3 28.1 43.4
GPT-4o wTool 70.4 62.8 67.9 67.0
Anole 27.4 18.2 - 22.8

Qwen2.5-VL-7B wTool 28.5 19.3 44.3 30.7
Qwen2.5-VL-32B wTool 58.9 51.1 93.4 67.8
Qwen2.5-VL-72B wTool 73.1 59.8 60.1 64.3
MLLM-I-7B 67.1 61.9 97.4 75.5
MLLM-I-32B 92.5 82.1 99.2 91.3

Qwen3-4B-Instruct wTool† 73.6 62.3 68.7 68.2
Qwen3-30B-Instruct wTool† 81.4 69.2 83.1 77.9
LLM-I-4B† 88.9 72.9 100.0 82.3
LLM-I-30B† 94.8 83.3 100.0 92.7

Table 3: Results on the ISG benchmark. † is
evaluated with text-only input samples.

Model Structural Holistic Block Image

Show-o 0.295 2.329 1.962 0.078
Anole 0.000 2.810 - -
Gemini+SD3 0.385 5.827 3.081 0.113
ISG 0.871 6.262 5.515 0.574

Qwen2.5-VL-7B 0.085 4.932 1.152 0.016
Qwen2.5-VL-32B 0.221 6.354 2.105 0.088
MLLM-I-7B 0.607 6.381 3.584 0.274
MLLM-I-32B 0.776 8.112 5.722 0.419

Qwen3-4B† 0.068 5.621 1.621 0.086
Qwen3-30B† 0.267 7.848 3.811 0.267
LLM-I-4B† 0.881 8.413 7.701 0.511
LM-I-30B† 0.971 8.492 8.291 0.618

Training: We conduct experiments using four different backbones, covering both LLMs and
MLLMs. They include Qwen3-4B-Instruct, Qwen3-30B-Instruct (MoE model), Qwen2.5-VL-7B,
and Qwen2.5-VL-32B. For MoE model, we use GSPO (Zheng et al., 2025) as the RL algorithm
while for others we use GRPO (Shao et al., 2024). We use a batch size of 32 with a cosine learning
rate scheduler where the initial learning is set to 1e-6, minimum learning rate ratio is set to 0.01,
and the warm-up step is 5. Following Yu et al. (2025), we use the token-level loss. For GSPO,
the clipping ratios are set to 3e-4 (low) and 4e-4 (high). For judgement, we use Qwen3-235B-
Instruct-2507 (Yang et al., 2025) as the LLM judge and Qwen2.5-VL-72B-Instruct (Bai et al., 2025)
as the MLLM judge. The reward trade-off coefficients are set to wrule = 0.2, wllm = 0.5, and
wmllm = 0.3.

4.2 MAIN RESULTS

Tables 1, 2, 3 and 4 present the detailed results of our model across four distinct benchmarks. Our
evaluation compares LLM-I against a diverse set of baselines categorized into three main types: (i)
two-stage or compositional methods such as GPT-4o+DALLE-3, Gemini+FLUX/Stable Diffusion 3
(SD3) (Esser et al., 2024), NExT-GPT (Wu et al., 2024), SEED-X (Ge et al., 2024), and ISG (Chen
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Table 4: Results on the test set of the dataset. † is evaluated with text-only input samples. IT means
image-text and IQ means image-question. Qwen series are all evaluated with tools.

Model Image num Text Quality Tag Quality Image Quality IT Alignment IQ Alignment Overall

Qwen2.5-VL-7B 13.2 3.1 1.5 3.7 2.8 2.9 25.9
Qwen2.5-VL-32B 54.3 3.8 2.0 3.8 3.6 3.5 52.7
MLLM-I-7B 88.7 4.0 3.4 3.9 3.9 3.7 70.6
MLLM-I-32B 95.1 4.7 4.3 4.1 4.2 4.3 85.2

Qwen3-4B-Instruct† 46.5 4.5 2.9 4.0 3.9 3.9 57.7
Qwen3-30B-Instruct† 55.3 4.8 4.0 3.9 3.9 3.9 68.7
LLM-I-4B† 88.6 4.8 4.6 4.2 4.2 4.3 85.2
LLM-I-30B† 93.0 4.9 4.8 4.3 4.6 4.6 89.9

(a) Rule-based Reward (b) MLLM Judge Reward (c) LLM Judge Reward

Figure 3: Reward curve during RL training of Qwen2.5-VL-32B.

et al., 2025); (ii) unified models including Show-o (Autoregressive+Diffusion) (Xie et al., 2025) and
Anole (Pure Autoregressive) (Chern et al., 2024); and (iii) tool-augmented methods, featuring GPT-
5 (OpenAI, 2025b) and GPT-4o with a suite of tools that includes search, diffusion, code, and editing
capabilities. Across all four benchmarks, we observe that LLM-I exhibits SOTA performance, con-
sistently and significantly outperforming baseline models.

Figure 6: Tool F1 score curve during
RL training.

In the general qualitative assessment shown in Table 1 and
3, the entire LLM-I family shows highly competitive per-
formance, outperforming other leading models and unified
approaches, which underscores our model’s robustness in
generating complete, high-quality, and well-aligned con-
tent. This superiority is even more pronounced on spe-
cialized benchmarks. On the LLMI-Bench evaluation in
Table 2, LLM-I models drastically outperform dedicated
tool-using agents, including GPT-4o w/Tool and the antic-
ipated GPT-5 w/Tool. This success is largely attributable
to our model’s exceptional tool invocation capabilities,
with LLM-I-4B and LLM-I-30B achieving a perfect 100.0
Tool Accuracy. Additionally, we present the metrics dur-
ing the RL training in Figure 3. We can observe that with the RL training, the instruction following
ability, writing ability and the ability to find images of the model all increases, indicating the effec-
tiveness of RL training.

Furthermore, we present two examples in Figure 4 and 5. From the examples, we can observe
that LLM-I can intelligently invoke different kinds of tools for image presentation. This shows
great advantages over previous methods when requiring real and precise images. In the dataset
construction stage in Section 2.2.1, we define a target tool list for each data item which is verfied by
Gemini2.5 Pro and GPT-4o. To further validate the “intelligence” of tool invocation, we visualize the
tool F1 score in Figure 6 which evaluates the precision and recall of different tools during the training
process. From the figure, the F1 score steadily improves during the RL process, indicating that the
model becomes increasingly adept at selecting appropriate tools according to the given context.
Notably, no explicit reward is assigned to tool usage; the improvement arises naturally during RL
training. This finding suggests that RL not only encourages tool invocation but also enhances the
model’s ability to make smarter tool choices for achieving better image–text alignment.
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Figure 4: Example generated by LLM-I on LLMI-Bench. Some text is omitted due to space con-
straints.

Figure 5: Example generated by MLLM-I on LLMI-Bench. Some text is omitted due to space
constraints.

4.3 TEST-TIME SCALING

Table 5: Results of test-time
scaling on LLMI-Bench.

Model Rubric ∆Time

LLMI-4B 88.9 0

- w stage1 91.2 <1s
- w stage2 91.4 ∼1s
- w stage3 89.4 ∼16s/it
w full TTS 95.1 ∼20s/it

LLM-I-30B 94.8 0

Table 5 presents the performance of our proposed test-time scaling
strategy. As detailed in Section 2.3, this strategy comprises four
stages: initial top-k selection, tool enhancement, polishing, and final
selection. In our experiments, we set the initial selection parameter k
as 4 and sample 2 images for both the search and diffusion tools. The
Qwen2.5-VL-72B model serves as both the selector and the polisher.

The results in Table 5 demonstrate the efficacy of our approach. The
initial top-k selection and tool enhancement stages substantially boost
performance. The subsequent polishing stage also provides improve-
ment. By integrating all four stages, our model surpasses the per-
formance of its 30B counterpart, validating the effectiveness of our
test-time scaling strategy.
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Table 6: Results of reward ablation experiments on the OpenING benchmark.

Model Completeness Quality Richness Correctness Human Align. IT Conhe. MS Consis. Overall

Qwen3-4B-Instruct 6.26 6.88 5.55 6.09 6.95 5.11 6.86 6.24

LLM-I-4B 8.63 8.03 7.54 8.03 8.69 7.87 8.45 8.18

w/o rule-based reward 4.22 6.55 3.93 4.55 5.68 2.34 6.05 4.76
w/o LLM judge 8.29 7.77 7.23 7.69 8.38 7.44 8.18 7.85
w/o MLLM judge 8.17 7.66 7.20 7.60 8.23 7.39 8.04 7.76

We also analyze the computational overhead introduced by this strategy. A key advantage is that tool
invocations can be processed in parallel. Consequently, the primary overhead consists of only four
additional forward passes from the selector/polisher model. The selection process is particularly ef-
ficient, as the model only needs to output the optimal index rather than generating a full response. In
contrast, the polishing stage is the most time-consuming, as it requires rewriting the entire response.

4.4 ABLATION STUDY

Figure 7: The rule-based re-
ward curve during RL train-
ing.

Effectiveness of the Reward Design. We conduct an ablation study
to evaluate the individual contributions of our three reward compo-
nents: a rule-based reward, an LLM judge, and an MLLM judge. The
results are presented in Table 6. The full LLM-I-4B model, trained
on all three rewards, establishes a strong baseline with an overall
score of 8.18, demonstrating the effectiveness of the combined re-
ward strategy.

Particularly, the removal of the rule-based reward proves to be the
most detrimental, causing the overall score to plummet to 4.76. As
shown in Figure 7, without the rule-based reward, the model will
not generate the image to obtain a high score. Comparatively, the
performance drop is less severe when removing either the LLM or
MLLM judge because their evaluation capabilities likely overlap. Both of these judges assess more
nuanced, qualitative aspects of the output like text and image quality. Ultimately, the study confirms
that while the rule-based reward provides an essential foundation, the synergistic combination of all
three rewards is necessary to achieve the model’s peak performance.

Table 7: Ablation experi-
ments of the tools on LLMI-
Bench.

Model Rubric

Qwen3-4B-Instruct wTool 73.6
- only diffusion 66.5
- only search 75.2

LLM-I-4B 88.9
- only diffusion 76.5
- only search 77.5

Tools. To assess the contribution of individual tools, we perform a
tool ablation study and report the results in Table 7. The results reveal
the importance of a comprehensive toolkit, especially for the trained
LLMI-4B model. Restricting LLMI-4B to “only diffusion” or “only
search” leads to significant performance degradation. This indicates
that its high performance is contingent on its ability to flexibly lever-
age multiple tools.

Interestingly, the Qwen3-4B model’s performance improves to 75.2
when restricted to “only search”, surpassing its full-toolkit baseline.
This counterintuitive result suggests that while the model benefits from the search tool, it may strug-
gle with tool selection when presented with multiple options when it is not trained to use the tools.
Forcing it to use only its most effective tool eliminates potential errors in tool orchestration, thereby
improving its overall score.

5 CONCLUSION

In this paper, we introduce LLM-Interleaved (LLM-I), a framework that overcomes the “one-tool”
bottleneck in interleaved image-text generation by employing an LLM as an agentic planner. This
agent dynamically orchestrates a suite of specialized tools, including web search, diffusion models,
code execution, and image editing, to create rich multimodal narratives. LLM-I significantly out-
performs state-of-the-art methods, demonstrating that powerful LLMs possess a natural, emergent
capability for complex multimodal creation when properly augmented. By championing a flexi-
ble ”proficient tool-user” paradigm, this work paves the way for future research into expanding the
agent’s toolkit and enhancing its reasoning for more generalist and capable creative AI.
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REPRODUCIBILITY STATEMENT

We detail the construction of the dataset, benchmark, and the training information in our paper.
Additionally, the code, datasets and benchmark will be open-sourced for reproducibility.

THE USE OF LARGE LANGUAGE MODELS

On top of the training and dataset construction process which we have detailed in the paper, we only
use LLMs for paper polishment.
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A RELATED WORK

Interleaved Image-Text Generation. While current MLLMs, such as the QwenVL (Bai et al.,
2025) and InternVL (Zhu et al., 2025) series, excel at processing interleaved image-text inputs, they
lack the capability for interleaved generation. Two primary approaches have emerged to address this
limitation. The first involves leveraging an external image decoder or diffusion model, as seen in
models like NExT-GPT (Wu et al., 2024) and SEED-X (Ge et al., 2024). These methods typically
optimize a set of learnable visual tokens that serve as input for a diffusion-based image decoder or
directly input all the texts into the diffusion model. The second category consists of unified mul-
timodal models that either integrate an autoregressive model with a diffusion model (Zhou et al.,
2025a; Xie et al., 2025) or are entirely autoregressive (Team, 2024; Chern et al., 2024) to achieve
unified training and alignment. However, a significant drawback of both paradigms is their inher-
ent unsuitability for tasks requiring factual grounding, such as generating photorealistic images of
specific entities, or programmatic precision, such as data analysis and visualization. Diverging from
these methods, our approach reframes the LLM or MLLM as an agentic planner that orchestrates
four external tools. This tool-augmented framework allows for the creation of a wide range of visual
content, from photorealistic and creative imagery to accurate data visualizations, thereby overcom-
ing the key weaknesses of prior generative systems.

Reinforcement Learning. RL has become a crucial component in developing the latest generation
of large models (Guo et al., 2025a), often yielding superior generalization capabilities compared to
purely supervised methods. While Proximal Policy Optimization (PPO) (Schulman et al., 2017) is
the most common algorithm for fine-tuning LLMs, its reliance on a value model has spurred the
popularity of value-free alternatives like GRPO (Shao et al., 2024) and DAPO (Yu et al., 2025).
Although many recent works have successfully applied these algorithms to enhance the reasoning
abilities of LLMs and MLLMs (Zheng et al., 2025; Guo et al., 2025b; Hong et al., 2025), our
research explores a different direction. Instead of focusing on reasoning, we investigate how RL
can be used to improve multimodal alignment, the ability to intelligently use tools, and the overall
quality of generated reports.

Tool Usage of LLMs. The ability of LLMs to utilize external tools (Feng et al., 2025; Wu et al.,
2025) has significantly expanded their capabilities, transforming them from simple text generators
into sophisticated agents capable of reasoning, decision-making, and task automation across vari-
ous domains. For instance, proprietary models like the OpenAI o3 (OpenAI, 2025c) and DeepRe-
search (OpenAI, 2025a) model can leverage various tools for web search, code execution, and image
processing. Similarly, Gemini 2.5 Pro (Comanici et al., 2025) and its DeepResearch (Google, 2024)
can call external tools for functions like code execution, web search, or file processing. In the open-
source community, projects such as Search-o1 (Li et al., 2025) and Openthinkimg (Su et al., 2025)
have also demonstrated the impressive performance improvements of tool-augmented LLMs and
MLLMs. Building on these advancements, RL training can further enhance this capability, enabling
an LLM to intelligently select the appropriate tool to use, making it possible to address a wider and
more complex range of problems.

B DATASET DETAILS

To effectively train our model to master the agentic tool-use framework, we first construct a high-
quality RL dataset. The central design philosophy is “tool-oriented”, aimed at teaching the model
to invoke a diverse set of tools under various constraints. The dataset is bifurcated into two primary
categories: text-only inputs and text-and-image inputs.

The generation process is automated using Gemini 2.5 Pro (Comanici et al., 2025). We guide prompt
creation through a categorical scaffolding system that defines the target tool(s), a pre-designed spe-
cific theme for the tool, an image count which implicitly specifies how many images should be given
in the response, and a difficulty level (low, medium, high). A crucial principle is that all generated
prompts are implicit; they describe a desired outcome and image number that necessitates a specific
tool without ever naming it, thereby encouraging the model to reason about tool selection and image
number. To counteract the agent’s potential aversion to more error-prone tools during RL (a form of
reward hacking), we deliberately increase the representation of prompts requiring code and search,
which have higher failure rates than the more predictable diffusion tool.
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Figure 8: Examples in our training dataset.

For the text-and-image input subset, the generation process is adapted to produce both an instruc-
tional prompt and a textual description of required input images. This description is then used to
synthesize the image via Nano Banana (Google, 2025a). The composition of this subset is slightly
weighted towards the edit tool, as its function is inherently tied to modifying existing visual content.

To ensure the quality and fidelity of the entire dataset, we implement a rigorous multi-stage valida-
tion pipeline using GPT-4o (Hurst et al., 2024) as an independent adjudicator. This pipeline verifies
three key aspects for each sample: the consistency of the intended image count, the appropriateness
of the designated tool for the given instruction, and, for the text-and-image subset, the cross-modal
alignment between the synthesized input image and its textual description. Any sample that fails a
validation check is discarded, resulting in a high-quality, unambiguous dataset optimized for robust
RL-based agent training. Finally, we get around 4k samples.

A critical feature of this dataset is the annotation of each prompt with an image num constraint. This
metadata guides the RL training process by specifying the rules of image generation for each task
(Section 2.2.2). The constraint falls into one of four categories: images are disallowed (-1), their
use is unconstrained (0), a precise quantity n is required (n ¿ 0), or at least one image is mandatory
(Inf).

Figure 8 presents four examples from our training set, with the text that guides the image generation
highlighted in yellow. As shown, the prompts do not explicitly state how to generate the image,
but the necessary tools are strongly suggested. For instance, in the first example, the phrase “add a
yellow star to mark...” implies the need for an image editing tool. Similarly, in the second example,
the request for “a graph comparing the electric range” suggests using a code interpreter.

Furthermore, the required number of images is also not explicitly stated. The model must therefore
fully comprehend the prompt’s intent to determine the correct number of images to generate. We
present the distribution of the datasets in Figure 9.
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C BENCHMARK DETAILS

To rigorously assess a model’s capability in generating sophisticated, interleaved text-image reports,
we develop a new benchmark. This is motivated by two primary limitations we observe in existing
public benchmarks (Liu et al., 2024; Zhou et al., 2025b; Chen et al., 2025).

First, current benchmarks often feature overly simplistic and generic prompts, such as “Generate a
travel guide to Beijing with text and images.” The tasks in such benchmarks do not necessitate deep
reasoning, and the requested images are often decorative rather than integral to the content (shown
in Figure 11). These images typically have low informational density, are stylistically uniform (e.g.,
lifestyle photos), and can be adequately produced by standard diffusion models without complex
planning. Consequently, they fail to test a model’s ability to generate meaningful, context-aware
visuals that are essential for a high-quality report.

Second, the evaluation protocols of existing benchmarks rely heavily on subjective metrics. They
commonly employ models like GPT-4o to score outputs based on broad criteria such as “text-image
alignment,” “text quality,” and “image quality.” This approach is problematic, as LLMs tend to
assign forgivingly high scores even to suboptimal outputs. In our preliminary tests, we observe
instances where a model fails to generate an image and instead provides only a textual description,
yet still receives a favorable score from the GPT-4o evaluator. This highlights the unreliability of
using vague, subjective rubrics for evaluation.

To overcome these challenges, our benchmark introduces a new paradigm for both task design and
evaluation. We reframe the task of interleaved generation as a “mini-project”. Each prompt in
our benchmark provides background context or specific data. The tasks are designed to demand
images with high informational value and stylistic diversity, moving beyond simple photographic
illustrations. The required images include visuals like data analysis, scientific illustrations, and
creative content. In this framework, images are not merely supplementary; they are an indispensable
component of the report, carrying critical information that is synergistic with the text. The goal
is to ensure that each image serves a distinct purpose, reflecting a genuine user need for visual
information. We present four samples in Figure 4, 5, 14, and 15.

To address the issue of subjective evaluation, we transition from broad rubrics to a sample-specific,
objective evaluation protocol. Instead of asking an LLM for a holistic quality score, we design
a unique set of concrete and verifiable criteria for each “mini-project” sample. For instance, for
a report on sales trends, the evaluation criteria include specific, verifiable checks such as “Does
the report accurately generate a line chart for sales from 2014 to 2025 with correct points and labels
according to the provided data?” For each sample in our benchmark, we define 10 distinct evaluation
metrics. We utilize GPT-4o to assess the generated report against these specific rules, assigning a
score on a three-point scale: 0 (requirement not met), 1 (partially met), or 2 (fully met). This
method transforms the evaluation from a subjective assessment into a more objective and reliable
measurement of a model’s capabilities.

Our final benchmark is concise yet comprehensive, comprising 30 meticulously designed and man-
ually vetted samples. These samples cover a diverse range of topics and user requirements, with 18
being text-only inputs and 12 being multi-modal inputs. We deliberately emphasize “quality over
quantity”. The compact size of 30 samples is a strategic choice to facilitate rigorous and manage-
able human evaluation. Our approach ensures that each sample can be carefully analyzed, enabling
a deeper and more accurate understanding of model performance.

D MORE EXAMPLES

To further demonstrate the superiority of LLM-I, we provide additional examples drawn from di-
verse benchmarks and model backbones. The generated results are shown in Figure 10, 13, 14, and
15. Whether on relatively simple tasks such as the ISG benchmark or OpenING benchmark, or on
more challenging tasks such as LLMI-Bench, our method —- scaling from 4B to 32B models —-
consistently produces rich, complete responses accompanied by high-quality and highly relevant
images. These examples across multiple benchmarks clearly validate both the generalization ability
and the superiority of our approach.
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Figure 9: Distribution of our constructed training dataset.

Figure 10: An example generated by LLM-I-4B in the ISG benchmark.

D.1 FAILURE CASE ANALYSIS

We analyze the failure cases of our model, focusing on tool invocation and output quality. First,
after RL training, the tool invocation success rate approaches nearly 100%, as shown in Table 2.
Learning the correct tag format for tool calls is a relatively straightforward objective for the model
during RL. Consequently, the primary sources of failure or unexpected outcomes relate not to the
invocation itself, but to the quality or nature of the tool’s output.

One example of an unexpected outcome is shown in Figure 12, which displays the chemical equa-
tion for photosynthesis. While the tool call was successful, the resulting image has rendering issues
due to font limitations, where subscripts in formulas like CO2 are not displayed correctly. Addition-
ally, the overall layout is not aesthetically pleasing. This highlights cases where the tool executes
correctly, but the output is suboptimal.

More significant failure cases tend to occur with the diffusion tool, particularly for requests involving
sensitive topics such as politics or real individuals. Diffusion models often refuse to generate such
images. However, a key strength of our RL-trained agent is its ability to adapt. During training, the
model learns to pivot from diffusion to the online image search tool for these types of prompts. This
is a desirable outcome, as searching for images of real people yields more realistic and factually
accurate results, aligning better with user intent. This adaptive strategy demonstrates the model’s
capacity to navigate the limitations of individual tools to achieve a better overall result.
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Figure 11: An example generated by LLM-I-30B in the ISG benchmark.

Figure 12: An unexpected tool use. The chemical formula for photosynthesis has rendering issues
where subscripts in formulas like CO2 are not displayed correctly due to font limitations.
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Figure 13: An example generated by LLM-I-30B in the OpenING benchmark.
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Figure 14: An example generated by MLLM-I-7B in LLMI-Bench.
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Figure 15: An example generated by MLLM-I-32B in LLMI-Bench.
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