

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LLM-I: LLMS ARE NATURALLY INTERLEAVED MULTIMODAL CREATORS

Anonymous authors

Paper under double-blind review

ABSTRACT

We propose LLM-Interleaved (**LLM-I**), a flexible and dynamic framework that reframes interleaved image-text generation as a tool-use problem. LLM-I is designed to overcome the “one-tool” bottleneck of current unified models, which are limited to synthetic imagery and struggle with tasks requiring factual grounding or programmatic precision. Our framework empowers a central LLM or MLLM agent to intelligently orchestrate a diverse toolkit of specialized visual tools, including online image search, diffusion-based generation, code execution, and image editing. The agent is trained to select and apply these tools proficiently via a Reinforcement Learning (RL) framework that features a hybrid reward system combining rule-based logic with judgments from LLM and MLLM evaluators. Trained on a diverse new dataset using four different model backbones, LLM-I demonstrates state-of-the-art performance, outperforming existing methods by a large margin across four benchmarks. We also introduce a novel test-time scaling strategy that provides further performance gains.

1 INTRODUCTION

AI is shifting from single-modality systems to multimodal ones that can process mixed data like text, images, and sound. A key frontier is interleaved image-text generation (Ge et al., 2024; Tian et al., 2024; Xie et al., 2025; Zhou et al., 2025b; Xia et al., 2025; Chen et al., 2025): producing a coherent, alternating sequence of text and images from a single prompt. However, the task is technically demanding, requiring high-fidelity text and images with strict cross-modal consistency. This involves maintaining narrative coherence, consistent visual style and entities, and strong semantic alignment between each image and its accompanying text.

To address these challenges, the research community has largely converged on two dominant architectural paradigms for interleaved image-text generation. The first, a two-stage or compositional approach, leverages the distinct strengths of separate, state-of-the-art models (Zhou et al., 2025b) or add decoders (Ge et al., 2024) after the text generation. In this paradigm, a powerful LLM, such as GPT-4o (Hurst et al., 2024), acts as a high-level reasoning engine. It interprets the user’s request to produce a sequence of textual narratives, which are then passed to a separate, high-fidelity text-to-image diffusion model, such as DALL-E (Betker et al., 2023) or Seedream (Gao et al., 2025), for visual synthesis. However, it often suffers from a “semantic gap”, where the LLM’s textual representation of a desired image may not perfectly align with the diffusion model’s interpretation, leading to inconsistencies. Furthermore, these systems lack flexibility, as they are typically restricted to generating a fixed number of images per response.

Seeking to close this gap and achieve greater architectural elegance, a significant research effort has been directed towards developing unified, end-to-end models (Xie et al., 2025; Zhou et al., 2025a; Deng et al., 2025) that handle both multimodal understanding and generation within a single, integrated framework. Despite their notable advancements, current unified models for interleaved generation suffer from a critical and largely unaddressed limitation: the “one-tool” bottleneck. While these unified models excel at generating novel, high-fidelity synthetic imagery from textual prompts, they are inherently ill-suited for tasks that require factual grounding such as real-world images or programmatic precision such as data analysis and visualizations. This architectural commitment creates a rigid system that forces a single tool to solve all visual generation problems, regardless of its suitability. This “one-tool” bottleneck reflects a deeper paradigm choice in AI development:

054 the pursuit of an “omniscient solver” that embeds all knowledge within its parameters, rather than
 055 a “proficient tool-user” that knows how to leverage external resources. The latter approach is in-
 056 herently more flexible, scalable, and robust. A tool-augmented system can be easily updated with
 057 new capabilities by simply adding a new tool to its repertoire, whereas a monolithic model requires
 058 complete and computationally prohibitive retraining to acquire new skills.

059 In this paper, we introduce LLM-Interleaved (**LLM-I**), a flexible and dynamic framework that em-
 060 ploys an LLM or MLLM as an agentic planner. This central agent leverages its sophisticated reason-
 061 ing and multimodal understanding capabilities to intelligently orchestrate a diverse suite of external,
 062 specialized visual tools for image generations. Our framework equips the central agent with a toolkit
 063 of four distinct and complementary visual tools which are *online image search*, *diffusion-based gen-
 064 eration*, *code generation and execution*, and *image edit tool*. To ensure the agent uses these tools
 065 proficiently, we develop a Reinforcement Learning (RL) framework that incorporates a hybrid re-
 066 ward design, combining rule-based rewards and LLM and MLLM judges. We build a diverse dataset
 067 for training and evaluate LLM-I using four different backbone models, finding that it outperforms
 068 state-of-the-art methods by a large margin across four benchmarks. Additionally, we propose a novel
 069 test-time scaling strategy that improves performance even further.

070 We summarize our key contributions as follows:

071

- 072 **1. Novel Framework for Interleaved Generation:** We propose a new and flexible paradigm, LLM-
 073 I, for interleaved image-text generation. Our framework recasts the LLM/MLLM not as an end-
 074 to-end generator but as an intelligent agent that orchestrates a toolkit of external, specialized
 075 visual models. This approach decouples high-level reasoning from low-level synthesis, enabling
 076 unprecedented flexibility and context-appropriateness in the generated multimodal content.
- 077 **2. New Dataset and Benchmark:** We introduce a diverse dataset and difficult benchmark for in-
 078 terleaved image-text generation. Our work moves beyond the scope of previous datasets by
 079 requiring multiple forms of images, including retrieved real-world photos, synthetic visuals, and
 080 programmatic visualizations.
- 081 **3. Strong Performance:** LLM-I outperforms previous SOTA methods by a large margin across four
 082 benchmarks. Through test-time scaling, the performance is further improved.

084 2 METHODOLOGY

087 2.1 TOOL USAGE

089 2.1.1 MOTIVATION

091 As we discussed above, current methods (Chern et al., 2024; Wu et al., 2024; Zhou et al., 2025a; Xie
 092 et al., 2025) are locked into a single mode of creation, limiting the scope, factuality, and utility of the
 093 narratives they can produce. It is instructive to consider how humans approach a similar task, such
 094 as authoring a blog post or a technical report. When a writer needs to insert an image, they rarely
 095 create it from scratch. Instead, they act as an intelligent agent, selecting the best external tool for the
 096 job. If they need a picture of the Eiffel Tower, they use a search engine to find a real photograph. To
 097 display quarterly sales data, they would use software like PowerPoint or a coding library to generate
 098 a precise chart. They might also use an image editing tool like Photoshop to make adjustments, such
 099 as cropping a photo, adjusting its colors, or adding annotations to highlight key information. This
 100 human workflow is not monolithic; it is dynamic, flexible, and tool-centric. The writer’s primary
 101 skill is not drawing but reasoning and orchestrating a diverse set of specialized tools to achieve their
 102 goal.

102 Therefore, we argue that a paradigm that mimics this human-like, tool-using strategy holds signifi-
 103 cant advantages over current monolithic models. An AI system that can intelligently invoke external
 104 tools is inherently more flexible, scalable, and robust. It can ground its generations in factual reality
 105 by searching the web, provide precise data visualizations through code execution, and still retain
 106 the ability for other tasks. This approach directly overcomes the “one-tool” bottleneck, moving be-
 107 yond the limited “omniscient solver” paradigm towards a more powerful and practical “proficient
 108 tool-user”.

108 2.1.2 TOOLKIT
109

110 Motivated by this insight, we introduce a flexible and dynamic framework where an LLM or MLLM
111 serves as an agentic planner. We empower this central agent to intelligently orchestrate a suite of
112 distinct visual tools to construct rich, interleaved content. Specifically, our framework equips the
113 agent with capabilities for online image search, diffusion-based generation, code execution for data
114 visualization, and image editing.

115 1. **Online Image Search:** Invoked for requests demanding factual grounding, such as specific real-
116 world entities, landmarks, or current events. This tool ensures visual authenticity and provides
117 access to up-to-date information beyond the model’s training data cutoff. In our paper, we use
118 Google Search API (Google, 2025b).

119 2. **Diffusion-based Generation:** Selected for tasks requiring the creative synthesis of novel or
120 abstract concepts, or complex compositions that do not exist in reality. We support Seedream
121 3.0 (Gao et al., 2025) in our paper.

122 3. **Code Execution:** Utilized primarily for generating data visualizations like charts, graphs, and
123 plots from structured data. We use Python as the programming language and build a controlled
124 sandbox environment.

125 4. **Image Editing:** Engaged to perform modifications on existing visual content, whether inputted,
126 retrieved or generated. We support Seeedit 3.0 (Wang et al., 2025) in our project.

128 2.1.3 HOW TO CALL A TOOL?
129

130 To empower the LLM to dynamically orchestrate our suite of visual tools, we design a robust and
131 flexible tool invocation framework. Instead of complex, multi-turn interactions or fine-tuning on
132 specific API call formats, our approach is guided by a system prompt that instructs the model to
133 embed a specific placeholder tag wherever a visual element is required in the narrative. This method
134 allows the LLM to autonomously decide when and how to use a tool within a single generative pass.

135 The core of our framework is the structured tag, `<imgen>{...}</imgen>`, which encapsulates
136 all the necessary information for generating or retrieving an image. When the LLM determines that
137 an image is needed, it generates this tag in the following JSON-like format:

138 `<imgen>{"source":<source type>", "description":<general title>,"`
139 `"params":{...}}</imgen>`

140 For search, the params contains a single key *query* which holds a practical and concise search string
141 for a web image search engine. For diffusion, it contains the key *prompt*, which provides a descriptive
142 text prompt for the generative model. For code, it contains the key *code* which holds the raw
143 Python code snippet required to generate a plot or visualization. For edit, it contains two keys, *img*
144 *index*, the 0-based index of a previously image in the sequence to be modified, and *prompt*, a textual
145 instruction describing the desired edit.

146 When the tag is detected in the generated sequence, a parser processes this output, identifies each
147 tag, and dispatches a call to the corresponding external tool using the provided parameters. The
148 tag is then replaced in the text with the image returned by the tool, resulting in the final, seamless
149 multimodal document.

151 2.2 RL RECIPE
152153 2.2.1 DATASET CONSTRUCTION
154

155 To train our model, we construct a high-quality RL dataset of approximately 4,000 samples with
156 a “tool-oriented” design philosophy. The dataset is bifurcated into text-only and text-and-image
157 inputs. The generation process is automated to produce implicit prompts that describe a desired
158 outcome without naming the specific tool required, thereby encouraging the model to reason about
159 tool selection.

160 Each sample undergoes a rigorous validation pipeline to ensure high quality and fidelity. A critical
161 feature of this dataset is the annotation of each prompt with an image number constraint, which
guides the RL training process by specifying the rules for image generation. This constraint falls

162
163
164
165
166
167
168
169
170
171
172

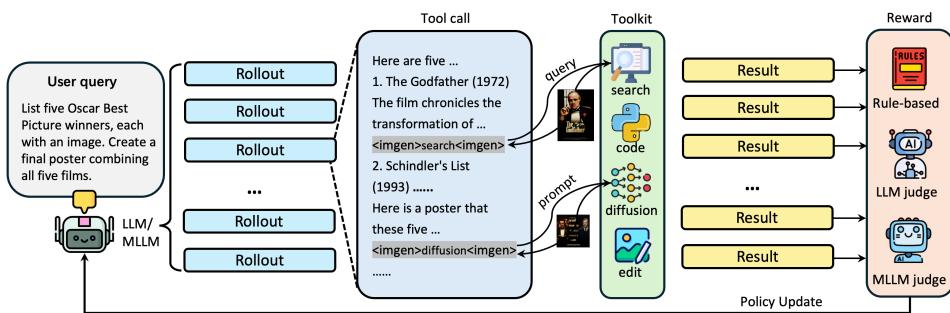


Figure 1: Overview of the LLM-I framework.

173
174
175 into one of four categories: images are disallowed (-1), their use is unconstrained (0), a precise
176 quantity n is required ($n > 0$), or at least one image is mandatory (Inf). Further details on the
177 generation and validation process are provided in the Appendix B.
178

179 2.2.2 REWARD 180

181 With the instruction dataset in place, we employ an RL strategy to fine-tune the model's ability
182 to appropriately call and parameterize the visual tools. Our approach is distinguished by a multi-
183 faceted reward function that combines deterministic rules R_{rule} with sophisticated judgments from
184 both LLM R_{llm} and MLLM R_{mllm} . This composite reward signal not only provides a holistic
185 assessment of the generated output but also decreases reward hacking.

186 The first component is a deterministic, rule-based reward R_{rule} that enforces adherence to genera-
187 tion constraints and ensures the correctness of the `<imgen>` tag format. In Section 2.2.1, we set a
188 required image number N_{req} for each single item. For categorical constraints, the reward is binary.
189 When images are disallowed ($N_{req} = -1$) or when at least one is required ($N_{req} = \text{inf}$), the model
190 receives a score of 1 for compliance and 0 for violation. When there is no constraint ($N_{req} = 0$),
191 the score is always 1, as any output is considered valid. For quantitative constraints where a precise
192 number of images n is required ($N_{req} = n$), the reward is designed to penalize both under- and
193 over-generation:

$$R_{rule} = \begin{cases} \frac{N_{gen}}{N_{req}} & \text{if } 0 \leq N_{gen} \leq N_{req} \\ \max(0, 1 - \alpha \cdot (N_{gen} - N_{req})) & \text{if } N_{gen} > N_{req} \end{cases} \quad (1)$$

194 where N_{gen} is the number of generated images in the model response and α is the penalty factor of
195 extra images which is set to 0.3 by default.

196 The second component R_{llm} leverages an external LLM as a judge to assess the quality of the
197 language and the logic of the tool invocation. This judge evaluates two criteria on a 1-to-5 scale: (i)
198 the fluency, coherence, and relevance of the textual narrative, and (ii) the quality of the tool-use tags,
199 including the naturalness of their placement and the semantic appropriateness of the chosen source
200 and params.

201 The third reward component R_{mllm} employs an MLLM to evaluate the final interleaved output.
202 After the images are generated and integrated, this judge scores three key aspects of multimodal
203 quality on a 1-to-5 scale: (i) the technical and aesthetic quality of the image itself, (ii) the semantic
204 alignment between the image and its surrounding text, and (iii) the relevance of the image to the
205 overall task objective.

206 The scores from the LLM and MLLM judges are normalized to a [0, 1] range. The final reward
207 signal R , is then composed from all three components. Notably, the rule-based reward R_{rule} , acts
208 as a multiplicative gate on the MLLM reward R_{mllm} . This formulation ensures that visual quality
209 is considered only if the model has first satisfied the explicit image count constraint. The composite
210 reward is thus defined as:

$$R = w_{rule}R_{rule} + w_{llm}R_{llm} + w_{mllm}R_{mllm}R_{rule} \quad (2)$$

211 where w_{rule} , w_{llm} , and w_{mllm} are the trade-offs between the three losses.
212

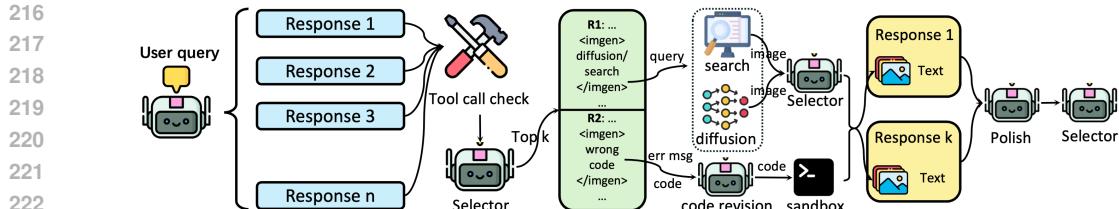


Figure 2: Overview of test-time scaling framework for LLM-I.

2.3 TEST-TIME SCALING

To further enhance the performance of our agentic framework, we introduce a *test-time scaling* (Snell et al., 2025; Muennighoff et al., 2025) paradigm that leverages additional computational resources during inference. The goal is to improve both the reliability of tool usage and the overall quality of the final multimodal response. The workflow is illustrated in Figure 2.

Given a user query, the model first generates multiple complete candidate responses through stochastic sampling. Each candidate may contain tool calls (*e.g.*, search, diffusion, code, or editing), interleaved with natural language. The initial n candidates are passed through a “Tool Call Check” filter. This stage validates the structural integrity and executability of the tool invocations. Responses with malformed or failed tool calls are discarded. From the pool of successful candidates, a selector model (an LLM/MLLM) evaluates their overall quality and relevance to the prompt, selecting the top- k most promising responses for further enhancement. Then, each of the k selected candidates undergoes a targeted enhancement process based on the type of tool used. When a response requests an image, we concurrently query both the online image search module and the diffusion model. The resulting candidates are evaluated by an MLLM, which selects the most semantically aligned option. If code execution fails, the erroneous code and the associated error message are provided to a model. The model revises the code, which is then re-executed in a sandboxed environment until a valid visualization is obtained or exceeding a fixed number of attempts. After the enhancement, the k refined interleaved multimodal responses are passed to an MLLM for polishing. This step improves the coherence and alignment between modalities, ensuring that visual outputs are seamlessly integrated with textual explanations. Finally, a selector model ranks the polished candidates and chooses the single best response as the final output.

3 BENCHMARK

To rigorously evaluate models on generating sophisticated, interleaved text-image reports, we introduce a new benchmark LLM-Bench. It is designed to address two primary limitations of existing benchmarks (Liu et al., 2024; Zhou et al., 2025b; Chen et al., 2025): (1) overly simplistic prompts that require only decorative, low-information images, and (2) unreliable, subjective evaluation protocols that rely on forgiving LLM judges.

Our benchmark overcomes these challenges through two innovations. First, we reframe the generation task as a “mini-project,” where prompts provide specific data or context that necessitates the creation of images with high informational value (*e.g.*, data visualizations, scientific illustrations). In this paradigm, images are an indispensable, synergistic component of the report. Second, we replace broad rubrics with a sample-specific, objective evaluation protocol. For each task, we design a unique set of concrete, verifiable criteria. An LLM evaluator then scores the output against these specific rules, transforming the assessment from a subjective judgment into a more objective and reliable measurement. Further details can be found in Appendix C.

4 EXPERIMENTS

4.1 SETUP

Data and Benchmarks: We train our model using the data constructed in Section 2.2.1, which is split into a training set and an in-domain test set containing over 200 samples. For a comprehensive

270 Table 1: Results on the OpenING benchmark. \dagger is evaluated with text-only input samples. IT Co-
 271 herency refers to image-text conherency and MS consistency means multi-step consistency. Qwen
 272 series are all evaluated with tools.

Model	Completeness	Quality	Richness	Correctness	Human Alignment	IT Coherency	MS Consistency	Overall
GPT4o+DALLE3	8.66	8.01	7.42	7.98	8.77	8.15	8.38	8.20
Gemini+FLUX	7.58	7.26	6.48	7.03	7.98	6.98	7.33	7.23
NExT-GPT	3.89	4.25	3.35	3.61	5.35	3.32	3.85	3.95
Show-o	4.37	4.79	3.83	3.76	5.78	4.04	4.33	4.41
SEED-X	5.65	6.07	4.92	5.77	7.03	5.72	5.72	5.84
Anole	6.27	6.02	5.28	5.06	6.91	4.90	5.81	5.75
Qwen2.5-VL-7B	2.97	3.90	2.50	3.07	4.37	2.03	3.82	3.24
Qwen2.5-VL-32B	6.78	6.82	5.89	6.34	7.25	5.69	7.15	6.56
MLLM-I-7B	6.00	6.75	5.53	5.85	7.24	5.85	6.50	6.25
MLLM-I-32B	8.35	8.07	7.48	7.79	8.44	7.35	8.38	7.98
Qwen3-4B-Instruct \dagger	6.26	6.88	5.55	6.09	6.95	5.11	6.86	6.24
Qwen3-30B-Instruct \dagger	8.05	7.63	7.09	7.56	8.12	6.90	8.13	7.64
LLM-I-4B \dagger	8.63	8.03	7.54	8.03	8.69	7.87	8.45	8.18
LLM-I-30B \dagger	9.19	8.44	8.08	8.61	8.99	8.40	8.91	8.66

285 evaluation, we utilize this in-domain test set along with three out-of-domain (OOD) benchmarks.
 286 On the in-domain set, we employ the same metrics used during training: a rule-based metric, LLM-
 287 based judgments, and MLLM-based judgments. For OOD evaluation, we use the public OpenING
 288 benchmark (Zhou et al., 2025b), which has 5,400 samples (2,491 text-only and 2,909 multimodal
 289 inputs), and adopt the seven metrics from the original paper. Besides, we use the public benchmark
 290 ISG (Chen et al., 2025), which has over 1,000 samples, and adopt the four metrics from the original
 291 paper. Additionally, we introduce our novel and much more difficult LLMI-Bench, whose
 292 manageable size enables a multifaceted evaluation through a rubric-based scoring rate from GPT-4o, a
 293 rule-based metric to measure tool-call success, and a rigorous human evaluation. For this human
 294 assessment, we design a five-point Likert scale with detailed criteria for each point and calculate the
 295 final metric as the average overall scoring rate.

296 Table 2: Results on the LLMI-Bench. \dagger is
 297 evaluated with text-only input samples. Tool
 298 Acc refers the success rate of tool invocation.

Model	Rubric	Human	Tool Acc	Overall
GPT-5 wTool	53.8	48.3	28.1	43.4
GPT-4o wTool	70.4	62.8	67.9	67.0
Anole	27.4	18.2	-	22.8
Qwen2.5-VL-7B wTool	28.5	19.3	44.3	30.7
Qwen2.5-VL-32B wTool	58.9	51.1	93.4	67.8
Qwen2.5-VL-72B wTool	73.1	59.8	60.1	64.3
MLLM-I-7B	67.1	61.9	97.4	75.5
MLLM-I-32B	92.5	82.1	99.2	91.3
Qwen3-4B-Instruct wTool \dagger	73.6	62.3	68.7	68.2
Qwen3-30B-Instruct wTool \dagger	81.4	69.2	83.1	77.9
LLM-I-4B \dagger	88.9	72.9	100.0	82.3
LLM-I-30B \dagger	94.8	83.3	100.0	92.7

Table 3: Results on the ISG benchmark. \dagger is evaluated with text-only input samples.

Model	Structural	Holistic	Block	Image
Show-o	0.295	2.329	1.962	0.078
Anole	0.000	2.810	-	-
Gemini+SD3	0.385	5.827	3.081	0.113
ISG	0.871	6.262	5.515	0.574
Qwen2.5-VL-7B	0.085	4.932	1.152	0.016
Qwen2.5-VL-32B	0.221	6.354	2.105	0.088
MLLM-I-7B	0.607	6.381	3.584	0.274
MLLM-I-32B	0.776	8.112	5.722	0.419
Qwen3-4B \dagger	0.068	5.621	1.621	0.086
Qwen3-30B \dagger	0.267	7.848	3.811	0.267
LLM-I-4B \dagger	0.881	8.413	7.701	0.511
LM-I-30B \dagger	0.971	8.492	8.291	0.618

308 **Training:** We conduct experiments using four different backbones, covering both LLMs and
 309 MLLMs. They include Qwen3-4B-Instruct, Qwen3-30B-Instruct (MoE model), Qwen2.5-VL-7B,
 310 and Qwen2.5-VL-32B. For MoE model, we use GSPO (Zheng et al., 2025) as the RL algorithm
 311 while for others we use GRPO (Shao et al., 2024). We use a batch size of 32 with a cosine learning
 312 rate scheduler where the initial learning is set to 1e-6, minimum learning rate ratio is set to 0.01,
 313 and the warm-up step is 5. Following Yu et al. (2025), we use the token-level loss. For GSPO,
 314 the clipping ratios are set to 3e-4 (low) and 4e-4 (high). For judgement, we use Qwen3-235B-
 315 Instruct-2507 (Yang et al., 2025) as the LLM judge and Qwen2.5-VL-72B-Instruct (Bai et al., 2025)
 316 as the MLLM judge. The reward trade-off coefficients are set to $w_{rule} = 0.2$, $w_{llm} = 0.5$, and
 317 $w_{mllm} = 0.3$.

4.2 MAIN RESULTS

318 Tables 1, 2, 3 and 4 present the detailed results of our model across four distinct benchmarks. Our
 319 evaluation compares LLM-I against a diverse set of baselines categorized into three main types: (i)
 320 two-stage or compositional methods such as GPT-4o+DALLE-3, Gemini+FLUX/Stable Diffusion 3
 321 (SD3) (Esser et al., 2024), NExT-GPT (Wu et al., 2024), SEED-X (Ge et al., 2024), and ISG (Chen
 322 et al., 2025).

324 Table 4: Results on the test set of the dataset. \dagger is evaluated with text-only input samples. IT means
 325 image-text and IQ means image-question. Qwen series are all evaluated with tools.
 326

Model	Image num	Text Quality	Tag Quality	Image Quality	IT Alignment	IQ Alignment	Overall
Qwen2.5-VL-7B	13.2	3.1	1.5	3.7	2.8	2.9	25.9
Qwen2.5-VL-32B	54.3	3.8	2.0	3.8	3.6	3.5	52.7
MLLM-I-7B	88.7	4.0	3.4	3.9	3.9	3.7	70.6
MLLM-I-32B	95.1	4.7	4.3	4.1	4.2	4.3	85.2
Qwen3-4B-Instruct \dagger	46.5	4.5	2.9	4.0	3.9	3.9	57.7
Qwen3-30B-Instruct \dagger	55.3	4.8	4.0	3.9	3.9	3.9	68.7
LLM-I-4B \dagger	88.6	4.8	4.6	4.2	4.2	4.3	85.2
LLM-I-30B \dagger	93.0	4.9	4.8	4.3	4.6	4.6	89.9

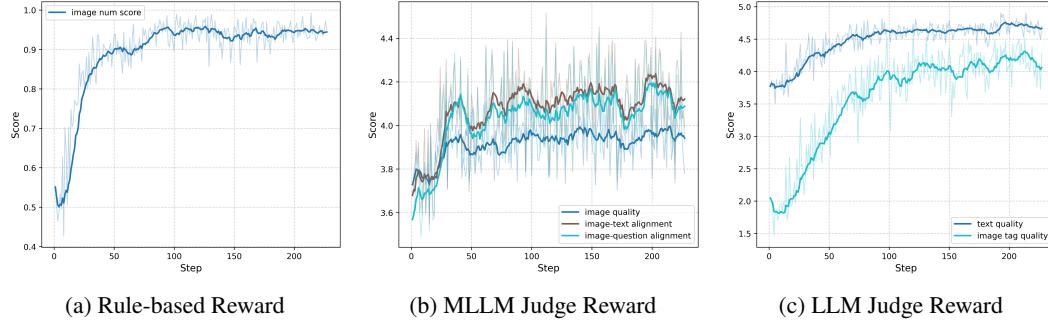


Figure 3: Reward curve during RL training of Qwen2.5-VL-32B.

348 et al., 2025); (ii) unified models including Show-o (Autoregressive+Diffusion) (Xie et al., 2025) and
 349 Anole (Pure Autoregressive) (Chern et al., 2024); and (iii) tool-augmented methods, featuring GPT-
 350 5 (OpenAI, 2025b) and GPT-4o with a suite of tools that includes search, diffusion, code, and editing
 351 capabilities. Across all four benchmarks, we observe that LLM-I exhibits SOTA performance, con-
 352 sistent and significantly outperforming baseline models.

353 In the general qualitative assessment shown in Table 1 and
 354 3, the entire LLM-I family shows highly competitive per-
 355 formance, outperforming other leading models and unified
 356 approaches, which underscores our model’s robustness in
 357 generating complete, high-quality, and well-aligned con-
 358 tent. This superiority is even more pronounced on spe-
 359 cialized benchmarks. On the LLMI-Bench evaluation in
 360 Table 2, LLM-I models drastically outperform dedicated
 361 tool-using agents, including GPT-4o w/Tool and the antici-
 362 pated GPT-5 w/Tool. This success is largely attributable
 363 to our model’s exceptional tool invocation capabilities,
 364 with LLM-I-4B and LLM-I-30B achieving a perfect 100.0
 365 Tool Accuracy. Additionally, we present the metrics dur-
 366 ing the RL training in Figure 3. We can observe that with the RL training, the instruction following
 367 ability, writing ability and the ability to find images of the model all increases, indicating the effec-
 368 tiveness of RL training.

369 Furthermore, we present two examples in Figure 4 and 5. From the examples, we can observe
 370 that LLM-I can intelligently invoke different kinds of tools for image presentation. This shows
 371 great advantages over previous methods when requiring real and precise images. In the dataset
 372 construction stage in Section 2.2.1, we define a target tool list for each data item which is verified by
 373 Gemini2.5 Pro and GPT-4o. To further validate the “intelligence” of tool invocation, we visualize the
 374 tool F1 score in Figure 6 which evaluates the precision and recall of different tools during the training
 375 process. From the figure, the F1 score steadily improves during the RL process, indicating that the
 376 model becomes increasingly adept at selecting appropriate tools according to the given context.
 377 Notably, no explicit reward is assigned to tool usage; the improvement arises naturally during RL
 training. This finding suggests that RL not only encourages tool invocation but also enhances the
 model’s ability to make smarter tool choices for achieving better image-text alignment.

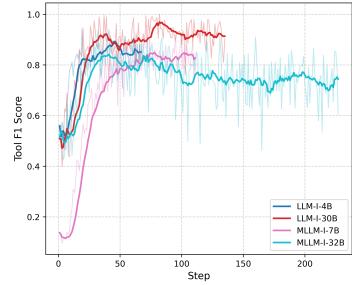


Figure 6: Tool F1 score curve during RL training.

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

Question

You are a volcanologist working for a national geological survey. A domestic volcano named "Mount Artemis" has recently shown signs of renewed activity. You need to write a risk assessment report for the government's emergency management agency, analyzing various monitoring data, assessing the probability and potential hazards of an eruption, and proposing specific alert levels. Your volcano risk assessment report based on the multi-source data below, recent Monitoring Data for "Mount Artemis" (e.g., Fig 1), and the following questions.

1. Seismic Activity: Over the past month, the number of micro-earthquakes within a 5 km radius of the volcano has increased from an average of 10 per day to 150 per day.

2. Ground Deformation: Recent GPS station data on the summit shows that the eastern flank of the volcano has inflated upwards by 5 cm in the last month.

3. Gas Emissions: In the crater the gas detector has detected a significant increase in sulfur dioxide (SO₂) emissions from 50 tons/day to 600 tons/day.

4. Background: Introduce the location and type of Mount Artemis (stratovolcano). Please include a majestic photograph of a stratovolcano (e.g., Fig 2) and establish a visual impression.

5. Multi-Parameter Data Visualization: Please plot the key three types of "Seismic Frequency," "Ground Deformation," and "Gas Emissions" on a single composite line chart with a shared timeline.

6. Volcano's Internal Structure: To explain the cause of these phenomena, please create an internal structure cross-section of the volcano, clearly illustrating the "magma chamber," "conduit," and how gas is migrating upwards.

7. Hazard Zone Simulation: Please create a risk zone heatmap for the area around the volcano. Based on topography and the initial hazard zones, the model can create roughly delineate high, medium, and low-risk zones for potential pyroclastic flows and lava flows.

8. Hazard Scale Explanation: Please insert an infographic that explains the levels of the "Volcanic Explosivity Index" (VEI) to help decision-makers understand the energy levels and potential consequences of different eruption sizes.

9. Current Risk Assessments: Synthesize all information to conclude that the probability of the volcano awakening has increased, and propose specific alert level recommendations.

Output

Fig 1. Majestic view of Mount Artemis

Fig 2. Cutaway diagram of a stratovolcano showing magma chamber, conduit, and gas migration

Fig 3. Infographic of the Volcanic Explosivity Index (VEI) scale from VEI 0 to VEI 8

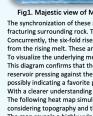


Fig 4. Composite line chart of seismic frequency, ground deformation, and gas emissions over time

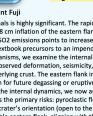


Fig 5. Heatmap of hazard zones for pyroclastic and lava flows around Mount Artemis

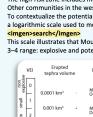
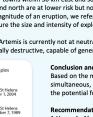


Fig 6. Heatmap of hazard zones for pyroclastic and lava flows around Mount Artemis



Question
You are a volcanologist working for a national geological survey. A domestic volcano named "Mount Artemis" has recently shown signs of renewed activity. You need to write a risk assessment report for the government's emergency management agency, analyzing various monitoring data, assessing the probability and potential hazards of an eruption, and proposing specific alert level recommendations.

Output

Fig 1. Majestic view of Mount Artemis
A photograph of Mount Artemis, a stratovolcano with a snow-capped peak and a visible crater.

Fig 2. Cutaway diagram of a stratovolcano showing magma chamber, conduit, and gas migration
A cutaway diagram of a stratovolcano showing its internal structure with a magma chamber, conduit, and a gas plume.

Fig 3. Infographic of the Volcanic Explosivity Index (VEI) scale from VEI 0 to VEI 8
An infographic showing the Volcanic Explosivity Index (VEI) scale from VEI 0 to VEI 8. The scale is represented by a red circle with concentric rings, where each ring corresponds to a VEI level: VEI 0 = Sub-eruptive, VEI 1 = Minor, VEI 2 = Moderate, VEI 3 = Major, VEI 4 = Very Major, VEI 5 = Catastrophic, VEI 6 = Catastrophic, VEI 7 = Catastrophic, and VEI 8 = Catastrophic.

Fig 4. Composite line chart of seismic frequency, ground deformation, and gas emissions over time
A line chart showing three data series over a 30-day period. The x-axis is 'Date' from 2023-01-01 to 2023-02-01. The y-axis ranges from 0 to 1000. The 'Gas Emissions' series (blue) starts at 50 and rises to 600. The 'Ground Deformation' series (red) starts at 10 and rises to 150. The 'Seismic Frequency' series (green) starts at 10 and rises to 150. All series show a sharp increase starting around January 15th.

Fig 5. Heatmap of hazard zones for pyroclastic and lava flows around Mount Artemis
A heatmap showing hazard zones around Mount Artemis. The map includes a volcano symbol, a grid, and a color scale from green (low risk) to red (high risk). Labels indicate 'Pyroclastic Flow', 'Lava Flow', 'Ash Plume', and 'Ashfall'.

Fig 6. Heatmap of hazard zones for pyroclastic and lava flows around Mount Artemis
A 3D surface plot showing hazard zones around Mount Artemis. The vertical axis is 'Elevation' (0 to 10000 m), and the horizontal axes are 'X' and 'Y'. The surface shows a high-risk zone (red) near the volcano, decreasing towards the edges.

Mount Artemis, a towering stratovolcano located in the Pacific Ring of Fire along the rugged coastal region of the fictional western archipelago of Eltara, stands as a sentinel of geological power. With a peak elevation of 3,200 meters and a symmetrical conical shape carved by millions of years of erosion and subsidence, Mount Artemis is a classic example of a stratovolcano, characterized by its steep slopes, explosive eruptions, and the formation of large, bulbous lava flows, ash, and pyroclastic debris. These volcanoes are notorious for their unpredictable behavior, capable of transitioning from dormancy to explosive activity with little warning.

Emergency Debris
Recent monitoring data over the past month presents compelling evidence that Mount Artemis is shifting from a dormant state toward renewed activity. A triad of indicators—seismicity, ground deformation, and gas emissions—has displayed synchronized and dramatic increases, signaling a deep-seated

Fig 1. Majestic view of Mount Artemis
The synchronization of these signs is cause for concern. The most notable increase in micro-earthquake rates from rising magma intrusions, combined with a correlation of the eastern flank intrusion, suggests magma accumulation in a subsurface fracture system. Concurrently, the six-fold rise in SO₂ emissions points to degassing as magma approaches the surface, gas escaping from the rising magma. These are textbook precursors to an impending eruption.

Ground Deformation
Recent GPS station data on the summit shows that the eastern flank of the volcano has inflated upwards by 5 cm in the last month. This deformation is consistent with the observed inflation of Mount Ararat, [https://en.wikipedia.org/wiki/Mount_Arat](#). This diagram confirms that the observed deformation, seismicity, and gas release are consistent with a growing magma chamber beneath the volcano, indicating a significant increase in pressure. In particular, suggests a directional pressure build-up, possibly indicating a zone of high pressure for future deflation or eruptive fissure.

Gas Emissions
Gas emissions from the crater have detected a significant increase in sulfur dioxide (SO₂) emissions from 50 tons/day to 600 tons/day, indicating a shift in the chemical composition of the volcanic gases. This change in gas signature is a common precursor to an eruption, as the magma becomes increasingly enriched in volatile elements like sulfur dioxide.

1. Background: Introduce the location and type of Mount Artemis (stratovolcano). Please include a majestic photograph of a stratovolcano (e.g., Fig 1) and establish a visual impression.

2. Multi-Parameter Data Visualization: Please plot the key three types of "Seismic Frequency," "Ground Deformation," and "Gas Emissions" on a single composite line chart with a shared timeline.

3. Volcano's Internal Structure: To explain the cause of these phenomena, please create an internal structure cross-section of the volcano, clearly illustrating the "magma chamber," "conduit," and how gas is migrating upwards.

4. Hazard Zone Simulation: Please create a risk zone heatmap for the area around the volcano. Based on topography and the initial hazard zones, the model can create roughly delineate high, medium, and low-risk zones for potential pyroclastic flows and lava flows.

5. Hazard Scale Explanation: Please insert an infographic that explains the levels of the "Volcanic Explosivity Index" (VEI) to help decision-makers understand the energy levels and potential consequences of different eruption sizes.

6. Current Risk Assessments: Synthesize all information to conclude that the probability of the volcano awakening has increased, and propose specific alert level recommendations.

Condition and Recommendations
Based on the multi-parameter monitoring data, visual inspection, and the current hazard zones, the probability of a renewed eruption at Mount Artemis has increased significantly, and the potential for a major eruption is now high.

Recommendations:

- 1. Upgrade Alert Level to VEI 8 (Eruption imminent):** Immediately issue a red alert for all local authorities.
- 2. Evacuate high-risk zones (especially eastern communities):**
- 3. Activate emergency response protocols.**
- 4. Implement mandatory evacuation for residents within 20 km of the summit, prioritizing areas with significant subsidence.**
- 5. Enhanced Monitoring and Early Warning Surveillance:**

 - Deploy additional seismic sensors, GPS units, and gas spectrometers.
 - Establish a mobile command center for emergency management.

- 6. Public Communication Strategy:**

 - Begin clear, frequent public briefings.
 - Establish a 24/7 emergency operations center, and emergency contact information.

- 7. Prepare for Secondary Hazards:**

 - Assess and mitigate potential secondary hazards.
 - Pre-position sandbags.
 - Prepare airport closures.
 - Establish medical facilities for respiratory risks.

Conclusion: Mount Artemis is no longer dormant. The Earth is speaking. Heed its warning.....

Figure 4: Example generated by LLM-I on LLMI-Bench. Some text is omitted due to space constraints.

398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

Question

This diagram of the animal cell is what we are using for our research. Our project focuses on how a novel virus, *Progenitor*, impacts key cellular processes. You will use this to prepare a more comprehensive and comparative research progress report.

1. Comparative Cell Anatomy & Annotation: First, to establish a common language for our project, we will label the components of a plant cell and display it with our provided animal cell diagram. Following the images, write a concise paragraph that identifies and describes at least three key structural differences between them. Then, returning to our animal cell diagram, use prominent red arrows to specifically point out the nucleus and the endoplasmic reticulum.

2. Dynamic Data Analysis & Trend: Our experiment measured the dynamic changes in cellular ATP production efficiency over 48 hours post-infection. The data shows that starting from a control of 95% efficiency at 0 hours, the efficiency dropped to 70% at 6 hours, 50% at 12 hours, 40% at 24 hours, and 30% at 48 hours. Based on this time-series data, please create a Line Graph that clearly visualizes the trend of ATP production efficiency as the infection progresses. The chart must have a proper title, axis labels, and data points. The graph should clearly show the initial impact of the virus, how the efficiency changes over time (e.g., during which period the decline is sharpest) and attribute the core of this functional decline to the virus's impact on the Mitochondria.

3. Mechanistic Hypothesis & Evidence: Based on the trend shown in the data, generate a line diagram or flowchart to visualize a potential mechanism for the mechanism, for example: "Viral Protein → Binds to Mitochondrial Membrane → Respiratory Chain → ATP Synthesis Blocked." Finally, conclude with recommendations for future research.

Please ensure the entire report has a coherent narrative, progressing logically from the macro-level cell comparison to the micro-level dynamic data, and finally to the mechanistic hypothesis.

Output

Comparative Cell Anatomy & Annotation
 To establish a foundation for our research, we begin by comparing the anatomical structures of two fundamental cell types: the animal cell and the plant cell. Understanding the differences between these cell types is crucial for our project, as our novel virus might impact key cellular functions.

Plant Cell Diagram
[img:search/jimgex](#)

Key Structural Differences Between Plant and Animal Cells

1. Cell Wall
 Plant Cells: Plant cells possess a rigid cell wall composed primarily of cellulose, which ...
 Animal Cells: In contrast, animal cells lack a cell wall. Instead, they have a flexible plasma membrane

2. Chloroplasts
Highlighting Key Structures in the Animal Cell
 Returning to the animal cell diagram, we will use red arrows to specifically point out the Mitochondria and

Dynamic Data Analysis & Trend

- Mitochondria:** These are the powerhouses of the cell, responsible for producing ATP through cellular respiration.
- Genetic Material:** The nucleus contains the cell's genetic material (DNA) and regulates gene expression, serving as the control center for cellular activities.

 Our experimental data plots the dynamic changes in cellular ATP production efficiency over a 48- hour period post - infection. The trend shows a gradual decline in efficiency, starting from a baseline control of 95% at 0 hours. Key data points are as follows:

Time (hours)	ATP Production Efficiency (%)
0	95% efficiency
6	70% efficiency
12	50% efficiency
24	40% efficiency
48	30% efficiency

 To visualize this trend, we create a line graph that plots ATP production efficiency against time. The graph clearly depict the downward trajectory of cellular function over the experimental period.
 Trend Analysis
 The graph illustrates a clear and gradual decline in ATP production efficiency over the 48- hour period. Notably:

- Early Phase (0-6 hours):** The efficiency drops sharply from 95% to 70%, indicating an initial impact of the virus on cellular processes.
- Mid Phase (6-24 hours):** The decline continues, but at a slower rate, dropping from 70% to 40%....
- Late Phase (24-48 hours):** The rate of decline slows down, with efficiency dropping from 40% to 30%....

Attribution to Mitochondrial Impact
 The sharp decline in ATP production efficiency strongly implicates the Mitochondria as the primary target of the virus. Mitochondria are the primary sites of ATP synthesis through oxidative phosphorylation.

Mechanistic Hypothesis & Future Outlook
Hypothesis Mechanism:
 Based on the observed trend in ATP production efficiency, we propose a hypothetical mechanism through which the novel virus impacts mitochondrial function. This mechanism can be visualized as a flowchart:

1. Viral Protein Entry: The virus infects the cell and releases viral proteins into the cytoplasm.

2. Protein Interaction:
[img:search/jimgex](#)

Recommendations for Future Research

1. Mitochondria Targeting Studies: Conduct experiments to confirm the virus's direct impact on the mitochondria.

2. Confocal Microscopy: Techniques such as mitochondrial staining and confocal microscopy can visualize the interaction between viral proteins and mitochondrial structures.

3. Co-localization Studies:
[img:search/jimgex](#)

Conclusion
 This comprehensive report has logically progressed from cell anatomy to a detailed examination of dynamic data and a hypothesis - driven exploration of the virus's mechanistic impact.

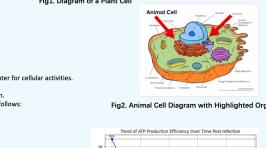
As we move forward, targeted experiments and mechanistic studies will refine our understanding of this interaction, paving the way for potential interventions to protect cellular function against viral infection.

Plant Cell

Fig1. Diagram of a Plant Cell

Animal Cell

Fig2. Animal Cell Diagram with Highlighted Organelles

Fig3. Line Graph of ATP Production Efficiency Over Time


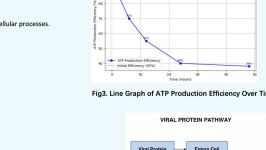
VIRAL PROTEIN PATHWAY


Fig4. Flowchart of Viral Mechanism Impacting Mitochondria

Figure 5: Example generated by MLLM-I on LLMI-Bench. Some text is omitted due to space constraints.

4.3 TEST-TIME SCALING

Table 5 presents the performance of our proposed test-time scaling strategy. As detailed in Section 2.3, this strategy comprises four stages: initial top- k selection, tool enhancement, polishing, and final selection. In our experiments, we set the initial selection parameter k as 4 and sample 2 images for both the search and diffusion tools. The Owen2.5-VL-72B model serves as both the selector and the polisher.

The results in Table 5 demonstrate the efficacy of our approach. The initial top-k selection and tool enhancement stages substantially boost performance. The subsequent polishing stage also provides improvement. By integrating all four stages, our model surpasses the performance of its 30B counterpart, validating the effectiveness of our test-time scaling strategy.

Model	Rubric	ΔTime
LLMI-4B	88.9	0
- w stage1	91.2	<1s
- w stage2	91.4	
- w stage3	89.4	~16s/it
w full TTS	95.1	~20s/it
LLM-I-30B	94.8	0

Table 5: Results of test-time scaling on LJM1-Bench

432
433
434 Table 6: Results of reward ablation experiments on the OpenING benchmark.
435
436
437
438

Model	Completeness	Quality	Richness	Correctness	Human Align.	IT Conhe.	MS Consis.	Overall
Qwen3-4B-Instruct	6.26	6.88	5.55	6.09	6.95	5.11	6.86	6.24
LLM-I-4B	8.63	8.03	7.54	8.03	8.69	7.87	8.45	8.18
w/o rule-based reward	4.22	6.55	3.93	4.55	5.68	2.34	6.05	4.76
w/o LLM judge	8.29	7.77	7.23	7.69	8.38	7.44	8.18	7.85
w/o MLLM judge	8.17	7.66	7.20	7.60	8.23	7.39	8.04	7.76

439
440 We also analyze the computational overhead introduced by this strategy. A key advantage is that tool
441 invocations can be processed in parallel. Consequently, the primary overhead consists of only four
442 additional forward passes from the selector/polisher model. The selection process is particularly ef-
443 ficient, as the model only needs to output the optimal index rather than generating a full response. In
444 contrast, the polishing stage is the most time-consuming, as it requires rewriting the entire response.

445 4.4 ABLATION STUDY

446
447 **Effectiveness of the Reward Design.** We conduct an ablation study
448 to evaluate the individual contributions of our three reward compo-
449 nents: a rule-based reward, an LLM judge, and an MLLM judge. The
450 results are presented in Table 6. The full LLM-I-4B model, trained
451 on all three rewards, establishes a strong baseline with an overall
452 score of 8.18, demonstrating the effectiveness of the combined re-
453 ward strategy.

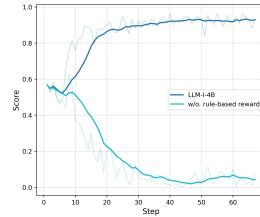
454
455 Particularly, the removal of the rule-based reward proves to be the
456 most detrimental, causing the overall score to plummet to 4.76. As
457 shown in Figure 7, without the rule-based reward, the model will
458 not generate the image to obtain a high score. Comparatively, the
459 performance drop is less severe when removing either the LLM or
460 MLLM judge because their evaluation capabilities likely overlap. Both of these judges assess more
461 nuanced, qualitative aspects of the output like text and image quality. Ultimately, the study confirms
462 that while the rule-based reward provides an essential foundation, the synergistic combination of all
463 rewards is necessary to achieve the model’s peak performance.

464
465 **Tools.** To assess the contribution of individual tools, we perform a
466 tool ablation study and report the results in Table 7. The results reveal
467 the importance of a comprehensive toolkit, especially for the trained
468 LLM-I-4B model. Restricting LLM-I-4B to “only diffusion” or “only
469 search” leads to significant performance degradation. This indicates
470 that its high performance is contingent on its ability to flexibly lever-
471 age multiple tools.

472 Interestingly, the Qwen3-4B model’s performance improves to 75.2
473 when restricted to “only search”, surpassing its full-toolkit baseline.
474 This counterintuitive result suggests that while the model benefits from the search tool, it may strug-
475 gle with tool selection when presented with multiple options when it is not trained to use the tools.
476 Forcing it to use only its most effective tool eliminates potential errors in tool orchestration, thereby
477 improving its overall score.

478 5 CONCLUSION

479 In this paper, we introduce LLM-Interleaved (LLM-I), a framework that overcomes the “one-tool”
480 bottleneck in interleaved image-text generation by employing an LLM as an agentic planner. This
481 agent dynamically orchestrates a suite of specialized tools, including web search, diffusion models,
482 code execution, and image editing, to create rich multimodal narratives. LLM-I significantly out-
483 performs state-of-the-art methods, demonstrating that powerful LLMs possess a natural, emergent
484 capability for complex multimodal creation when properly augmented. By championing a flexi-
485 ble “proficient tool-user” paradigm, this work paves the way for future research into expanding the
486 agent’s toolkit and enhancing its reasoning for more generalist and capable creative AI.



478
479 Figure 7: The rule-based re-
480 ward curve during RL train-
481 ing.

482 Table 7: Ablation exper-
483 iments of the tools on LLM-
484 Bench.

Model	Rubric
Qwen3-4B-Instruct wTool	73.6
- only diffusion	66.5
- only search	75.2
LLM-I-4B	88.9
- only diffusion	76.5
- only search	77.5

486 REPRODUCIBILITY STATEMENT
487488 We detail the construction of the dataset, benchmark, and the training information in our paper.
489 Additionally, the code, datasets and benchmark will be open-sourced for reproducibility.
490491 THE USE OF LARGE LANGUAGE MODELS
492493 On top of the training and dataset construction process which we have detailed in the paper, we only
494 use LLMs for paper polishment.
495496 REFERENCES
497498 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
499 Shijie Wang, Jun Tang, et al. Qwen2.5-vl technical report. *arXiv preprint arXiv:2502.13923*,
500 2025.502 James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
503 Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. *Computer*
504 *Science*. <https://cdn.openai.com/papers/dall-e-3.pdf>, 2(3):8, 2023.505 Dongping Chen, Ruoxi Chen, Shu Pu, Zhaoyi Liu, Yanru Wu, Caixi Chen, Benlin Liu, Yue Huang,
506 Yao Wan, Pan Zhou, and Ranjay Krishna. Interleaved scene graphs for interleaved text-and-image
507 generation assessment. In *The Thirteenth International Conference on Learning Representations*,
508 2025. URL <https://openreview.net/forum?id=rDLgnYLM5b>.510 Ethan Chern, Jiadi Su, Yan Ma, and Pengfei Liu. Anole: An open, autoregressive, native large mul-
511 timodal models for interleaved image-text generation. *arXiv preprint arXiv:2407.06135*, 2024.512 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
513 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
514 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
515 bilities. *arXiv preprint arXiv:2507.06261*, 2025.517 Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Weihao
518 Yu, Xiaonan Nie, Ziang Song, et al. Emerging properties in unified multimodal pretraining. *arXiv*
519 *preprint arXiv:2505.14683*, 2025.520 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
521 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
522 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
523 2024.525 Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
526 Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms.
527 *arXiv preprint arXiv:2504.11536*, 2025.528 Yu Gao, Lixue Gong, Qiushan Guo, Xiaoxia Hou, Zhichao Lai, Fanshi Li, Liang Li, Xiaochen Lian,
529 Chao Liao, Liyang Liu, et al. Seedream 3.0 technical report. *arXiv preprint arXiv:2504.11346*,
530 2025.531 Yuying Ge, Sijie Zhao, Jinguo Zhu, Yixiao Ge, Kun Yi, Lin Song, Chen Li, Xiaohan Ding, and Ying
532 Shan. Seed-x: Multimodal models with unified multi-granularity comprehension and generation.
533 *arXiv preprint arXiv:2404.14396*, 2024.535 Google. Try deep research and our new experimental model in gemini, your
536 ai assistant, 2024. URL <https://blog.google/products/gemini/google-gemini-deep-research/>.538 Google. Introducing gemini 2.5 flash image, 2025a. URL <https://developers.googleblog.com/introducing-gemini-2-5-flash-image/>.

540 Google. Serpapi, 2025b. URL <https://serpapi.com/>.

541

542 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
543 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
544 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025a.

545 Zirun Guo, Minjie Hong, and Tao Jin. Observe-r1: Unlocking reasoning abilities of mllms with
546 dynamic progressive reinforcement learning. *arXiv preprint arXiv:2505.12432*, 2025b.

547

548 Minjie Hong, Zirun Guo, Yan Xia, Zehan Wang, Ziang Zhang, Tao Jin, and Zhou Zhao. Apo:
549 Enhancing reasoning ability of mllms via asymmetric policy optimization. *arXiv preprint
arXiv:2506.21655*, 2025.

550

551 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
552 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint
arXiv:2410.21276*, 2024.

553

554 Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and
555 Zicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. *arXiv preprint
arXiv:2501.05366*, 2025.

556

557 Minqian Liu, Zhiyang Xu, Zihao Lin, Trevor Ashby, Joy Rimchala, Jiaxin Zhang, and Lifu Huang.
558 Holistic evaluation for interleaved text-and-image generation. In *Proceedings of the 2024 Con-
559 ference on Empirical Methods in Natural Language Processing*, pp. 22002–22016, 2024.

560

561 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
562 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
563 scaling, 2025. URL <https://arxiv.org/abs/2501.19393>.

564

565 OpenAI. Deep research system card, 2025a. URL <https://cdn.openai.com/deep-research-system-card.pdf>.

566

567 OpenAI. Introducing gpt-5, 2025b. URL <https://openai.com/index/introducing-gpt-5/>.

568

569 OpenAI. Introducing openai o3 and o4-mini, 2025c. URL <https://openai.com/index/introducing-o3-and-o4-mini/>.

570

571 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
572 optimization algorithms, 2017. URL <https://arxiv.org/abs/1707.06347>.

573

574 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
575 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
576 matical reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.

577

578 Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time com-
579 pute optimally can be more effective than scaling parameters for reasoning. In *The Thirteenth
580 International Conference on Learning Representations*, 2025.

581

582 Zhaochen Su, Linjie Li, Mingyang Song, Yunzhuo Hao, Zhengyuan Yang, Jun Zhang, Guanjie
583 Chen, Jiawei Gu, Juntao Li, Xiaoye Qu, et al. Openthinkimg: Learning to think with images via
584 visual tool reinforcement learning. *arXiv preprint arXiv:2505.08617*, 2025.

585

586 Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. *arXiv preprint
arXiv:2405.09818*, 2024.

587

588 Changyao Tian, Xizhou Zhu, Yuwen Xiong, Weiyun Wang, Zhe Chen, Wenhui Wang, Yuntao Chen,
589 Lewei Lu, Tong Lu, Jie Zhou, Hongsheng Li, Yu Qiao, and Jifeng Dai. Mm-interleaved: In-
590 terleaved image-text generative modeling via multi-modal feature synchronizer, 2024. URL
591 <https://arxiv.org/abs/2401.10208>.

592

593 Peng Wang, Yichun Shi, Xiaochen Lian, Zhonghua Zhai, Xin Xia, Xuefeng Xiao, Weilin Huang,
and Jianchao Yang. Seededit 3.0: Fast and high-quality generative image editing. *arXiv preprint
arXiv:2506.05083*, 2025.

594 Jinming Wu, Zihao Deng, Wei Li, Yiding Liu, Bo You, Bo Li, Zeyun Ma, and Ziwei Liu. Mmsearch-
 595 r1: Incentivizing lmms to search. *arXiv preprint arXiv:2506.20670*, 2025.

596

597 Shengqiong Wu, Hao Fei, Leigang Qu, Wei Ji, and Tat-Seng Chua. Next-gpt: Any-to-any multi-
 598 modal llm. In *Forty-first International Conference on Machine Learning*, 2024.

599 Peng Xia, Siwei Han, Shi Qiu, Yiyang Zhou, Zhaoyang Wang, Wenhao Zheng, Zhaorun Chen,
 600 Chenhang Cui, Mingyu Ding, Linjie Li, Lijuan Wang, and Huaxiu Yao. MMIE: Massive multi-
 601 modal interleaved comprehension benchmark for large vision-language models. In *The Thirteenth*
 602 *International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=HnhNRrLPwm>.

603

604 Jinzheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
 605 Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
 606 to unify multimodal understanding and generation. In *The Thirteenth International Conference*
 607 *on Learning Representations*, 2025.

608

609 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 610 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
 611 *arXiv:2505.09388*, 2025.

612

613 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai,
 614 Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guang-
 615 ming Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu,
 616 Jiaze Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao
 617 Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingx-
 618 uan Wang. Dapo: An open-source llm reinforcement learning system at scale, 2025. URL
<https://arxiv.org/abs/2503.14476>.

619

620 Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
 621 Yuqiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. *arXiv preprint*
arXiv:2507.18071, 2025.

622

623 Chunting Zhou, LILI YU, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Ja-
 624 cob Kahn, Xuezhe Ma, Luke Zettlemoyer, and Omer Levy. Transfusion: Predict the next token
 625 and diffuse images with one multi-modal model. In *The Thirteenth International Conference on*
Learning Representations, 2025a.

626

627 Pengfei Zhou, Xiaopeng Peng, Jiajun Song, Chuanhao Li, Zhaopan Xu, Yue Yang, Ziyao Guo,
 628 Hao Zhang, Yuqi Lin, Yefei He, et al. Opening: A comprehensive benchmark for judging open-
 629 ended interleaved image-text generation. In *Proceedings of the Computer Vision and Pattern*
 630 *Recognition Conference*, pp. 56–66, 2025b.

631

632 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
 633 Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
 634 open-source multimodal models. *arXiv preprint arXiv:2504.10479*, 2025.

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A RELATED WORK
649

650 **Interleaved Image-Text Generation.** While current MLLMs, such as the QwenVL (Bai et al.,
651 2025) and InternVL (Zhu et al., 2025) series, excel at processing interleaved image-text inputs, they
652 lack the capability for interleaved generation. Two primary approaches have emerged to address this
653 limitation. The first involves leveraging an external image decoder or diffusion model, as seen in
654 models like NExT-GPT (Wu et al., 2024) and SEED-X (Ge et al., 2024). These methods typically
655 optimize a set of learnable visual tokens that serve as input for a diffusion-based image decoder or
656 directly input all the texts into the diffusion model. The second category consists of unified multi-
657 modal models that either integrate an autoregressive model with a diffusion model (Zhou et al.,
658 2025a; Xie et al., 2025) or are entirely autoregressive (Team, 2024; Chern et al., 2024) to achieve
659 unified training and alignment. However, a significant drawback of both paradigms is their inher-
660 ent unsuitability for tasks requiring factual grounding, such as generating photorealistic images of
661 specific entities, or programmatic precision, such as data analysis and visualization. Diverging from
662 these methods, our approach reframes the LLM or MLLM as an agentic planner that orchestrates
663 four external tools. This tool-augmented framework allows for the creation of a wide range of visual
664 content, from photorealistic and creative imagery to accurate data visualizations, thereby overcom-
665 ing the key weaknesses of prior generative systems.

666 **Reinforcement Learning.** RL has become a crucial component in developing the latest generation
667 of large models (Guo et al., 2025a), often yielding superior generalization capabilities compared to
668 purely supervised methods. While Proximal Policy Optimization (PPO) (Schulman et al., 2017) is
669 the most common algorithm for fine-tuning LLMs, its reliance on a value model has spurred the
670 popularity of value-free alternatives like GRPO (Shao et al., 2024) and DAPO (Yu et al., 2025).
671 Although many recent works have successfully applied these algorithms to enhance the reasoning
672 abilities of LLMs and MLLMs (Zheng et al., 2025; Guo et al., 2025b; Hong et al., 2025), our
673 research explores a different direction. Instead of focusing on reasoning, we investigate how RL
674 can be used to improve multimodal alignment, the ability to intelligently use tools, and the overall
675 quality of generated reports.

676 **Tool Usage of LLMs.** The ability of LLMs to utilize external tools (Feng et al., 2025; Wu et al.,
677 2025) has significantly expanded their capabilities, transforming them from simple text generators
678 into sophisticated agents capable of reasoning, decision-making, and task automation across vari-
679 ous domains. For instance, proprietary models like the OpenAI o3 (OpenAI, 2025c) and DeepRe-
680 search (OpenAI, 2025a) model can leverage various tools for web search, code execution, and image
681 processing. Similarly, Gemini 2.5 Pro (Comanici et al., 2025) and its DeepResearch (Google, 2024)
682 can call external tools for functions like code execution, web search, or file processing. In the open-
683 source community, projects such as Search-o1 (Li et al., 2025) and Openthinking (Su et al., 2025)
684 have also demonstrated the impressive performance improvements of tool-augmented LLMs and
685 MLLMs. Building on these advancements, RL training can further enhance this capability, enabling
686 an LLM to intelligently select the appropriate tool to use, making it possible to address a wider and
687 more complex range of problems.

688 B DATASET DETAILS
689

690 To effectively train our model to master the agentic tool-use framework, we first construct a high-
691 quality RL dataset. The central design philosophy is “tool-oriented”, aimed at teaching the model
692 to invoke a diverse set of tools under various constraints. The dataset is bifurcated into two primary
693 categories: text-only inputs and text-and-image inputs.

694 The generation process is automated using Gemini 2.5 Pro (Comanici et al., 2025). We guide prompt
695 creation through a categorical scaffolding system that defines the target tool(s), a pre-designed spe-
696 cific theme for the tool, an image count which implicitly specifies how many images should be given
697 in the response, and a difficulty level (low, medium, high). A crucial principle is that all generated
698 prompts are implicit; they describe a desired outcome and image number that necessitates a specific
699 tool without ever naming it, thereby encouraging the model to reason about tool selection and image
700 number. To counteract the agent’s potential aversion to more error-prone tools during RL (a form of
701 reward hacking), we deliberately increase the representation of prompts requiring code and search,
which have higher failure rates than the more predictable diffusion tool.

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

Example 1:

Question: My friend sent me this picture <image>, saying it's Machu Picchu in Peru. Can you verify this? Please provide a report on what makes this site a UNESCO World Heritage site. On the photo, add a yellow star to mark the prominent peak of Huayna Picchu. Then, provide a historical map or drawing of the Inca trail leading to the site. To complete the report, please also include a current photo of llamas at Machu Picchu.

Image Num: 3**Expected Tools:** Edit, Search**Example 2:**

Question: Can you do a basic market comparison between two popular electric vehicles, the Tesla Model 3 and the Ford Mustang Mach-E? Please provide a brief report on their starting price, range, and acceleration (0-60 mph). Also, generate a simple graph comparing their electric range and find some photos showing the exterior and interior of both cars.

Image Num: Inf**Expected Tools:** Code, Search**Example 3:**

Question: Design a 'Cunning Rogue' character for me. Provide a short paragraph on her primary skills and suggested playstyle focused on stealth. Then, generate a horizontal bar chart visualizing her skill levels: Stealth (95), Lockpicking (80), Agility (90), Dagger Use (75), and Poison Crafting (60). Also, create a piece of concept art showing her dressed in dark leather, half-hidden in shadows.

Image Num: 2**Expected Tools:** Code, Diffusion**Example 4:**

Question: Please write a comparative analysis of the DSLR in the first image and the mirrorless camera in the second. Focus on their physical differences like the viewfinder bump and grip size. Using the third image as a style guide, recolor the DSLR from the first picture to have a classic silver and black finish, and add an annotation pointing to the mirror box. Also, find a picture of a RED Komodo cinema camera and use it to illustrate the key features that distinguish professional cinema cameras. Show me both the edited DSLR and the cinema camera.

Image Num: 2**Expected Tools:** Edit, Search

Figure 8: Examples in our training dataset.

For the text-and-image input subset, the generation process is adapted to produce both an instructional prompt and a textual description of required input images. This description is then used to synthesize the image via Nano Banana (Google, 2025a). The composition of this subset is slightly weighted towards the edit tool, as its function is inherently tied to modifying existing visual content.

To ensure the quality and fidelity of the entire dataset, we implement a rigorous multi-stage validation pipeline using GPT-4o (Hurst et al., 2024) as an independent adjudicator. This pipeline verifies three key aspects for each sample: the consistency of the intended image count, the appropriateness of the designated tool for the given instruction, and, for the text-and-image subset, the cross-modal alignment between the synthesized input image and its textual description. Any sample that fails a validation check is discarded, resulting in a high-quality, unambiguous dataset optimized for robust RL-based agent training. Finally, we get around 4k samples.

A critical feature of this dataset is the annotation of each prompt with an image num constraint. This metadata guides the RL training process by specifying the rules of image generation for each task (Section 2.2.2). The constraint falls into one of four categories: images are disallowed (-1), their use is unconstrained (0), a precise quantity n is required ($n \neq 0$), or at least one image is mandatory (Inf).

Figure 8 presents four examples from our training set, with the text that guides the image generation highlighted in yellow. As shown, the prompts do not explicitly state how to generate the image, but the necessary tools are strongly suggested. For instance, in the first example, the phrase "add a yellow star to mark..." implies the need for an image editing tool. Similarly, in the second example, the request for "a graph comparing the electric range" suggests using a code interpreter.

Furthermore, the required number of images is also not explicitly stated. The model must therefore fully comprehend the prompt's intent to determine the correct number of images to generate. We present the distribution of the datasets in Figure 9.

756 **C BENCHMARK DETAILS**
757758
759 To rigorously assess a model’s capability in generating sophisticated, interleaved text-image reports,
760 we develop a new benchmark. This is motivated by two primary limitations we observe in existing
761 public benchmarks (Liu et al., 2024; Zhou et al., 2025b; Chen et al., 2025).762 First, current benchmarks often feature overly simplistic and generic prompts, such as “Generate a
763 travel guide to Beijing with text and images.” The tasks in such benchmarks do not necessitate deep
764 reasoning, and the requested images are often decorative rather than integral to the content (shown
765 in Figure 11). These images typically have low informational density, are stylistically uniform (e.g.,
766 lifestyle photos), and can be adequately produced by standard diffusion models without complex
767 planning. Consequently, they fail to test a model’s ability to generate meaningful, context-aware
768 visuals that are essential for a high-quality report.769 Second, the evaluation protocols of existing benchmarks rely heavily on subjective metrics. They
770 commonly employ models like GPT-4o to score outputs based on broad criteria such as “text-image
771 alignment,” “text quality,” and “image quality.” This approach is problematic, as LLMs tend to
772 assign forgivingly high scores even to suboptimal outputs. In our preliminary tests, we observe
773 instances where a model fails to generate an image and instead provides only a textual description,
774 yet still receives a favorable score from the GPT-4o evaluator. This highlights the unreliability of
775 using vague, subjective rubrics for evaluation.776 To overcome these challenges, our benchmark introduces a new paradigm for both task design and
777 evaluation. We reframe the task of interleaved generation as a “mini-project”. Each prompt in
778 our benchmark provides background context or specific data. The tasks are designed to demand
779 images with high informational value and stylistic diversity, moving beyond simple photographic
780 illustrations. The required images include visuals like data analysis, scientific illustrations, and
781 creative content. In this framework, images are not merely supplementary; they are an indispensable
782 component of the report, carrying critical information that is synergistic with the text. The goal
783 is to ensure that each image serves a distinct purpose, reflecting a genuine user need for visual
784 information. We present four samples in Figure 4, 5, 14, and 15.785 To address the issue of subjective evaluation, we transition from broad rubrics to a sample-specific,
786 objective evaluation protocol. Instead of asking an LLM for a holistic quality score, we design
787 a unique set of concrete and verifiable criteria for each “mini-project” sample. For instance, for
788 a report on sales trends, the evaluation criteria include specific, verifiable checks such as “Does
789 the report accurately generate a line chart for sales from 2014 to 2025 with correct points and labels
790 according to the provided data?” For each sample in our benchmark, we define 10 distinct evaluation
791 metrics. We utilize GPT-4o to assess the generated report against these specific rules, assigning a
792 score on a three-point scale: 0 (requirement not met), 1 (partially met), or 2 (fully met). This
793 method transforms the evaluation from a subjective assessment into a more objective and reliable
794 measurement of a model’s capabilities.795 Our final benchmark is concise yet comprehensive, comprising 30 meticulously designed and man-
796 ually vetted samples. These samples cover a diverse range of topics and user requirements, with 18
797 being text-only inputs and 12 being multi-modal inputs. We deliberately emphasize “quality over
798 quantity”. The compact size of 30 samples is a strategic choice to facilitate rigorous and manage-
799 able human evaluation. Our approach ensures that each sample can be carefully analyzed, enabling
800 a deeper and more accurate understanding of model performance.801 **D MORE EXAMPLES**
802803
804 To further demonstrate the superiority of LLM-I, we provide additional examples drawn from di-
805 verse benchmarks and model backbones. The generated results are shown in Figure 10, 13, 14, and
806 15. Whether on relatively simple tasks such as the ISG benchmark or OpenING benchmark, or on
807 more challenging tasks such as LLMI-Bench, our method — scaling from 4B to 32B models —
808 consistently produces rich, complete responses accompanied by high-quality and highly relevant
809 images. These examples across multiple benchmarks clearly validate both the generalization ability
and the superiority of our approach.

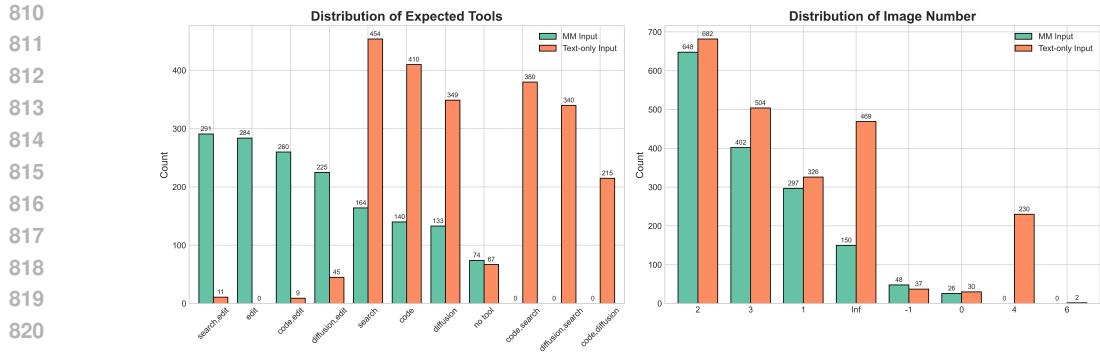


Figure 9: Distribution of our constructed training dataset.

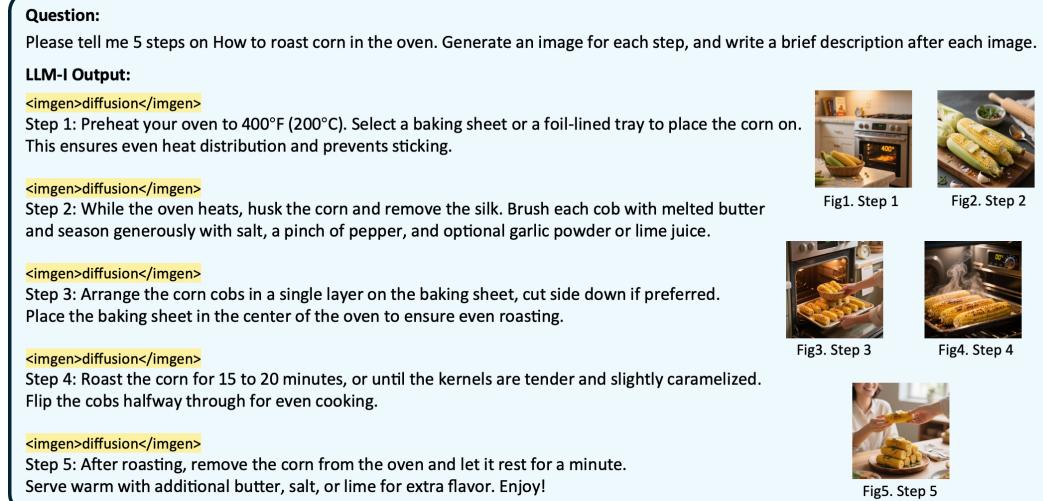


Figure 10: An example generated by LLM-I-4B in the ISG benchmark.

D.1 FAILURE CASE ANALYSIS

We analyze the failure cases of our model, focusing on tool invocation and output quality. First, after RL training, the tool invocation success rate approaches nearly 100%, as shown in Table 2. Learning the correct tag format for tool calls is a relatively straightforward objective for the model during RL. Consequently, the primary sources of failure or unexpected outcomes relate not to the invocation itself, but to the quality or nature of the tool’s output.

One example of an unexpected outcome is shown in Figure 12, which displays the chemical equation for photosynthesis. While the tool call was successful, the resulting image has rendering issues due to font limitations, where subscripts in formulas like CO₂ are not displayed correctly. Additionally, the overall layout is not aesthetically pleasing. This highlights cases where the tool executes correctly, but the output is suboptimal.

More significant failure cases tend to occur with the diffusion tool, particularly for requests involving sensitive topics such as politics or real individuals. Diffusion models often refuse to generate such images. However, a key strength of our RL-trained agent is its ability to adapt. During training, the model learns to pivot from diffusion to the online image search tool for these types of prompts. This is a desirable outcome, as searching for images of real people yields more realistic and factually accurate results, aligning better with user intent. This adaptive strategy demonstrates the model’s capacity to navigate the limitations of individual tools to achieve a better overall result.

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

Question: I want to start a business. Please brainstorm with me about some ways to start a business and help me figure it out. What is the market landscape of the lithium-ion battery electrolyte sector? Please analyze it for me, as I am conducting market research before starting a business. Please output brainstorming results with images and explanations.

LLM-I Output:

Starting a business is an exciting journey, and choosing the right sector—especially one as critical and rapidly evolving as lithium - ion battery electrolytes—can set the foundation for long - term success. Let's break this down step by step: first, we'll brainstorm general business ideas aligned with innovation and scalability, and then we'll dive deep into the lithium - ion battery electrolyte market landscape with visual insights and strategic analysis.

💡 Brainstorming: Innovative Business Ideas to Launch in 2025

Before focusing on electrolytes, let's explore a few high - potential, scalable business avenues that align with sustainability, technology, and global trends:

1. Green Chemicals Startup

Develop sustainable, low - toxicity electrolytes for lithium - ion batteries using bio - based solvents or solid - state alternatives.

2. Battery Recycling & Chemistry Reclamation

Build a circular economy business that recovers lithium, cobalt, and electrolyte components from expired EV batteries.

3. AI - Driven Electrolyte Formulation Platform

Use machine learning to predict the stability, conductivity, and safety profile of new electrolyte formulations, reducing R & D time.

4. Custom Electrolyte SDK for Battery Manufacturers

Offer a modular software and hardware kit for OEMs to rapidly prototype new electrolyte blends (e.g., for high - temperature stability or fast charging).

5. On - Demand Specialty Electrolyte Pod

Create pre - formulated, sealed electrolyte cartridges tailored for different use cases: consumer electronics, drones, solar storage, medical devices.

These ideas leverage emerging tech, environmental concerns, and the global push toward decarbonization—especially in transport and energy storage.

Fig1. Automated battery disassembly line with AI sorting and electrolyte recovery unit

💡 Deep Dive: Lithium - Ion Battery Electrolyte Market Landscape (2025)

💡 Overview

The global lithium - ion battery electrolyte market was valued at **USD 9.2 billion in 2023** and is projected to reach **USD 23.5 billion by 2030**, growing at a **CAGR of ~14.5%**. This explosive growth is driven by rising demand for electric vehicles (EVs), grid - scale energy storage, and consumer electronics.

✓ Key Drivers

•Global EV adoption exceeding 14 million units in 2023 (IEA).

•Expansion of renewable energy systems requiring long - duration storage.

•Battery safety concerns pushing R & D in advanced electrolytes (e.g., solid - state, flame - retardant).

•Rising investments in battery tech by governments (e.g., US IRA, EU Battery Regulation).

✗ Major Challenges

•High volatility in raw material prices (lithium carbonate, ethylene carbonate).

•Environmental impact of conventional electrolyte solvents (e.g., DMC, EMC—volatile and flammable).

•Intellectual property (IP) barriers dominated by large players (e.g., BASF, LG Chem, Mitsubishi Chemical).

•Need for stricter safety and recyclability standards.

💡 Geographical Breakdown

•**Asia - Pacific (65% share):** China dominates production (70% of global electrolyte supply), with strong support from Japanese and Korean battery giants (CATL, BYD, Panasonic).

•**Europe (18%):** Fast - growing due to EU Battery Regulation (2027), which mandates recyclability and carbon footprint labeling.

•**North America (12%):** Surging investments post - IRA (Inflation Reduction Act), with new battery in the U.S. boosting domestic demand.

💡 Technology & Product Segmentation

Type	Market Share (2023)	Key Features	Applications
Liquid Organic Electrolytes (EC/DMC)	90%	Proven, low cost, moderate energy density	EVs, smartphones
Fluorinated Electrolytes	~6%	Enhanced stability, better thermal safety	High - performance EVs
Solid - State Electrolytes	~2%	Non - flammable, high safety, long life	Next - gen EVs, aerospace
Sulfide & Oxide - based	Growing	High ionic conductivity	Prototype batteries

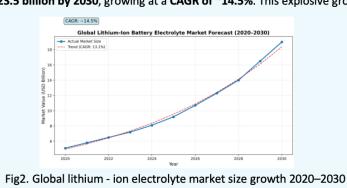


Fig2. Global lithium - ion electrolyte market size growth 2020-2030

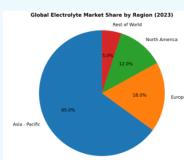


Fig3. Regional market share of lithium - ion battery electrolytes (2023)

Fig4. Comparison of liquid vs. solid - state electrolyte technologies

⚠ Despite 50+ startups in solid - state battery space, **commercial scalability remains a challenge**—cost, interface issues, and manufacturing complexity lag behind liquid electrolytes. This creates a window for **hybrid or engineered liquid electrolytes** with better safety and performance.

💡 Competitive Landscape

•Leading Companies:

•**BASF SE (Germany):** Major global supplier, R & D focused on high - nickel batteries.

•**LG Chem (South Korea):** Integrates electrolyte production with battery cell manufacturing.

•**Suzuki Chemical (Japan):** Specializes in high - purity solvents and additives.

•**Shenzhen Gotian High - Tech (China):** Fast - growing supplier for EVs and energy storage.

•**Emerging Players:** Startups like **Solid Power (USA)**, **QuantumScape (USA)**, **Seeo (China)**, and **Eterna (Germany)** are pushing solid - state boundaries, but none have yet achieved mass - scale production.

💡 Opportunities for New Market Entrants

•**Specialty Additives:** Develop functional additives (e.g., SEI stabilizers, flame - retardant agents) that extend cycle life or enable fast charging.

•**Low - Carbon Electrolyte Production:** Use green solvents and renewable - powered plants to meet EU/US carbon labeling requirements.

•**Custom Formula Kits:** Offer modular electrolyte blends for niche applications (e.g., drones, medical sensors, space).

•**Recyclable Electrolyte Systems:** Design formulations that are easily separable and reusable—aligning with circular economy goals.

•**5. AI - Optimized Formulation Engines:** Democratize R & D via cloud - based electrolyte simulation platforms for small OEMs.

✓ Strategic Recommendation for Starting Your Business

If you're serious about entering the lithium - ion electrolyte space, aim for "**Narrow & Deep**": focus on a **specific gap** rather than trying to compete with BASF or LG Chem.

✓ Recommended Pathway

Launch a high - purity, recyclable, AI - assisted liquid electrolyte additive development lab targeting EV manufacturers in Europe and North America, focusing on **carbon compliance and safety**.

Why this works:

•You avoid direct competition with giants.

•You align with regulatory tailwinds (EU Battery Regulation, IRA).

•You can start small with R & D and lab testing before scaling.

•You can partner with battery pack integrators or recyclers.

💡 Final Thoughts

The lithium - ion battery electrolyte sector is not just growing—it's **transforming**. Safety, sustainability, and performance are now non - negotiable. For a new entrepreneur, this volatility and innovation cycle mean **opportunity**.

If you move fast with a focused, tech - enabled, eco - conscious approach—especially around **sustainable formulations**, **custom solutions**, or **AI - powered R & D**—you could become a key enabler in the next wave of battery tech.

Let me know if you'd like a **feasibility checklist**, **funding strategy**, or a **minimum viable product (MVP) roadmap** for this business idea. I'm here to help you go from concept to launch.

Figure 13: An example generated by LLM-I-30B in the OpenING benchmark.

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

Question:

This is a detail from a famous ancient Chinese painting <image>, incredibly rich in detail. I am preparing materials for an exhibition on 'Digital Cultural Heritage' and need your help to provide an in-depth analysis and a creative reinterpretation of this image. Please prepare a report that includes the following points: Artwork Identification and Background Analysis: First, please identify the name of the painting, the artist, and the dynasty in which it was created. Briefly introduce the historical significance of this artwork and the scenes of societal life it depicts. Detailed Interpretation and Annotation: Directly on the provided image, please use prominent circles with numerical labels to mark at least three interesting details that reflect the era. For example: the shops and vendors along the streets. In the report, provide a detailed text explanation for each numerical label, describing what the detail is and what it reveals about the society, economy, or culture of the time. Comparative Analysis and Expansion: To provide a broader art-historical context, please search for and display another famous ancient Chinese painting with a similar theme but with a distinctly different artistic style or from a different dynasty. In one or two sentences, briefly point out a key difference in artistic style or focus between the two paintings. Digital Colorization and 'Activation': Please perform a high-quality digital colorization of our original detail image, in a style that is both realistic and true to the aesthetic of the period. Based on your colorized version, generate a new, vibrant close-up image that focuses on what you consider the most interesting scene (e.g., the most crowded corner of the bridge), making it look like a realistic, life-like moment with authentic lighting and atmosphere. Creative Scene Narrative: Finally, for the new 'activated' close-up image you've created, write a short, narrative scene of about 200 words, imagining a possible dialogue or event taking place between the figures depicted.

LLM-I Output:

The painting in question is the "Along the River During the Qingming Festival" (清明上河图), created by the Chinese painter Zhang Zeduan during the Northern Song Dynasty. <imgen>search</imgen>

This masterpiece is one of the most significant works of traditional Chinese painting and a notable piece of the Southern Song art scene. This long painting, which measures 528.7 cm long and 24.8 cm high, unfolds like a continuous scroll, depicting a bustling scene of the capital city of Kaifeng (present-day Kaifeng, Henan Province) during the late Northern Song period. The painting showcases a cross-section of Song dynasty life, including postal services, trade, entertainment, and medical practices, providing a vivid and comprehensive picture of urban life in China at that time.

Fig1. Along the River During the Qingming Festival

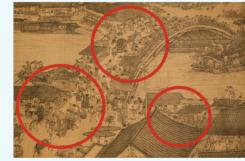


Fig2. Original Detail of Along the River During the Qingming Festival

The historical significance of this artwork cannot be overstated. It serves as a window into the economic, social, and cultural aspects of the dynasty, offering insights into trade practices, social hierarchy, and everyday life. <imgen>edit</imgen>

1.Circle 1: (Middle Left) This circle marks the shops and vendors along the streets. The variety of goods displayed indicates the commercial vibrancy of Kaifeng, reflecting the importance of trade in the Song economy. Small businesses, often family-run, were a common sight, catering to the needs of the local populace and travelers alike. The presence of these vendors suggests a thriving marketplace, a key indicator of urban development during the Song period.

2.Circle 2: (Center) This circle focuses on the people crossing the bridge. Bridges were vital not only for transportation but also for social interaction, as depicted here. The arch of the bridge acts as a natural divider and meeting point, where individuals from different walks of life gather. This scene exemplifies the interconnected nature of society and the role of public spaces in socialization and commerce.

3.Circle 3: (Far Right) This circle highlights the busy activity around the riverbank. The river played a central role in the Song capital, acting as a lifeblood for trade and daily life. Boats, ".

To provide a broader art-historical context, let's search for another famous ancient Chinese painting with a similar theme but with a distinctly different artistic style or from a different dynasty.

Fig3. Scenes along the Xiao and Xiang Rivers

One such work is "Scenes along the Xiao and Xiang Rivers" (潇湘图), created by Dong Yuan in the Tang Dynasty. <imgen>search</imgen>

Key difference in artistic style or focus between the two paintings: The "Along the River During the Qingming Festival" demonstrates a meticulous and realistic style with a detailed depiction of everyday life and architecture, whereas "Scenes along the Xiao and Xiang Rivers" employs a more impressionistic approach, focusing on the poetic beauty of nature and the philosophical contemplation through seasonal occurrences.

Now, let's proceed with the digital colorization of our original detail image. This process aims to bring the ancient artwork to life while maintaining its period-specific aesthetic. <imgen>edit</imgen>

Using the digital colorized version, we can generate a new, vibrant close-up image that focuses on the most interesting scene, making it look like a realistic, life-like moment with authentic lighting and atmosphere. <imgen>diffusion</imgen>

Fig4. Digital Colorization of Along the River During the Qingming Festival

Fig5. Activated Close-Up Scene

In this activated scene, we can imagine a bustling Friday night at the river's edge. The air is thick with the scent of florets and the buzz of conversation. A young messenger, dressed in the simple vestments of a postman, approaches the bustling crowd, his pace cautious yet hurried, carrying a sampan filled with inquiries and letters. A sullen-looking carpenter, wrapped in a dark robe and carrying his tools, exchanges glances with a woman selling the finest silk robes. Her eyes, wide with the potential for purchase, meet his briefly, her fingers already tracing the delicate embroidery on the fabric. The cheers from the lion dancer in the distance echo through the metres of packed streets, their rhythmic beats a stark contrast to the peaceful flutter of damselflies around the oldest trees lining the riverbank. Amidst all these sounds and sights, the worries of social status, business, and personal relations are temporarily forgotten as the community comes together in this shared moment of urban life.

The interplay of colors and light in this close-up scene evokes the vibrant yet serene atmosphere of the Song Dynasty, highlighting the intricate details and the rich tapestry of daily life that the original painting so masterfully captured.

Figure 14: An example generated by MLLM-I-7B in LLMI-Bench.

1026
1027
1028
1029
1030**Question:**

I want to help my students truly "see" and "fall in love with" trigonometry. I've decided to move beyond the rigid sequence of traditional textbooks to create a comprehensive and vivid "Core Concepts of Trigonometry" handout. The goal is for this handout to become a "go-to guide" for my students, not only helping them succeed on exams but also inspiring them to appreciate the beauty of periodicity and harmony in the mathematical world. Please create this comprehensive trigonometry handout. It should be logically structured, progressing from simple to complex, and must include these core modules: 1. The Intuitive Start: From Triangles to the Unit Circle - First, help students gain an intuitive feel for the basic trigonometric ratios. Create an original diagram that is more memorable than a standard textbook geometric figure to explain the concept of SOH CAH TOA. Next, introduce the concept of the "Unit Circle" and explain how it extends the range of trigonometric functions to include any angle, and how it corresponds to the coordinates of points on the circle. 2. Inverse Trigonometric Functions - To promote a deeper understanding of the dynamic nature of sine, cosine, and tangent functions, provide a visual analysis supporting graphs, must cover at least these points: - The relationship between the periodicity, amplitude, and phase shift of the sine (sin) and cosine (cos) functions. - The uniqueness of the tangent (tan) function's graph, with a key explanation for the existence of its "asymptotes" (i.e., where the denominator, cos(x), is zero). 3. The Bridge to Application: Solving a Real-World Problem - Connect theory to practice. Design a relatable word problem (e.g., measuring the height of a building, analyzing the changing angle of sunlight) and provide a detailed, step-by-step solution with visual aids, allowing students to see the practical utility of trigonometry. - Please include a suitable image to accompany this word problem to enhance the context. 4. A Glimpse into the Future: A brief intro to inverse functions - At the end of the handout, to spark curiosity, briefly introduce the concept of inverse trigonometric functions (e.g., arcsin, arccos). Explain that their purpose is to "find the angle from a ratio," setting the stage for future learning.

LLM-I Output:**Core Concepts of Trigonometry: A Comprehensive Guide****1. The Intuitive Start: From Triangles to the Unit Circle****1.1. Building Intuition with Basic Trigonometric Ratios**

Trigonometry, at its core, is the study of the relationships between the sides and angles of triangles. It begins with the right triangle, where the three basic trigonometric ratios—sine, cosine, and tangent—are defined. These ratios are summarized by the popular mnemonic "SOH CAH TOA", which stands for:

SOH: Sine = Opposite / Hypotenuse

CAH: Cosine = Adjacent / Hypotenuse

TOA: Tangent = Opposite / Adjacent

To build a more intuitive and intuitive understanding of these ratios, let's visualize them in a context beyond the standard right triangle: Imagine a lighthouse on a serene coastline. A ship is sailing towards the shore, and the lighthouse casts its beam across the water.

The beam creates a right triangle with the ship, the shore, and the lighthouse tower. In this scenario:

• The **opposite side** is the vertical height of the lighthouse above the horizon.

• The **adjacent side** is the horizontal distance between the ship and the lighthouse base.

• The **hypotenuse** is the direct line of sight from the ship to the top of the lighthouse.

Now, consider how these sides relate to the angle of elevation, θ , which is formed by the ship's line of sight and the horizon. The trigonometric ratios define the relationships between these sides:

• **Sine (sin θ):** The ratio of the vertical height of the lighthouse to the hypotenuse distance.

• **Cosine (cos θ):** The ratio of the horizontal distance to the line of sight distance.

• **Tangent (tan θ):** The ratio of the height of the lighthouse to the horizontal distance.

This visual representation provides a more concrete understanding of the trigonometric ratios. Instead of abstract numbers, we can visualize the ratios as practical measurements in a scenario that students can imagine.

1.2. The Unit Circle: Extending Trigonometry Beyond Acute Angles

While the right triangle provides an intuitive starting point, it limits trigonometry to acute angles (0° to 90°). To explore a broader range of angles, including those greater than 90° or even negative angles, we introduce the **Unit Circle**.

The Unit Circle is a circle with a radius of 1 unit, centered at the origin of a Cartesian coordinate system. Any point on the circle can be represented by its coordinates (x, y) .

1.3. Sine and Cosine Functions: Periodicity and Amplitude

1.3.1. Sine and Cosine Functions

The sine and cosine functions are the foundation of trigonometry, representing periodic oscillations that repeat at regular intervals.

Their graphs reveal several key properties:

• **Amplitude:** The maximum distance from the centerline ($y = 0$) to the peak or trough of the wave. For the standard sine and cosine functions, the amplitude is 1.

• **Period:** The time it takes for one complete cycle of the wave. For the standard sine and cosine functions, the period is 2π .

• **Phase Shift:** The horizontal displacement of the graph from its standard position. This is particularly important when comparing the graphs of sine and cosine, as the cosine function is phase-shifted by $\pi/2$ relative to the sine function.

1.3.2. Sine and Cosine Functions: Periodicity and Phase Shift

The sine and cosine functions are periodic, oscillating between -1 and 1.

The sine function has a period of 2π when $x = \pi/2$, reaches a maximum of 1 at $x = \pi/2$, and completes one full cycle back to 0 at $x = 2\pi$. Its graph is a smooth, repeating wave.

The cosine function has a period of 2π when $x = 0$, reaches a minimum of -1 at $x = \pi/2$, and completes one full cycle back to 1 at $x = 2\pi$. Its graph is identical to the sine function but is shifted to the left by $\pi/2$.

1.4. Comparison of Sine and Cosine Functions

Both sine and cosine functions have a period of 2π .

• **Amplitude:** Both functions have an amplitude of 1.

• **Phase Shift:** The cosine function is phase-shifted by $\pi/2$ relative to the sine function.

1.5. The Tangent Function: Uniqueness and Asymptotes

The tangent function is unique and striking. Unlike sine and cosine, the tangent function is not bounded and has vertical asymptotes at points where the cosine function equals zero (i.e., where the denominator of $\tan(x) = 0$).

Key Feature of the Tangent Function:

• **Unbounded:** The tangent function is undefined whenever $\cos(x) = 0$, which occurs at $x = n\pi/2$ for any integer n . These points correspond to the vertical asymptotes.

• **Periodicity:** The tangent function has a period of π , meaning it repeats its pattern every π radians.

• **Behavior Near Asymptotes:** As x approaches an asymptote from the left, $\tan(x)$ approaches $-\infty$. As x approaches the same asymptote from the right, $\tan(x)$ approaches $+\infty$.

Why Asymptotes Occur:

The tangent function is defined as the ratio of sine to cosine: $\tan(x) = \sin(x)/\cos(x)$. At points where $\cos(x) = 0$, the denominator of this ratio becomes zero, making the function undefined. These points create vertical asymptotes, dividing the graph into repeating segments.

1.6. The Graph of the Tangent Function: Solving a Real-World Problem

1.6.1. Word Problem: Measuring the Height of a Building

Trigonometry is not just an abstract branch of mathematics; it has countless applications in real-world scenarios. One classic application is measuring the height of a building using trigonometric ratios. This problem connects theory to practice, demonstrating how trigonometry can solve practical challenges.

1.6.2. Solving the Problem:

Given Data:

1. You are standing 50 meters away from the building.

2. The angle of elevation to the top of the building is 30° .

Objective:

Calculate the height of the building.

Step-by-Step Solution:

Draw a right triangle where:

1. The horizontal leg is the height of the building (what we want to find).

2. The adjacent side is the distance from your position to the building (50 meters).

3. The angle of elevation is 30° .

This is a right triangle that relates the opposite side and the adjacent side is the tangent function: $\tan(30^\circ) = \text{opposite}/\text{adjacent}$.

2. Setting Up the Equation:

Substitute the known values into the tangent formula: $\tan(30^\circ) = \text{opposite}/\text{adjacent}$

3. Using the Tangent Value:

From a calculator or a calculator, we know: $\tan(30^\circ) \approx 0.577$ Height of the building $\approx 0.577 \times 50 = 28.85$ meters

4. Solving for the Unknown:

Replace the equation to solve for the height: Height of the building $= 0.577 \times 28.85 \approx 28.85$ meters

Final Answer: The height of the building is approximately 28.85 meters.

4. A Glimpse into the Future: Introduction to Inverse Trigonometric Functions

As we reach the end of this journey through the core concepts of trigonometry, it's essential to look ahead to more advanced topics. One fascinating direction is the study of inverse trigonometric functions, which is the process of standard trigonometric functions.

What Are Inverse Trigonometric Functions?

The standard trigonometric functions (sine, cosine, and tangent) are periodic and have a range of $[-1, 1]$. This means they are not one-to-one functions.

They are not one-to-one because they repeat their value for every 2π units. For example, $\sin(0) = \sin(2\pi) = \sin(4\pi) = \dots$

Arccosine (arccos or \cos^{-1}): Given a ratio $y = \cos(x)$, $\arccos(y)$ returns the angle x .

Arctangent (arctan or \tan^{-1}): Given a ratio $y = \tan(x)$, $\arctan(y)$ returns the angle x .

Why Are Inverse Trigonometric Functions Useful?

In many real-world applications, we often know the trigonometric ratio but want to determine the corresponding angle. For instance:

• In engineering, calculating the angle of incline of a slope given its height and base.

• In physics, determining the angle of refraction in light passing through different media.

Key Takeaway for Reminders:

1. **Domain and Range:** Inverse trigonometric functions are restricted to specific domains to ensure they are one-to-one functions.

2. **Arccosine (arccos or \cos^{-1}):** Domain is $[-1, 1]$, range is $[0, \pi]$.

3. **Arctangent (arctan or \tan^{-1}):** Domain is \mathbb{R} , range is $(-\pi/2, \pi/2)$.

4. **Practical Example:** If $\sin(\theta) = 0.5$, then $\theta = \arcsin(0.5)$. Using a calculator or trigonometric tables, we find:

$\theta \approx 30^\circ$ or $\theta \approx 150^\circ$ (quad text) $\theta \approx \pi/6$ (rad)

Looking Ahead:

In the future, you will explore inverse trigonometric functions in greater depth, learning how to apply them to solve complex problems involving angles and ratios.

These functions are a bridge to more advanced topics in mathematics, such as calculus, where they play a crucial role in integration and differentiation.

Conclusion:

Trigonometry is a beautiful and practical branch of mathematics, connecting geometry, algebra, and real-world applications. From the simplicity of right triangles to the elegance of the Unit Circle, and from the dynamic behavior of sine, cosine, and tangent to the inversion of these functions, trigonometry reveals the harmony and periodicity inherent in the mathematical world. By mastering these core concepts, you will not only succeed in your exams but also gain a deeper appreciation for the interconnectedness of mathematical ideas.

Final Thought:

Trigonometry is not just a collection of formulas; it is a language that describes the world around us. Whether you are gazing at the stars, designing bridges, or analyzing waves, trigonometry is the key to understanding the patterns and rhythms of nature. Embrace its beauty, and let it open new doors to discovery!

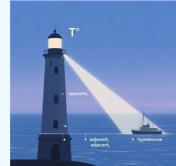


Fig1. Lighthouse Trigonometry Diagram

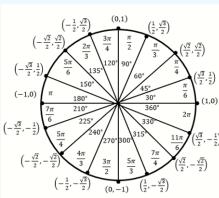


Fig2. Unit Circle Illustration

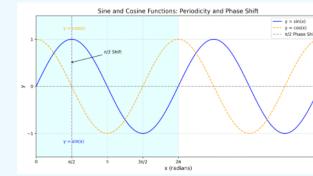


Fig3. Sine and Cosine Graphs

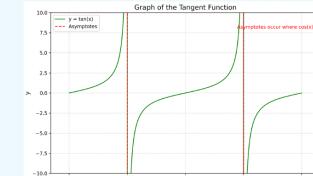


Fig4. Graph of the Tangent Function

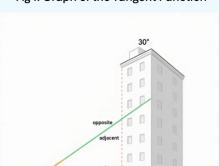


Fig5. Building Height Measurement Diagram

Figure 15: An example generated by MLLM-I-32B in LLMI-Bench.

1070
1071
1072
1073
1074
1075
1076
1077
1078
1079