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Abstract
In this work, we present a scalable approach for
inferring the dark energy equation-of-state param-
eter (w) from a population of strong gravitational
lens images using Simulation-Based Inference
(SBI). Strong gravitational lensing offers crucial
insights into cosmology, but traditional Monte
Carlo methods for cosmological inference are
computationally prohibitive and inadequate for
processing the thousands of lenses anticipated
from future cosmic surveys. New tools for in-
ference, such as SBI using Neural Ratio Esti-
mation (NRE), address this challenge effectively.
By training a machine learning model on sim-
ulated data of strong lenses, we can learn the
likelihood-to-evidence ratio for robust inference.
Our scalable approach enables more constrained
population-level inference of w compared to indi-
vidual lens analysis, constraining w to within 1σ.
Our model can be used to provide cosmological
constraints from forthcoming strong lens surveys,
such as the 4MOST Strong Lensing Spectroscopic
Legacy Survey (4SLSLS), which is expected to
observe 10,000 strong lenses.

1. Introduction
Dark energy, which comprises approximately 70% of the
energy density of the universe, plays a pivotal role in driv-
ing the accelerated expansion of the universe. Yet, the na-
ture of dark energy remains a prominent puzzle in physics.
Central to understanding its fundamental nature is the dark
energy equation-of-state parameter (w = p/ρ), the ratio
between the dark energy pressure (p) and the energy den-
sity (ρ). High-precision constraints on w are crucial for
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understanding the fate of the expansion of the universe (e.g.,
Caldwell et al., 2003; Sahni, 2002). Constraints on dark
energy have been provided through observations of the Cos-
mic Microwave Background (CMB; Planck Collaboration,
2020), supernova (Riess et al., 2016), and Baryon Acoustic
Oscillations (BAO; Alam et al., 2017) which are in broad
agreement with the constant value of w = −1 according to
the Λ cold dark matter (ΛCDM) cosmological model (Es-
camilla et al., 2023). However, w is degenerate with other
cosmology parameters such as the Hubble constant H0 and
the dark matter density Ωm, necessitating careful statistical
analysis combining multiple observational probes. Given
the existing tensions in cosmology parameter estimates us-
ing probes from the early and late universe observations
(e.g., Leizerovich et al., 2023), improving constraints on w
using independent cosmological probes like strong gravita-
tional lensing is crucial.

The dark energy equation-of-state parameter can be con-
strained through the distance ratio from static galaxy-galaxy
strong lens systems by combining lensing and stellar dynam-
ical measurements. The constraints on w have been obtained
from a population ofO(100) strong lens systems (Cao et al.,
2015; Jie et al., 2016) using Markov Chain Monte Carlo
(MCMC) with analytic likelihoods (Lewis & Bridle, 2002).
However, traditional MCMC methods are limited by the
need for accurate and efficient lens modeling with numer-
ous parameters, making it computationally prohibitive to
analyze large datasets. More efficient techniques to model
strong lensing systems are required in the upcoming era
of Legacy Survey of Space and Time (LSST; Ivezic et al.,
2008), Euclid Wide Survey (Euclid Collaboration, 2022),
and Roman Space Telescope High Latitude Wide Area Sur-
vey (Spergel et al., 2015) whereO(105) strong lens systems
will be discovered (Holloway et al., 2023). Spectroscopic in-
formation from surveys such as the 4MOST Strong Lensing
Spectroscopic Legacy Survey (4SLSLS; Collett et al., 2023),
expected to observe about 10,000 strong lenses, will provide
better constraints on w (Li et al., 2024). However, the analy-
ses so far are limited by the complexity of lens modeling in
calculating the analytical likelihood, highlighting the need
for faster and scalable inference algorithms.

AI-based methods such as Simulation-Based Inference (SBI)
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using Neural Posterior Estimation (NPE) and Neural Ratio
Estimation (NRE) have emerged as powerful methods for
posterior inference without explicitly calculating the like-
lihood (Cranmer et al., 2020). These methods have been
successfully applied in various astrophysical and cosmology
studies (Brehmer et al., 2019; Legin et al., 2021; Gerardi
et al., 2021; Wagner-Carena et al., 2021; Zhang et al., 2022;
Khullar et al., 2022; Poh et al., 2022; Mishra-Sharma &
Cranmer, 2022; Wagner-Carena et al., 2023; Moser et al.,
2024; Lemos et al., 2024). The NRE method involves train-
ing a neural network on simulations of data to estimate the
likelihood-to-evidence ratio (Hermans et al., 2020) which
can then be used to perform approximate Bayesian inference.
This approach allows for efficient posterior inference with-
out the need for explicit likelihood evaluations, making it
particularly useful for complex simulations with intractable
likelihoods. Moreover, NRE facilitates population-level
inference, allowing for inference on parameters common
across a population while marginalizing over variables in-
cluded in the simulation but not of inferential interest (nui-
sance parameters). A key advantage of these SBI methods
is their ability to amortize the computational cost of the in-
ference procedure where after an upfront cost of simulation
and neural network model training, efficient inference can
be performed on a large number of observations.

This analysis presents the first application of NRE for
population-level inference, constraining the dark energy
equation-of-state parameter w from strong gravitational lens
images. We estimate the posterior distribution of w from the
likelihood-to-evidence ratio from NRE using MCMC sam-
pling and analytical calculations. After introducing strong
gravitational lensing and the simulation setup (Section 2),
we delve into the background of NRE and details of poste-
rior calculation methods (Section 3). Details on the training
and test data used for the NRE model are then provided in
Section 4. Section 5 focuses on the analysis and results.
We evaluate the performance of the trained NRE model by
comparing its predicted values of w to the true values. Fur-
thermore, we present the population-level inference results,
showcasing the ability of NRE to constrain w simultane-
ously from multiple lens systems. Finally, in Section 6, the
key findings are summarized, accompanied by an outlook
on potential future analyses.

2. Strong Gravitational Lensing
Strong gravitational lensing is a phenomenon in which the
mass distribution of a galaxy (the lens) distorts the light
from a background source, producing distorted and mag-
nified images of the source in the observed image plane.
This phenomenon arises due to the multiple solutions to
the lens equation. In the case of a point-like background
source, such as a quasi-stellar object (QSO) or a supernova,

the lensing effect can lead to the formation of multiple im-
ages of the source. In the case of an extended background
galaxy, lensing results in an arc-like structure in the image
plane, which we refer to as galaxy-galaxy lensing. Future
surveys are expected to discover thousands of galaxy-galaxy
strong lenses making this increasingly relevant for high-
redshift and cosmology studies. Notably, the strong lensing
observations can constrain the dark energy equation-of-state
parameter w, which plays a crucial role in our understanding
of the expansion of the universe. The constraint on w can
be derived from the analysis of the distance ratio, defined as
the ratio of the angular diameter distance between the lens
and the source, and the distance between the source and the
observer. In this section, we present some of the equations
that are used in the simulator.

The lens equation relates the source position β to the lensed
source position θ through the deflection angle α(θ) as

β = θ − α(θ). (1)

The deflection field is described by the projected surface
mass density κ(θ) = Σ(θ)/Σcr. The critical lensing sur-
face density Σcr is given by

Σcr =
1

4π G

Ds

DlsDl
, (2)

where Dl, Ds, and Dls are the angular diameter distances
between the observer and the lens, the observer and the
source, and the lens and the source, respectively. In wCDM
cosmology, the angular diameter distance depends on the
astrophysical (local) parameters of redshift for the source
and the lens and on cosmology (population-level) parame-
ters — Hubble constant H0, matter density parameter Ωm,
dark energy density parameter Ωde = 1−Ωm, and the dark
energy equation-of-state parameter w:

D(z,H0,Ωm, w) =
1

1 + z

c

H0

∫ z

0

dz′

h(z′,Ωm, w)
, (3)

where the Hubble parameter is

h2(z,Ωm, w) = Ωm(1+z)3+(1−Ωm)(1+z)3(1+w). (4)

The Einstein radius is given by (Treu, 2010):

θE = 4π
(σv

c

)2 Dls

Ds
. (5)

Through observations of the Einstein ring from strong lens-
ing and stellar velocity dispersion from dynamical studies,
the cosmology (Ωm, w) can be constrained through the dis-
tance ratio Dls

Ds
.

We model the mass of the lens using a Singular Isothermal
Ellipsoid (SIE) profile (Kormann et al., 1994). The conver-
gence of the lens is described by θE , lens position (xl, yl),
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and the ellipticity of the lens (le1, le2). We model the light
profile of the source using a Sersic profile (Sersic, 1968)
which is described by the magnitude of the source (ms) at
the effective radius R, the source position (xs, ys), Sersic
index n, and the source ellipticity (se1, se2).

3. Simulation-based Inference
Given a population of strong lens images, our goal is to
infer the dark energy equation-of-state parameter w. In
the context of population-level inference, we implement an
approach akin to hierarchical Bayesian modeling, where
we combine information from a sample of observations to
obtain tighter constraints on the parameters that are common
across the population. In Bayesian inference, the posterior
is given by

p(w|x) = p(x|w)
p(x)

p(w), (6)

where p(w) is the prior on w, p(x|w) is the likelihood of
the data x given w, and p(x) is the evidence. The likelihood
depends on nuisance parameters (ν) that we integrate over:

p(x|w) =
∫

p(x, ν|w)dν, (7)

where p(x, ν|w) is the combined likelihood of observed
variables and nuisance parameters. In many scenarios in
modern cosmology, the likelihood is intractable because of
the large number of nuisance parameters, which require a
high-dimensional integral. In this work, we employ NRE
to obtain the posterior p(w|x) (Cranmer et al., 2015; Baldi
et al., 2016). With NRE, a classification neural network is
trained to model the likelihood ratio between two hypothe-
ses. Each hypothesis represents a probability distribution
from which the samples (x,w) are drawn. If one of the hy-
potheses is that the samples are drawn from p(x|w) and the
other is pref(x|w), the likelihood ratio r(x|w) = p(x|w)

pref (x|w) .
Using a Binary Cross Entropy Loss (BCE) function, the
optimal classifier that differentiates the samples drawn from
these two hypotheses is given by

d∗(x,w) =
p(x|w)

p(x|w) + pref(x|w)
. (8)

The ratio r(x|w) is related to the classifier d∗(x,w) as

r(x|w) = d∗(x,w)

1− d∗(x,w)
. (9)

The classification neural network learns to map the (x,w)
samples to the class probabilities through its final layer. The
layer preceding the final activation outputs the logit, which
is the logarithm of the likelihood ratio log r(x|w).

In our analysis, we use a classifier to distinguish between
the sample-parameter pairs: (x,w) ∼ p(x,w) drawn from

the joint distribution with class label y = 1 and (x,w) ∼
p(x)p(w) drawn from the marginal distribution with class
label y = 0. If we consider the two hypotheses to be the
joint and the marginal distribution, the network learns the
likelihood-to-evidence ratio r(x|w) = p(x,w)

p(x)p(w) = p(x|w)
p(x)

(Hermans et al., 2020).

The joint likelihood-to-evidence ratio from a population of
lenses {x} can be obtained by combining the likelihood
ratio from individual lenses under the assumption that the
observations are independent and identically distributed.
This joint likelihood ratio can be written as

r({x}|w) =
∏
i

r(xi|w) =
∑
i

log r(xi|w). (10)

An important advantage of estimating the likelihood-to-
evidence ratio is its ability to combine the information from
a population of observations that have the same underlying
parameter of interest. This provides more robust constraints
on the population-level parameters (Brehmer et al., 2019;
Zhang et al., 2022).

3.1. Neural Ratio Estimation Model Architecture

To learn the likelihood ratios, we use a ResNet architecture
(He et al., 2015). The model architecture is shown in Table
2 in Appendix A.

We implement the model in TensorFlow (Abadi et al., 2016).
The inputs to the model are the images and the correspond-
ing parameter of interest (w) that generated the images. As
a pre-processing step, we normalize the images in the train-
ing data. The samples from the marginal distribution are
generated in each batch, where w is randomly selected for
each image. Performing the randomization at the batch
level gives the network more random samples to differen-
tiate between the two distributions. Batch normalization is
applied to the data followed by a convolutional layer with
batch normalization and ReLU activation function, serving
as the entry block. Residual connections are introduced
to preserve essential information across subsequent convo-
lutional blocks of increasing depth and complexity. Each
convolutional block consists of two convolutional layers
with batch normalization and ReLU activations, followed
by max-pooling for spatial downsampling. We perform
global average pooling to reduce the size of the images. The
residual from the previous convolution block is added to
the output from the current convolution layer and this is the
input to the next convolution block. The architecture further
includes a convolutional layer and global average pooling
to output a one-dimensional tensor. The w values are em-
bedded with a dense layer and concatenated with the image
representations for joint analysis. Regularization techniques,
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such as dropout and L2 regularization, are applied to the
dense layers to prevent overfitting. The architecture outputs
logits which is log

(
p(x|w)
p(x)

)
. We use the output from the

trained model to estimate the posterior p(w|x).

We train the network by minimizing the BCE loss function
by dynamically adjusting the learning rate when the vali-
dation loss is plateaued by a decay factor of 0.1 starting
from 1e−2 to 1e−6, if the validation loss does not improve
over five epochs. The model is trained over 100 epochs with
a batch size of 1024 using Adam optimizer. We include
an option for early stopping if the validation loss does not
improve over 20 epochs. The model is trained on NVIDIA
A100 GPU for 71 epochs with a typical training time of 25
minutes.

3.2. Population-level Posterior Inference

Given the likelihood-to-evidence ratio, we calculate the
posterior using two methods. The first is sampling from
the joint likelihood ratio using MCMC, and the second is
calculating the posterior analytically for each w value drawn
from the prior without the need for sampling. Using both
MCMC and analytical calculation of the posterior from
the likelihood-to-evidence ratio serves as complementary
methods to validate the accuracy and consistency of the
results.

3.2.1. POSTERIOR FROM MCMC

We infer the posterior distributions of w by carrying
out MCMC sampling using the Metropolis-Hastings algo-
rithm (Hastings, 1970) from the log likelihood-to-evidence
ratio obtained from NRE. We implemented MCMC using
the emcee package (Foreman-Mackey et al., 2013). The
prior range to draw w values is the same as the training prior.
We initiate five walkers randomly around a starting value of
w = −1.0. We implement a series of two warm-up periods,
with 100 and 500 steps respectively, where the walkers con-
verge to the target distribution. The position of the walkers
is reset to the value that was converged on after each warm-
up. After the two warm-ups, we run the sampling for 1000
steps. The log likelihood-to-evidence ratio log r({x}|w) for
a population of images from Equation 10 is estimated for
each w value drawn from the prior using the trained NRE
model followed by summation of the ratios.

3.2.2. ANALYTICAL POSTERIOR

The population-level posterior can be analytically calcu-
lated from the individual likelihoods when there are few
enough latent parameters — i.e., when the evidence con-
tains a tractable integral.

From Equations 6 and 10, the posterior p(w|{x}) from a

population of observations {x} is given by

p(w|{x}) =
p(w)

∏
i r(xi|w)∫

dw′ p(w′)
∏

i r(xi|w′)
,

= p(w)

(∫
dw′ p(w′)

∏
i

r(xi|w′)

r(xi|w)

)−1

.

(11)

We generate a list of w values in the prior range and analyti-
cally calculate the above equation for a population of strong
lens images at each w.

4. Data
We generate images of strong lenses using
deeplenstronomy (Morgan et al., 2021) which
is built on lenstronomy (Birrer et al., 2015; Birrer
& Amara, 2018). The main components of simulating
galaxy-galaxy strong lenses are the lens’s mass profile, the
source’s light profile, and the angular distance diameters
between the observer, source, and lens.

We assume that the astrophysics parameters are independent
of the cosmology and also independent of each other for
simplicity of modeling. We also assume that the lens light is
perfectly subtracted from the images. The lens light is often
subtracted before lens modeling and there has been work
done on automating this process (Hezaveh et al., 2017). We
set the lens and source positions to (0, 0), lens redshift zl =
0.1, source redshift zs = 2.0, stellar velocity dispersion =
200 km/s, H0 = 70 (km/s)/Mpc and Ωm = 0.3.

In our model, we have:

• observable x: strong lens image;

• parameter of interest w: dark energy equation-of-state
parameter;

• nuisance parameters ν: lens ellipticity (le1, le2), mag-
nitude of the source ms, source effective radius R,
source Sersic index n, and source ellipticity (se1, se2).
While these nuisance parameters are incorporated into
the simulation process to generate the images, our ob-
jective does not involve inferring their values.

The strong lens images are generated by sampling from the
uniform prior distribution of these parameters as shown in
Table 1. To generate images representative of the survey
conditions, we use DES Data Release 1 (DES Collaboration,
2018) with a pixel scale of 0.263 arcsec/pixel, CCD detector
gain of 6.083 e−/count, and read noise of 7.0 e−. We simu-
late g-band images with a magnitude zero point of 30.0. We
include the sky brightness, seeing, and the effective number
of exposures based on the survey’s empirical values. The
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Figure 1. Left: Sample of training data with the w value used to generate the image. Right: the Einstein radius θE as a function of the
dark energy equation-of-state parameter w. The variation in θE is larger at higher values of w than at the lower values.

images have a size of 32 x 32 pixels. The training and vali-
dation dataset includes 640,000 images and 160,000 images,
respectively. To assess the model’s performance, we use a
test dataset of 2,000 images generated from the same prior
range as the training dataset. For the population-level in-
ference, we create three distinct datasets, each consisting
of 3,000 images with a common w value across all images
within that dataset. Specifically, these three datasets are
generated with wtrue fixed to−1.2,−1.0, and−0.8, respec-
tively. The purpose of these datasets is to assess the capacity
of the model to constrain the common value of w simul-
taneously from multiple observations within a population.
A sample of the training data is shown in Figure 1 (left).
In Figure 1, we show the correlation between the Einstein
radius θE and w in the training data: the variation in θE is
greater at high w values compared to low w. The code and
the dataset used in this paper can be found in our github
repository 1.

5. Results
With the trained NRE model, we infer the cosmological
parameter w on a dataset of 2,000 individual strong lenses
generated from the same distribution as the training data.
We also perform population-level inference on a dataset of
3,000 strong lens images that share a common w value. This
analysis is done to assess the improvement in constraining
w by combining information from multiple observations
within the population.

We assess the performance of the trained NRE model using
the Receiver Operating Characteristic (ROC) curve for dif-
ferent thresholds as shown in Figure 2 (left). The area under
the ROC curve (AUC) is ∼ 0.92, which indicates that the

1https://github.com/deepskies/DarkEnergy_SBI_NRE

model has high discriminating power. We also check the
model’s stability by training it on the same training dataset
but with three different weight initializations—set by three
different random seeds. The models from the three seeds
have almost identical ROC curves indicating that the model
training converges to similar optimal classifiers.

We calculate the posteriors for the 2,000 images using the
analytical method described in Section 3.2.2. The analytical
posterior approach is computationally less expensive for
individual images, especially for large datasets, compared
to the MCMC sampling method outlined in Section 3.2.1.
We present the mean equation-of-state parameter wpred and
associated 1σ uncertainties obtained from the posterior of
each image in Figure 2 (middle, top). The figure indicates
that wtrue most often lies within the predicted 1σ uncer-
tainty for most data points. However, for observations with
wpred ≲ −1.4, the posteriors are less constrained compared
to those with wpred ≳ −1.4. We suggest that this is due to
the smaller variation in θE at low wtrue than at high wtrue

as seen in Figure 1, which limits the model’s capacity to pre-
dict features as effectively as it does for high wtrue values.
Figure 2 (middle, bottom) illustrates the bias between the
true and predicted values relative to the true value, with er-
ror bars scaled by the true value accordingly. The low wtrue

values exhibit more bias compared to high wtrue consistent
with the explanation from the model performance in the low
wtrue range. In future studies, we will examine the training
set in more detail and attempt to design priors that mitigate
biases in predictions.

Figure 2 (right) presents the posterior coverage for three
different random seeds for the network weight initialization.
The posterior coverage is a measure of how well-calibrated
the predicted uncertainties of the posteriors are. In a well-
calibrated model, the fraction of observations within a pos-
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Table 1. Parameter distributions used to generate training and test sets. For the population-level inference, we generate datasets with a
fixed w value that is common across all the images. Uniform distributions are denoted by U .

Parameter Name Training Priors Test Priors and Fixed values

Cosmology

w Dark Energy Equation of State U(−2.0,−0.34) U(−2.0,−0.34), −1.2, −1.0, −0.8
H0 [km/s/Mpc] Hubble constant 70.0 70.0
Ωde Dark Matter density 0.7 0.7
Ωm Dark Matter density 0.3 0.3

Lens Parameters

le1 lens ellipticity U(−0.1, 0.1) U(−0.1, 0.1)
le2 lens ellipticity U(−0.1, 0.1) U(−0.1, 0.1)

Source Light Parameters

ms magnitude U(19, 24) U(19, 24)
R [arcsec] half-light radius U(0.1, 3.0) U(0.1, 3.0)
n sersic index U(0.5, 8.0) U(0.5, 8.0)
se1 source ellipticity U(−0.1, 0.1) U(−0.1, 0.1)
se2 source ellipticity U(−0.1, 0.1) U(−0.1, 0.1)
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Figure 2. Left: The model performance on 2,000 test images is shown by the Receiver Operating Characteristic (ROC) curve for three
models with different seed initialization. Middle Top: The parity plot showing true Vs predicted w values with the mean and 1σ error
obtained from the analytical posterior calculation (Section 3.2.2). Middle Bottom: The bias plot with the scaled error. The expected value
is shown by the red dashed line. Right: The posterior coverage plot for different weight initialization demonstrating that the model is
well-calibrated.
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terior volume should match the confidence interval of that
volume. For example, a posterior with 68% (1σ equivalent)
confidence interval should contain the true value within that
confidence interval 68%of the time. Figure 2 (right) shows
that the model uncertainty is well-calibrated for all random
seeds initialization — i.e., all curves follow the diagonal
dashed line.

The analytical posteriors for five of the 2,000 images from
Figure 2 are shown in Figure 3. The posteriors converge to
a similar distribution for different random seeds, indicating
the model’s stability.

For the population-level analysis, we estimate the posteri-
ors from the joint likelihood-to-evidence ratio using two
complementary methods: MCMC sampling and analytical
calculation. While MCMC sampling is widely used and
particularly efficient in high-dimensional parameter space,
it can be computationally expensive. In contrast, the analyti-
cal calculation of the posterior is a computationally efficient
alternative that is suitable in low dimensions. Comparing
the posteriors obtained from both methods will validate the
accuracy and consistency of the population-level inference.

We perform population-level inference analysis on three
datasets with w = −0.8,−1.0,−1.2 as described in Section
4. Figure 4 shows the MCMC posterior densities (top panel)
and the analytical posterior (bottom panel) for the three w
values, each inferred from the joint likelihood-to-evidence
ratio of 500, 1000, 2000, and 3000 strong lens observations.
The posterior is better constrained around the true value for
the inference performed on the larger population.

Figure 5 presents the mean and 1σ error of w obtained from
MCMC and analytical posterior using the joint likelihood-to-
evidence ratio of 5, 100, 500, 1000, 2000, and 3000 images.
Consistent with the posterior distributions in Figure 4, the
posterior widths of w decrease with increasing population
size. This behavior is observed for both the MCMC and an-
alytical approaches to estimating the posteriors. This result
highlights the potential gain in precision achievable by com-
bining information from a larger population of observations.

6. Conclusions and Outlook
This study presents the first exploration of the capability of
Neural Ratio Estimation (NRE) to constrain the dark energy
equation-of-state parameter w from a population of strong
gravitational lenses.

We use NRE to train a neural network on simulated strong
lens images and the corresponding w to estimate the
likelihood-to-evidence ratio p(x|w)

p(x) . We then use this ratio to
compute the posterior p(w|x) using two methods—MCMC
and analytical calculation. The main results and conclusions
from our analysis are:

1. We find that the likelihood-to-evidence ratio classifier
has high discriminatory power with an AUC ∼ 0.92.
We also find that it is stable to changes in the neural
network weight initialization.

2. From the analytical posterior analysis of 2,000 test
images, we find that the true value lies within 1σ of
the posterior for most of the observations. However,
the model’s performance is less efficient in constrain-
ing low values of w compared to higher values, as the
variation in the observable Einstein radius is less pro-
nounced at low w, limiting the model’s ability to learn
in that regime. We aim to address this in future work
by updating the training distribution to account for the
difference in model performance.

3. From the posterior coverage plots, we find that the
model is well-calibrated irrespective of the weight ini-
tialization.

4. We perform population-level analysis by estimating
the posterior using the joint likelihood-to-evidence ra-
tio. Comparing the joint posterior for w values of -0.8,
-1.0, and -1.2 obtained through both MCMC and ana-
lytical calculation, we observe that the posterior width
decreases with an increasing number of observations
in the inference population.

From our analysis, we demonstrate that the dark energy
equation-of-state parameter is better constrained from a
population of strong lenses than from individual images. In
this proof-of-concept analysis, we use a simplified dataset
designed with sufficient variation for training: fixed lens
redshift, source redshift, and stellar velocity dispersion; and
varying the lens ellipticity, source magnitude, half-light
radius, Sersic index, and source ellipticity. Improvements
upon our study could include inference from more complex
and realistic images representing different configurations of
sources and lenses, testing observational aspects of other
surveys, and performing a joint inference of w and Ωm.
With upcoming surveys anticipated to discover thousands of
strong lenses, there is a significant opportunity for scientific
discovery. To fully utilize the data from these surveys, we
must harness scalable population-level inference methods,
such as the one demonstrated in this analysis.
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Figure 3. Strong lens images (top) and the associated posterior predictions from the analytic method (bottom) with three different random
seeds in each case for the neural network weight initialization. The black dashed line shows the true w for each inference.

0

100

200

300

400

500

600

Fr
eq

ue
nc

y

500 images
1000 images
2000 images
3000 images

-0.
80

6
-0.

80
4

-0.
80

2
-0.

80
0

-0.
79

8
-0.

79
6

-0.
79

4

w

0.0

0.2

0.4

0.6

0.8

1.0

p(
w|

{x
})

-1.
00

6
-1.

00
4

-1.
00

2
-1.

00
0

-0.
99

8
-0.

99
6

-0.
99

4
-0.

99
2

w
-1.

20
6

-1.
20

4
-1.

20
2

-1.
20

0
-1.

19
8

-1.
19

6
-1.

19
4

-1.
19

2
-1.

19
0

w

Figure 4. The posterior inference p(w|{x}) from the joint population analysis of 500, 1000, 2000, and 3000 strong lens images is shown.
The posteriors for w = −0.8,−1.0, and −1.2 is shown from left to right. Top: The posterior obtained from MCMC sampling (Section
3.2.1). Bottom: The posterior obtained from analytical calculations (Section 3.2.2). In both the methods, the posterior is more constrained
as the number of observations in the population increase.

8



Dark Energy Constraints using Simulation-Based Inference

-0.82

-0.81

-0.80

-0.79

-0.78

w P
re

d

MCMC
Analytical
wTrue = 0.8

-1.01

-1.00

-0.99

-0.98

w P
re

d

wTrue = 1.0

0 500 1000 1500 2000 2500 3000
Number of images for inference

-1.22

-1.21

-1.20

-1.19

-1.18

-1.17

w P
re

d

wTrue = 1.2

Figure 5. Population-level MCMC predictions of the dark energy
equation-of-state parameter wpred as a function of the population
size (5, 100, 500, 1000, 2000, and 3000 strong lens images) for
three different values of wtrue (-0.8, -1.0, -1.2). The posterior
converges to the true value as the number of observations in the
population increases.

9



Dark Energy Constraints using Simulation-Based Inference

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Lev-
enberg, J., Mane, D., Monga, R., Moore, S., Murray, D.,
Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever,
I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M.,
Wicke, M., Yu, Y., and Zheng, X. TensorFlow: Large-
Scale Machine Learning on Heterogeneous Distributed
Systems. arXiv e-prints, art. arXiv:1603.04467, March
2016. doi: 10.48550/arXiv.1603.04467.

Alam, S., Ata, M., Bailey, S., Beutler, F., Bizyaev, D.,
Blazek, J. A., Bolton, A. S., Brownstein, J. R., Burden,
A., Chuang, C.-H., Comparat, J., Cuesta, A. J., Daw-
son, K. S., Eisenstein, D. J., Escoffier, S., Gil-Marín, H.,
Grieb, J. N., Hand, N., Ho, S., Kinemuchi, K., Kirkby, D.,
Kitaura, F., Malanushenko, E., Malanushenko, V., Maras-
ton, C., McBride, C. K., Nichol, R. C., Olmstead, M. D.,
Oravetz, D., Padmanabhan, N., Palanque-Delabrouille,
N., Pan, K., Pellejero-Ibanez, M., Percival, W. J., Pe-
titjean, P., Prada, F., Price-Whelan, A. M., Reid, B. A.,
Rodríguez-Torres, S. A., Roe, N. A., Ross, A. J., Ross,
N. P., Rossi, G., Rubiño-Martín, J. A., Saito, S., Salazar-
Albornoz, S., Samushia, L., Sánchez, A. G., Satpathy, S.,
Schlegel, D. J., Schneider, D. P., Scóccola, C. G., Seo,
H.-J., Sheldon, E. S., Simmons, A., Slosar, A., Strauss,
M. A., Swanson, M. E. C., Thomas, D., Tinker, J. L., To-
jeiro, R., Magaña, M. V., Vazquez, J. A., Verde, L., Wake,
D. A., Wang, Y., Weinberg, D. H., White, M., Wood-
Vasey, W. M., Yèche, C., Zehavi, I., Zhai, Z., and Zhao,
G.-B. The clustering of galaxies in the completed SDSS-
III Baryon Oscillation Spectroscopic Survey: cosmologi-
cal analysis of the DR12 galaxy sample. MNRAS, 470(3):
2617–2652, September 2017. doi: 10.1093/mnras/stx721.

Baldi, P., Cranmer, K., Faucett, T., Sadowski, P., and White-
son, D. Parameterized neural networks for high-energy
physics. European Physical Journal C, 76(5):235, May
2016. doi: 10.1140/epjc/s10052-016-4099-4.

Birrer, S. and Amara, A. lenstronomy: Multi-purpose grav-
itational lens modelling software package. Physics of
the Dark Universe, 22:189–201, December 2018. doi:
10.1016/j.dark.2018.11.002.

Birrer, S., Amara, A., and Refregier, A. Gravitational Lens
Modeling with Basis Sets. ApJ, 813(2):102, November
2015. doi: 10.1088/0004-637X/813/2/102.

Brehmer, J., Mishra-Sharma, S., Hermans, J., Louppe, G.,
and Cranmer, K. Mining for Dark Matter Substructure: In-
ferring Subhalo Population Properties from Strong Lenses

with Machine Learning. ApJ, 886(1):49, November 2019.
doi: 10.3847/1538-4357/ab4c41.

Caldwell, R. R., Kamionkowski, M., and Weinberg, N. N.
Phantom Energy: Dark Energy with w<-1 Causes a Cos-
mic Doomsday. Phys. Rev. Lett., 91(7):071301, August
2003. doi: 10.1103/PhysRevLett.91.071301.

Cao, S., Biesiada, M., Gavazzi, R., Piórkowska, A., and Zhu,
Z.-H. Cosmology with Strong-lensing Systems. ApJ, 806
(2):185, June 2015. doi: 10.1088/0004-637X/806/2/185.

Collett, T. E., Sonnenfeld, A., Frohmaier, C., Glazebrook,
K., Sluse, D., Motta, V., Verma, A., Anguita, T., Koop-
mans, L., Tortora, C., Courbin, F., Cabanac, R., Frye,
B., Smith, G. P., Diego, J. M., Alteiri, B., Lopez, S.,
Fassnacht, C., Cooray, A., Goobar, A., Ryczanowski, D.,
Serjeant, S., Richard, J., Treu, T., Moustakas, L., Li, R.,
Jacobs, C., Lemon, C., Marchetti, L., Hartley, P., Jullo, E.,
Lee, C. H., Birrer, S., Fritz, A., Nightingale, J., Napoli-
tano, N., Plazas, A. A., Kruk, S., Spiniello, C., Grillo, C.,
Suyu, S., Shajib, A., Vernardos, G., Dye, S., Daylan, T.,
Newman, J., and Schuldt, S. The 4MOST Strong Lensing
Spectroscopic Legacy Survey (4SLSLS). The Messenger,
190:49–52, March 2023. doi: 10.18727/0722-6691/5313.

Cranmer, K., Pavez, J., and Louppe, G. Approximating
Likelihood Ratios with Calibrated Discriminative Classi-
fiers. arXiv e-prints, art. arXiv:1506.02169, June 2015.
doi: 10.48550/arXiv.1506.02169.

Cranmer, K., Brehmer, J., and Louppe, G. The frontier of
simulation-based inference. Proceedings of the National
Academy of Science, 117(48):30055–30062, December
2020. doi: 10.1073/pnas.1912789117.

DES Collaboration. The Dark Energy Survey: Data Release
1. ApJS, 239(2):18, December 2018. doi: 10.3847/
1538-4365/aae9f0.

Escamilla, L. A., Giarè, W., Di Valentino, E., Nunes, R. C.,
and Vagnozzi, S. The state of the dark energy equation of
state circa 2023. arXiv e-prints, art. arXiv:2307.14802,
July 2023. doi: 10.48550/arXiv.2307.14802.

Euclid Collaboration. Euclid preparation. I. The Euclid
Wide Survey. A&A, 662:A112, June 2022. doi: 10.1051/
0004-6361/202141938.

Foreman-Mackey, D., Hogg, D. W., Lang, D., and Good-
man, J. emcee: The MCMC Hammer. PASP, 125(925):
306, March 2013. doi: 10.1086/670067.

Gerardi, F., Feeney, S. M., and Alsing, J. Unbiased
likelihood-free inference of the Hubble constant from
light standard sirens. Phys. Rev. D, 104(8):083531, Octo-
ber 2021. doi: 10.1103/PhysRevD.104.083531.

10



Dark Energy Constraints using Simulation-Based Inference

Hastings, W. K. Monte Carlo Sampling Methods using
Markov Chains and their Applications. Biometrika, 57
(1):97–109, April 1970. doi: 10.1093/biomet/57.1.97.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual
Learning for Image Recognition. arXiv e-prints, art.
arXiv:1512.03385, December 2015. doi: 10.48550/arXiv.
1512.03385.

Hermans, J., Begy, V., and Louppe, G. Likelihood-free
mcmc with amortized approximate ratio estimators, 2020.

Hezaveh, Y. D., Perreault Levasseur, L., and Marshall, P. J.
Fast automated analysis of strong gravitational lenses
with convolutional neural networks. Nature, 548(7669):
555–557, August 2017. doi: 10.1038/nature23463.

Holloway, P., Verma, A., Marshall, P. J., More, A., and
Tecza, M. On the detectability of strong lensing in near-
infrared surveys. MNRAS, 525(2):2341–2354, October
2023. doi: 10.1093/mnras/stad2371.

Ivezic, Z., Axelrod, T., Brandt, W. N., Burke, D. L., Claver,
C. F., Connolly, A., Cook, K. H., Gee, P., Gilmore, D. K.,
Jacoby, S. H., Jones, R. L., Kahn, S. M., Kantor, J. P.,
Krabbendam, V. V., Lupton, R. H., Monet, D. G., Pinto,
P. A., Saha, A., Schalk, T. L., Schneider, D. P., Strauss,
M. A., Stubbs, C. W., Sweeney, D., Szalay, A., Thaler,
J. J., Tyson, J. A., and LSST Collaboration. Large Synop-
tic Survey Telescope: From Science Drivers To Reference
Design. Serbian Astronomical Journal, 176:1–13, June
2008. doi: 10.2298/SAJ0876001I.

Jie, A., Bao-Rong, C., and Li-Xin, X. Cosmic Constraints
to the wCDM Model from Strong Gravitational Lensing.
Chinese Physics Letters, 33(7):079801, July 2016. doi:
10.1088/0256-307X/33/7/079801.
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A. NRE Network Architecture
The architecture for NRE is shown in Table 2.

Layer Type Output Shape No: of Parameters
Input Images x (Batch, 32, 32, 1) 0
2D Convolution (Batch, 16, 16, 8) 80←
2D Convolution (Batch, 16, 16, 16) 1168
2D Convolution (Batch, 16, 16, 16) 2320
2D MaxPooling (Batch, 8, 8, 16) 0
2D Convolution (Batch, 8, 8, 16) 144
Add (Batch, 8, 8, 16) 0←
2D Convolution (Batch, 8, 8, 32) 4640
2D Convolution (Batch, 8, 8, 32) 9248
2D MaxPooling (Batch, 4, 4, 32) 0
2D Convolution (Batch, 4, 4, 32) 544
Add (Batch, 4, 4, 32) 0←
2D Convolution (Batch, 4, 4, 45) 13005
2D Convolution (Batch, 4, 4, 45) 18270
2D MaxPooling (Batch, 2, 2, 45) 0
2D Convolution (Batch, 2, 2, 45) 1485
Add (Batch, 2, 2, 45) 0←
2D Convolution (Batch, 2, 2, 64) 3349
Input w (Batch, 1) 0
GlobalAveragePooling (Batch, 64) 0
Dense (Batch, 64) 128
Dense (Batch, 128) 16512
Dropout (Batch, 128) 0
Dense (Batch, 64) 8256
Dropout (Batch, 64) 0
Dense (log r) (Batch, 1) 65

Table 2. Summary of the network architecture with residual skip connections indicated by the teal arrows which are added through the
Add layer. Batch normalization and activation functions are added to each of the convolution and dense layers.
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