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Abstract

Robotic navigation in complex environments remains a critical research challenge.
Notably, quadrupedal navigation has made significant progress due to the terrain
adaptivity and movement dexterity of quadruped robots. However, traditional nav-
igation tasks confine the robot to a predefined free space and focus on obstacle
avoidance, limiting their applicability in more challenging environments, such as
scenarios lacking feasible paths to the target. We propose an interactive navigation
approach that leverages agile quadrupedal movements to adapt to diverse terrains
and interact with environments, changing the workspace to tackle challenging
navigation tasks in open and complex environments. We present a primitive tree
for high-level task planning with large language models (LLMs), facilitating effec-
tive reasoning and task decomposition for long-horizon tasks. The tree structure
allows for dynamic node addition and pruning, enabling adaptive responses to
new observations and enhancing both robustness and real-time performance during
navigation. For low-level motion planning, we adopt reinforcement learning to
pre-train a skill library containing complex locomotion and interaction behaviors
for task execution. Furthermore, we introduce a cognition-based replanning method
consisting of the advisor and arborist to react to real-time egocentric observations.
The proposed method has been validated in multiple simulated scenarios, demon-
strating its effectiveness in diverse scenarios and real-time adaptivity in partially
observable conditions.

1 Introduction

Navigation in diverse and complex environments is a pivotal challenge in robotics, necessitating inno-
vative approaches to ensure effective and adaptable decision-making and planning. Recent research
has demonstrated the potential of robotic platforms to traverse cluttered environments and navigate to
the desired position, utilizing wheeled mobile robots [1, 2] for obstacle avoidance and quadrupedal
robots [3, 4] for maneuvering across various terrains. Despite these advancements, conventional
navigation strategies primarily focus on collision avoidance within a given free workspace, lacking
applicability in more challenging scenarios where no collision-free paths to destinations exist.

To address these limitations, we introduce a novel interactive navigation framework, which utilizes
the agility of quadrupedal robots to enable the robot to adapt to diverse terrains and interact with
objects to reach impossible goals by traditional navigation methods, while reacting to environmental
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Figure 1: Interactive navigation task in a challenging environment. (a) illustrates a task scenario where the
robot needs to navigate to the top of a platform with a height of 0.4m, while remaining within the feasible
area outlined by the green line. (b) The robot initially attempts to push the blue box but finds it immovable. (c)
Subsequently, the robot tries to push the red box and successfully passes through the narrow corridor. (d) Upon
discovering no direct path to the platform, the robot assesses the green box and decides to use it as a stair to
assist in reaching the platform. (e) By creating this new terrain, the robot successfully navigates to the platform.

feedback swiftly. For example, as displayed in Fig. 1, the robot needs to navigate to the top of a
platform with a height of 0.4m and stay in the feasible area outlined by the green line. Obstacles are
positioned in the narrow corridor, and the platform is too high for the robot to climb, since we assume
the robot can only ascend surfaces where the height difference is less than 0.25m. By leveraging
interactable objects within the environment, such as pushing movable objects aside and utilizing
boxes as stairs, our approach creates viable pathways through interaction and allows for rapid replans
to adapt to new environmental information, thus facilitating the accomplishment of challenging
navigation tasks in open and complex environments.

Interactive navigation problem can essentially be regarded as a task and motion planning (TAMP)
problem. The high-level task planning involves task decomposition to assist in completing navigation
tasks, such as selecting which objects to interact with and determining the sequence of interactions.
Low-level motion planning considers how to execute the high-level task by a controller to accomplish
the task. Recent work has utilized pre-trained atomic skill libraries combined with large language
models (LLMs) for task planning to address TAMP problems [5, 6, 7]. However, these methods
require global scene information from an omniscient perspective, which limits their applicability in
navigation tasks with partially observable information from an egocentric perspective. Closed-loop
task planning can respond to new observations through iterative replanning [8, 9, 10]. However,
previous works commonly focus on failure recovery, overlooking the holistic and effective utilization
of new information. The primary challenge we aim to address is how to create real-time, effective
plans for navigation tasks in open and interactive environments while rapidly responding to newly
acquired information.

We propose a hierarchical framework for interactive navigation tasks. We present a primitive tree
for high-level task planning using the LLM, which represents task decomposition as a tree structure
with primitive skills, enabling promising reasoning and rapid adaptation to new information by
modifying the decision tree and enhancing the robustness and effectiveness of task execution. As
for low-level control, we develop a comprehensive skill library with reinforcement learning (RL),
equipping the robot with the competencies needed for complex locomotion and interaction in intricate
environments. Finally, we introduce a cognition-based replanning mechanism that handles new
egocentric observations, facilitating informed real-time decision-making. The proposed replanning
module consists of an advisor and an arborist, where the advisor analyzes environmental observations
to identify potential plan adjustments, while the arborist automatically reconstructs the decision
tree for subsequent plan selection. We validate our method across multiple scenarios, showcasing
its efficacy in tackling challenging navigation tasks and its capacity for real-time adaptation to
novel observations. Through this innovative framework, we aim to extend the boundaries of robotic
navigation, offering an effective and computationally efficient solution for interactive navigation in
open-world environments.
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2 Related Work

2.1 Quadruped Robot Navigation

Quadruped robots have demonstrated agile capabilities and terrain traversability in diverse complex
environments in recent researches [11, 12, 13, 14, 15]. Based on the superior agility and adaptivity,
quadruped robot navigation has made significant progress through various kinds of approaches,
including sampling-based method [16, 17], learning-based method [18, 19, 20]. Recently, benefiting
from the powerful understanding and reasoning ability of pre-trained large models, abundant works
utilized the LLM and vision-language models (VLM) to understand the semantic environment
information for more flexible terrain traverse, so as to tackle navigation tasks [21, 22, 23]. However,
current approaches often assume the existence of navigation paths, neglecting the possibility that such
paths may not exist in real cluttered scenarios. Zhang et al. [24] presented an interactive navigation
framework that instructs robots to navigate in an environment with traversable obstacles with LLMs.
However, they aim to adapt to the environment passively rather than actively utilizing interactive
objects for task completion. Wu et al. [5] and Xu et al. [25] proposed using LLMs to interact with
environments and employ tools to address complex long-horizon tasks with quadruped robots more
effectively. However, they assume complete scene descriptions with omniscient information and
perform open-loop planning, which is impractical for navigation tasks where the robot obtains
real-time egocentric observation incrementally.

2.2 Closed-Loop Task Planning with LLMs

Due to superior performance in language understanding and commonsense reasoning, LLMs are
widely adopted to efficiently solve closed-loop task planning, which refers to generating a series of
intermediate steps to achieve the specific goal while modifying the plan based on new observations.
Many works incorporate an iterative manner for closed-loop task planning, which replans based on
the description or analysis of real-time observations [7, 9, 10, 26, 27, 28, 29]. However, these methods
typically generate a single plan for execution, which often contains errors or infeasible decomposition
due to model uncertainties. This increases the need for replanning and hinders computationally
efficient planning. Tree-based structure for LLM reasoning and planning enhances the solution quality
by generating multiple plans and select the optimal tree path with state evaluation [8, 30, 31, 32].
However, these methods either lack a replanning mechanism or trigger replanning solely upon
encountering failures and concentrate primarily on error correction, overlooking a comprehensive
understanding and effective utilization of interactive environments.

3 Method

Our framework consists of three primary components: LLM-based task planning, motion planning
with pre-trained skills, and cognition-based replanning, as shown in Fig. 2. With global user instruc-
tions and partially observable object information serving as inputs, the task planning module uses
the LLM to construct a primitive tree for reasonable task decomposition and convenient adjustments
based on new information, enabling the robot to obtain the optimal high-level primitive skeleton.
Leveraging a pre-trained skill library consisting of robust locomotion and interaction skills with RL,
the motion planning module executes specific low-level actions following the skeleton to complete
the task. Finally, a novel cognition-based replanning mechanism interprets new observations from an
egocentric perspective to determine whether replanning is necessary, allowing for swift reaction to
incremental environmental cognition.

3.1 Task Planning with LLMs

The high-level task planning framework encompasses three LLM-based roles: primitive tree con-
struction, node evaluation, and skeleton selection. Given the user instructions and object description,
inspired by [8], we first utilize the LLM to propose multiple potential planning strategies, where
each plan consists of several robot’s primitive skills. Unlike other approaches that use the LLM
to generate a single task plan directly, multiple alternative plans proposed by the LLM are more
robust to unexpected errors, such as misunderstandings by the LLM, limited scene observation, and
environmental uncertainties. After plans are generated, by merging nodes with identical historical
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Figure 2: An overview of our interactive navigation approach.

traces, we construct a primitive tree where each node represents a primitive skill from the robot’s
skill library.

To evaluate the proposed plans, we utilize another LLM as an evaluator to assess the immediate
reward r(n) of each node n in the primitive tree, which considers the difficulty of primitive skills
and the contribution to the specific task. For example, if the robot interacts with objects like pushing
movable obstacles to create a free path for navigation, this skill is essential to completing the task,
but the interaction is also difficult to complete. If one skill is non-executable, the subsequent nodes
including this node will be deleted to ensure the feasibility of the plan. If a trajectory in the primitive
tree reaches the target point at the end, an additional bonus is given to the leaf node as the terminal
reward. Finally, we apply a backup method to update the cumulative reward Q(n) of nodes with

Q(n) = r(n) + γ
∑

nc∈children(n)

Q(nc), (1)

where γ is the discounted factor. By iteratively selecting the child nodes with maximal cumulative
reward, we derive the optimal high-level primitive skeleton. By representing task planning strategies
with a tree structure, the LLM can iteratively reason through potential solutions. This approach
also allows for the existence of alternative strategies, enabling rapid replanning upon receiving new
environmental information. This aspect will be specifically addressed in cognition-based replanning.

3.2 Motion Planning with Reinforcement Learning

To robustly execute the decomposed high-level tasks, we train a primitive skill library comprising
locomotion and interaction skills using RL for low-level motion planning. We first train locomotion
policies to develop fundamental movement capabilities on diverse terrains. Building upon the lo-
comotion policies, we employ a hierarchical RL framework to train more complex strategies, such
as pushing policy for moving objects to designated positions and walking policy for navigation
with collision avoidance. All these skills are trained using PPO [33] in the IsaacLab simulation
environment [34].

For locomotion skill training, we formulate the training procedure as a velocity-tracking pattern
similar to [35], which encourages robots to follow the linear and angular velocity command while
adapting to arbitrary terrain. Furthermore, we employ curriculum learning to incrementally increase
terrain difficulty, thereby developing a robust locomotion policy. With pre-trained locomotion policy,
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we train mid-term strategies with the hierarchical RL method as a pose-tracking task, which generates
velocity commands for the pre-trained locomotion policy to follow. Specifically, the pushing policy
aims to push objects to the goal pose, and the walking policy navigates the robot to the target pose
while realizing obstacle avoidance. After training these skills, we encapsulate them into APIs for
high-level task planning. Based on the calculated parameters, we allow the execution of corresponding
tasks with low-level skills.

3.3 Cognition-Based Replanning

Unlike previous LLM-based planning approaches that assume omniscient scene description, navi-
gation tasks typically involve unknown environments, where the robot continuously acquires new
observations with an egocentric perspective. For this reason, we develop a cognition-based replanning
mechanism to analyze the new observations and efficiently replan based on new environmental
cognition. This mechanism consists of two LLM-based roles: a LLM advisor and a LLM arborist.

The LLM advisor analyzes new environmental information and the current plan to determine whether
replanning is necessary based on these cognition updates. We let the advisor conduct environmental
cognition in three aspects, including failure, new objects, and revaluation. Failure indicates that the
current plan has encountered some errors, new objects represent the discovery of a new interactive
object that may be useful, and revaluation means reassessing the plan based on updated information
about the environment. Unlike previous works that only replan based on failure, the other two types
of cognition are also important to perform tasks with an incrementally updated understanding of the
environment. For example, when you discover a new object, you need to analyze its geometric and
semantic information and decide to utilize it if it is more helpful to your task. As for revaluation,
the robot’s understanding of the object information under observation uncertainties will be updated,
which will affect the evaluation of the current plan. Based on these three types of cognition, the
advisor will decide whether to replan and replan suggestions.

If the advisor thinks replan is necessary, the suggestion will be sent to the LLM arborist, which
modifies the primitive tree structure, such as adding nodes for new objects and pruning nodes
for failure occurrence. With a tree structure, it is convenient to add or prune nodes and bring
computationally efficient replanning procedure, making real-time robotics task execution possible.
Then backup is conducted within the new tree and a new plan skeleton is selected to perform with
pre-trained skills. Through this replanning approach, the robot can respond to new environmental
information in real-time, adjusting its planning strategies accordingly. By analyzing new observations,
the robot can assess their impact on task completion and decide whether adjustments to the current
plan are required. This process helps avoid the computational cost of unnecessary replanning.

4 Simulation

4.1 Quantitative Simulation on Task Planning

To demonstrate the effectiveness of the proposed high-level task planning approach, we first conduct
quantitative simulations to compare the performance of different baselines in task planning during
navigation. We design four different scenarios in the same simulation environment created in IsaacLab,
which is shown in Fig. 3. The goal for the quadruped robot is to navigate to the platform with 0.4m
height, and we assume that the robot can only climb to the surface within 0.25m height difference
without considering the advanced parkour skills shown in previous work. The robot must reason how
to use the objects in the environment to create a feasible plan to reach the high platform.

To focus on the comparison of the quality of high-level task planning results, we assume a perfect low-
level motion controller and directly set the robot and environment state in the simulation environment
based on the high-level plan and related parameters. We artificially designed the feasibility judgment
conditions for each skill, such as the robot can only climb objects of limited height, push objects in
the same plane as the robot, and so on. After the reset, the robot updates the observation information
from the current new state. We use a simplified perception module that obtains pre-defined object
information with a limited sensing range. When the object appears in the sensing range of the robot
and is not occluded, the simulator will give the robot object information, substituting using VLM for
object description.
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Figure 3: Simulation environment for quantitative comparison of task planning. (a) demonstrates the
simulation environment consists of different boxes and the target platform. The height of the blue, red, and green
boxes are 0.21m, 0.18m, and 0.20m, respectively. (b)-(e) illustrate four scenarios for interactive navigation tasks.

Table 1: Comparison of different methods on interactive navigation tasks.

Scenario Method SR Plan length Replan times Cost (10−2$)

Scenario 1

w/o replan 7/10 4.3 ± 0.7 - 2.25 ± 0.38
Step-based replan 10/10 3.9 ± 0.5 2.9 ± 0.5 8.66 ± 1.06
Failure-based replan 9/10 5.9 ± 2.0 0.3 ± 0.5 3.16 ± 1.57
Cognition-based replan 8/10 5.0 ± 1.4 0.3 ± 0.6 3.12 ± 1.88
Ours 10/10 4.1 ± 0.7 0.3 ± 0.6 10.69 ± 0.55

Scenario 2

w/o replan 2/10 4.0 ± 0.0 - 2.24 ± 0.33
Step-based replan 10/10 4.8 ± 0.5 3.8 ± 0.5 10.47 ± 1.26
Failure-based replan 9/10 6.0 ± 1.9 0.9 ± 0.5 4.29 ± 1.57
Cognition-based replan 9/10 6.0 ± 2.0 0.8 ± 0.6 4.34 ± 1.81
Ours 9/10 4.8 ± 0.9 0.7 ± 0.5 11.11 ± 1.02

Scenario 3

w/o replan 7/10 4.1 ± 0.8 - 2.23 ± 0.33
Step-based replan 10/10 3.7 ± 0.3 2.7 ± 0.3 8.08 ± 1.10
Failure-based replan 9/10 5.7 ± 2.2 0.2 ± 0.4 2.71 ± 1.28
Cognition-based replan 10/10 3.9 ± 0.5 1.0 ± 0.0 4.88 ± 0.28
Ours 10/10 4.3 ± 0.4 1.0 ± 0.0 11.59 ± 0.63

Scenario 4

w/o replan 1/10 6.0 ± 0.0 - 2.26 ± 0.26
Step-based replan 4/10 7.0 ± 1.4 7.8 ± 1.8 19.61 ± 4.17
Failure-based replan 2/10 7.0 ± 1.0 1.3 ± 0.6 5.16 ± 1.34
Cognition-based replan 4/10 7.8 ± 1.1 1.4 ± 0.7 5.91 ± 1.54
Ours 7/10 6.4 ± 1.0 0.3 ± 0.5 11.61 ± 0.77

We compare the proposed method to four baselines: w/o replan, step-based replan, failure-based
replan, and cognition-based replan. All these baselines only use the LLM to generate one plan and
execute it directly. w/o replan refers to no replan during execution. Step-based replan represents the
robot performing replan after each step based on new observations. Failure-based replan is a common
replanning scheme for closed-loop task planning, which replans when encountering errors during task
completion. Cognition-based replan is essentially a baseline for ablation study, which only removes
the tree structure for task planning.

We use four metrics to evaluate the performance of different methods: success rate (SR), plan length,
replan times, and token expenditure (Cost). SR refers to whether the robot reaches the top of the
platform within ten steps. Plan length measures the number of executed steps to complete the task
when the task is successful. Replan time refers to the replanning times for each method. Cost is the
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Figure 4: Qualitative simulation for interactive navigation tasks. Each row depicts a distinct scenario: the
first features an immovable blue box, the second includes an initially invisible green box, and the third simulates
high obstacles blocking the path.

economic cost of using LLM based on the pricing provided by OpenAI2. We use GPT-4o [36] as the
LLM and conduct 10 runs over each scenario and average the evaluation metrics.

As shown in Table 1, the proposed method exhibits distinct advantages over baselines in different
scenarios. Overall, our method demonstrates a high success rate and reduced plan length across
four scenarios. Compared to the step-based method that requires replanning after each step, our
method replans adaptively based on environmental information to reduce unnecessary replans and
enhance planning efficiency while ensuring successful scenario completion. Although failure-based
replanning can respond to failures and perform error correction, it lacks the intelligent understanding
of new objects. For instance, in scenario 3, the robot fails to recognize that it can directly climb onto
the platform via the green box upon detecting the new box, resulting in increased plan length. In
contrast, our cognition-based replanning approach enables the robot to comprehend and utilize new
objects effectively, thus avoiding the time-consuming step of executing a pushing policy. Furthermore,
compared to three replan methods in baselines that generate a single plan for execution, our tree-
structured planning approach demonstrates more effective reasoning for long-horizon tasks and
generates more robust plans. As depicted in scenario 4, our method shows significant advantages in
success rates and requires fewer replanning attempts. Additionally, the arborist allows for convenient
modifications to the tree structure based on advisor recommendations after analyzing new information,
thereby enhancing replanning efficiency.
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4.2 Qualitative Simulation for Interactive Navigation

As this research is on process currently, we discuss some qualitative results for complete interac-
tive navigation tasks including high-level task planning and low-level task execution. We display
qualitative results in three scenarios in Fig. 4, showcasing how the robot performs planning with an
egocentric perspective under partially observable information, how the robot adjusts the current plan
based on the real-time feedback, and finally efficiently and adaptively completes navigation tasks.

In Scenario 1, there are two boxes and the blue box is immovable. Initially, the robot observes both
boxes and considers pushing one or both as an intermediate step to complete the task. Since the blue
box is closer, the robot first decides to push it towards the platform. However, upon discovering that
the blue box is immovable, the advisor analyzes the failure situation, and the arborist prunes the node
involving pushing the blue box. The robot then replans and decides to push the red box to complete
the task.

In Scenario 2, there are three movable boxes, but the robot is initially unaware of the green box due to
occlusion. Similar to the high-level planning procedure in scenario 1, the robot first decides to push
the blue box. During this process, the robot discovers the green box and, through advisor analysis,
realizes that the green box is near the platform and can be used to climb onto it directly. Consequently,
the robot stops pushing the blue box and moves directly to the green box to climb onto the platform.

In Scenario 3, the robot is blocked in a narrow passage by two boxes that are too tall, and it needs to
consider whether these boxes can help it climb onto the platform, despite their height being too high.
The robot first decides to push one of the boxes to create a viable path and successfully moves the red
box. Subsequently, it perceives a green box near the platform that can serve as a step, so it directly
climbs onto the platform using the green box.

In summary, our approach can accomplish interactive navigation tasks in various scenarios while
quickly reacting to real-time environmental cognition to improve task efficiency. With the adaptivity
to partially observable environments, including unknown obstacles and their properties, the proposed
method can effectively address challenging task planning in open-world complex environments.

5 Limitation Discussion

While our approach has demonstrated promising performance in interactive navigation tasks, several
limitations remain to be addressed. Firstly, the success rate in highly challenging scenarios needs
improvement. This can be attributed to two main factors: at the high level, the LLM fails to propose
a reasonable plan, making it difficult to achieve an optimal solution in subsequent steps. At the
low level, the lack of robustness in the pre-trained skills and the integration between different skills
affects successful task execution. Secondly, current work simplifies the perception model and involves
relatively simple task scenarios. However, by leveraging powerful VLM for scene understanding,
we believe our framework can better adapt to open-world environments and make more informed
decisions. Additionally, the skill library for the quadruped robot is relatively limited. By incorporating
a robotic arm like [37, 38], our proposed framework could accomplish more complex tasks, such as
mobile manipulation. Finally, although we have demonstrated improved performance in navigation
tasks within partially observable environments, the tree construction incurs significant time and
token costs. Albeit the proposed cognition-based replanning mechanism can quickly respond to new
environmental information, overall computational efficiency needs enhancement, potentially through
simplification operation in high-level task planning.

6 Conclusion

We introduce an LLM-based interactive navigation approach using a quadruped robot, which actively
understands and utilizes interactive objects in partially observable environments to tackle challenging
navigation tasks where feasible paths may not exist. Our hierarchical framework leverages the LLM
for high-level task planning and employs pre-trained skills with RL for low-level motion planning.
With tree-structured task decomposition, our method not only enhances the planning quality for
long-horizon complex tasks but also allows for convenient modifications in specific tree parts when

2https://openai.com/pricing
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real-time new observations are obtained. During task execution, the quadruped robot uses pre-trained
agile locomotion and interaction skills to engage with the environment and create feasible paths to
accomplish the task. We present a cognition-based replanning method for the intelligent understanding
of incremental information, enabling robots to quickly adapt to open and complex environments and
efficiently complete tasks. This instructive framework has the potential to enhance robotic navigation
capabilities, offering an effective and computationally efficient solution for interactive navigation in
open-world environments.
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