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Abstract

Open-set fine-grained retrieval is an emerging challenging task that allows to
retrieve unknown categories beyond the training set. The best solution for handling
unknown categories is to represent them using a set of visual attributes learnt from
known categories, as widely used in zero-shot learning. Though important, attribute
modeling usually requires significant manual annotations and thus is labor-intensive.
Therefore, it is worth to investigate how to transform retrieval models trained by
image-level supervision from category semantic extraction to attribute modeling. To
this end, we propose a novel Visual Attribute Parameterization Network (VAPNet)
to learn visual attributes from known categories and parameterize them into the
retrieval model, without the involvement of any attribute annotations. In this
way, VAPNet could utilize its parameters to parse a set of visual attributes from
unknown categories and precisely represent them. Technically, VAPNet explicitly
attains some semantics with rich details via making use of local image patches
and distills the visual attributes from these discovered semantics. Additionally, it
integrates the online refinement of these visual attributes into the training process
to iteratively enhance their quality. Simultaneously, VAPNet treats these attributes
as supervisory signals to tune the retrieval models, thereby achieving attribute
parameterization. Extensive experiments on open-set fine-grained retrieval datasets
validate the superior performance of our VAPNet over existing solutions.

1 Introduction

Fine-grained image retrieval attempts to build a well-generalized embedding space where the vi-
sual discrepancies among categories are clearly reflected. It plays a vital role in numerous vision
applications from fashion industry, e.g., retrieval of different types of shoe or clothes [22; 1], to
environmental conservation, e.g., retrieval endangered species [6; 38; 36; 32]. However, real-world
applications probably face the input of unknown categories, and the model will treat them as known
ones. As a result, the retrieval performance decays, which is unbearable in real-world applications.
Open-set fine-grained retrieval is thus proposed to conduct training on known categories but retrieve
unknown ones during evaluation.

Facing the unknown inputs of novel categories, an intuitive way to identify them is to capture the
discriminative discrepancies of unknown categories from these inputs for identifying them. However,
most existing works [19; 24; 28; 20] still focus on discriminative concepts of known categories
and only capture them from unknown instances, consequently making it hard to precisely identify
unknown categories. Interestingly, zero-shot learning [11; 18; 47] has proven that an unknown
instance can be described integrally using a variety of visual attributes, and these attributes can be
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Figure 1: Motivation of the proposed VAPNet as well as the main
process of retrieving unknown categories based on our visual at-
tribute parameters. The key idea promoted throughout the paper is
that the visual attributes within known categories promote the un-
derstanding of unknown inputs of novel categories. The backbone
network (CNN ) with this key idea can be transformed into a set of
visual attribute parameters θ(·). Therefore, given visually similar
images of unknown categories (CA, CB), we feed them into our
VAPNet to generate the retrieval embeddings containing various
attributes, and then calculate their cosine similarity (Sim : 0.08)
to determine whether to be distinguished. VAPNet with specific
parameters transformed by visual attributes can procure in-depth
semantic pattern understanding for unknown categories, improving
the open-set retrieval performance eventually.

discovered on multiple known cate-
gories. For example, the unknown
birds in Fig. 1 can be represented us-
ing visual attributes discovered from
seen instances, and the combination
of these attributes can clearly reflect
their discrepancies, thus alleviating
the problem behind open-set settings.
Though important, attribute modeling
usually requires significant manual an-
notations and thus is labor-intensive.
When attribute annotations are un-
available, how to transform retrieval
models trained by image-level super-
vision from category semantic predic-
tion to attribute modeling is worthy of
investigation.

In this paper, we present a Visual
Attribute Parameterization Network,
termed as VAPNet, aiming to distill vi-
sual attributes from various semantics
presented on seen fine-grained objects,
and utilize these attributes to tune the
retrieval model. Consequently, VAP-
Net describes the appearance of the
input instances of novel categories based on its parameters tuned by visual attributes, thus trans-
forming the retrieval model from category semantic prediction to attribute modeling. Notably, due
to lacking of attribute annotations, the attributes derived from VAPNet will be not restricted to
pre-defined attributes like supervised-based attribute learning works [10; 49].

Technically, VAPNet needs to parse various semantics presented in fine-grained objects, which is
a prerequisite for attribute modeling. However, a feature extractor trained by image-level labels
tends to focus on a few primary semantic regions (e.g., bird’s head) while ignoring other visual
clues (e.g. bird’s body). We empirically observe that vision models can discover these overlooked
object regions with rich details when taking local image patches as input compared to the whole
image. Therefore, VAPNet attains some rich semantics presented in objects via parsing multiple
local views randomly cropped from the input image. After that, we further apply an encoder to
project these discovered semantics to a set of visual attributes. Nevertheless, due to lacking the
attribute annotations, these attributes usually include some noisy patterns. To handle this limitation,
we incorporate the online refinement of these attributes into the training process to iteratively improve
their quality and simultaneously regard these attributes as supervision signals to tune the retrieval
model, thus achieving attribute parameterization. Specifically, we design another encoder with the
same structure as the above one to produce another set of visual attributes from the global features,
which are used to match the visual attributes inferred by local views for providing a rich supervisory
signal. To avoid optimizing two encoders instead of the retrieval model, we design the counterparts
of two encoders by accumulating their parameters of all previous iterations to make supervisory
signals provided by attributes tune the retrieval model directly. In this way, the features outputted
by the retrieval model can be iteratively improved and fed into the optimized encoders to provide
more accurate visual attributes, which, in turn, better tunes the retrieval model for visual attribute
modelling.

Contributions of this paper are summarized as below:

• To the best of our knowledge, we are the first to transform the retrieval model trained by
image-level supervisions from category semantic prediction into attribute modeling, thus
alleviating the problem behind open-set fine-grained retrieval settings.

• We propose a novel Visual Attribution Parameterization Network, which distills visual
attributes from various semantics discovered on seen fine-grained objects, and transcribes
these attributes into parameters within the retrieval model, thus representing unknown
categories precisely based on its parameters transformed by visual attributes.
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• Extensive experiments show that open-set fine-grained retrieval task can benefit from the
proposed method, and thus our VAPNet obtains significant gains of 8.6% average accuracy
over recent state-of-the-art work [33] on three open-set fine-grained retrieval benchmarks.

2 Related Work

Open-set fine-grained retrieval. Existing open-set fine-grained retrieval works can be roughly
divided into several groups. The first group, localization-based scheme, utilizes the supervision of
category signals to learn discriminative embeddings [42; 52; 24; 40]. CRL [52] designs an attractive
object feature extraction strategy to facilitate the retrieval task. Despite the inspiring achievement,
the shortcoming of these works is that they only focus on individual samples while neglecting the
inter-class and intra-class correlations between subcategories, thus reducing the retrieval performance.
Therefore, the second group, metric-based scheme, is learning an embedding space where similar
examples are attracted, and dissimilar examples are repelled [33; 41; 4; 15; 27; 51; 14; 50]. NIA [28]
enforces unique translatability of samples from their respective class proxies to bring the distance
of samples with the same subcategory closer. However, they still capture the discriminative details
of known categories from unknown instances but neglect more details on undiscovered semantic
regions, consequently impairing the retrieval performance.

Unlike the above works, FRPT [35] steers a frozen pre-trained model to perform the fine-grained
retrieval task from the perspectives of sample prompting and feature adaptation. PLEor [34] could
leverage pre-trained CLIP model to infer the discrepancies encompassing both pre-defined and
unknown subcategories, and transfer them to the backbone network trained in the close-set scenarios.
Nevertheless, it is worth noting that both of these approaches typically require more computational
resources to optimize the retrieval models. This can potentially limit their practical applicability
in real-world scenarios. To alleviate the problem behind open-set scenarios, we design VAPNet to
explore and exploit visual attributes learnt from known instances instead of learning discriminative
clues to anticipate open-set class data, improving retrieval performance in open-world scenarios
accordingly.

Visual attributes. Attributes belong to intuitive properties of objects, which contain low-level
semantics (e.g., color, texture and shape), high-level semantics (e.g., head, body and tail of objects),
or even common sense (e.g., birds living on the tree) [7]. Utilizing visual attributes makes great
progress on various vision tasks, including image search [17], fine-grained recognition [49; 37], scene
understanding [25], and so on. Most of the previous works based on attribute learning [10; 17; 49]
usually require significant manual attribute annotations and therefore is labor-intensive. Besides,
the attributes learnt by these works are also restrained to pre-defined attribute labels, consequently
ignoring some potentially vital information lying in visual semantics. To alleviate the aforementioned
issues, recent works [43; 39] formulate an unsupervised learning strategy to project the learnt features
into an attribute space. However, although the two works achieve superior performance on their
corresponding vision tasks, they still are rooted in the close-set scenarios and thus make it hard to
handle unknown instances. Therefore, we propose VAPNet to process more challenging scenarios,
i.e., open-set fine-grained retrieval tasks, by making full use of known data.

3 Methodology

The overall structure of VAPNet is shown in Fig. 2. It is clear that our network is mainly organized
by three modules: retrieval module, attribute exploration module and attribute parameterization
module. The retrieval module could extract retrieval embeddings encompassing various attributes of
input objects for retrieving visually similar objects. The attribute exploration module is designed to
randomly extract visual attributes from known categories. In addition, the attribute parameterization
module is responsible for improving visual attributes and utilizing them as supervisory signals to
tune the retrieval model.

3.1 Retrieval Module

The retrieval module aims at extracting basic image representations using the backbone network and
producing retrieval embeddings. Thereby, the backbone network can be regarded as the retrieval
model. Formally, given an image X, let F ∈ RW×H×C be the C-dimensional with H×W feature
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Figure 2: Detailed illustration of visual attribute parameterization framework. Our algorithm can be clearly
divided into three main components: a retrieval module, an attribute exploration module (AEM), and an attribute
parameterization module (APM). The AEM is responsible for extracting a set of visual attributes from local
views, while the APM is designed to iteratively enhance the quality of these attributes. These attributes are then
used as supervisory signals to fine-tune the parameters of the retrieval model. It is important to note that during
testing, the single retrieval module acts as a retrieval model. The AEM and APM are only utilized during the
training phase to improve the attributes and fine-tune the retrieval model parameters.

planes encoded by a backbone network F = FCNN(X). Thus the most common way for retrieval is
to embed the final feature F by using global average pooling operations (GAP), calculating mean
values on the H×W feature plane and producing the final retrieval embeddings ER ∈ RC. It should
be clarified that our VAPNet does not introduce extra computation overhead during evaluation.

3.2 Attribute Exploration Module

Facing the unknown input of novel categories, VAPNet aims to explore all the attributes presented
in known instances as much as possible and utilize them to understand unknown categories. A
non-negligible problem is that a feature extractor trained by image-level labels tends to focus on a
few primary semantic regions (e.g., bird’s head) while ignoring other visual clues (e.g. bird’s body).
Fortunately, a feature extractor could discover object regions with rich details when replacing the
input image with its local patches, as verified in Fig. 3. This suggests a proper way to focus on some
overlooked object regions by making use of local image patches. Therefore, an attribute exploration
module is proposed to attain some semantic clues of an input object via randomly cropping local
patches from the input image. These collected semantic clues could be translated into visual attributes
describing pre-defined and unknown categories.

Input sampling. Given an input image X, we equally split it into n × n patches which have
3× ⌊H

n ⌋ × ⌊W
n ⌋ dimensions. Here, the granularities of patches are controlled by the hyper-parameter

n. In our experiments, n respectively equals to 2, 4, 8 and 16, and thus the number of patches is 340.
We randomly sample M (M ≪ 340) patches from the candidate set at each iteration to construct a set
of different local views V = [V1,V2, · · · ,VM]. These local views are resized to the same scale as
inputs via using bilinear interpolation. The magnification operation could directly highlight the subtle
yet discriminative details in the local views, further making the backbone network more sensitive to
these subtle details.

Then, the local views V are passed through the backbone network FCNN:

FL = FCNN(V), (1)

where FL ∈ RM×C×H×W is the local attribute feature set.

It should be clarified that the input sampling step samples local patches randomly, so it can treat
all object patches equally, regardless of their discriminative ability. However, it should not be bad
news for open-set fine-grained retrieval tasks, since the more diverse the visual attributes are, the

4



better the understanding of the unknown categories is. Furthermore, although this module picks out a
few patches at each iteration, it could effectively parse the holistic structures of objects based on the
accumulation of selected patches by multiple iterations.

Attribute exploration. In real-world applications, especially for the fine-grained tasks with small
inter-class variances, attribute annotations are expensive and therefore labor-intensive. Nevertheless,
unsupervised learning [26] can capture regularities in data for the purpose of extracting useful
knowledge or for restoring corrupted data. Therefore, many unsupervised works [26; 2] explicitly
produce internal latent units or codes from feature representation. Inspired by this, we design a visual
attribute exploration to project these visual semantics attained by local views into a latent space, i.e.,
the attribute space:

Ai
L = TL(Fi

L) = WL · g(Fi
L) + bL, (2)

where TL denotes the encoder with the weight matrix WL ∈ Rc×k and bias vector bL ∈ Rk to
process the local features produced by local views, and g(·) is the global average pooling operation.
By the projection operation, we successfully transform the visual semantics into the visual attributes
[Ai

L ∈ Rk|i = 1, · · · ,M]. In this way, these visual attributes could correspond to local semantic
knowledge of fine-grained objects ( e.g., red head, spotted wings, etc.), so the group of certain
attributes can clearly describe an unknown category and reflect its discriminative discrepancies.

3.3 Attribute Parameterization Module

Visual attributes produced by local views serve as supervisory signals to tune the retrieval model,
further make it be transformed from category semantic extraction to attribute modelling. Nevertheless,
due to lacking the attribute annotations, these visual attributes substantively include some noisy
patterns. The retrieval model supervisied by these noisy attributes is harmful to parsing fine-grained
objects. To this end, we propose an attribute parameterization module to incorporate the online
refinement of these attributes into the training process to iteratively improve them and simultaneously
regard these attributes as supervisory signals to tune the retrieval model. In this way, the retrieval
model could capture visual attributes from input instances, thus achieving attribute parameterization.

Attribute sampling. To match visual attributes provided by local views, we need to process the
final features F inferred by an input image X to produce another group of attributes, which are used
to match these visual attributes provided by local views. Concretely, forwarding F into a sampler
extracts the corresponding local attribute feature sets FG = [F1

G,F2
G, · · · ,FM

G ] according to four
coordinates of local views. Specifically, we utilize RoIAlign operation proposed in Mask-RCNN [8]
to accurately extract the corresponding local features. Then, we project these local representation in
another attribute space:

Ai
G = TG(Fi

G) = WG · g(Fi
G) + bG, (3)

where TG represents an encoder with the weight matrix WG ∈ Rc×k and bias vector bG ∈ Rk to
process the local features produced by the final features, and Ai

G ∈ Rk denotes the i-th attribute in
the attribute set AG ∈ RM×k.

With these visual attributes including AL and AG and local features containing FL and FG, the
attribute pairs A and local feature pairs FP can be organized as:

A = [(A1
L,A

1
G), (A2

L,A
2
G), · · · , (AM

L ,AM
G )],

FP = [(F1
L,F

1
G), (F2

L,F
2
G), · · · , (FM

L ,FM
G )].

(4)

Attribute parameterization constraint. This constraint is responsible for improving these visual
attributes and utilizing them to tune the retrieval model. Specifically, as the local attribute features
fed to each encoder come from global and local views, this encoder only distills visual attributes only
from its corresponding view. Thus, given local attribute features, no matter which view they come
from, if two encoders provide the same attribute, it means this feature can be regarded as from both
two sources. In other words, the feature discrepancy between the local attribute features inferred from
both global and local views is effectively eliminated. Thereby, the above process could optimize two
encoders to iteratively improve visual attributes, and utilize these attributes to modify the features
inferred by local and global views, thus achieving attribute parameterization.
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To this end, the attribute parameterization constraint Lc can be formulated as:

Lc(A,FP) =

M∑
i=1

[TG(Fi
L)log

TG(Fi
L)

Ai
L

+ TL(Fi
G)log

TL(Fi
G)

Ai
G

]. (5)

This loss encourages the two encoders to produce the same attributes for the same visual content,
no matter which view it comes from, thus achieving attribute parameterization. However, training
the model with Eq. (5) directly will make the attributes provided by two encoders become similar
quickly since the encoders learn the attributes from another view according to Eq. (5). Therefore,
using Eq. (5) more optimizes the parameters of two encoders, but has less impact on the parameters
of the retrieval model.

To handle this limitation, we propose two mean encoders with the same structure as the above ones to
produce attributes for features of another view. In this way, Eq. (5) can be written as

L̂c(A,FP) =

M∑
i=1

[E[TG](Fi
L)log

E[TG](Fi
L)

Ai
L

+ E[TL](Fi
G)log

E[TL](Fi
G)

Ai
G

], (6)

where E[TG] and E[TL] denote the mean encoders without learnable parameters, respectively. Their
parameters can be updated in a temporal average manner. Concretely, at the t-th iteration, parameters
E[TG](θG) and E[TL](θL) are accumulated by

E(t)[TG](θG) = (1− α)E(t−1)[TG](θG) + αθG,

E(t)[TL](θL) = (1− α)E(t−1)[TL](θL) + αθL,
(7)

where E(t)[TG](θG), (E(t)[TL](θL)) and E(t−1)[TG](θG), (E(t−1)[TL](θL)) respectively denote the
parameters of the mean encoders in current iteration and last iteration, and θG = (WG,bG) and
θL = (WL,bL) are the learnable parameters of PG and PL at the current iteration, respectively. The
mean encoders are initialized as E(0)[TG](θG) = θG and E(0)[TL](θL) = θL. The hyper-parameter α
is the updating ratio within the range of [0, 1).

Since the two mean encoders do not introduce learnable parameters, the attribute parameterization
constraint could directly penalize the retrieval model and make its parameters be adjusted through
back propagation. More importantly, the mean encoders could consider the knowledge learned from
all previous stages to form more robust attributes for the current stage. Therefore, they have another
important property that could remain sensitive even for rare attributes, consequently staying well
generalized when facing unknown categories. After the attribute parameterization operation, VAPNet
will transform the retrieval model from category semantic extraction to attribute modeling, allowing
the utilization of visual attributes to anticipate open-set class data.

3.4 Loss Functions

The retrieval model with specific parameters supervised by visual attributes can extract the attributes
presented in objects and further procure in-depth semantic pattern understanding. For fine-grained
understanding, these extracted visual attributes should clearly reflect the discrepancies of an objects,
so that we can better identify visually similar objects. Thereby, we propose an auxiliary constraint
based on the cross-entropy loss to ensure that these extracted visual attributes can contribute to
decision boundary:

La = ylog(C(g(F))), (8)

where y denotes the ground-truth label of the corresponding input, and C(·) ∈ Rc×N, N is the number
of category in the training set.

The total loss L of VAPNet can be formulated as:

L = La + λL̂c, (9)

where λ is the hyper-parameter to balance the contributions of the individual loss item.
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4 Experiments

4.1 Experimental Setup

Datasets. CUB-200-2011 dataset [5] contains 200 bird subcategories with 11,788 images. We utilize
the first 100 classes (5,864 images) in training and the rest (5,924 images) in testing. The Stanford
Cars dataset [16] contains 196 car models of 16,185 images. The spilt in Stanford Cars [16] is also
similar to CUB, which is split into the first 98 classes (8,054 images) for training and the remaining
classes (8,131 images) for testing. FGVC Aircraft dataset [23] is divided into first 50 classes (5,000
images) for training and the rest 50 classes (5,000 images) for testing. In Shop Clothes Retrieval
(In-Shop) [21] contains 7,982 subcategories with 52, 712 images, and we use the 3,997 classes
(25,882 images) in training and the rest 3,985 classes in testing. In-Shop is divided between a query
(14,218 images) and a gallery set (12,162 images).

Evaluation protocols. We evaluate the retrieval performance by Recall@K with cosine distance,
which is average recall scores over all query images in the test set and strictly follows the setting
in the pioneer work [31]. Specifically, for each query, our model returns the top K similar images.
In the top K returning images, the score will be 1 if there exists at least one positive image, and 0
otherwise.

Implementation Details. For backbone network, we apply the widely-used Resnet-50 [9] in our
experiments with the pre-trained parameters. The input raw images are resized to 256 × 256 and
cropped into 224× 224. We train our models using Stochastic Gradient Descent (SGD) optimizer
with weight decay of 0.0001, momentum of 0.9, and batch size of 32. We adopt the commonly
used data augmentation techniques, i.e., random cropping, left-right flipping, and color jittering for
robust feature representations. Our model is trained end-to-end on one NVIDIA 2080Ti GPUs for
acceleration. The initial learning rate is set to 10−5, with exponential decay of 0.9 after every 5
epochs. The total number of training epochs is set to 200.

4.2 Ablation Study

Table 1: Comparison of performance and efficiency on CUB-
200-2011 and Stanford Cars datasets using different combina-
tions of constraints. “R@1" denotes the Recall@1 retrieval
performance. “Time” is the time of extracting retrieval embed-
dings.

La Lc L̂c CUB R@1 CAR R@1 Time
✓ 69.5% 89.3% 21.1ms
✓ ✓ 71.4% 91.2%

21.1 ms✓ 74.1% 92.7%
✓ ✓ 76.2% 94.8%

The proposed VAPNet is optimized by a
combination of two loss functions, an aux-
iliary loss La and an attribute parameter-
ization constraint Lc or L̂c, which play
different roles in guiding our model to un-
derstand unknown categories. Here, we
perform thorough ablation experiments
on CUB-200-2011 and Stanford Cars
datasets to further validate the effective-
ness of each loss function. Tab. 1 shows
quantitative comparisons between differ-
ent combinations of loss functions. The
baseline method only using La obtains 69.5% and 89.3% Recall@1 accuracy on CUB-200-2011 and
Stanford Cars datasets, respectively. The results reflect that the network only learns the discriminative
object regions instead of the visual attributes, consequently impairing the retrieval performance of
unknown categories. An addition of Lc improves Recall@1 from 69.5% to 71.4%. However, Lc

optimizes the encoders to translate the semantics into visual attributes, instead of parameterizing
the attributes into the retrieval model. During testing, our VAPNet still makes it hard to handle
unknown categories, thus limiting the performance gains. To handle this limitation, we improve the
attribute parameterization constraint to force this loss function to directly optimize the parameters
within backbone network. As expected, L̂c can effectively make the backbone network sensitive to
visual attributes and understand unknown categories accordingly. Furthermore, we also verify the
effectiveness of La, which can ensure that these visual attributes learnt from known categories keep
discriminative. As shown in Tab. 1, the proposed VAPNet achieves 76.2% and 94.8% Recall@1
performance owing to the combination of L̂c and La on two widely-used benchmarks. Additionally,
during testing, the retrieval embedding extraction time remains the same as that of the baseline model,
as the additional attribution exploration modules (AAM and APM) are only used during training.
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Table 2: Comparison of different methods on CUB-200-2011, Stanford Cars 196 and FGVC Aircraft datasets.

Method
CUB-200-2011 Stanford Cars 196 FGVC Aircraft

1 2 4 8 1 2 4 8 1 2 4 8
SCDA [42] 57.3 70.2 81.0 88.4 48.3 60.2 71.8 81.8 56.5 67.7 77.6 85.7
PDDM [3] 58.3 69.2 79.0 88.4 57.4 68.6 80.1 89.4 - - - -
CRL [52] 62.5 74.2 82.9 89.7 57.8 69.1 78.6 86.6 61.1 71.6 80.9 88.2
CEP [4] 69.2 79.2 86.9 91.6 89.3 93.9 96.6 98.1 - - - -
HDCL [46] 69.5 79.6 86.8 92.4 84.4 90.1 94.1 96.5 71.1 81.0 88.3 93.3
DGCRL [53] 67.9 79.1 86.2 91.8 75.9 83.9 89.7 94.0 70.1 79.6 88.0 93.0
DCML [50] 68.4 77.9 86.1 91.7 85.2 91.8 96.0 98.0 - - - -
DRML [51] 68.7 78.6 86.3 91.6 86.9 92.1 95.2 97.4 - - - -
DAS [20] 69.2 79.3 87.1 92.6 87.8 93.2 96.0 97.9 - - - -
IBC [29] 70.3 80.3 87.6 92.7 88.1 93.3 96.2 98.2 - - - -
NIA [28] 70.5 80.6 - - 89.1 93.4 - - - - - -
Proxy [13] 71.1 80.4 87.4 92.5 88.3 93.1 95.7 97.5 - - - -
HIST [19] 71.4 81.1 88.1 - 89.6 93.9 96.4 - - - - -
ETLR [14] 72.1 81.3 87.6 - 89.6 94.0 96.5 - - - - -
PNCA [33] 72.2 82.0 89.2 93.5 90.1 94.5 97.0 98.4 - - - -
VAPNet 76.2 84.6 90.1 94.0 94.8 96.3 98.0 98.6 87.2 91.7 95.0 96.3

4.3 Comparison with the State-of-the-Art Methods

Open-set Fine-grained Object Retrieval. We compare our VAPNet with some state-of-the-art
approaches. In Tab. 2, the performance of different methods on CUB-200-2011, Stanford Cars-196,
and FGVC Aircraft datasets is reported, respectively. In the table from top to bottom, the methods
are roughly divided into three groups, i.e., localization-based networks, metric-based frameworks,
and our VAPNet.

As shown in Tab. 2, it is obvious that the retrieval performance obtained by our VAPNet is better
than other methods no matter whether the localization-based or metric-based schemes are adopted.
Concretely, existing works based on localization schemes, i.e., CEP [4] and HDCL [46], tend to
project the final retrieval embeddings into a category space. Despite the encouraging achievement,
the shortcoming of these works is that they only focus on individual samples while neglecting the
correlations among subcategories, thus limiting the retrieval performance. To address this problem,
the effectiveness of these models based on metric schemes, i.e., ETLR [14] and PNCA [33], can be
largely attributed to their precise identification of negative/positive pairs through the manipulation of
distances, which indirectly enhances the discriminative power of features. However, these existing
works, e.g., CEP [4], HIST [19] and PNCA [33], follow a close-set learning setting, where all the
categories are pre-defined, to learn the discriminative and generalizable embeddings for identifying
the visually similar objects of unknown subcategories. It is thus very challenging for a feature
extractor trained in closed-set scenarios with classification or metric supervisions to capture discrimi-
native discrepancies from unknown subcategories, consequently impairing the retrieval performance.

Table 3: Comparison of different state-of-the-art meth-
ods on In-shop dataset.

method 1 10 20 30 40
HDC [45] 62.1 84.9 89.0 91.2 92.3
ABE [12] 87.3 96.7 97.9 98.2 98.5
EPSHN [44] 87.8 95.7 96.8 - -
NSM [48] 89.4 97.8 98.7 99.0 -
MS [41] 89.7 97.9 98.5 98.8 99.1
CEP [4] 90.6 98.0 98.6 98.9 99.1
PNCA [33] 90.9 98.2 98.9 99.1 99.4
Our VAPNet 93.9 98.7 99.1 99.4 99.6

To handle this limitation, our VAPNet focuses
on learning visual attributes instead of discrim-
inative clues to understand the unknown cate-
gories and clearly reflect their discriminative dis-
crepancies, thus achieving a clear improvement
of state-of-the-art methods.

Large-scale Product Retrieval. Our VAPNet
exceeds all the existing methods and achieves
the best performance with a retrieval accuracy of
93.9%, as shown in Tab. 3. Besides, we beat the
second-best work CEP [4] and get a better result
with a relative accuracy improvement of 3.0%.
By leveraging the visual attributes learned from
known instances to identify category-specific discrepancies, our VAPNet demonstrates impressive
generalization capabilities.
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4.4 Discussions

Table 4: The retrieval accuracy on CUB-200-2011 of model
trained with different number M of local views in §3.2.

Number M 1 2 4 8 16
Recall@1 73.6% 74.9% 76.2% 76.1% 76.2%

Patch number M . Tab. 4 ablates the
role of patch number k in the attribute
exploration module (§3.2). The optimal
value is M = 4 (our default). More-
over, VAPNet is robust when M is in
[4, · · · , 16], showing that it is beneficial
to spot visual attributes in a relatively many local regions. It is worth mentioning that when M is
too large, the training time grows exponentially. However, when M is too small, the performance
degrades due to easily overlooking some undiscovered regions. The results reveal that the local
regions help the model attain accurate attributes, leading to better understanding unknown categories.

Table 5: Comparison of model trained with different dimension
k of visual attributes on CUB-200-2011.

Dim k 32 64 128 256 512
Recall@1 74.7% 75.9% 76.1% 76.2% 76.0%

Attribute dimension k. We investigate
the necessity of diverse attribute dimen-
sions k for retrieval performance. As re-
ported in Tab. 5, the dimension k stores
the attribute knowledge. Although the
large dimension could hold more infor-
mation related to attributes and has less impact on retrieval performance, it is easy to contain more
useless information and increase storage overhead. However, when the dimension is small, it is not
enough to precisely represent visual attributes, leading to degraded performance. Therefore, the
optimal dimension is k = 256.

Table 6: Evaluation results on CUB-200-2011 of model trained
with different updating ratio α in Eq. (7).

Ratio α 0.1 0.2 0.4 0.6 0.8
Recall@1 75.9% 76.2% 75.1% 73.9% 72.6%

Updating ration α. Tab. 6 reports the
accuracy of using diverse updating ra-
tios in Eq. (7). Notably, after increasing
the updating ratio, the retrieval perfor-
mance reduces progressively. These re-
sults reveal that a large updating ratio
quickly updates the projectors more relying on the learning parameters on the current stage, thus
easily degrading the discrepancies between two projectors. Moreover, when using a small updating
ratio, the projectors keep sensitive to previous learning knowledge and easily keep different during
optimization, thus extracting precisely visual attributes from given features.

Table 7: Quantitative performance of model trained with different
weight λ in loss function in Eq. (10) on CUB-200-2011.

Weight λ 1 5 10 15 20
Recall@1 73.8% 75.2% 76.2% 75.0% 74.9%

Balanced parameter λ. There is one
balanced parameter in Eq. (10). The
sensitivity analysis of the parameter are
performed on CUB-200-2011 and the
evaluation results are presented in Tab.
7. It is observed that the performances
of our VAPNet are not stable with the variation of λ (from 1 to 20). The retrieval performance
increases as λ grows to 10, the consistency constraint with a large balanced parameter would force
the network to focus on visual attributes. However, this constraint has a larger balanced parameter,
which makes the network neglect the discriminative ability of visual attributes, thus reducing retrieval
performance. The upper bound of retrieval performance may saturate at λ = 10 for learning visual
attributes from known categories.

4.5 Visual Attribute Analysis

Interpreting visual attributes is difficult because these attributes are optimized in a latent space. We
resort to an indirect way to interpret these attributes by visualizing their sources (i.e., Fig. 3) to
display the content within them, and the features influenced by them (i.e., Fig. 4) to indirectly track
these visual attributes.

Our VAPNet distills visual attributes from some local regions randomly cropped from inputs. There-
fore, we provide some activation maps generated by Grad-CAM [30] to display some visual clues of
interest in the attributes. In Fig. 3, these semantics provided by local regions could grab some rich
details, and thus attributes projected by them could clearly represent these regions. Besides, we can
also observe that the response maps of the local views highlight more object details compared to that
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(a) (b) (c) (d) (e) (f)

Figure 3: Visualization of the source of attributes. The
top row shows the global view. The second and third
rows show the multiple image patches after random
cropping (local views). (a), (c) and (e) denote the
input views. (b), (d) and (f) show the response maps.

(a) (b) (c) (d) (e) (f)

Figure 4: Illustration of class activation maps pro-
duced by baseline and our VAPNet. (a) and (d) are
the input images. (b) and (e) are the referred class
activation maps by baseline. (c) and (f) denote the
class activation maps provided by our VAPNet.

of the global view. Based on the above observation, we draw a conclusion that vision models can
discover more semantic clues when replacing the input image with its local patches.

We exhibit the visualization results to demonstrate the influence of visual attributes. The referred
visualizations of baseline and our model are shown in Fig. 4. It is shown that our model focuses
on multiple local parts (e.g., head, wings and abdomen, etc.) instead of the fixed part predicted by
baseline, (e.g., head of birds, front of cars, and middle of aircraft, etc). This verifies that using visual
attributes learnt from known categories reasonably is beneficial for describing novel categories, thus
improving the retrieval performance under open-set scenarios. More importantly, as shown in Fig. 4
(c) and (f), two sub-figures in the same row can roughly correspond to certain kinds of attributes of
the fine-grained objects, e.g., “wings of birds", “tires of cars", “head or wing of planes", etc. The
results reflect that the activation of objects parts is apparently attribute-related and contains the visual
discrepancies among unknown categories accordingly, which could provide a clear explanation of the
success in retrieving unknown categories.

5 Conclusion

In this paper, we propose a novel Visual Attribution Parameterization Network (VAPNet) to handle
unknown categories using visual attributes learnt from known instances in open-set fine-grained
retrieval tasks. VAPNet focuses on distilling visual attributes from semantic clues presented in objects
and utilizing these attributes as supervisory signals to tune the retrieval model. In this way, we could
transform the retrieval model trained by image-level supervisions from category semantic extraction
to attribute modeling, and precisely represent unknown categories based on its parameters supervised
by visual attributes. Therefore, VAPNet successfully alleviates the problem behind facing instances
from unseen novel categories. Last but not the least, the overall retrieval pipeline is simple and flexible.
Extensive experiments demonstrate that our method outperforms the state-of-the-art methods by a
significant margin, indicating the effectiveness of attribute modelling on facing unknown categories.

Limitations & Broader Impacts: By introducing VAPNet, we aim to extract visual attributes
from seen classes without relying on attribute annotations to differentiate unseen classes. This
innovation has the potential to greatly impact open-domain tasks. In particular, annotating a large
number of attributes for unseen categories in open-domain tasks can be a costly and time-consuming
endeavor. By enabling the model to automatically capture knowledge about unseen classes, our
approach reduces the reliance on attribute annotations, resulting in decreased manual labeling costs.
Furthermore, our approach exhibits improved adaptability to data from domains resembling the
training set, such as natural images or medical images. This heightened adaptability contributes
to stronger generalization capabilities, allowing the model to perform well in real-world scenarios.
Ultimately, our solution has the potential to propel the advancement of open-domain tasks and
facilitate their practical applications.
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