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Abstract

Automatically extracting robust representations
from large and complex time series data is becom-
ing imperative for several real-world applications.
Unfortunately, the potential of common neural
network architectures in capturing invariant prop-
erties of time series remains relatively underex-
plored. For instance, convolutional layers often
fail to capture underlying patterns in time series
inputs that encompass strong deformations, such
as trends. Indeed, invariances to some deforma-
tions may be critical for solving complex time se-
ries tasks, such as classification, while guarantee-
ing good generalization performance. To address
these challenges, we mathematically formulate
and technically design efficient and hard-coded
invariant convolutions for specific group actions
applicable to the case of time series. We construct
these convolutions by considering specific sets of
deformations commonly observed in time series,
including scaling, offset shift, and trend. We fur-
ther combine the proposed invariant convolutions
with standard convolutions in single embedding
layers, and we showcase the layer’s capacity to
capture complex invariant time series properties
in several scenarios.

1. Introduction
Recently, there has been a growing interest in applying
machine learning to time series data, further necessitated by
the challenging properties of time series, including varying
modalities, high noise levels, and distribution shifts.

Machine learning for time series has gradually moved from
statistical methods, e. g., autoregressive models (Box et al.,
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2015) and dictionary-based classification (Middlehurst et al.,
2019), to neural networks. Notable architectures are built
upon recurrent layers, convolutional layers, and, more re-
cently, transformers. More specifically, convolutional neu-
ral networks (CNNs) consistently lead time series tasks
such as classification and clustering (Ismail Fawaz et al.,
2019; Tonekaboni et al., 2021). Often integrated with other
modules, CNNs excel in feature extraction, while offering
interpretability through kernel weight visualization.

Advances in invariance modeling for deep learning have
been achieved with proper mathematical formalism of group
action on data, notably images and graphs (Kvinge et al.,
2022; Bronstein et al., 2021). Two strategies for incorporat-
ing invariance into deep networks are learning them through
data augmentation, such as contrastive learning (Antoniou,
2017) or hard-coding invariances directly within the net-
work architecture. Translation in CNNs and permutation in
graph neural networks (GNNs) are two prominent examples
of hard-coded invariances in terms of architectural design,
among others (Bietti & Mairal, 2019; Horie et al., 2020).
Relevant works range across sets, images, point clouds, and
graphs (Zaheer et al., 2017; Keriven & Peyré, 2019).

Incorporating knowledge on time series invariances during
training is an emerging field of study. Several works focus
on learning invariances, e. g., contrastive learning that lever-
ages augmentations and customizable losses (Franceschi
et al., 2019; Eldele et al., 2021). Yet, the selection of views
within the time series collection to contrast, as well as the
types of transformations to consider (e. g., scaling, shift-
ing), is often arguable within the research community (Yue
et al., 2022). While contrastive learning constitutes an im-
plicit way of introducing invariances into learning, very few
studies leverage time series hard-coded invariances. In this
work, we aim to embed invariances into the network design,
similar to approaches that achieve permutation invariance
in graphs (Maron et al., 2018) and local translation and ro-
tation invariance in images (Weiler & Cesa, 2019). Such
invariant networks offer improved generalization properties
compared to their learned counterparts at the expense of
additional computational costs (Kvinge et al., 2022).

Enforcing deformation-specific invariances in network de-
sign can significantly improve performance for time series
tasks. For example, the trend in time series constitutes a
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Figure 1: Top right: Segment of a electrocardiogram (ECG) from the MIT-BIH dataset (Goldberger et al., 2000; Moody &
Mark, 2001). Top left: The convolutional kernel is the first heartbeat. Middle: With the normal convolution, individual
heartbeats are not identifiable as they are blurred by the trend. Bottom: With linear trend invariant convolution, all heartbeat
occurrences are identifiable as they are positively correlated with the kernel, minimizing deformations induced by the trend.

common deformation, and removing its effects is an active
research area known as baseline removal (Hippke et al.,
2019; Zhang et al., 2010). Modern time series machine
learning pipelines often perform baseline removal as a pre-
processing step (Baek et al., 2015; Yan et al., 2019; Zhang
et al., 2020b). However, these methods usually require ex-
tensive hyper-parameter tuning (Zhang et al., 2020a; Singhal
et al., 2020). In deep learning, this challenge has been tack-
led through trend modeling components (Oreshkin et al.,
2019), which has also been combined with contrastive learn-
ing (Liu et al., 2024; Woo et al., 2022a). Interestingly,
convolution-based networks can leverage hard-coded invari-
ant filters to accurately approximate trend invariance. In-
deed, convolutions focus on local information, and similarly
to spline functions, the trend can locally be approximated
by low-degree polynomial functions, which, in its simplest
form, can be seen as linear (1-degree). Figure 1 illustrates
the cross-correlation between a single heartbeat and an ECG
affected by a trend assuming a standard convolution and
a convolution invariant to a linear trend. Surprisingly, the
standard convolution fails to detect the correlation between
the query heartbeat and the individual ones. On the contrary,
the linear trend invariant convolution successfully identi-
fies correlations to all underlying heartbeats and potentially
offers more robustness for any ECG diagnosis (Liu et al.,
2021b).

Following the previous observations, our work tackles the
challenge of hard-coded spatiotemporal invariance within
convolutional layers for time series accounting for deforma-
tions like offset shift or linear trend and extending beyond
mere time invariance. In the literature, very few works deal
with hard-coded time invariance, and most are concerned
with local time-warping invariance (Shulman, 2019) or time
rescaling invariance (Jacques et al., 2022). In addition, our
mathematical framework provides an exact formulation for
invariant convolutions, as opposed to approximating invari-
ance in previous works. More specifically:

Section 3. We formulate time series deformations via group

actions and introduce invariance under these actions. We
then design generic and exact hard-coded invariant convolu-
tions capable of handling deformations such as trends.

Section 4.1. We highlight the sensitivity of standard
convolution to common deformations and demonstrate
how deformation-invariant convolutions mitigate this issue,
achieving better generalization than learned invariance.

Section 4.2, 4.3 & Appendix A.5.1. We showcase the effec-
tiveness of the proposed convolutions against state-of-the-art
baselines across multiple tasks. The results demonstrate that
our hard-coded invariant convolutions offer a fast, gener-
alizable, and robust approach to time series representation
learning.

2. Related Work
Deep Learning for Time Series. Dominant deep learning
frameworks for time series leverage multi-layer perceptrons
(MLPs) (Oreshkin et al., 2019), convolutional networks
(CNNs) (Bai et al., 2018) and recurrent ones (RNNs) (Sali-
nas et al., 2020), as well as transformer-based networks
(i. e., built upon the attention mechanism) (Wen et al., 2022).
Convolutional kernels have traditionally dominated feature
extraction in time series, from shapelets (Ye & Keogh, 2011)
to the recently successful ROCKET (Dempster et al., 2020),
that exploits several random kernels. Additionally, convolu-
tional layers of different kernel sizes, often stacked in deep
architectures (Ismail Fawaz et al., 2019), with increased
receptive fields, such as INCEPTIONTIME (Ismail Fawaz
et al., 2020) and RESNET (Wang et al., 2017), are promi-
nent for time series classification. Similarly, TIMESNET
(Wu et al., 2022) model capitalizes on convolutional lay-
ers to capture variations of multiple periodicities of 2D
transformed multivariate time series, to solve multiple time
series tasks. Beyond standard CNNs for time series, T-
WaveNet (Minhao et al., 2021) is a tree-structured wavelet
neural network that decomposes the input signal into var-
ious frequency subbands with similar energies based on
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the dominant frequency range. Another recent hierarchi-
cal CNN-based model for time series forecasting, SCINET
(Liu et al., 2022), repeatedly downsamples and convolves
the input to enable information sharing at several resolu-
tions. Furthermore, leveraging the success of the attention
mechanism in text, transformer-based architectures have
lately proven successful in capturing temporal interactions
between multivariate time series inputs, mainly in time
series forecasting (Zhou et al., 2021; 2022; Woo et al.,
2022b; Liu et al., 2021a). For instance, AUTOFORMER
(Wu et al., 2021) combines decomposition modules with
an auto-correlation in place of self-attention, while CROSS-
FORMER (Zhang & Yan, 2022) capitalizes on 2D vector ar-
ray embeddings that preserve temporal and channel informa-
tion, followed by temporal and channel-wise cross-attention
modules. By merging attention with masked autoencoders,
UP2ME (Zhang et al., 2024) applies univariate pre-training
followed by multivariate cross-channel fine-tuning to gener-
alize across multiple tasks. In parallel, several recent works,
evaluate forecasting architectures also on the anomaly de-
tection (Xu, 2021), by reformulating the task to point-wise
reconstruction, with reconstruction error being the anomaly
criterion. To overcome the sensitivity of transformers in
overfitting, recent MLP-based architectures have showcased
superior performance in forecasting, e. g., TSMIXER (Chen
et al., 2023), TIMEMIXER (Wang et al., 2024a), FRETS
(Yi et al., 2024), while several studies doubt the robustness
of the former in time series modeling (Zhang et al., 2022;
Zeng et al., 2023). Notably, forecasting methods often per-
form trend-seasonal decomposition with moving averages,
such as PERI-MIDFORMER (Wu et al., 2024), which applies
self-attention between multiple periodic features. How-
ever, moving average kernels mainly address offset shifts,
contrary to our more principled and flexible approach to
deformation invariance (e. g., linear or higher-order trends).

Invariances for Time Series Modeling. Besides super-
vised methods, multiple approaches emphasize unsuper-
vised learning for extracting representations from time se-
ries data before the downstream task (Nie et al., 2022; Dong
et al., 2024). Among prominent approaches, self-supervised
contrastive methods enforce invariances between representa-
tions by applying transformations (e. g., scaling, shifting, or
noise injection) to the input and training the model to map
them to the same underlying representations (Chen et al.,
2020). Typically, CNNs constitute basic blocks for vari-
ous time series augmentation-based contrastive frameworks,
such as TS-TCC (Eldele et al., 2021) and TIMECLR (Yang
et al., 2022). Except for transformation-based augmenta-
tions, samples can also be contrasted with sampled subseries
(Franceschi et al., 2019), adjacent segments (Tonekaboni
et al., 2021), or a combination of all (Yue et al., 2022). Un-
like deep learning, time series invariances have long been a
central focus in classical time series data mining approaches

Deformed
Original

(a) Amplitude scaling (b) Offset shift (c) Linear trend

Figure 2: Deformations applied to an example series, in-
cluding amplitude scaling, offset shift, and linear trend.

(Esling & Agon, 2012). For instance, local time warping
invariance (Ding et al., 2008) can be tackled by dynamic
time warping (DTW). Traditionally, amplitude and offset
invariances are accomplished by Z-normalizing the data (Pa-
parrizos et al., 2020). However, while Z-normalization re-
moves global offsets, it fails to address local distortions. The
LT-normalized distance (Germain et al., 2024b) extends Z-
normalized distance by modeling invariance to linear trends.
Diffeomorphisms have also been leveraged for shift invari-
ance in neural networks through a differentiable bijective
function mapping between time series manifolds (Demirel
& Holz, 2025). Closely related, authors in (Germain et al.,
2024a) propose methods to quantify deformations like time-
warping through modeling temporal deformations as diffeo-
morphisms acting on time series.

3. Method
In real-world signals, constant baseline shifts, slow drifts
and long-term changes can arise by external factors and dis-
tort underlying signal patterns. Therefore, amplitude scaling,
offset shift, and linear trends can be identified as common
time series deformations, as depicted in Figure 2 on an ECG
heartbeat. These deformations can serve as examples for the
empirical validation of our broader theoretical framework of
time series invariant convolutions. The proposed framework
for learning time series representations with hard-coded
invariances consists of two main components. The first
component is a group action that formalizes how certain
deformations transform time series (Section 3.1), resulting
in their deformed counterparts. Deformed time series are
observable in practice, due to noise or trends. To ensure
invariance to specific deformations, that can be important
for many applications, the second component is a mapping
function that constructs embeddings of deformed time series
while remaining invariant to such deformations (Section 3.1)
Finally, these embedding maps can be efficiently integrated
into convolutional operations (Section 3.2) to extract robust
local features to non-informative deformations.

3.1. Invariant embedding for time series

We, next, construct an embedding invariant to a predefined
set of deformations. Essentially, the embedding is expected
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to map a geometrical object or any of its deformed versions
to the same representative. In addition, we present some
important properties that should verify the embedding and
tailor the proposed framework to the case of time series.

Deformations and group action. From a geometrical
viewpoint, the notion of invariance depends on the represen-
tation of deformations and the definition of the action of a
deformation on a geometrical object. A classical approach
consists of representing a deformation as an element of a
group and its action by a group action:

Definition 3.1 (Group action). A group G with neutral e acts
on the left on a set M, if there exists a map a : G×M 7→ M
that verifies:

1) a(e,m) = m, ∀m ∈ M

2) a(g, a(h,m)) = a(gh,m), ∀(g, h) ∈ G2,∀m ∈ M.

To simplify notation, the left action of g ∈ G on m ∈ M
is denoted g · m. For a group G that acts on the left on a
set M, the orbit of m ∈ M is the set of all its deformed
versions [m] = {g · m | g ∈ G}. The set of independent
orbits, denoted M/G, is called quotient space, and if this
set is reduced to a singleton, the action of G on M is said
transitive, and it verifies that for any m ∈ M its orbit is the
whole set: [m] = M.

A group action for time series. Leveraging measure the-
ory, we model the set of time series by the Hilbert space
L2(I,RD, µ) of functions defined on the closed interval
I ⊂ R taking value in RD and square-integrable for the
Borel measure µ. The inner product on L2(I,RD, µ) is de-
fined as:

⟨f, g⟩L =

∫
I

⟨f(t), g(t)⟩dµ(t) (1)

where ⟨., .⟩ is the dot product on RD. Let H be a finite
dimensional vector subspace of L2(I,RD, µ), we model the
group of deformations as the set R∗

+ ⋉ H with the composi-
tion rule (λ2, h2)× (λ1, h1) = (λ2λ1, h2 + λ2h1). Finally,
we model the group action by the application:

(R∗
+ ⋉ H)× L2(I,RD, µ) → L2(I,RD, µ)

((λ, h), f) 7→ λf + h
(2)

This is a general group action that is not transitive as H is
a finite-dimensional vector subspace of L2(I,RD, µ). By
convention, we refer to R∗

+ ⋉ H as the set of rigid de-
formations. The customization of the group action de-
pends on the choice of basis for the subspace H. For in-
stance, the Z-normalization (Paparrizos et al., 2020) is an
invariant offset shift which corresponds to the subspace
of deformations {h : I 7→ c | c ∈ RD} with the ba-
sis {hi : I 7→ ei/

√
length(I) | i ∈ [1, . . . , D]} where

(ei)i∈[1,...,D] is the orthonormal basis of RD.

Invariant embedding. An embedding invariant to a group
action is expected to map any element of an orbit to the same
representative, and it is defined as follows:

Definition 3.2 (Invariant & orbit-injective embedding). An
embedding map L : M 7→ N is said to be G-invariant, if
for any (g,m) ∈ G×M, L(g ·m) = L(m). Additionally,
L is said to be orbit-injective if the application L̃ : [m] ∈
M/G 7→ L(m) ∈ N is injective.

Note that an invariant embedding is meaningful in the case
of a non-transitive group action. In addition, if the embed-
ding is orbit-injective, each orbit has a distinct representa-
tive.

For now, we focus on the action of the finite-dimensional
subspace H of a Hilbert space M by the usual vector addition:
(h,m) ∈ H×M 7→ m+h ∈ M. The following proposition
exhibits a H-invariant embedding that is also orbit-injective.
Proposition 1. Let PH be the orthogonal projector on H, and
Id be the identity map on M, the embedding, L = Id − PH

(the projector on H⊥) is H-invariant and orbit-injective.

Proof. See Appendix A.1.

Remark 3.3. If (hi)i∈[[1,N ]] is an orthonormal basis of the
finite dimensional vector subspace H, then the orthogonal
projector on H as an explicit formulation PH : m ∈ M 7→∑N

i=1⟨m,hi⟩Lhi ∈ H.

Invariance to amplitude scaling can easily be incorporated
in an embedding defined by the previous proposition:
Proposition 2. Let L : M 7→ M be the H-invariant and
orbit-injective embedding map induced by the orthogonal
projector on H as defined in proposition 1. The embedding
map:

L̂ : m ∈ M 7→
{

L(m)/∥L(m)∥M if m ∈ M\H
0M else (3)

is (R∗
+ ⋉ H)-invariant and orbit-injective.

Proof. (R∗
+ ⋉ H)-invariance is due to the linearity and H-

invariance of L, and the orbit-injectivity in induced by the
linearity and orbit-injectivity of L.

An example: the univariate Z-normalization. We are
looking for an embedding invariant to amplitude scale and
offset shift in the case of univariate discrete time series.
The set of time series is modeled by L2([0, l],R, µ) where
l ∈ N∗, µ =

∑l
i=1 δi and δi is the dirac measure at i. The

set offset shifts is the subspace generated by the unit norm
function e : t ∈ [0, l] 7→ 1/

√
l ∈ R. According to Proposi-

tion 2 the invariant embedding of a non-constant function
f is the function: (f − ⟨f, e⟩Le)/∥f − ⟨f, e⟩Le∥L which
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leads to (f(i) − µf )/(
√
lσf ) where µf = l−1

∑l
i=1 f(i)

and σ2
f = l−1

∑l
i=1(f(i)− µf )

2.

3.2. Invariant convolution

CNNs have been successful in many applications related
to time series, essentially becoming a key building block
of the latest deep neural networks. Their success comes
from their ability to capture local information in long time
series. However, CNNs remain sensitive to some deforma-
tions like amplitude scaling or offset shifts (Mallat, 2016).
In this section, we propose a novel convolution that is invari-
ant to rigid deformations at a local scale while remaining
computationally efficient.

The formalism. Let L2loc(R,RD, µ) be the set of signals,
we assume that the signal in square integrable on any com-
pact of R. Let L2(I,RD, µ) be the set of kernels where
I ⊂ R is a closed interval. The classical convolution layer,
named 1D-CNN, between a signal f and a kernel w is the
signal:

f ∗ w : u ∈ R 7→
∫
I

⟨f(u+ t), w(t)⟩dµ(t) ∈ R (4)

Let assume a group of rigid deformations G acting on
L2(I,RD, µ), and L̂ the G-invariant embedding map defined
by Proposition 2. For any u ∈ R, we can define the operator
KG

u that maps the restriction of any signal f on the closed
interval u+ I to its G-invariant representative:

KG
u :

∣∣∣∣ L2loc(R,RD, µ) → L2(I,RD, µ)

f 7→ L̂ (t ∈ I 7→ f(t+ u))
(5)

Leveraging these operators we define the G-invariant convo-
lution between a signal f and a kernel w as the signal:

f ∗G w : u ∈ R 7→
∫
I

⟨(KG
uf)(t), w(t)⟩dµ(t) ∈ R (6)

Fast computation. For a group of rigid deformations
(R∗

+ ⋉ H) with (hi)i∈[[1,N ]] a basis of H, thanks to
Remark 3.3, the inner product between the invariant
representation of f ∈ L2(I,RD, µ) and w can be
decomposed as follows: ⟨L̂(f), w⟩L = (⟨f, w⟩L −∑N

i=1⟨f, hi⟩L⟨w, hi⟩L)/∥L(f)∥L. Assuming discrete sig-
nals, the computation of ⟨L̂(f), w⟩L requires the compu-
tation of 2N + 2 dot products. However, convolving a
batch of B signals of length L with the kernel, the number
of inner products to compute drops from BL(2N + 2) to
BL(N + 2) +N as the inner products between the kernel
and the basis are shared across signals and subsequences.
It leads to the time complexity O(BLNCW ) where C is
the number of channels, W is the kernel size and assuming

that N << L. Invariant convolutions do not consider small-
size kernels (2 or 3 timestamps) but rather large kernels
(30 or more). The traditional approach to convolution is
not tractable in such a context. Instead, we leverage the
Fast Fourier transform (FFT) (Mathieu et al., 2013), which
changes the time complexity to O(BNCL log(L)). The
computational time is identical for any window size, as the
computation with the FFT does not depend on the kernel
size. In the experimental results, we show that our proposed
invariant convolutions benefit from fast computation.

4. Experimental Evaluation
We present an extended experimental evaluation illustrating
the use and performance of hard-coded invariant convolu-
tions. As already presented in Section 3 (Figure 2), we
specifically focus on convolutions invariant to constant func-
tions (offset shift) Hoff = {t ∈ I 7→ b | b ∈ RD} or affine
functions (linear trend) HLT = {t ∈ I 7→ at + b | (a, b) ∈
RD × RD}. Based on the discussion in the Introduction,
these deformations are the simplest local approximation
of trend deformation. In addition, we also include invari-
ance to amplitude scaling, which is a common source of
inter-individual variability. The experimental evaluation is
organized as follows:

I. Robustness to Deformations. We experimentally prove
the robustness of the proposed invariant convolutions com-
pared to vanilla ones and contrastive-based methods on a
classification task when considering deformations.

II. Classification Performance. We show the competitive
performance of an example architecture built upon a pool
of normal and invariant convolutions on classification for
several benchmark datasets. We also perform ablations and
computational efficiency studies for the proposed method.

III. Generalization Performance. We assess the robustness
of the proposed invariant convolutions on a transfer learn-
ing classification experiment against relevant contrastive
learning methods.

IV. Anomaly Detection Performance. We finally capi-
talize on invariant filters to perform reconstruction-based
anomaly detection by introducing an example decoder that
effectively combines different types of features to recon-
struct the signal. The experimental protocol and the results
are presented in Appendix A.5.1, revealing the benefit of
invariant convolutions.

Code and Experimental Details. The source code for this
work is available on GitHub1. More information about the
datasets and the implementation details for the proposed
method and baselines can be found in Appendix A.3 and
A.4, respectively.

1https://github.com/sissykosm/TS-InvConv
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Table 1: Robustness study of distinct convolutional filter types with respect to invariance, i. e., standard ones (non-invariant),
offset invariant, and trend invariant, on five UCR datasets. Models are trained on normalized data and tested on four
additional synthetic deformation scenarios (random offset (off.), random linear trend (LT), smooth random walk (RW) and
their combinations). Higher is better, best methods in bold, second best underlined. The self-supervised TS-TCC method is
pre-trained with all deformation augmentations, and it is then fine-tuned (FT) on the raw normalized data. For the three
convolutional variants, knowledge of the distribution of deformations is not incorporated during training, and thus, the
model is evaluated in an out-of-distribution setting.

CONV INV. CONV INV. CONV TS-TCC (FT) (2021)
- normal - - offset - - trend - - offset, trend -

HandOutlines

Normalized 77.84 ± 0.0 72.43 ± 0.54 70.54 ± 0.71 88.96 ± 1.17
+ off. 41.08 ± 0.47 72.43 ± 0.54 70.72 ± 1.02 47.83 ± 0.54
+ LT 37.39 ± 0.16 71.08 ± 1.08 70.90 ± 0.82 40.87 ± 1.41
+ off., LT 35.68 ± 0.47 70.45 ± 1.22 70.63 ± 0.41 37.07 ± 0.87
+ off., RW 35.95 ± 0.0 62.34 ± 1.02 64.59 ± 1.24 35.82 ± 0.15

MixedShapesRegularTrain

Normalized 93.91 ± 0.39 88.48 ± 1.79 92.26 ± 0.70 93.44 ± 1.51
+ off. 38.96 ± 0.99 88.41 ± 1.83 92.24 ± 0.73 92.56 ± 1.31
+ LT 29.33 ± 2.16 84.63 ± 3.92 91.55 ± 0.69 82.96 ± 4.72
+ off., LT 28.22 ± 1.49 84.05 ± 4.08 91.64 ± 0.80 81.35 ± 4.08
+ off., RW 22.94 ± 0.71 76.98 ± 4.62 90.59 ± 0.64 68.56 ± 4.86

NonInvasiveFetalECGThorax1

Normalized 91.35 ± 0.05 86.53 ± 0.06 85.00 ± 0.33 84.19 ± 1.18
+ off. 15.32 ± 0.44 85.11 ± 0.73 83.84 ± 0.12 71.47 ± 6.51
+ LT 8.09 ± 0.23 42.49 ± 0.33 82.56 ± 0.45 49.54 ± 5.97
+ off., LT 6.09 ± 0.17 42.36 ± 0.65 82.02 ± 0.52 47.61 ± 6.70
+ off., RW 3.48 ± 0.14 37.22 ± 0.94 73.33 ± 0.05 31.55 ± 6.16

FordB

Normalized 82.35 ± 0.57 83.33 ± 0.5 82.84 ± 0.65 78.37 ± 0.30
+ off. 60.91 ± 3.17 81.61 ± 1.38 83.37 ± 0.31 78.29 ± 0.43
+ LT 53.83 ± 1.10 70.50 ± 6.02 82.68 ± 0.91 76.85 ± 2.23
+ off., LT 53.04 ± 0.75 69.47 ± 7.34 82.35 ± 0.66 76.49 ± 2.83
+ off., RW 50.91 ± 0.26 68.80 ± 8.21 80.37 ± 0.43 75.77 ± 1.67

Yoga

Normalized 76.12 ± 0.24 76.80 ± 1.69 76.92 ± 0.14 80.64 ± 0.63
+ off. 53.73 ± 0.26 72.07 ± 1.93 75.71 ± 0.18 74.97 ± 1.59
+ LT 52.86 ± 0.14 67.71 ± 2.99 74.17 ± 0.29 62.21 ± 0.74
+ off., LT 51.13 ± 0.07 64.85 ± 2.05 72.88 ± 0.38 61.85 ± 1.26
+ off., RW 48.82 ± 0.12 65.67 ± 0.74 72.58 ± 0.19 62.69 ± 2.64

+ off. -48% ± 20% -1% ± 2% 0% ± 0% -13% ± 17%
Percentage Drop (%) + LT -55% ± 22% -16% ± 17% -1% ± 1% -26% ± 19%
with respect to Normalized + off.,LT -57% ± 22% -18% ± 17% -1% ± 2% -28% ± 20%
(lower the better in abs. value) + off., RW -59% ± 23% -23% ± 16% -6% ± 4% -34% ± 22%

4.1. Robustness to Deformations

Protocol. We aim to evaluate the robustness of trend defor-
mations of hard-coded invariant convolutions (scaling/offset
& scaling/linear trend) compared to vanilla convolutions and
learned invariant representations with contrastive learning.
Robustness is evaluated on a classification task. We consider
5 datasets from the UCR archive (Dau et al., 2019), which,
by default, are all Z-normalized. Concerning baselines,
we include three versions of inception-like (Ismail Fawaz
et al., 2020) networks (a single convolution layer with ker-
nels of four different sizes followed by a linear classifier)
whose architecture is presented in Appendix A.2. The first
one, CONV (normal), only includes standard convolutions,
the second one, INV. CONV (offset), only includes ampli-
tude/offset invariant convolutions, and the last one, INV.
CONV (trend), only includes amplitude/linear trend invari-
ant convolutions. These three models are only trained on
the raw datasets and then tested on 5 different scenarios:
(i) no additional deformations, (ii) the addition of random
offset, sampled from uniform distribution between specific

ranges, as well as (iii) the addition of random trend with
slope and intercept values sampled again with uniform prob-
ability, (iv) combination of added random offset and trend
and (v) combination of random offset shift and smooth ran-
dom walk. For the last deformation, the added synthetic
trend is a random walk generated from a Gaussian distribu-
tion and smoothed by a rolling mean. In order to compare
with learned invariances, we also include the prominent
supervised contrastive learning method TS-TCC (Eldele
et al., 2021). On each dataset, this model is pre-trained
with contrastive losses leveraging the different deformation
scenarios to capture invariance; then, it is fine-tuned for
classification on the raw data. Its performances are also
evaluated under the 5 different scenarios.

Results. Table 1 displays accuracy scores, which are orga-
nized by scenarios of increasing magnitude of deformations,
starting from (i) no additional deformations and ending with
(v) offset shift and smooth random walk, the closer one to
trend deformation.

6



Time Series Representations with Hard-Coded Invariances

In the first scenario (normalized data), there is no
deformation-related distribution shift between the train and
the test sets. On average, CONV (normal) and TS-TCC
perform slightly better than the hard-coded invariant net-
works INV. CONV (offset) and INV. CONV (trend). Outside
of the HandOutline dataset, the performance difference be-
tween the two groups does not exceed 5.0 points of accuracy.
This slight performance difference could be attributed to
small class amplitude, offset, or linear trend dependencies.
However, as soon as deformations are added (even small),
CONV (normal) and TS-TCC performances drop signif-
icantly. In contrast, the performance of the deformation
invariant network INV. CONV (trend) remains constant and
becomes the best performer in most cases. On average, INV.
CONV (trend) performs better than TS-TCC by 16.0 points
of accuracy.

Regarding the specificities of each model, CONV (normal)
is the most affected by deformations. Its performance drops
by 48% when adding minor deformations (offset) and goes
up to 59% with smooth random walk trends. This sug-
gests that convolutions are highly sensitive to deformations,
even small ones, commonly observed in time series. Ap-
pendix A.5.2 clearly illustrates the sensitivity of CONV (nor-
mal) by comparing the feature maps of its convolutional
filters with those of INV. CONV (offset) and INV. CONV
(trend) on the same time series. When the time series un-
dergoes deformations, the feature map landscape of CONV
changes drastically. In contrast, its invariant counterparts
(INV. CONV) maintain a consistent structure according
to their invariance. TS-TCC is the second most affected
model. On average, its performance drops by at most 34%,
suggesting that the learned invariance is only partial and
does not generalize well on new observations. In contrast,
convolutions with hard-coded invariance behave accord-
ing to their properties. INV. CONV (offset) performance
remains constant when offset deformations are added but
decreases when more complex deformations are added. In-
terestingly, the performances are equivalent between the
linear trend scenario and the offset + linear trend one, com-
forting the invariance property to offset. INV. CONV (trend)
performance remains almost constant on scenarios includ-
ing offset and linear trend deformations ((ii),(iii),(iv)). Note
that the slight performance variations in these three scenar-
ios are due to some padding effects. In the worst scenario,
including a smooth random walk trend, the performance
remains quite constant; it drops on average by 6% compared
to 59% for CONV (normal) and 34% for TS-TCC. This last
scenario is the closest to any trend deformation, indicating
that INV. CONV (trend) is well suited for classifying time
series affected by trends.

Conclusion. Standard convolutions are sensitive to spa-
tiotemporal deformations. This sensitivity issue can be

overcome by leveraging hard-coded invariant convolutions,
which also benefit from better generalization properties than
invariance learned by contrastive learning.

4.2. Classification Benchmark

Pool of convolutions. The choice of invariances is often
related to the application (Yue et al., 2022), and setting the
invariances by hand requires a good understanding of the
nature of the signals. In the absence of such knowledge,
as in classification benchmark, we decompose the space of
deformations H =

⊕K
i=1 Hi in the direct sum of subspaces

such that the cumulative sums, ∅ ⊂ H1 ⊂ H1 + H2 ⊂
. . . ⊂ H, represent sets of deformations of increasing order
of complexity. We consider a layer that concatenates of
nj (

⊕j
i=1 Hi)-invariant convolutions for j ∈ (1, . . . ,K)

and n0 standard convolutions. In our specific experimental
framework, the linear trend deformations HLT is the direct
sum of offset deformations H1 = {t ∈ I 7→ b | b ∈ RD} and
purely linear deformations H2 = {t ∈ I 7→ at | a ∈ RD}. Il-
lustrations of the proposed pool of convolutions is provided
in the Figure 4 of Appendix A.2. Other pooling strategies,
like attention mechanism or reinforcement learning, are
possible and left for future work.

Datasets. We consider the 26 multivariate UEA datasets
(Bagnall et al., 2018), coming with a standard train/test
split. We also consider 3 additional datasets, the human
activity recognition UCIHAR (Anguita et al., 2013) dataset,
the Sleep-EDF dataset (Goldberger et al., 2000) for sleep
stage classification of EEG signals, and finally the epileptic
seizure recognition Epilepsy dataset (Andrzejak et al., 2001).
For these datasets, we follow the same preprocessing with
(Eldele et al., 2021), deriving train/validation/test sets of
60 : 20 : 20 ratio. Appendix A.3 provides additional details
on data splits and preprocessing.

Baselines. We select twelve state-of-the-art models for
time series classification. TIMESNET (Wu et al., 2022),
PATCHTST (Nie et al., 2022), CROSSFORMER (Zhang &
Yan, 2022), DLINEAR (Zeng et al., 2023), ITRANSFORMER
(Liu et al., 2023) and TIMEMIXER (Wang et al., 2024a) are
derived from the Time-Series-Library (Wang et al., 2024b).
Additionally, PERI-MIDFORMER (Wu et al., 2024) model is
adapted from its official code repository. We also compare
to the CNN-based backbone of the self-supervised method
TSLANET (Eldele et al., 2024) and three powerful CNN ar-
chitectures, namely INCEPTION (Ismail Fawaz et al., 2020),
RESNET (Wang et al., 2017), and CNN (Ismail Fawaz et al.,
2018) build upon standard stacked 1D-CNNs. We also in-
clude the state-of-the-art machine learning method ROCKET
(Dempster et al., 2020). Finally, our model INVCONVNET
combines a single inception-like pool of convolutions layer
of four different kernel sizes, combining balanced sets of
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Table 2: Classification Accuracy (%) for all considered datasets. Accuracy is averaged for datasets from UEA repository.
Higher is better, best methods in bold, second best underlined.

INVCONVNET TIMESNET PATCHTST CROSSFORMER ITRANSF. PERI-MID. TSLANET DLINEAR TIMEMIXER INCEPTION RESNET CNN ROCKET
Datasets (ours) (2022) (2022) (2022) (2023) (2024) (2024) (2023) (2024a) (2020) (2017) (2018) (2020)

UEA (26 datasets) 71.81 ± 0.80 66.87 ± 1.72 66.18 ± 1.26 66.37 ± 1.35 64.42 ± 2.05 60.87 ± 3.00 68.70 ± 1.19 61.51 ± 1.05 64.60 ± 1.69 62.86 ± 1.96 67.37 ± 1.59 65.67 ± 1.64 71.29± 0.90

UCIHAR 96.63 ± 0.49 91.66 ± 0.62 85.74 ± 0.50 93.43 ± 0.56 94.13 ± 0.03 92.64 ± 0.57 94.71 ± 0.66 57.47 ± 0.73 84.40 ± 1.07 95.26 ± 0.55 96.04 ± 0.48 95.78 ± 0.20 92.06 ± 0.15
Sleep-EDF 84.95 ± 0.39 74.64 ± 0.73 78.53 ± 0.28 79.82 ± 0.89 53.11 ± 0.21 63.50 ± 1.52 84.98 ± 0.43 36.15 ± 0.21 74.07 ± 2.05 84.06 ± 0.39 85.62 ± 0.13 82.41 ± 0.56 83.88 ± 0.09
Epilepsy 98.43 ± 0.04 97.62 ± 0.20 98.01 ± 0.05 98.23 ± 0.12 97.80 ± 0.26 97.99 ± 0.29 98.23 ± 0.05 82.26 ± 0.06 97.94 ± 0.18 97.65 ± 0.20 98.16 ± 0.04 97.61 ± 0.28 98.38 ± 0.02

Table 3: Classification ablation study of filter types
in INVCONVNET, including solely normal ones (-N),
offset-invariant (-O) ones, or trend-invariant ones (-T).

INVCONVNET INVCONVNET-N INVCONVNET-O INVCONVNET-T
Datasets - mixed - - normal - - offset - - trend -

UEA (26 datasets) 71.81 ± 0.80 68.04 ± 1.76 67.70 ± 1.21 66.61 ± 2.58

UCIHAR 96.63 ± 0.49 96.13 ± 0.34 95.75 ± 0.51 95.43 ± 0.13
Sleep-EDF 84.95 ± 0.39 84.70 ± 0.39 83.73 ± 0.13 83.14 ± 0.13
Epilepsy 98.43 ± 0.04 98.09 ± 0.13 98.26 ± 0.04 98.25 ± 0.09

standard, amplitude/offset and amplitude/linear trend in-
variants convolutions. A linear classifier follows the pool
of convolutions. Implementation details are presented in
Appendix A.2.

Results. Table 2 presents the classification performance of
the proposed INVCONVNET against the twelve considered
baselines, evaluated on UEA and the 3 additional datasets.
All models are trained and tested for 3 runs with random
seeds, and the average accuracy with its standard devia-
tion is reported. Full classification results per dataset on
UEA, along with a critical difference diagram based on
mean ranks, are provided in Appendix A.5.3 (see also Fig-
ure 10). We observe that on UEA repository, INVCONVNET
has the best average test classification accuracy, followed
closely by ROCKET, and both algorithms outperform the
rest deep learning approaches. ROCKET’s use of thousands
of random convolutional kernels enables effective feature
extraction, making it highly robust on smaller UEA clas-
sification datasets. Although InvConvNet has the highest
mean accuracy, ROCKET is the best method in first-rank
counts, but in the critical difference diagram both show sta-
tistical equivalence in mean rank. Still, InvConvNet’s top
mean rank indicates more consistent performance, suggest-
ing robustness across diverse datasets. On the additional
3 datasets, INVCONVNET shows superior performance in
terms of accuracy, further validating the advantage of invari-
ant CNN-based approaches in classification. For Sleep-EDF,
RESNET is slightly better than the proposed INVCONVNET,
which can be attributed to the depth of the method in captur-
ing complex dependencies between the time series inputs.
Finally, transformer-based methods are significantly out-
competed by CNN-based ones, and the MLP-based DLIN-
EAR scores the worst, failing to capture the class-dependent
temporal dynamics. Additionally, INVCONVNET built upon
a single layer of convolutional kernels shows a significant
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Figure 3: Models’ costs for Heartbeat dataset classification.

advantage in terms of training time and memory cost, as
presented in Figure 3 for the UEA Heartbeat dataset.

Ablation study. In this experiment, we compare IN-
VCONVNET classification performances to its standalone
main components. More specifically, INVCONVNET com-
bines balanced sets of standard, amplitude/offset, and
amplitude/linear trend invariant convolutions. We com-
pare this model to its standards INVCONVNET-N, ampli-
tude/offset INVCONVNET-O, and amplitude/linear trend
INVCONVNET-T counterparts. In all cases, the total number
of kernels remains the same. Table 3 depicts the classifica-
tion performances of all four variants. INVCONVNET shows
the highest performance on all datasets. INVCONVNET-N
is second in most cases, closely followed by the invariant
models. It indicates that features invariants to amplitude,
offset, or linear trend are valuable on many classification
tasks while guaranteeing robustness to the networks as seen
previously in Section 4.1, and by combining them, models
achieve better performances.

Conclusion. Convolutional features invariant to deforma-
tions are meaningful for classification tasks, and combining
them in single-layer simple and lightweight architectures,
offers comparable to better performances compared to the
latest and prominent methods.

4.3. Transfer Learning Experiment.

Protocol. We assess the generalization of invariant con-
volutions on a transfer learning experiment using 4 dif-
ferent source and target domains of the Fault-Diagnosis
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Table 4: Classification Accuracy (%) on a Transfer Learning experiment on Fault-Diagnosis (A, B, C, D sub-datasets) for
the supervised INVCONVNET and INVCONVNET-N (normal) and two self-supervised methods.

Train −→ Test
Methods A −→ B A −→ C A −→ D B −→ A B −→ C B −→ D C −→ A C −→ B C −→ D D −→ A D −→ B D −→ C Avg. Acc. (%)

TS-TCC (FT) 55.33 ± 1.44 52.52 ± 4.55 62.13 ± 1.39 48.05 ± 3.32 71.50 ± 1.83 100.0 ± 0.0 40.76 ± 2.22 98.25 ± 1.22 99.34 ± 0.50 46.98 ± 0.65 100.0 ± 0.0 74.28 ± 2.77 70.76 ± 1.66
TS2VEC (FT) 54.11 ± 1.46 54.07 ± 1.91 52.54 ± 1.89 55.06 ± 0.17 88.72 ± 0.47 100.0 ± 0.0 57.81 ± 2.18 78.30 ± 3.80 78.41 ± 4.39 60.37 ± 1.95 99.97 ± 0.02 86.82 ± 0.54 72.18 ± 1.57
INVCONVNET (Sup.) 55.90 ± 0.42 55.93 ± 0.34 53.41 ± 0.14 85.10 ± 0.63 78.54 ± 0.17 99.05 ± 0.08 70.75 ± 1.32 85.04 ± 0.13 85.12 ± 0.15 70.91 ± 0.73 100.0 ± 0.0 78.49 ± 0.38 76.52 ± 0.37
INVCONVNET-N (Sup.) 60.55 ± 0.88 55.50 ± 1.82 53.50 ± 0.85 60.26 ± 2.01 77.30 ± 0.60 93.50 ± 0.90 64.93 ± 0.48 84.87 ± 0.23 84.46 ± 0.51 59.98 ± 0.98 99.96 ± 0.0 77.14 ± 0.14 72.66 ± 0.78

dataset (Lessmeier et al., 2016). Model-wise, we include
the self-supervised methods TS-TCC (Eldele et al., 2021)
and TS2VEC (Yue et al., 2022) as well as INVCONVNET
and its standard counterpart INVCONVNET-N configuration
as presented in Section 4.2. Models are trained and tested
on different source and target domains, namely the A, B, C,
and D sub-datasets of Fault-Diagnosis, with direct transfer
as in (Eldele et al., 2021). The self-supervised methods
are pre-trained and fine-tuned (FT) on each source domain
dataset leveraging contrastive learning.

Results. Table 4 presents the transferred classification
accuracy performances. Interestingly, the supervised IN-
VCONVNET, built on invariant convolutions, outperforms
unsupervised methods and its standard counterpart (-N) by
at least 4% with low variance.

Conclusion. This experiment indicates that transfer learn-
ing tasks on time series can benefit from convolutional in-
variant features to remove the distribution shift caused by
deformations and improve generalization.

5. Conclusion & Future Work
In this study, we establish a formal mathematical framework
for time series invariances, and we design exact hard-coded
invariant convolutions that seamlessly integrate within any
CNN-based model. We experimentally show their enhanced
generalizability and computational efficiency in several se-
tups. To showcase the robustness of our framework, we
focus our invariant convolutions to simpler but common
affine deformations, allowing invariance to trend when it
can be assumed linear at the scale of the convolution kernel
size. However, we plan to explore approximating the trend
with non-linear functions, such as splines or higher-degree
polynomials, and incorporating seasonal components with
low-frequency cosine bases. Finally, exploring additional
merging strategies on different types of invariances and ex-
tending our invariant convolutional layers to unsupervised
learning settings, is on our agenda for future work.
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A. Appendix
A.1. Invariant embedding

Let M be a Hilbert space and H a finite dimensional vector subspace of M. We focus on the action H on M by the usual
vector addition: (h,m) ∈ H×M 7→ m+ h ∈ M. The following proposition exhibits a H-invariant embedding that is also
orbit-injective.
Proposition 3. Let PH be the orthogonal projector on H, and Id be the identity map on M, the embedding, L = Id −PH (the
projector on H⊥) is H-invariant and orbit-injective.

Proof. Existence of L: As H is a finite dimension vector space, it is a closed and convex subset of the Hilbert space M; the
orthogonal projector on H, denoted PH, exists. Therefore, L : m ∈ M 7→ m− PH(m) ∈ H is well defined.

H-invariance of L: Since H is closed, M = H⊕ H⊥, and for any x ∈ M, we decompose m = mH + fH⊥ . Thus, for any
m ∈ M, and h ∈ H:

L(m+ h) = m+ h− PH(m+ h)
= m+ h− PH(mH⊥ +mH + h)
= m+ h− (mH + h) (projector on a closed vectorial subspace)
= m−mH

= L(m)

which proves the H-invariance of L.

Orbit-injectivity of L: For any m ∈ M, its orbits corresponds to:

[m] = {m+ h | h ∈ H}
= {L(m) + h′ | h ∈ H, h′ = PH(m) + h ∈ M}
= L(m) + H

Therefore, for any ([m], [m′]) ∈ M/H × M/H, such that [m] ∩ [m′] = ∅ implies that L(m) ̸= L(m′) proving the
orbit-injectivity of L.

A.2. INVCONVNET: Architectural Details

The proposed pool of convolutions is presented in Figure 4 and is built upon the concatenation of normal filters, offset
shift-invariant filters, and linear trend invariant filters. The proposed convolutional layer, therefore, incorporates three
distinct kernel types with respect to invariance.

A.2.1. INVARIANT EMBEDDING MODULES

After mathematically formulating the characteristics of an invariant convolutional layer, which is built upon a standard (or
variant) kernel, a kernel invariant to offset shift and scaling, and a kernel invariant to linear trend and scaling, we provide
additional details for the design of the employed embedding modules. We present visualizations of the embedding modules
used for classification and anomaly detection (i. e., reconstruction) in Figure 5.

Standard Module (Single-Layer): The simplest embedding module is a single invariant convolutional layer for a specific
kernel size W and hidden dimensions dn0

for the standard convolutional part (in yellow), dn1
for the convolutional part

invariant to offset shift and scaling (in red), and dn2 for the convolutional part invariant to linear trend and scaling (in
purple).

Inception-like Module (Single-Layer): We also study inception-like design by employing several kernel sizes, but without
stacking the layers in increasing depths. The depth of the employed module remains equal to one. As shown in Figure
5 (Left), in an inception-like embedding module, we consider several kernel sizes, e. g., W1, W2, W3, that are applied in
parallel to the input series, while leveraging the three parts of the proposed pool of convolutions (including standard and
invariant ones). The produced representation for the different kernel sizes, i. e., z1, z2, z3 are concatenated in the channel
dimension producing embeddings of size (3 ∗

∑2
j=0 dnj

, L) for 3 selected kernel sizes. The distinct kernel sizes as well
as the hidden dimension for each part in the pool of convolutions, are hyperparameters that we need to tune, as in every
CNN-based architecture.

14



Time Series Representations with Hard-Coded Invariances

Normal

Offset Shift
& Scaling

Linear Trend
& Scaling

Kernel Input

Pool of Convolutions

Figure 4: Visualization of the different kernel types employed on an input signal inside the proposed invariant convolutional
layer, including normal filters (in yellow), filters invariant to offset shift (in red) and filters invariant to linear trend (in
purple). The produced embedding z is the result of concatenations of the different representations.

Multi-Scale Module (Multi-Layer): Additionally, we examine the capacity of a multi-scale embedding module built
upon invariant convolutions as presented in Figure 5 (Right), particularly for the reconstruction task. Here the employed
depth is equal to two. At the first level, an inception-like layer is employed, with kernel sizes selected to be powers of two
(deriving the maximum exponent from the logarithm of half the series length and setting the minimum to four). The kernels,
as described above, are applied in parallel, and the produced representation for the different kernel sizes is concatenated
in the channel dimension. At the second level, a standard convolutional layer is applied. We similarly employ several
kernel sizes of size max(Wi)/Wi matching the picked kernel sizes in the first layer Wi for i ∈ {1, . . . ,K}, where K the
number of kernels with distinct sizes. For each distinct kernel size in this second layer, a dilation factor is set as ri = Wi,
thus equal to the kernel size of the previous layer. This design enables capturing representations at different scales while
employing a shallow and computationally light architecture, that still benefits from invariant convolutions. Experimentally,
this module shows performance improvements for the anomaly detection task, where reconstruction can benefit from
capturing dependencies at different granularities.

A.2.2. TASK-SPECIFIC MODULES

The embeddings derived from the modules described above are further processed by standard layers to produce the
task-specific output.

I. Classification. The embedding is passed by a Global Average Pooling (GAP) layer, applied to the channel dimension,
that averages over the time dimension to reduce the temporal features to a single value per channel. The result of the GAP
layer is followed by a linear layer that produces the final class probabilities.

II. Anomaly Detection (Reconstruction). The multi-layer embedding module presented above is used to capture dependen-
cies at various scales. For the reconstruction of the input, the embedding is followed by linear layers applied first on the
temporal and then on the channel dimensions. The coefficients of the invariant kernels, i. e., (σf , µf ) for the offset-invariant
part and (νf , αf , βf ) for the trend-invariant part, are passed through linear layers to be mapped to the original time and
channel dimensions and are then combined with each part (one variant and two invariant) of the embedding via addition and
multiplication. More specifically, σf and νf refer to the norm of invariant embeddings of the signal, µf refers to the means,
αf and βf refers to the coefficients of the linear trend. Combining the coefficients with the linearly projected embeddings
adapts the level of the series to the original one, enabling enhanced temporal resolution. Figure 6 presents details about the
reconstruction module and its relation with the embedding module.
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Multi-Layer
(depth 2)

(1) Pool of 
Convolutions

(2) Standard 
Convolutions

Pool of 
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Figure 5: Left: Single-layer embedding module, i. e., of depth 1, used in standard INVCONVNET (for 1 chosen kernel
width W ) and in inception-like INVCONVNET (for several chosen kernel widths, e. g., 3 visualized in the figure). Right:
Multi-layer embedding module, i. e., of depth 2, used in multi-scale INVCONVNET (for several chosen kernel widths W ).
In the second layer, for each kernel size, we utilize multiple kernels whose total number sums up to the larger kernel size,
achieving multi-scale views.

Predict 
Linear
(FC)

Project 
Channels

(FC)

Embedding
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Figure 6: Visualization of the architecture used in terms of reconstruction that leverages the output of an embedding
module built upon a pool of convolutions (including variant and invariant ones). The representation of the embedding layer
zN , zO, zT are passed from 2 fully connected linear layers (FC), from which the first operates on the temporal dimension
and the second on the channels. The coefficients of each invariant operation are similarly projected with linear layers and
combined with the representation (with addition or multiplication) to produce the output.
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A.3. Datasets Details

We focus our experimental evaluation on several real-world time series datasets, including univariate and multivariate inputs,
with significant applications in healthcare and medical diagnosis, wearable technology, audio processing, and transportation,
among others.

Classification Datasets. Details about the 26 multivariate derived from UEA data repository (Bagnall et al., 2018), that are
employed in terms of this study in the classification experiment are provided in Table 5. More specifically, for each dataset
we mention the number of channels, the length of the multivariate series, as well as the number of classes and the number of
instances in the predefined train and test sets.

Table 5: Details of UEA datasets used for classification.

Dataset #Train #Test #Channels Length #Classes

ArticularyWordRecognition 275 300 9 144 25
AtrialFibrillation 15 15 2 640 3
BasicMotions 40 40 6 100 4
Cricket 108 72 6 1197 12
Epilepsy 137 138 3 206 4
EthanolConcentration 261 263 3 1751 4
FaceDetection 5890 3524 144 62 2
FingerMovements 316 100 28 50 2
HandMovementDirection 320 147 10 400 4
Handwriting 150 850 3 152 26
Heartbeat 204 205 61 405 2
InsectWingbeat 30000 20000 200 78 10
JapaneseVowels 270 370 12 29 9
Libras 180 180 24 51 6
LSST 2459 2466 6 36 14
MotorImagery 278 100 64 3000 2
NATOPS 180 180 24 51 6
PEMS-SF 267 173 963 144 7
PenDigits 7494 3498 2 8 10
PhonemeSpectra 3315 3353 11 217 39
RacketSports 151 152 6 30 4
SelfRegulationSCP1 268 293 6 896 2
SelfRegulationSCP2 200 180 7 1152 2
SpokenArabicDigits 6599 2199 13 93 10
StandWalkJump 12 15 4 2500 3
UWaveGestureLibrary 120 320 3 315 8

Table 6: Details of additional datasets used for classification.

Dataset #Train #Test #Channels Length #Classes

UCIHAR 7352 2947 9 128 6
Sleep-EDF 25612 8910 1 3000 5
Epilepsy 9200 2300 1 178 2
Fault-Diagnosis 8184 2728 1 5120 3

Table 6 contains the same details for the additional datasets used for classification, i. e., the UCIHAR (Anguita et al.,
2013) dataset, the Sleep-EDF dataset (Goldberger et al., 2000), and the Epilepsy dataset (Andrzejak et al., 2001). More
specifically, UCIHAR data were collected by 30 volunteers performing various activities, including laying, standing, sitting,
walking, walking downstairs, and walking upstairs. Volunteers’ records were captured by a waist smartphone, including
distinct measurements connected to acceleration and velocity signals. The Sleep-EDF dataset from the PhysioBank database
consists of PolySomnoGraphic sleep recordings containing EEG, among other measurements. We consider only the EEG
signals following previous studies (Eldele et al., 2021) and performed sleep stage classification, including awake, rapid eye
movement, and non-rapid eye movements. Finally, the Epilepsy dataset consists of EEG brain activity measurements for
epileptic seizure classification. Following the preprocessing of (Eldele et al., 2021), we perform binary classification after
merging classes referring to non-epileptic seizure. For the transfer learning experiment, we utilized the Fault-Diagnosis
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dataset (Lessmeier et al., 2016), as preprocessed in (Eldele et al., 2021), which comprises of measurements under 4 different
working conditions, perceived as different domains, and are assigned to 3 classes, including a healthy and two fault classes.

We also conduct a synthetic experiment on 5 large datasets from UCR repository (Dau et al., 2019). The selected datasets
were picked from the equal-length datasets of the relevant repository that combine a large number of samples in the
training and test sets, along with a large series length. Datasets with train set size and series length less than 100 were not
considered in our subset. Details about the selected UCR datasets are given in Table 7. Since many UCR datasets are
already preprocessed using Z-normalization to achieve zero mean and unit variance, they are not ideal for demonstrating
the impact of our invariant layers on classification performance. This is the primary reason for conducting a synthetic
experiment on these datasets rather than a conventional one with the whole repository.

Table 7: Details of the subset of UCR datasets used for the synthetic classification experiment.

Dataset #Train #Test #Channels Length #Classes

HandOutlines 1000 370 1 2709 2
MixedShapesRegularTrain 500 2425 1 1024 5
NonInvasiveFetalECGThorax1 1800 1965 1 750 42
FordB 3636 810 1 500 2
Yoga 300 3000 1 426 2

Anomaly Detection Datasets. Furthermore, we present in Table 8 the five employed anomaly detection datasets after
preprocessing them on non-overlapping subsequences of length 100, also showing the number of channels and the size of
the train, validation, and test splits. The SMD dataset (Su et al., 2019) consists of data related to server machines collected at
an internet company, while the MSL and SMAP (Hundman et al., 2018) datasets comprise of telemetry data from spacecraft
monitoring systems. The SWaT (Mathur & Tippenhauer, 2016) dataset is a collection of sensor data from the operations of
a critical infrastructure system. Finally, the PSM (Abdulaal et al., 2021) dataset contains measurements from application
server nodes on an internet website.

Table 8: Details of datasets used for anomaly detection.

Dataset #Train #Val #Test #Channels Length

SMD 566724 141681 708420 38 100
MSL 44653 11664 73729 55 100
SMAP 108146 27037 427617 25 100
SWaT 396000 99000 449919 51 100
PSM 105984 26497 87841 25 100

Data Splits and Preprocessing. As mentioned already in the main paper, for the proposed method, we do not normalize the
data using Z-normalization for UEA and the rest 4 datasets used in classification, while the datasets from UCR are used for
the synthetic experiment are derived normalized by the data source. On the contrary, all data are normalized for classification
and the baselines, as well as for anomaly detection and all considered models (including the proposed INVCONVNET). For
the UEA datasets, we do validation on the whole training set since the test sets are, in several cases, quite large, and thus, a
small subset of the train set picked for validation can be a misleading indicator of performance. For the rest classification
datasets, we perform a split into train/validation/test sets with a 60 : 20 : 20 ratio, following (Eldele et al., 2021). Similarly,
for the five anomaly detection datasets, we split into train/validation/test sets with a 70 : 10 : 20 ratio (Xu, 2021).

A.4. Implementation Details

All experiments presented in this study were conducted on an Nvidia Tesla V100 GPU, with 40 cores and 756 GB of
memory. We utilized the Adam optimizer with a learning rate of lr = 0.001 for both classification and unsupervised anomaly
detection tasks. We also adopted a linear cosine annealing learning rate scheduler for INVCONVNET in classification. More
specifically, the scheduler started the warmup phase with a learning rate equal to 0.001, linearly increasing the learning rate
over the first 10 epochs to 0.01. After the warmup, it gradually reduced the learning rate using a cosine annealing schedule,
down to 0.0001 by the end of training. For anomaly detection and the rest methods, we utilized a learning rate scheduler of
0.5 decrease rate per epoch. To have better estimates for the generalization performance of all models and, most importantly,
our proposed shallow modules, we performed 3 runs with random seeds for all considered datasets and tasks. Additional
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details for each task and the hyperparameters of the models are given below.

- Classification Task: We trained the models for 100 epochs for all UEA datasets, the 5 UCR datasets and the Fault-
Diagnosis dataset. We performed early stopping during training, after 20 epochs of no improvement in the validation
accuracy for all models and kept the configuration of weights that correspond to the best validation accuracy during training.
The standard cross entropy loss was optimized during training for classification. For the INVCONVNET model, we considered
the inception-like embedding module of Figure 5 (Left) for all datasets of UEA except for Epilepsy, EthanolConcentration,
Heartbeat that we selected the standard embedding module of single kernel size. Finally, for FingerMovements, Handwriting,
Libras and SelfRegulationSCP1 datasets, we employed the multi-scale embedding layer of Figure 5 (Right). The type of the
embedding layer, as well as the hyperparameters for the convolutional layers, e. g., kernel size and hidden dimension, were
selected through random search and the best performance on the validation set. For the rest of the classification datasets,
i. e., the UCIHAR, the Sleep-EDF and the Epilepsy datasets, we trained all models for 300 epochs with 20 epochs patience
and considered the inception-like embedding layer, since it was performing better on the validation set.

- Unsupervised Anomaly Detection Task: We trained the models for 10 epochs and stopped training if no improvements
had been made in terms of validation loss for 3 epochs, saving the best model weights on the validation set. We optimized
the models using the mean squared error (MSE) between the real input sequences and the reconstructed ones. For all five
anomaly detection datasets, we used the multi-scale embedding layer of Figure 5 (Right), followed by the reconstruction
module built upon linear layers in Figure 6.

- Hyperparameter Selection: We next provide more information about the selection of the kernel sizes and hidden
dimensions for the different embedding modules tested in terms of INVCONVNET. For the standard pool of convolutions
with one specific kernel size W , we chose the kernel size as the minimum value between the value 50 and half of the length
of the time series. For the inception-like embedding module, we selected several kernel sizes, such as 51,75,101, and 125,
or factors of those values for which the length of the series is proportional. Finally, for the first layer (pool of convolutions)
of the multi-scale module, we computed the kernel sizes as powers of two, starting from 16 up to a maximum of 128,
based on the logarithmic scaling of half the series length. For all modules, we tested hidden dimensions sizes for the pool
of convolutions in {32, 64, 128, 256} doing a split that enabled almost equal contribution for the three parts, i. e., normal,
invariant to offset shift and scaling, and invariant to linear trend and scaling. For instance for total hidden size equal to 32
the different parts had (12, 10, 10) hidden dimensions respectively, for 64 the split became (24, 20, 20) and so on.

For the common CNN-based baselines INCEPTION, RESNET, CNN, we tuned the number of convolutional layers, the
kernel sizes, and the hidden size of each layer. We followed a random search for a value between 2 and 6 for the number
of blocks and {32, 64, 128, 256} for the hidden dimensions, whereas for the kernel sizes, we used those proposed in the
relevant papers (Ismail Fawaz et al., 2020; Wang et al., 2017; Ismail Fawaz et al., 2018). All baselines’ implementations are
derived from the Time-Series-Library (Wang et al., 2024b), with the configurations mentioned in the respective papers, and
the main code resources for performing the different tasks, e. g., classification and anomaly detection were adopted. We also
used ROCKET (Dempster et al., 2020) from sktime Library (Löning et al., 2019), with 3000 random convolutional kernels.
Finally, for the transfer learning classification experiment, the self-supervised contrastive TS-TCC and TS2VEC methods
were trained with their default parameters for classification as proposed in the respective papers (Eldele et al., 2021; Yue
et al., 2022), for 50 epochs for each phase of pre-training and fine-tuning.

A.5. Additional Results

A.5.1. RECONSTRUCTION-BASED ANOMALY DETECTION BENCHMARK

Reconstruction-based anomaly detection involves training a model to learn a compact representation of normal data by
reconstructing the input. The reconstruction error acts as the anomaly criterion, indicating whether the time series does not
conform to the normal patterns based on a chosen threshold.

Datasets. For unsupervised anomaly detection, we deploy the following benchmark datasets; SMD (Su et al., 2019),
MSL and SMAP (Hundman et al., 2018), SWaT (Mathur & Tippenhauer, 2016) and PSM (Abdulaal et al., 2021). We
apply standard preprocessing to extract non-overlapping sub-sequences and split them into train/validation/test sets with a
70 : 10 : 20 ratio (Xu, 2021; Wu et al., 2022).

Baselines. Focusing on reconstruction, we include fourteen time series (regression) models, most from Time-Series-
Library (Wang et al., 2024b), including TIMESNET (Wu et al., 2022), PATCHTST (Nie et al., 2022), ETSFORMER (Woo
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et al., 2022b), FEDFORMER (Zhou et al., 2022), AUTOFORMER (Wu et al., 2021), PYRAFORMER (Liu et al., 2021a),
INFORMER (Zhou et al., 2021), REFORMER (Kitaev et al., 2020), LIGHTTS (Zhang et al., 2022), DLINEAR (Zeng et al.,
2023), ITRANSFORMER (Liu et al., 2023), TIMEMIXER (Wang et al., 2024a), PERI-MIDFORMER (Wu et al., 2024) and
the TSLANET (Eldele et al., 2024) backbone. For the decoder, we capitalize on the learned slope and intercept values for
each of the two invariant embedding parts, i. e., the Offset and Linear Trend, to adjust the projected embedding back to the
original temporal dimensions along with a linear layer. The projection to the initial channel dimension is then obtained by
applying a second channel-wise linear layer. Details on the INVCONVNET embedding and reconstruction modules are also
given in Appendix A.2.

Results. Table 9 shows F1-scores (%) for the proposed model and baselines across 5 anomaly detection datasets. IN-
VCONVNET performs best on the SWaT dataset and ranks third in average performance across all datasets, slightly behind
TIMESNET. The latter’s superior performance can be attributed to its refined CNN blocks, which capture multiple periodici-
ties for finer granularity in reconstruction. TSLANET achieves the highest average F1-score, benefiting from Fourier blocks
before CNN modules to capture both short- and long-term dependencies. Other models, like the MLP-based DLINEAR
and transformer-based FEDFORMER, also show competitive results. Notably, INVCONVNET excels with a single layer of
invariant convolutions, proving the effectiveness of leveraging multi-scale invariances in shallow architectures.

Table 9: Anomaly Detection results in terms of the F1-score (%) for all considered datasets. Higher is better, best methods
in bold, second best underlined.

INVCONVNET TIMESNET PATCHTST TSLANET ETSFORMER FEDFORMER ITRANSF. PERI-MID. LIGHTTS DLINEAR TIMEMIXER AUTOFORMER PYRAFORMER INFORMER REFORMER
Datasets (ours) (2022) (2022) (2024) (2022b) (2022) (2023) (2024) (2022) (2023) (2024a) (2021) (2021a) (2021) (2020)

SMD 84.05 ± 0.16 84.61 ± 0.56 84.15 ± 0.48 84.33 ± 0.17 79.69 ± 0.69 71.11 ± 0.02 82.38 ± 0.99 83.34 ± 0.63 83.04 ± 0.49 83.56 ± 0.14 83.20 ± 0.06 71.16 ± 0.02 71.36 ± 0.01 71.17 ± 0.03 71.22 ± 0.01
MSL 80.68 ± 0.01 80.33 ± 0.79 78.67 ± 0.04 74.65 ± 0.78 75.98 ± 0.54 82.06 ± 0.14 72.66 ± 0.04 80.93 ± 0.06 80.39 ± 0.06 81.92 ± 0.01 67.12 ± 3.33 82.08 ± 0.04 81.00 ± 0.08 82.02 ± 0.11 81.52 ± 0.08
SMAP 68.29 ± 0.07 69.18 ± 0.21 68.84 ± 0.01 80.26 ± 0.05 67.45 ± 0.74 68.71 ± 0.01 66.86 ± 0.08 67.62 ± 0.02 67.47 ± 0.02 67.32 ± 0.01 65.55 ± 0.32 75.28 ± 1.64 67.76 ± 0.13 68.74 ± 0.12 73.30 ± 0.15
SWaT 92.82 ± 0.19 92.71 ± 0.04 88.38 ± 1.11 91.65 ± 0.27 92.67 ± 0.06 79.18 ± 0.01 92.68 ± 0.01 92.17 ± 0.05 92.75 ± 0.01 92.66 ± 0.01 91.77 ± 1.30 79.18 ± 0.01 80.91 ± 0.38 79.75 ± 0.74 79.17 ± 0.01
PSM 96.34 ± 0.01 96.85 ± 0.27 96.12 ± 0.01 96.20 ± 0.03 95.23 ± 0.03 89.44 ± 0.88 95.15 ± 0.14 96.31 ± 0.09 95.50 ± 0.02 96.66 ± 0.01 94.01 ± 0.77 88.25 ± 0.01 93.66 ± 0.13 90.55 ± 0.05 90.74 ± 0.09

Avg. F1 (%) 84.44 ± 0.09 84.74 ± 0.37 83.23 ± 0.33 85.42 ± 0.26 82.20 ± 0.41 78.10 ± 0.21 81.95 ± 0.25 84.07 ± 0.17 83.83 ± 0.12 84.42 ± 0.04 80.33 ± 1.16 79.19 ± 0.65 78.94 ± 0.15 78.45 ± 0.21 79.19 ± 0.07

We also evaluate the 15 models on the 5 anomaly detection datasets using mean ranks based on F1-score, as shown in the
critical difference diagram in Figure 7. Statistical significance was assessed using the Friedman test, as implemented in the
Aeon Library (Middlehurst et al., 2024). Since the Friedman test did not indicate a significant difference at the α = 0.1
level, no pairwise tests were applied, and all models fall within the same group, which can be attributed to the small number
of considered datasets. Interestingly, in terms of mean rank scores, INVCONVNET ranks second with 4.8, closely following
TIMESNET, which achieved the best mean rank of 3.8, demonstrating robust performance.
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Figure 7: Critical difference diagram based on mean ranks from F1 scores on the 5 anomaly detection datasets.

Finally, in Table 10, we perform additional comparisons, in terms of anomaly detection, including the INVCONVNET
model and the standard CNN-based variants, namely INCEPTION, RESNET and CNN originally proposed for classification.
All models have an identical reconstruction module, with the exception of INVCONVNET, which also includes the signal
decomposition coefficients on the invariant basis.

As observed, our proposed method consistently outperforms all evaluated CNN-based variants, suggesting the effectiveness
of combining invariances with their related signal coefficients for reconstruction.

Conclusion. Invariant convolutional features combined with their related coefficients appear to be a concise and suited
representation of time series for unsupervised anomaly detection based on reconstruction.
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Table 10: Anomaly Detection results for INVCONVNET and vanilla CNN-based methods. Performance mentioned in terms
of the F1-score (%). Higher is better, best methods in bold, second best underlined.

INVCONVNET INCEPTION RESNET CNN
Datasets + predict linear, project channels

SMD 84.05 ± 0.16 71.48 ± 0.11 76.20 ± 0.52 77.31 ± 0.91
MSL 80.68 ± 0.01 81.68 ± 0.08 81.25 ± 0.09 79.96 ± 0.20
SMAP 68.29 ± 0.07 68.63 ± 0.16 67.24 ± 0.65 67.00 ± 0.07
SWaT 92.82 ± 0.19 82.69 ± 0.70 80.93 ± 0.04 80.24 ± 0.95
PSM 96.34 ± 0.01 92.02 ± 0.35 92.30 ± 0.82 93.30 ± 0.58

Avg. F1 (%) 84.44 ± 0.09 79.30 ± 0.28 79.58 ± 0.42 79.56 ± 0.54

A.5.2. ROBUSTNESS STUDY - VISUALIZATION OF FEATURE MAPS

In Figure 8, we provide visualizations of the feature maps produced from different filter types (among the ones introduced
in the paper), which are later incorporated in INVCONVNET example architecture, including normal ones (CONVNET
(normal)), filters invariant to offset shift (INVCONVNET (offset)) and filters invariant to linear trend (INVCONVNET (trend)).
Specifically, we consider FordB dataset from the large UCR datasets, considered in the Robustness Study of Table 1.

For the considered dataset, the convolutional filters presented below are trained on normalized raw data and tested on four
additional synthetic deformation scenarios: (i) random offset (off.), (ii) random linear trend (LT), (iii) combined offset and
trend (off., LT), and (iv) combined offset and smooth random walk (off., RW). For the last deformation, the added synthetic
trend is a random walk generated from a Gaussian distribution and smoothed by a rolling mean.

Extraction of Feature Maps. After passing the input series through the convolutional layer of each model and the
activation function (i. e., ReLU(.)), we extract the feature map for each filter (or each hidden dimension) corresponding to
the largest considered kernel size. We recall that for the synthetic experiment on the 4 larger UCR datasets, we leveraged
the inception-like embedding module of Figure 5 (Left), built upon 4 different kernel sizes with each having an equal total
number of filters (or hidden dimensions equal to 128). Please note that averaging over all outputs produced by the layer for
the several distinct kernel sizes produces multi-scale representations that produce similar (in terms of activated regions) but
smoother maps (in terms of intensity values). The resulting feature maps, which are derived by the activated outputs for
the largest kernel size, are essentially 2D representations with dimensions equal to the series length L and the 128 hidden
dimensions.
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Figure 8: Plot of a single sample from the test set of FordB dataset for UCR used to produce the example feature maps of
different types of convolutional filters. The normalized time series is captured in a black dotted line, while signals in blue
represent the deformed versions of the series. Specifically, (a) represents the sample with the addition of random offset, (b)
represents the sample with the addition of random linear trend, (c) represents the sample with the addition of random offset
and linear trend, and (d) represents the sample with the addition of random offset and random walk trend.

We provide in Figure 9 the activated feature maps for a single sample for FordB dataset and its deformed versions (as
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Figure 9: Comparison of the feature maps produced for the robustness study (of Table 1) on a single sample of FordB
dataset by the different types of convolutional filters before average-pooling for the normalized input and the 3 scenarios
of synthetic deformations (addition of random offset, addition of random offset and linear trend and addition of random
offset and random walk trend). Each column represents convolutional filters (128 in total) of the same type; (a),(d),(g),(j)
correspond to normal convolutional filters (non-invariant), (b),(e),(h),(k) correspond to offset shift invariant convolutional
filters and (b),(e),(h),(k) correspond to offset shift invariant convolutional filters and (c),(f),(i),(l).
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presented in Figure 8), extracted for the different considered kernel types (CONV (normal), INV. CONV (offset) and INV.
CONV (trend) as heatmaps. Color in the heatmap plots corresponds to the magnitude of the activation at a specific location
of the series for each hidden dimension, with a lighter color (i. e., yellow) representing higher activations.

Deformation-Specific Activation Maps for Different Types of Filters. The feature maps of each considered convolutional
filter type with respect to invariance, i.e., normal, offset shift-invariant, and trend-invariant, reveal distinct activation
patterns under different deformation scenarios.

Normal filters are highly sensitive to both offset shifts and trends, often leading to widespread activation across the entire
time series (See Figures 9d, 9g). This lack of selectivity causes the model to struggle to distinguish meaningful patterns
from uninformative regions, which are better captured for the plain (normalized) data ( Figure 9a). For instance, when a
smooth random walk trend is introduced (Figure 9j), their activations become more uniform, indicating reduced sensitivity
to meaningful variations in the input.

In contrast, offset shift-invariant filters remain robust to local shifts in the signal, exhibiting stable activation patterns even
when an offset is introduced (See Figures 9b and 9e). However, their robustness is affected slightly when a linear trend is
introduced (Figure 9h), as they begin to exhibit variability in their feature maps.

Finally, trend-invariant filters consistently preserve their activation patterns across all tested deformations, demonstrating
resilience to both offset shifts and trends (See all Figures 9f,9i,9l). This stability ensures that relevant features are captured
effectively, regardless of input distortions. Similarly, trend-invariant filters are less affected by gradual changes, maintaining
consistent responses across both plain and deformed data. While normal convolutions react strongly to local variations,
offset and trend-invariant filters provide stability under deformations, offering a robust representation of the underlying time
series patterns in the presence of deformations.

A.5.3. CLASSIFICATION

We next present in Figure 10, the critical difference diagram based on accuracy for the classification of UEA datasets. Mean
rank performance is also a fair indicator of the robustness of models across several datasets and can indeed reflect consistent
relative performance for the proposed method against most baselines.
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Figure 10: Critical difference diagram based on mean ranks from accuracy scores on the 26 UEA datasets.

INVCONVNET achieves the best mean rank across 26 UEA datasets and 13 methods. Following the implementation from
the Aeon Library (Middlehurst et al., 2024), we compute mean ranks based on accuracy and assess significance using the
Friedman test, which confirms the presence of statistical differences among models. Pairwise comparisons are performed
based on the Wilcoxon signed-rank test with Holm correction at α = 0.1, to identify groups of classifiers whose performance
differences are not statistically significant. This procedure yields four cliques: the first includes INVCONVNET and ROCKET,
while the second includes ROCKET, TSLANET, TIMESNET, RESNET, CNN and CROSSFORMER.

We also provide in Table 11 the full classification results for the 26 considered UEA datasets that correspond to the average
of 3 runs for each combination of dataset and model. In the same table, we include again the already presented in the main
paper, average accuracy for the whole collection of datasets as well as the number where each model scores first in the last
row. The JapaneseVowels dataset is mentioned as out-of-time (‘OOT’) for not producing performance results since the
experiment did not run within the time limits (12 hours maximum for each dataset). From the full classification results, we
observe that the proposed INVCONVNET is, in several cases, slightly outperformed by the classical ROCKET method, but on
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Table 11: Full Classification results for UEA datasets. Accuracy (%) is mentioned for all combinations of models and
datasets. Higher is better, best methods in bold, second best underlined.

Dataset INVCONVNET TIMESNET PATCHTST CROSSFORMER ITRANSF. PERI-MID. TSLANET DLINEAR TIMEMIXER INCEPTION RESNET CNN ROCKET

ArticularyWordRecognition 99.00 97.78 97.67 98.22 98.00 97.00 98.22 96.67 96.00 84.56 98.44 97.89 99.44
AtrialFibrillation 37.78 28.89 42.22 28.89 24.44 33.33 24.44 35.56 37.78 28.89 24.44 33.33 6.67
BasicMotions 100.00 95.00 70.83 91.67 86.67 60.83 100.00 81.67 72.50 87.50 100.00 100.00 100.00
Cricket 98.61 93.06 94.44 92.59 87.96 89.81 97.69 91.20 80.56 87.96 98.15 98.61 100.00
Epilepsy 95.89 89.61 97.34 87.44 69.32 32.13 96.86 51.45 64.25 92.27 94.44 92.27 98.55
EthanolConcentration 25.98 26.24 23.32 39.67 23.57 24.21 22.18 24.97 24.97 23.57 21.93 22.81 29.40
FaceDetection 64.71 67.50 64.77 65.26 65.50 63.14 56.59 62.97 64.17 63.88 54.82 52.75 59.13
FingerMovements 56.33 55.00 53.33 52.33 53.67 50.33 55.00 48.67 49.67 56.33 53.00 53.00 54.00
HandMovementDirection 40.99 64.41 47.75 57.21 45.95 36.94 45.50 59.01 51.80 31.08 36.04 29.28 44.59
Handwriting 53.14 28.67 26.98 26.39 22.78 12.71 48.71 18.71 25.45 17.22 37.10 36.20 56.27
Heartbeat 77.40 68.29 66.18 68.13 65.85 73.17 75.77 69.92 66.83 70.41 69.76 62.76 73.17
InsectWingbeat ‘OOT’ ‘OOT’ ‘OOT’ ‘OOT’ ‘OOT’ ‘OOT’ ‘OOT’ ‘OOT’ ‘OOT’ ‘OOT’ ‘OOT’ ‘OOT’ ‘OOT’
JapaneseVowels 97.66 91.71 94.68 96.76 96.67 88.83 96.85 93.33 94.41 91.80 98.83 98.38 97.39
Libras 88.70 79.07 76.11 86.30 84.63 86.30 84.81 50.19 72.41 57.04 94.07 88.70 91.11
LSST 55.04 12.77 48.35 11.21 8.95 31.08 10.41 31.85 48.61 35.71 8.99 9.37 60.76
MotorImagery 49.67 52.00 50.67 55.00 51.67 55.67 47.67 50.33 49.00 51.67 51.33 51.33 46.33
NATOPS 95.74 93.33 75.00 87.41 83.15 88.70 94.63 92.78 76.48 90.74 96.67 95.74 87.96
PEMS-SF 80.35 78.61 81.89 84.39 87.86 63.39 79.96 80.15 84.01 75.53 79.38 74.37 80.15
PenDigits 98.78 98.48 97.52 97.12 98.35 96.57 98.12 87.32 97.48 97.75 98.70 98.81 98.08
PhonemeSpectra 29.82 14.31 12.62 12.63 10.36 13.64 26.71 6.72 10.05 21.91 28.66 27.15 27.69
RacketSports 87.72 82.68 76.75 79.82 74.12 79.39 88.16 67.98 77.19 83.77 90.57 84.43 90.35
SelfRegulationSCP1 86.12 87.60 78.84 85.32 87.49 81.46 79.18 83.39 83.05 81.57 80.32 84.64 84.53
SelfRegulationSCP2 54.44 48.15 45.19 47.59 48.15 51.67 53.89 45.74 49.26 53.33 48.15 48.33 54.82
SpokenArabicDigits 99.47 98.83 97.92 98.67 98.86 97.24 99.58 95.85 97.71 98.50 99.23 98.98 99.56
StandWalkJump 28.89 33.33 51.11 24.44 51.11 33.33 48.89 33.33 57.78 26.67 40.00 31.11 48.89
UWaveGestureLibrary 92.92 86.35 83.02 84.69 85.42 80.94 87.71 77.92 83.65 61.77 81.35 71.56 93.33

Avg. Accuracy (%) 71.81 66.87 66.18 66.37 64.42 60.87 68.70 61.51 64.60 62.86 67.37 65.67 71.29

1st Count 4 3 1 1 1 1 2 0 1 1 5 2 8

average, is among the first best-competing models for most datasets, which explains its performance superiority in terms of
average accuracy for the whole UEA.

In several studies (Wu et al., 2022; Zhou et al., 2023), only a subset of 10 UEA datasets is considered, and we also present
once again the results for this subset along with total the average accuracy in 12. Similar observations can be made as those
for Table 11, with the proposed INVCONVNET scoring the best average accuracy of 73.22%, followed by ROCKET.

Table 12: Full Classification results for a subset of 10 UEA datasets. Accuracy (%) is mentioned for all combinations of
models and datasets. Higher is better, best methods in bold, second best underlined.

Dataset INVCONVNET TIMESNET PATCHTST CROSSFORMER ITRANSF. PERI-MID. TSLANET DLINEAR TIMEMIXER INCEPTION RESNET CNN ROCKET

EthanolConcentration 25.98 26.24 23.32 39.67 23.57 24.21 22.18 24.97 24.97 23.57 21.93 22.81 29.40
FaceDetection 64.71 67.50 64.77 65.26 65.50 63.14 56.59 62.97 64.17 63.88 54.82 52.75 59.13
Handwriting 53.14 28.67 26.98 26.39 22.78 12.71 48.71 18.71 25.45 17.22 37.10 36.20 56.27
Heartbeat 77.40 68.29 66.18 68.13 65.85 73.17 75.77 69.92 66.83 70.41 69.76 62.76 73.17
JapaneseVowels 97.66 91.71 94.68 96.76 96.67 88.83 96.85 93.33 94.41 91.80 98.83 98.38 97.39
PEMS-SF 80.35 78.61 81.89 84.39 87.86 63.39 79.96 80.15 84.01 75.53 79.38 74.37 80.15
SelfRegulationSCP1 86.12 87.60 78.84 85.32 87.49 81.46 79.18 83.39 83.05 81.57 80.32 84.64 84.53
SelfRegulationSCP2 54.44 48.15 45.19 47.59 48.15 51.67 53.89 45.74 49.26 53.33 48.15 48.33 54.82
SpokenArabicDigits 99.47 98.83 97.92 98.67 98.86 97.24 99.58 95.85 97.71 98.50 99.23 98.98 99.56
UWaveGestureLibrary 92.92 86.35 83.02 84.69 85.42 80.94 87.71 77.92 83.65 61.77 81.35 71.56 93.33

Avg. Accuracy (%) 73.22 68.20 66.28 69.69 68.22 63.68 70.04 65.30 67.35 63.76 67.09 65.08 72.78
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