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Abstract

Crowdworking is a cost-efficient solution for acquiring class labels. Since these labels are
subject to noise, various approaches to learning from crowds have been proposed. Typically,
these approaches are evaluated with default hyperparameter configurations, resulting in unfair
and suboptimal performance, or with hyperparameter configurations tuned via a validation
set with ground truth class labels, representing an often unrealistic scenario. Moreover, both
setups can produce different approach rankings, complicating study comparisons. Therefore,
we introduce crowd-hpo as a framework for evaluating approaches to learning from crowds in
combination with criteria to select well-performing hyperparameter configurations with access
only to noisy crowd-labeled validation data. Extensive experiments with neural networks
demonstrate that these criteria select hyperparameter configurations, which improve the
learning from crowd approaches’ generalization performances, measured on separate test sets
with ground truth labels. Hence, incorporating such criteria into experimental studies is
essential for enabling fairer and more realistic benchmarking.

1 Introduction

Crowdworking represents a popular and cost-efficient solution to label data instances for classification
tasks (Vaughan, 2018). However, the corresponding crowdworkers are error-prone for various reasons, e.g.,
missing domain knowledge, lack of concentration, or even adversarial behavior (Herde et al., 2021). Training
deep neural networks with noisy crowd-labeled data decreases generalization performance because these
networks tend to memorize the false class labels (Zhang et al., 2017). Hence, many approaches intend to
improve the robustness against noisy labels. Together, they form the research area of learning from noisy
labels (LNL) with the core topics of regularization, sample selection, robust loss functions, or dedicated neural
network architectures (Song et al., 2022). Within this area, learning from crowds1 (LFC, Raykar et al., 2010)
approaches explicitly handle crowd-labeled data, where each instance receives a (potentially varying) number
of noisy class labels and where we know which label originates from which crowdworker. Accordingly, these
approaches estimate the crowdworkers’ performances (e.g., labeling accuracies) to infer the instances’ true
(i.e., ground truth) class labels. Many experimental evaluation studies have demonstrated the performance
gains of such approaches (Rodrigues & Pereira, 2018; Chu et al., 2021; Nguyen et al., 2024). Translating
these gains into practice demands effective hyperparameter optimization (HPO) to find well-performing
hyperparameter configurations (HPCs). While approaches for training standard neural networks are tuned
against a validation set with true class labels, LFC approaches have no access to such a set if all class labels
originate from crowdworkers. As a result, HPO becomes a more difficult challenge. Potential workarounds
are using data-agnostic default HPCs (Chen et al., 2021) or explicitly requiring access to a validation set with
true class labels (Herde et al., 2023). We refer to both procedures as hyperparameter selection (HPS) criteria
because each chooses HPCs for the LFC approaches. Figure 1 exemplifies that both HPS criteria lead to
different test losses per LFC approach and even rankings between LFC approaches. Specifying default HPCs
is realistic because it requires no true class labels. Nevertheless, such an HPS criterion often yields suboptimal
performance results that are heavily influenced by nonobjective choices such as the experimenters’ or software

1We use the term learning from crowds, whereas other publications in the same research area refer to multiple annotators (Li
et al., 2022) or labelers (Rodrigues et al., 2013) instead of crowdworkers.
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Figure 1: Default (def) versus optimized (true) HPCs for LFC approaches. The y-axis lists the LFC
approaches, and the x-axis the zero-one loss evaluated on a test set with true class labels of the reuters-full
dataset (Rodrigues et al., 2017), whose training set contains noisy class labels from crowdworkers. Default
HPCs result in substantially worse performance than HPCs optimized via validation data with true class
labels. Further, HPO alters the approaches’ ranking. For example, cl (Rodrigues & Pereira, 2018) performs
best under default and only fifth-best under optimized HPCs, whereas madl (Herde et al., 2023) moves from
the ninth place with the default HPCs to the first place after optimization.

frameworks’ presets, undermining fairness (Bagnall & Cawley, 2017). By contrast, HPO on a validation set
with true labels can produce superior and fairer results when every LFC approach receives the same search
budget. Nonetheless, this HPS criterion is unrealistic in an LFC setting where only noisy crowdworkers
provide labels. Existing literature lacks HPS criteria to perform experiments for a fair (involving HPO) and
realistic (with access only to crowd-labeled validation data) comparison of LFC approaches. Motivated by
these observations and related ones in areas such as partial label learning (Wang et al., 2025), we analyze the
following research questions (RQs):

crowd-hpo: Research Questions and Contributions
RQ1: Given access only to crowd-labeled validation data, which evaluated hyperparameter selection

criterion yields the highest performances for LFC approaches?

RQ2: Given the best-evaluated hyperparameter selection criterion for crowd-labeled validation data,
how do learning from crowds approaches compare in performance?

Based on these research questions, we propose crowd-hpo for learning from crowds approaches with
crowd-labeled validation data contributing:

• a framework of hyperparameter selection criteria based on empirical risk measures to be combined in
a robust ensemble,

• an extensive benchmark of 13 learning from crowds approaches across 5 real-world datasets, each with
7 variants of noisy labels from humans,

• recommendations for a realistic and fair experimentation to compare learning from crowds approaches’
performances in combination with hyperparameter optimization,

• and a comprehensive codebasea to reproduce and perform experimental studies for learning from
crowds approaches in combination with hyperparameter optimization.
aSee https://anonymous.4open.science/r/crowd-hpo-9473 or supplementary material as a fallback.
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2 Related Work

This section presents a discussion on foundational and related works on LFC (Raykar et al., 2010) approaches
for classification tasks, their experimental studies, and validation with noisy class labels in the broader area
of LNL (Song et al., 2022). In short, this discussion confirms that most experimental studies on LFC follow
different experimentation protocols, of which none consider HPO with noisy crowd-labeled validation data.
Although other works on LNL address the validation issues in the presence of noisy labels in varying contexts,
they do not explicitly validate with crowdworkers of varying performances.

Table 1: Overview of experimental studies of LFC approaches training neural networks for
classification tasks. Each row represents one study sorted by publication years, while the columns refer to
the characteristics of such a study. We denote counts by the # symbol. We account for multiple simulation
methods for the same single-labeled and variants for the same crowd-labeled dataset by (× . . . ). The symbols
✓TL (True Labels) and ✓NL (Noisy Labels) denote the validation label type, whereas ✗ indicates that the
respective aspect has been ignored. If no information is available, we denote ? as a symbol.

Study Venue Approaches [#] Datasets [#] Hyperparameter Optimization Early Stopping
Two-stage One-stage Simulated Real Per Dataset Per Approach

Rodrigues & Pereira AAAI 3 4 1 1 ✓TL ✗ ✗
Cao et al. ICLR 1 4 3 (× 6) 1 ✗ ✗ ✗
Tanno et al. CVPR 1 5 2 (× 2) 0 ✗ ✗ ✓TL
Li et al. TMM 4 6 4 2 ✗ ✗ ✗
Wei et al. TNNLS 1 6 4 (× 4) 2 ✗ ✗ ✗
Li et al. MLJ 2 5 4 (× 2) 2 ✗ ✓TL ✓NL
Herde et al. TMLR 1 6 4 (× 4) 2 ✓TL ✓TL ✓TL
Ibrahim et al. ICLR 2 8 2 (× 2) 2 ✓TL ✓TL ✓TL
Cao et al. SIGIR 5 5 0 3 ? ? ?
Herde et al. ECAI 2 9 6 5 ✓TL ✗ ✓TL
Zhang et al. AAAI 1 6 2 (× 4) 3 ✗ ✗ ✓TL
Li et al. TPAMI 6 7 4 (× 5) 3 ✗ ✗ ✗
Nguyen et al. NeurIPS 1 5 2 (× 3) 3 ✗ ✗ ✗
Han et al. NeurIPS 3 9 13 (× 2) 2 ✗ ✗ ✗
Guo et al. NeurIPS 2 7 2 (× 3) 4 ✗ ✗ ✓NL
Herde et al. NeurIPS 2 10 0 1 (× 7) ✓TL ✗ ✗
crowd-hpo – 2 11 0 5 (× 7) ✓NL ✓NL ✗

Learning from Crowds Approaches Literature differs between two-stage and one-stage LFC ap-
proaches (Li et al., 2022). Two-stage approaches aggregate the noisy crowd-labeled class labels per instance in
the first stage and use these aggregated labels as true class label estimates for training neural networks in the
second stage. The most common aggregation algorithm is majority voting (mv), which implicitly assumes equal
performances across the crowdworkers (Chen et al., 2022; Jiang et al., 2021). In contrast, the Dawid-Skene
algorithm (ds, Dawid & Skene, 1979) leverages the expectation-maximization (EM) algorithm, where the true
label probabilities are estimated in the E-step to update the crowdworkers’ confusion matrices in the M-step.
Typically, such label aggregation approaches only operate with the given labels as inputs (Zhang et al.,
2016) and expect more than one class label per instance (Khetan et al., 2018). One-stage approaches aim to
overcome these limitations by jointly training a neural network for estimating the true labels and a model for
evaluating the crowdworkers’ performances (Herde et al., 2023). The latter model is often implemented as
weights of noise adaptation layers (Rodrigues & Pereira, 2018; Chu et al., 2021) or probabilistic confusion
matrices (Tanno et al., 2019; Chu et al., 2021; Ibrahim et al., 2023) to model crowdworkers’ class-dependent
performances. More complex models, designed as (deep) neural networks, estimate performances as a function
of instances and crowdworkers (Zhang et al., 2020; Li et al., 2022; Cao et al., 2023; Herde et al., 2024b).

Experimental Studies for Learning from Crowds For a better understanding of experimenting with
LFC approaches, Table 1 overviews and characterizes recent experimental studies of LFC approaches. Most
studies focus on presenting a new LFC approach compared to state-of-the-art competitors. We report the
number of evaluated two-stage and one-stage LFC approaches for each study. Here, we count individual
approaches if they incorporate distinct methodological ideas. In addition, we report the number of datasets
used in each study. We distinguish between simulated and real crowd-labeled datasets. Simulated datasets
are built on top of standard single-labeled datasets, e.g., cifar10 (Krizhevsky, 2009), by simulating the
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labeling process of the crowdworkers. For the simulated data, most experimental studies consider multiple
single-labeled datasets and multiple simulation methods for the noisy class labels. Analog to this, multiple
variants of crowd-labeled datasets can be constructed by subsampling the crowdorkers’ labels, e.g., by keeping
only a certain number of class labels per instance (Wei et al., 2021; Herde et al., 2024a). We take both
procedures into account by denoting the product term (# datasets × # variants). Central to our analysis is
the handling of the HPs for the LFC approaches. Here, we note the distinction between HPO, which involves
systematically searching for the best HPC, and early stopping, a regularization technique that halts training
once validation performance deteriorates to prevent overfitting. If the HPO is only done for each dataset,
e.g., to select the basic architecture and optimizer parameters, we set a check mark at “per dataset”. If the
HPO is only performed to select the specific HPs of an individual approach over multiple datasets, e.g., the
best value for a regularization term, we set a check mark at “per approach”. If HPO is performed for each
dataset and approach, we set a check mark at “per dataset” and “per approach”. If no HPO is performed, we
set a cross for both columns. We also mark if noisy validation labels from crowdworkers are used for the
HPO or if access to a validation set with true labels is assumed. For those studies without any HPO, some
experimentation relies on standard architectures with default HPs across their study (Tanno et al., 2019;
Zhang et al., 2024; Li et al., 2024; Nguyen et al., 2024; Han et al., 2024; Guo et al., 2024). In contrast, others
specify the HPs for each dataset and approach without further explanation (Cao et al., 2019; Li et al., 2021;
Wei et al., 2023). Several studies (Tanno et al., 2019; Herde et al., 2023; 2024b; Zhang et al., 2024; Nguyen
et al., 2024; Guo et al., 2024) provide an extra ablation study for the HPs of their own LFC approaches.

Validation with Noisy Class Labels A few works exist on different aspects of validation with noisy
class labels in the broader area of LNL. Chen et al. (2021) theoretically prove that for diagonally-dominant
confusion matrices, the validation accuracy remains a reliable indicator of true performance. However, in
practice, complex types of noise can still pose challenges, especially when the noise is systematic or when
not enough data are available to average it out. For example, the empirical findings of Kuo et al. (2023)
indicate that even small amounts of (not necessarily label) noise in the validation signal can significantly
degrade HPO outcomes. The observations of Inouye et al. (2017) also confirm that standard validation can
be misleading for localized, systematic label noise. Their proposed solution injects synthetic label noise
into the training data (based on an estimated noise model) while keeping validation labels unchanged. This
penalizes models that overfit spurious patterns and improves over standard cross-validation. Guo et al. (2024)
evaluate LFC approaches with early stopping using noisy validation data. However, no analysis regarding the
effects of such an early stopping is reported. Yuan et al. (2024) also recognizes the issues of training and
validating with noisy class labels in the context of early stopping. Therefore, they propose a solution for
early stopping without relying on a separate validation set. However, they do not perform any HPO but
focus on demonstrating their solution’s robustness across different HPCs. In contrast, Wang et al. (2025)
tackle the issue of HPO by proposing HPS criteria when learning from partial labels.

3 Hyperparameter Optimization with Noisy Labels from Crowds

This section first formalizes the problem setting and approaches to LFC, then outlines the basics of HPO,
and finally introduces corresponding HPS criteria for handling noisy crowd-labeled validation data.

3.1 Problem Setting

Here, we describe the data generation process to define the objective of LFC approaches.

Data Generation Process Figure 2 depicts the probabilistic graphical model of the commonly as-
sumed data generation process in LFC settings (Li et al., 2022; Herde et al., 2024b). Let the multiset2

X := {xn}N
n=1 ⊂ ΩX , N ∈ N≥1 denote the observed instances, which are independently drawn from Pr(x).

Then, their one-hot encoded true class labels, denoted as the multiset Y := {yn}N
n=1 ⊆ ΩY := {ec}C

c=1 with
C ∈ N≥2 as the number of classes, are distributed according to Pr(y|xn) and latent. Only the multiset
Z := {znm}N,M

n=1,m=1 ⊆ ΩZ := ΩY ∪ {0} of one-hot encoded conditionally independent noisy class labels

2A multiset is a set that can contain duplicates.
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provided by M ∈ N≥2 crowdworkers is observable. Since not every crowdworker is requested to label each
instance, some class labels from the crowdworkers are unobserved, denoted as an all-zero vector 0. An
observed class label znm with m ∈ Mn := {m|znm ̸= 0}M

m=1 is assumed to be drawn from the instance-,
class-, and crowdworker-specific distribution Pr(z|xn,yn, m).

Figure 2: Probabilistic graphical model of LFC. Arrows show dependencies between random variables,
while shaded circles indicate observed variables and unshaded latent ones. The set Mn ⊆ [M ] := {1, . . . , M}
indicates that an instance xn is not necessarily labeled by all M crowdworkers.

Objective LFC approaches aim to optimize the parameters θ ∈ ΩΘ of the data classification model
fθ : ΩX → ∆C by minimizing its expected risk:

θ⋆ := arg min
θ∈ΩΘ

(
EPr(x,y) [L (y,fθ(x))]

)
, (1)

where ∆C is a probability simplex and L : ∆C × ∆C → R denotes an appropriate loss function. Throughout
this article, we employ the zero-one loss (Vapnik, 1995) to assess the data classification model’s predictions:3

L0/1 (y, ŷ) := 1 −
(

arg max
ec∈ΩY

(
eT

c y
))T(

arg max
ec∈ΩY

(
eT

c ŷ
))

. (2)

3.2 Approaches to Learning from Crowds

Given the objective in Eq. (1), LFC approaches do not directly optimize the outputs of the data classification
model fθ due to the lack of true labels Y. Instead, the noisy class labels Z are used to train a crowdworker
classification model gϕ : ΩX × [M ] → ∆C with parameters ϕ ∈ ΩΦ. This model predicts the probability
distribution over all class labels for each instance-crowdworker pair, where each label’s value indicates the
probability that the given crowdworker will assign that label to the given instance. The estimates of both
classification models are typically linked through transformations based on confusion matrices (Tanno et al.,
2019) or noise adaptation layers (Rodrigues & Pereira, 2018), which try to separate the crowdworkers’ noise
from the true class label distribution. Furthermore, such a noise separation allows defining a crowdworker
performance model hψ : ΩX × [M ] → [0, 1] with parameters ψ ∈ ΩΨ quantifying crowdworkers’ labeling
accuracies. These three different models’ predictions have the following probabilistic interpretations:

[fθ(xn)]c := Pr(yn = ec|xn,θ) (3)
[gϕ(xn, m)]c := Pr(znm = ec|xn, m,ϕ), (4)

hψ(xn, m) := Pr(zT
nmyn = 1|xn, m,ψ), (5)

where [·]c denotes the c-th element of a vector. Throughout the main text, we regard the three models as black-
box functions, potentially with shared parameters. Appendix A summarizes concrete LFC implementations
and how they estimate the probabilities in Eqs. (3)-(5).

3.3 Hyperparameter Optimization

Let us define the dataset D := {(xn, Zn)}N
n=1 with Zn = {znm}m∈Mn

to encompass only instances with
their observed class labels. Then, a learning algorithm Aλ (corresponding to an LFC approach) with the

3The dot product of two one-hot encoded label vectors is one if and only if they represent the same class.
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HPC λ ∈ ΩΛ outputs all required parameters Aλ(D) ∈ ΩΠ, of which model-specific parameters are (possibly
overlapping) projections with πf (Aλ(D)) ∈ ΩΘ, πg (Aλ(D)) ∈ ΩΦ, and πh (Aλ(D)) ∈ ΩΨ. Each dimension
in the hyperparameter (HP) search space ΩΛ corresponds to a single HP, e.g., the number of epochs (integer),
the learning rate (continuous), or the type of the optimizer (categorical). Ideally, we find the optimal HPC
λ⋆ ∈ ΩΛ such that our learning algorithm outputs the optimal classification model parameters (see Eq. (1)):

πf (Aλ⋆(D)) = θ⋆. (6)

In practice, finding the optimal solution is difficult due to many challenges, of which two critical ones are:

1 Evaluating each HPC λ ∈ ΩΛ is computationally infeasible for a large HP search space ΩΛ.

2 We can only estimate the expected risk (see Eq. (1)) because Pr(x,y) is unknown.

In this article, we focus exclusively on challenge 2 because the risk estimation is difficult and underexplored
with only access to crowd-labeled validation data (see Section 2). Challenge 1 is not part of our contributions.
Instead, we briefly review established solutions as context for the HPO loop shown in Figure 3.

Hyperparameter Selection Criterion2

Brier Score
Zero-one Loss

Cross Entropy
...

Loss FunctionResampling

Label Aggregation
True Labels

Label Weighting
...

Side Information

Retain Hyperparameter Configuration with Lowest Empirical Risk
Hyperparameter Search Strategy

Grid 
Search

Bayesian
Optimization

Random
Search

1

Sobol
Sequence

Propose Next Hyperparameter Configuration
Hyperparameter

Optimization
Loop

Figure 3: HPO loop. In an iterative process, HPO techniques explore the HP search space by retraining
and evaluating the learning algorithm with different HPCs.

1 Hyperparameter Search Strategy Given true labels, research on HPO focuses primarily on improving
the search strategy for (iteratively) proposing a set of candidate HPCs Λ ⊂ ΩΛ by balancing the exploration-
exploitation trade-off within the HP search space ΩΛ given a budget of |Λ| ∈ N≥0 evaluated HPCs. For this
purpose, random search is a popular choice that samples HP values randomly from predefined ranges, often
outperforming exhaustive grid search in high-dimensional spaces (Bergstra & Bengio, 2012). Meanwhile,
Sobol sequences (Sobol, 1998) and Bayesian optimization (Wang et al., 2023) guide the search of candidate
HPCs even more efficiently. Bayesian optimization usually excels because it adaptively selects each new HPC.
However, we employ Sobol sequences so that every HPS criterion evaluates the same set Λ of candidate HPCs.
Hence, any performance differences between the HPS criteria come solely from choosing different HPCs.

2 Hyperparameter Selection Criterion Ideally, an HP search strategy has access to a reliable empirical
risk estimation (Vapnik, 1995), which assigns a learning algorithm a scalar value RL,S,I(Aλ) ∈ R. Thereby, L
denotes the loss function (see Eq. (2)), S a resampling technique, and I additional side information. Formally,
we represent a resampling technique, e.g., hold-out, cross-validation, or bootstrapping, through a set of
K ∈ N≥1 disjoint training (T ) and validation (V) splits of the full training set D:

S := {(Tk, Vk)|Tk ∪ Vk = D ∧ Tk ∩ Vk = ∅}K
k=1. (7)

Side information I encompasses all required inputs beyond the loss function L and resampling technique S
for computing the empirical risk. Based on such empirical risk estimates, we define an HPS criterion as a
rule picking the evaluated HPC with the lowest empirical risk:

λ̂ := arg min
λ∈Λ

(RL,S,I(Aλ)) . (8)

We treat the empirical risk measure RL,S,I as a placeholder, whose explicit definition depends on the respective
criterion. For example, suppose the true class labels are obtained from an expert as side information such
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that I := Y. Then, the true empirical risk of the learning algorithm Aλ is computed as:

RL,S,Y(Aλ) :=
∑

(Tk,Vk)∈S

∑
(xn,Zn)∈Vk

1
K · |Vk|

L
(
yn,fπf (Aλ(Tk))(xn)

)
. (9)

Since we have only access to noisy crowd-labeled validation data in an LFC setting, the HPS criterion based
on the true empirical risk RL,S,Y represents our upper baseline criterion for HPO, denoted as true (plug
Eq. (9) into Eq. (8)). In contrast, our lower baseline criterion def (plug Eq. (10) into Eq. (8)) constantly
outputs a default HPC λdef ∈ ΩΛ, which corresponds to a naive risk estimation using the default HPC as
side information, i.e., I := λdef, such that:

RL,S,λdef(Aλ) := δ(λdef ̸= λ), (10)

where δ : {false, true} → {0, 1} denotes an indicator function.

3.4 Hyperparameter Selection Criteria for Crowd-labeled Validation Data

Because the validation set is labeled only by the crowd, the HPS criterion true cannot be used. We
therefore introduce proxy4 HPS criteria. Each proxy plugs a specific empirical risk measure RL,S,I into
the minimum-risk selection rule (see Eq. (8)). Again, the side information I is only a placeholder that
is instantiated in accordance with each risk definition. Rather than listing formulas, Figure 4 highlights
commonalities and differences between the HPS criteria by presenting them as leaves of a tree. The path from
root to leaf records the design choices and assumptions about the empirical risk template, how crowdworker
performances are modeled, and how labels are weighted. Which combination works best is unknown and
depends on the data and the LFC approach. Hence, we additionally introduce an ensemble of HPS criteria
that combines their risk estimates with the goal of a more robust selection than any single criterion. In the
following, we proceed through the tree’s levels beyond its root. Finally, we note that this tree-structured
overview is illustrative, not exhaustive, and future HPS criteria may introduce additional design choices.

Minimum-risk:
Eq. (8)

Selection
Rule

Learned:
Eq. (21)

Equal:
Eq. (20) 

Learned:
Eq. (21)

Equal:
Eq. (20)

Crowdworker
Performances

Uniform: Eq. (23) 

Confidence: Eq. (24)

Uniform: Eq. (23)

Confidence: Eq. (24)

Uniform: Eq. (25)

Confidence: Eq. (26)

Uniform: Eq. (25)

Confidence: Eq. (26)

Label
Weights

A

Aggregation-level:
Eq. (11)

Empirical Risk
Estimation Template

Crowd-level:
Eq. (13)

Hyperparameter
Selection Criteria

ALC

ALU

AEU

AEC

CEC

CXU

CLC

ENS

Figure 4: HPS criteria for noisy crowd-labeled validation data. Each HPS criterion is defined by
composing the fixed root equation with the equations at branching nodes along its path. Fixed equations
elsewhere are implicit. The criterion’s name is formed from the internal nodes’ initials on its path. The
abbreviation cxu indicates that the paths with the abbreviations ceu and clu lead to identical HPC
selections. The ensemble-based criterion ens combines all criteria for improved robustness.

4We use the term proxy to avoid confusion with classical surrogate losses with proven consistency guarantees.
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Empirical Risk Estimation Template LFC approaches typically involve the joint training of the data
classification model fθ and the crowdworker classification model gϕ (see Section 3.2), whose predictive
performances capture distinct facets of the training outcome. We therefore introduce two empirical risk
templates that become concrete risk measures when their components are instantiated at the tree’s subsequent
levels. On the one hand, we assess the data classification model fθ by computing the aggregation-level
empirical risk through:

RL,S,{z,w}(Aλ) :=
∑

(Tk,Vk)∈S

∑
(xn,Zn)∈Vk

w(xn, Zn)
K · Wk

L
(
z(xn, Zn),fπf (Aλ(Tk))(xn)

)
with (11)

Wk :=
∑

(xn,Zn)∈Vk

w(xn, Zn), (12)

where the two functions in I := {z, w} denote the side information. The label aggregation function
z : ΩX × P (ΩY ) → ∆C aims to infer the latent true class labels with P (ΩY ) referring to the power set of
multisets constructed from the class labels in ΩY . The label weighting function w : ΩX × P (ΩY ) → R≥0
weights individual loss contributions of the aggregated class labels. On the other hand, we compute the
crowd-level empirical risk to assess the crowdworker classification model gϕ through:

RL,S,v(Aλ) :=
∑

(Tk,Vk)∈S

∑
(xn,Zn)∈Vk

∑
znm∈Zn

v(xn, m, Zn)
K · Vk

L
(
znm, gπg(Aλ(Tk))(xn, m)

)
with (13)

Vk :=
∑

(xn,Zn)∈Vk

∑
znm∈Zn

v(xn, m, Zn), (14)

where the label weighting function v : ΩX × [M ] × P (ΩY ) → R≥0 as side information I := v weights the
individual loss contributions of the crowdworkers’ labels. Intuitively, both label weighting functions are to
downweight the influence of labels that are likely false, allowing the more reliable ones to dominate the loss
and thereby enhancing robustness to label noise. Both risk templates come with potential downfalls. While
the aggregation-level risk requires us to estimate the true class labels, and therefore evaluates the model on
data we do not have, the crowd-level risk evaluates the model’s capacity in predicting the labels provided by
the individual crowdworkers, and therefore evaluates the model on a different objective. Both can serve as
proxies under a reasonable modeling of crowdworkers’ labeling behavior.

Crowdworker Performance Starting from different assumptions about crowdworker performances, we
estimate true class label probabilities. This creates a direct connection between crowdworker performance
and risk estimation, because these posteriors induce the label aggregation function z and the label weighting
functions w, v as parts of the risk estimation template. For this purpose, let us assume that we have the
estimated confusion probabilities P̂r(znm|xn,yn, m) for each crowdworker m ∈ Mn and instance xn ∈ X .
Then, we estimate the posterior true class label probabilities, i.e., after observing the crowdworkers’ labels
Zn, through:

P̂r(yn = ec|xn, Zn)
(⋆)
∝ P̂r (yn = ec|xn) P̂r(Zn|xn,yn = ec, m) (15)
(†)= P̂r (yn = ec|xn)

∏
m∈Mn

P̂r(znm|xn,yn = ec, m), (16)

where the transformation (⋆) corresponds to Bayes’ theorem and (†) to the assumed crowdworkers’ conditional
independence. Even with strictly disjoint training and validation instances, if we employed the data
classification model fθ to predict P̂r (yn|xn), we would bias the posterior true class label probability
estimation P̂r(yn = ec|xn, Zn) toward the data classification model’s own predictions (see Proposition 1 in
Appendix B.1), yielding a model-dependent (circular) validation target and over-optimistic risk estimates.
Instead, we assume uniform prior class probabilities, i.e., before observing any crowdworkers’ labels Zn:

P̂r (yn = ec|xn) := 1
C

. (17)
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If we employed the full crowdworkers’ confusion probability estimates P̂r(znm|xn,yn, m), the posterior
computation would be vulnerable to class-specific biases (see Proposition 2 in Appendix B.2). Hence, we
model the confusion probabilities (only during validation) via the crowdworker’s instance-wise performance
estimate P̂r(zT

nmyn = 1|xn, m) by defining:

P̂r(znm = ek |xn,yn = ec, m) := P̂r(zT
nmyn = 1|xn, m)e

T
k ec

(
P̂r(zT

nmyn = 0|xn, m)
C − 1

)1−eT
k ec

. (18)

By summarizing each crowdworker’s behavior on a given instance with one scalar performance value, we apply
the same performance value to every class. All classes are, therefore, treated identically, and no systematic
bias toward any particular class arises. As a result of Eq. (17) and Eq. (18), the posterior estimation from
Eq. (16) reduces to:

P̂r(yn = ec|xn, Zn) ∝
∏

m∈Mn

P̂r(zT
nmyn = 1|xn, m)z

T
nmec

(
P̂r(zT

nmyn = 0|xn, m)
C − 1

)1−zT
nmec

, (19)

where we distinguish between:

P̂r(zT
nmyn = 1|xn, m) := p ∈ (1/C, 1] as equal crowdworker performances, (20)

P̂r(zT
nmyn = 1|xn, m) := hπh(Aλ(Tk))(xn, m) as learned crowdworker performances. (21)

In the first case, the exact value of the labeling accuracy p is irrelevant. Instead, p only encodes the
assumption that all crowdworkers have the same performance across all instances, which is better than
randomly guessing. In the second case, the crowdworker- and potentially instance-wise performances are
estimated by the crowdworker performance model hπh(Aλ(Tk)) obtained after training with the respective
LFC approach Aλ on the k-th training fold using the candidate HPC λ. In both cases, the label aggregation
function z outputs the maximum a posteriori (MAP) estimate of the true class label:

z(xn, Zn) := arg max
ec∈ΩY

(
P̂r (yn = ec|xn, Zn)

)
. (22)

When all crowdworkers are assumed to perform equally, the MAP estimate reduces to simple majority
voting. In contrast, it naturally becomes weighted majority voting once their performances are learned (see
Proposition 3 in Appendix B.3).

Label Weights The label weighting functions control a class label’s impact on the risk estimate. A uniform
weighting gives every label the same weight, whereas confidence weighting scales a label’s weight in proportion
to its estimated correctness probability. Accordingly, the label weighting functions for aggregation-level risk
estimation take the forms:

w(xn, Zn) := 1 as uniform weighting, (23)

w(xn, Zn) := max
ec∈ΩY

(
P̂r (yn = ec|xn, Zn)

)
as confidence weighting, (24)

whereas the label weighting functions for the crowd-level risk take the forms:

v(xn, m, Zn) := 1 as uniform weighting, (25)

v(xn, m, Zn) := P̂r (yn = znm|xn, Zn) as confidence weighting. (26)

We evaluate only these two label weighting schemes because they serve as simple, assumption-light baselines.
Nevertheless, other weighting schemes are possible in principle, e.g., discarding highly uncertain labels or
tempering confidence scores.
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Hyperparameter Selection Criteria The different combinations of risk estimation template, crowdworker
performance modeling, and label weighting correspond to J = 7 distinct HPS criteria with their associated
risk measures R := {RL,S,Ij }J

j=1. As an example, let us look at the path of the criterion aeu in Figure 4. This
criterion instantiates the aggregation-level risk template from Eq. (11) with the aggregation function from
Eq. (22), which evaluates the class posteriors from Eq. (19) with the equal crowdworker performance model
from Eq. (20), and uniform label weights from Eq. (23). The resulting risk measure reduces to computing the
average zero-one loss between the data classification model’s predictions with plain majority vote labels as
targets for the validation instances. Each of such an empirical risk measures in R may be different from the
true empirical risk (see Eq. (9)):

RL,S,Ij
(Aλ) = RL,S,Y(Aλ) + ϵL,S,Y,Ij

(Aλ) with ϵL,S,Y,Ij
(Aλ) ∈ R. (27)

The differences arise through multiple sources, e.g., imperfect label aggregation, imprecise crowdworker
performance estimates, or even different target models. For example, the crowd-level risk estimation
measures the risk of the crowdworker classification model, which is different from estimating the risk of
the data classification model as in Eq. (9). Because of these issues, we propose combining our empirical
risk measures into an ensemble-based selection criterion ens. For this purpose, we adopt the classic Borda
count (de Borda, 1781), a rank-aggregation rule used in robust meta-evaluation (Abdulrahman et al., 2018).
Let O := {oj : Λ → {1, . . . , Λ}]}J

j=1 denote the set of ranking functions such that:

oj(λ) := 1 +
∑
λ′∈Λ

δ(RL,S,Ij
(Aλ) > RL,S,Ij

(Aλ′)). (28)

Accordingly, oj(λ) = 1 corresponds to the HPC with the lowest empirical risk. The empirical risk estimate
based on the Borda count is then defined as:

RL,S,O(Aλ) :=
∑
oj∈O

oj(λ), (29)

where the ranking functions serve as our side information such that I := O. As a result, the criterion ens
outputs the HPC with the minimum rank sum (plug Eq. 29 into Eq. (8)). Intuitively, summing rankings is
expected to stabilize decisions by balancing individual biases of each noisy risk measure in R, increasing the
likelihood of choosing a robust HPC.

4 Experimental Study

This section starts with a comprehensive description of our experimental setup. Subsequently, we analyze
our experimental results to answer RQ1 and RQ2 as our two central research questions. The corresponding
answers serve as a basis for formulating recommendations to design realistic and fair experiments when
benchmarking LFC approaches in the future.

4.1 Experimental Setup

Our setup covers datasets, neural network architectures, LFC approaches, HP search, and HPS criteria. We
describe our design choices for each of these aspects in the following.

Datasets Realistic datasets are a requirement for a meaningful evaluation of LFC approaches. Therefore,
we rely only on real-world datasets annotated by error-prone humans, mostly actual crowdworkers. Table 2
overviews these datasets by detailing their key attributes. The dataset mgc (Tzanetakis & Cook, 2002)
originally contains 30s audio files of songs to be classified according to their music genres. A subset of the
well-known image benchmark dataset label-me (Russell et al., 2008) concerns the classification of scenes,
while the dataset dopanim (Herde et al., 2024a) targets the classification of doppelganger (groups of highly
similar) animals. There are two text datasets, which are a subset of the dataset reuters (Lewis, 1987)
for news article classification and a subset of the dataset spc (Pang & Lee, 2005) for sentiment polarity
classification of movie reviews. Based on large sets of noisy labels resulting from the datasets’ labeling
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Table 2: Dataset overview. The first column indicates the names of the datasets, while the remaining
columns refer to the datasets’ attributes. We denote counts by the # symbol, fractions by the % symbol, and
means are supplemented by standard deviations.

Dataset Variant Labeling Training Test Classes Workers Labels per Label Aggregation
Campaign Instances Instances Instance Noise Noise

[#] [#] [#] [#] [#] [%] [%]
Audio Data

mgc

worst-1

Rodrigues et al. 700 300 10

32 1.0±0.0 87.4 87.4
worst-2 37 1.9±0.3 72.5 69.4
worst-v 42 2.5±1.6 59.2 58.6
rand-1 37 1.0±0.0 47.1 47.1
rand-2 43 1.9±0.3 45.7 43.9
rand-v 43 2.6±1.6 44.6 38.3
full 44 4.2±2.0 44.0 30.3

Image Data

label-me

worst-1

Rodrigues et al. 1,000 1,188 8

57 2.5±0.6 41.1 41.1
worst-2 59 2.0±0.2 30.8 30.1
worst-v 59 1.8±0.8 31.6 32.5
rand-1 57 1.0±0.0 23.9 23.9
rand-2 59 2.0±0.2 25.5 25.7
rand-v 59 1.8±0.8 25.5 25.0
full 59 2.5±0.6 26.0 23.7

dopanim

worst-1

Herde et al. 10,484 4,500 15 20

1.0±0.0 77.6 77.6
worst-2 2.0±0.0 62.7 62.2
worst-v 3.0±1.4 45.2 46.9
rand-1 1.0±0.0 32.5 32.5
rand-2 2.0±0.0 32.8 33.2
rand-v 3.0±1.4 32.7 26.3
full 5.0±0.2 32.7 19.3

Text Data

reuters

worst-1

Rodrigues et al. 1,786 4,217 8 38

1.0±0.0 69.2 69.2
worst-2 2.0±0.2 54.0 54.0
worst-v 2.0±1.0 50.8 51.8
rand-1 1.0±0.0 38.5 38.5
rand-2 2.0±0.2 39.9 40.9
rand-v 2.0±1.0 40.8 38.4
full 3.0±1.0 40.4 35.5

spc

worst-1

Rodrigues et al. 3,000 1,999 2

185 1.0±0.0 63.4 63.4
worst-2 199 2.0±0.0 47.1 47.0
worst-v 202 3.2±1.6 31.6 32.5
rand-1 184 1.0±1.0 21.2 21.2
rand-2 200 2.0±0.0 20.8 20.6
rand-v 202 3.3±1.6 21.1 14.9
full 203 5.5±0.7 20.9 11.0

campaigns, we follow the ideas of Wei et al. (2021) and Herde et al. (2024a) by introducing variants of these
noisy label sets. These variants simulate different levels of crowdworker performance and varying amounts of
label redundancy. For each instance, we either retain only the labels produced by the worst crowdworkers,
i.e., we keep false labels if any are available, or we select labels uniformly at random. The suffixes -1, -2,
and -v then specify how many labels to keep per instance: exactly one, exactly two, or a variable number,
respectively. Because we preserve only a subset of all submitted labels, the total number of crowdworkers
contributing labels can change across variants. The variant full refers to the originally published set of
class labels from crowdworkers. Together, these dataset variants cover a wide range of different LFC settings.
Concretely, the number of crowdworkers ranges from small groups of M = 20 people to a large group of
M = 203 people. Label noise, defined as the fraction of erroneous labels from crowdworkers, ranges from
approximately 20 % to 87 %. When these labels are aggregated via majority voting, the resulting aggregation
noise, i.e., the fraction of aggregated labels that are incorrect, ranges from circa 11 % to 87 %. Finally, the
dataset variants encompass scenarios ranging from no label redundancy, i.e., only one class label per instance,
to those exhibiting substantial label redundancy, i.e., over five class labels per instance.

Neural Network Architectures The original audio files are unavailable for the crowd-labeled dataset mgc.
Instead, Rodrigues et al. (2013) published features extracted via a music information retrieval tool. Similarly,
only term counts published by Rodrigues et al. (2017) are available for the crowd-labeled dataset reuters
for which we apply a term frequency-inverse document frequency (TF-IDF) transformation. As a result, the
instances for these two datasets correspond to plain feature vectors. Thus, we employ multi-layer perceptrons
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(MLPs) as the data classification model fθ. Apart from the input dimension, which depends on the respective
dataset, the MLPs share two hidden layers (256 and 128 neurons) enhanced by batch normalization (Ioffe
& Szegedy, 2015) and rectified linear unit (ReLU, Glorot et al., 2011) activation functions. For all image
datasets, where the actual images with their associated noisy class labels from the crowdworkers are published,
we employ a DINOv2 vision transformer (vit-s/14, Oquab et al. (2023)) as a backbone model. Analog to this,
we use an MPNet sentence transformer (all-mpnet-base-v2, Song et al., 2020; Reimers & Gurevych, 2019)
as the backbone for the sentences of the dataset spc. Both backbones’ pre-trained weights remain fixed to
preserve the robust feature representations as inputs to an MLP head as the data classification model fθ
with the same architecture (apart from the input dimensions) as for the other datasets.

Learning from Crowds Approaches Table 1 lists the 13 LFC approaches evaluated in our study. We focus
on one-stage LFC approaches, whose end-to-end training has yielded state-of-the-art performances (Nguyen
et al., 2024; Herde et al., 2024b; Ibrahim et al., 2023). Of this type, we include approaches that model
class-dependent and instance-dependent crowdworker performances. Further, we consider two two-stage
approaches, of which mv serves as a lower baseline because it trains the data classification model fθ on
majority vote labels. Implementing the crowdworker classification model gϕ and the crowdworker performance
model hψ depends on the respective LFC approach, of which Appendix A provides more detailed descriptions.

Table 3: Overview of LFC approaches’ general and individual HP search spaces. For each HP,
we define a default value and a search space as the basis for the HPO. The notation not applicable (N/A)
indicates that an LFC approach does not introduce additional HPs or that an HP is not optimized. The
expressions uniform and log-uniform define the search spaces as distributions used for generating HPCs.

Approach Reference Hyperparameter Default Value Search Space

General N/A

optimizer RAdam N/A
learning rate scheduler cosine annealing N/A
number of epochs 30 uniform({5, 30, 50})
batch size 32 uniform({16, 32, 64})
initial learning rate 10−3 loguniform([10−4, 10−1])
weight decay 0 loguniform([10−6, 10−3])
dropout rate 0.0 uniform([0.0, 0.5])

Two-stage Approach without Crowdworker Performance Modeling
mv N/A N/A N/A N/A

Two-stage Approach with Class-dependent Crowdworker Performance Modeling
ds Dawid & Skene N/A N/A N/A

One-stage Approaches with Class-dependent Crowdworker Performance Modeling
cl Rodrigues & Pereira N/A N/A N/A
trace Tanno et al. confusion matrix regularization (λ) 10−2 loguniform([10−3, 10−1])

conal Chu et al. confusion matrix regularization (λ) 10−5 loguniform([10−6, 10−3])
embedding dimension 20 uniform({20, 40, 60, 80})

union-a Wei et al. confusion matrix initialization (ϵ) 10−5 loguniform([10−6, 10−4])union-b
geo-f Ibrahim et al. confusion matrix regularization (λ) 10−3 loguniform([10−4, 10−2])geo-w

One-stage Approaches with Instance-dependent Crowdworker Performance Modeling

madl Herde et al.
confusion matrix initialization (η) 0.8 uniform([0.75, 0.95])
gamma distribution parameter (α) 1.25 uniform([1.0, 1.5])
gamma distribution parameter (β) 0.25 uniform([0.25, 0.5])
embedding dimension (Q) 16 uniform({8, 16, 32})

crowd-ar Cao et al. loss balancing 0.9 uniform([0.5, 1.0])

annot-mix Herde et al. confusion matrix initialization (η) 0.9 uniform([0.75, 0.95])
mixup (α) 1.0 uniform([0.0, 2.0])

coin Nguyen et al. outlier regularization (µ1) 10−2 loguniform([10−3, 10−1])
volume regularization (µ2) 10−2 loguniform([10−3, 10−1])

Hyperparameter Search Table 1 lists general (approach-agnostic) HPs and approach-specific HPs.
All approaches share the general HPs. Concretely, we fix RAdam (Liu et al., 2019) as the optimizer in
combination with a cosine annealing learning rate scheduler (Loshchilov & Hutter, 2017) without restarts to
gradually reduce the learning rate over the training process, thereby promoting stable convergence. For the
remaining general HPs, we define suitable search spaces derived from related literature and default values of
PyTorch (Paszke et al., 2019) optimizers (e.g., no weight decay). The distributions for sampling HP values
are denoted as uniform and log-uniform. For approach-specific HPs, we adopt default values from the
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publications or codebases. If available, the search spaces are also extracted from these two sources. Otherwise,
they are defined based on reasonable value ranges. The defined HP search spaces are sampled using Sobol
sequences (Sobol, 1998) as HP search strategy (see Section 3.3 for our rationale). A total of 50 distinct HPCs
are generated per combination of LFC approach and dataset variant. Together with the default HPC, this
yields a set of |Λ| = 51 HPCs, from which the HPS criteria must pick the best performer.

Hyperparameter Selection Criteria Each HPC is evaluated via a K = 5-fold cross-validation given
the crowd-labeled training set to obtain risk estimates for the respective HPS criterion. The HPC picked by
the respective criterion (see Eq. (8)) is then tested on the hold-out test set with true labels for five different
initializations of the neural networks’ weights, ensuring a reliable assessment of the data classification model’s
generalization performance. We include two variants of default HPCs. On the one hand, we use the default
values specified in Table 3 across all datasets. This criterion, to which we refer as def (see Eq. (10)), is the
most naive one since there is no consideration of the datasets’ individual requirements. A more advanced
and commonly used alternative in LFC evaluation studies is to fix one default HPC per dataset, denoted
def-data. For each dataset variant, we first perform a conventional HPO: a vanilla classification model,
ignoring the LFC setting, is trained and validated on the true class labels, tuning only the approach-agnostic
HPs (Herde et al., 2024a). The best HPC obtained from this search is then frozen and transferred to every
LFC approach. Consequently, every approach shares the same general HPC for that dataset variant while
its approach-specific HPs stay at their default values. For well-studied benchmarks, one could alternatively
adopt HPCs reported in the literature (Tanno et al., 2019), yet we rely on the HPO variant as def-data
criterion to guarantee consistency across datasets. This def-data criterion differs from our upper baseline
criterion true, where all HPs of an LFC approach are optimized by training on the noisy crowd-labeled data
and validating on the true labels (see Eq. (9)). Despite this difference, def-data and true are the only HPS
criteria requiring access to the true labels.

4.2 Experimental Results

Our setup encompasses 5 datasets, each with 7 variants, 13 LFC approaches, and 11 HPS criteria. Due to
the many combinations, we present only the main results addressing our two research questions here and
refer to Appendix C.2 for the complete results list. These supplementary results also contain more in-depth
analyses regarding the impact of different noise levels, numbers of candidate HPCs, and an architecture
search for the data classification model.

RQ1: Given access only to crowd-labeled validation data, which evaluated HPS criterion yields the highest
performance for LFC approaches?

We compare the HPS criteria with each other across multiple datasets and LFC approaches. Therefore, we
report performance results in the form of rankings and zero-one losses in Table 4. In addition, this table
lists for each criterion the number of significant wins, significant losses, and non-significant comparisons
(ties) against all other criteria. We treated each pair of dataset variant and LFC approach as a block and
applied a Friedman test (Friedman, 1937) at α := 0.05, which was significant. Thus, we performed all pairwise
Wilcoxon signed-rank tests with Holm correction (Holm, 1979). A comparison was counted as a win (loss) for
a criterion over another criterion when the adjusted p-value was below α. Otherwise, it counted as a tie. The
complete table of pairwise comparisons is given in Appendix C.2. One central finding is that the criterion
def significantly ranks poorly, supporting our motivation that using default HPCs leads to underestimating
the approaches’ potential performances. Moreover, the poor rank of the def-data criterion indicates that
using well-tuned HPCs from standard classification tasks (without any noisy labels) does not account for
the unique requirements of each LFC approach. As anticipated, the true criterion, which utilizes the true
class labels for selecting the best HPC per LFC approach and per dataset, performs superiorly to every
other criterion. Concretely, it ranks best and provides the highest loss reductions compared to the def
criterion across all dataset variants. Among the criteria relying solely on crowd-labeled validation data, the
ensemble-based ens criterion is the clear runner-up: it ranks better and provides higher loss reductions than
all other competing criteria apart from the upper baseline criterion true. Notably, ens is the only criterion
without a significant loss compared to true. Reducing the size of the ensemble decreases its performance
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(see ablation study in Appendix C.2). At the same time, the extra computation demanded by ens remains
negligible (see time complexity analysis in Appendix B.4): the expensive steps are the training and inferring
the predictions of the models, and once those predictions are available, they can be reused to compute every
risk estimate. Finally, although the aeu criterion, which aggregates the noisy validation labels per instance
via majority voting, performs worse than the criteria true and ens, it still yields substantial improvements
over default HPCs. Together, these results highlight the benefits of HPO in LFC settings with crowd-labeled
validation data. Besides these results averaged over the LFC approaches, we also examine how each criterion
performs in combination with each approach individually. For this purpose, Figure 5 breaks down the absolute
zero-one loss reductions according to the LFC approaches. This way, we measure how much a specific
criterion improves an approach relative to using that approach’s default HPC. It does not indicate which
LFC approach is superior to others. We observe that for a few LFC approaches, e.g., coin and geo-f, the
criterion true does not achieve the highest loss reduction on average. An explanation is that cross-validation
uses only subsets of the data for training, so the HPC that minimizes the validation zero-one loss on the
subsets may not be optimal when training is performed on the full dataset. This observation also suggests
an interdependence between the criterion and the approach. Another example of this interdependence can
be found when comparing the results for the union-a approach, where criteria that rely on crowd-level risk

Table 4: HPS criteria’s results. One column per criterion reports the rank, number of significant wins,
significant losses, non-significant ties compared to the other criteria, and the zero-one loss reductions (absolute
as percentage points [%p] and relative as percentages [%]) compared to def as criterion. Means and standard
errors are computed over all combinations of dataset variants and LFC approaches (excluding the approach
mv that is not compatible with each criterion). The arrows show whether a smaller (↓) or higher (↑) value is
better. The best and second best value is marked per result type. A ⋆ marks criteria that had access to the
true validation labels.

Baseline Aggregation-level Crowd-level Ensemble
true⋆ def-data⋆ def aeu aec alu alc cxu cec clc ens

Ranks (↓)
4.64 7.84 9.76 5.66 5.57 5.29 5.60 5.46 5.36 5.91 4.89

± 0.15 ± 0.17 ± 0.11 ± 0.11 ± 0.11 ± 0.11 ± 0.13 ± 0.11 ± 0.11 ± 0.13 ± 0.09
Significant Wins [#] (↑) / Non-significant Ties [#] / Significant Losses [#] (↓)

9 / 1 / 0 1/0/9 0/0/10 2/6/2 2/6/2 3/5/2 2/6/2 2/6/2 2/6/2 2/5/3 9 / 1 / 0
Absolute Zero-one Loss Reductions Compared to def (∆def L0/1 [%p] ↑)

+ 5.36 + 0.76 + 0.00 + 4.55 + 4.59 + 4.73 + 4.43 + 4.52 + 4.57 + 4.07 + 5.15
± 0.24 ± 0.31 ± 0.00 ± 0.26 ± 0.26 ± 0.26 ± 0.27 ± 0.29 ± 0.28 ± 0.31 ± 0.26

Relative Zero-one Loss Reductions Compared to def (∆def L0/1 [%] ↑)
+18.20 + 3.65 + 0.00 +16.18 +16.27 +16.48 +14.66 +15.48 +15.93 +13.30 +17.60
± 0.73 ± 1.12 ± 0.00 ± 0.76 ± 0.76 ± 0.80 ± 0.81 ± 0.87 ± 0.84 ± 0.91 ± 0.77

dsmv annot-mix coinconalcl geo-fgeo-w madltrace union-a crowd-arunion-b

Figure 5: Absolute zero–one loss reductions of HPS criteria. For each LFC approach (x-axis), the
scatter plot displays the mean and standard error of a criterion’s reduction in zero–one loss (y-axis) as
percentage points [%p] compared to the criterion def (see Appendix C.2 for relative reductions as percentages
[%]). Higher reductions correspond to greater improvements. A ⋆ marks criteria that had access to the true
validation labels.
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Table 5: LFC approaches’ results with ens as HPS criterion. One column per approach reports the
rank, number of significant wins, significant losses, non-significant ties compared to the other approaches and
the zero-one loss reductions (absolute as percentage points [%p] and relative as percentages [%]) compared
to the approach mv trained with its default (def) HPC. Means and standard errors are computed over all
dataset variants. The arrows indicate whether a smaller (↓) or higher (↑) value is better. The best and
second best value is marked per result type.

Baseline Class-dependent Instance-dependent
mv ds cl trace conal union-a union-b geo-w geo-f madl crowd-ar annot-mix coin

Ranks (↓)
10.57 9.09 7.90 7.31 7.37 7.60 7.61 5.81 4.10 5.36 8.97 5.34 3.96

± 0.38 ± 0.53 ± 0.64 ± 0.53 ± 0.53 ± 0.67 ± 0.55 ± 0.59 ± 0.45 ± 0.63 ± 0.43 ± 0.65 ± 0.50
Significant Wins [#] (↑) / Non-significant Ties [#] / Significant Losses [#] (↓)

0/3/9 0/7/5 0/11/1 1/9/2 1/9/2 0/10/2 1/8/3 4/8/0 8 / 4 / 0 3/9/0 1/6/5 3/9/0 7/5/0
Absolute Zero-one Loss Reductions Compared to mv with def (∆mv[def] L0/1 [%p] ↑)

+ 5.60 + 6.05 + 8.04 + 7.81 + 7.18 + 7.05 + 7.42 + 9.70 +10.05 + 8.52 + 6.87 + 9.21 + 9.88
± 0.88 ± 1.17 ± 1.21 ± 1.05 ± 0.92 ± 0.97 ± 1.05 ± 1.30 ± 1.08 ± 1.34 ± 0.97 ± 0.93 ± 0.99

Relative Zero-one Loss Reductions Compared to mv with def (∆mv[def] L0/1 [%] ↑)
+19.31 +21.04 +23.95 +24.99 +24.20 +21.67 +23.82 +28.75 +30.79 +27.66 +22.68 +28.22 +30.86
± 2.75 ± 3.14 ± 2.95 ± 3.06 ± 2.83 ± 2.92 ± 2.86 ± 2.99 ± 2.86 ± 3.45 ± 2.87 ± 2.60 ± 2.84

conalcl geo-fgeo-wtrace union-a union-b annot-mix coinmadl crowd-ardsmv

Figure 6: Absolute zero–one loss reductions of LFC approaches. For each HPS criterion (x-axis),
the scatter plot displays the mean and standard error of an LFC approach’s reduction in zero–one loss
(y-axis) as percentage points [%p] compared to majority voting (mv) trained with its default (def) HPC
(see Appendix C.2 for relative reductions as percentages [%]). Higher reductions correspond to greater
improvements. A ⋆ marks criteria that had access to the true validation labels.

estimates outperform those that use aggregation-level risks, to the results for the coin approach, where
aggregation-level criteria take the lead. Consequently, when it is unclear which criterion will pair best with a
given approach, the ensemble-based criterion ens offers a robust compromise.

RQ1: Takeaway
Aggregation-level and crowd-level HPS criteria, estimating risks only from noisy crowdworker labels,
enable effective HPO in LFC. Combining them via the ensemble-based criterion ens yields the highest
performance across dataset variants and LFC approaches.

RQ2: Given the best-evaluated HPS criterion for crowd-labeled validation data, how do LFC approaches
compare in performance?

We compare the LFC approaches whose HPCs have been selected via the best-evaluated criterion ens across
all dataset variants and report the performance results again as rankings and zero-one loss reductions in
Table 5. In addition, this table lists for each approach the number of significant wins, significant losses, and

15



Under review as submission to TMLR

non-significant ties against all other approaches. These numbers are obtained via the same test procedure as
in RQ1 with each dataset variant as a block. The results underscore the benefits of one-stage LFC approaches
that estimate class- or instance-dependent crowdworker performances, as the two-stage baseline approaches
mv and ds (Dawid & Skene, 1979) attain the worst ranks and have the most significant losses. Moreover, they
provide the lowest zero-one loss reductions compared to training mv with its default (def) HPC. The two one-
stage approaches geo-f (Ibrahim et al., 2023) and coin (Nguyen et al., 2024) provide significant performance
gains to most of their competitors with an average zero-one loss reduction of around 10%p corresponding to a
relative improvement of over 30% compared to training mv with def as a criterion. Both approaches’ idea
is to identify the crowdworkers’ confusion matrices via special regularization terms, where geo-f estimates
a single confusion matrix per worker, while coin relaxes this assumption by modeling instance-dependent
outlier terms for the crowdworkers’ confusion matrices. Figure 6 breaks down the approaches’ absolute
zero-one loss reductions compared to training mv with the default (def) HPC according to the HPS criteria.
We observe that similar absolute reductions of the zero-one loss around 10%p are also achievable when relying
on other criteria, such as alc paired with the annot-mix approach (Herde et al., 2024b). Moreover, the
results indicate that the comparison between the approaches’ performances is affected by the choice of the
criterion. For example, the loss reduction of the approach coin is much inferior to the reduction of the
approach annot-mix for the baseline criterion def-data, but is superior when relying on ens as a criterion.

vs.TRUE DEF vs.DEF DEF-DATA vs.ENS DEF-DATA vs. DEFENSvs.TRUE ENSvs.TRUE DEF-DATA

Figure 7: Rank correlation between HPS criteria. Each violin plot shows the mean and distribution of
pairwise Kendall τ -b coefficients, shown as violet dots and obtained from 35 dataset variants when comparing
the ranking of LFC approaches with their HPCs selected via baseline and ensemble-based criteria. Higher
coefficients indicate stronger correlation. A ⋆ marks criteria that had access to the true validation labels.

To systematically analyze a criterion’s impact on comparing the approaches, we compute the Kendall rank
correlation coefficient (Kendall, 1945) to judge whether the various criteria disagree on the ranking of
approaches. Figure 7 shows violin plots of these coefficients across all dataset variants for 6 example criteria
pairs. Each coefficient is a kind of distance measurement between two rankings of the approaches obtained
after using two different criteria for the same dataset variant. The coefficients are in the interval [−1, 1],
where −1 indicates a perfect negative ordering, 0 no ordering, and 1 a perfect positive ordering. In the
absence of ties, a of Kendall τ -b coefficient of 0.50 between two rankings of the approaches means that, if you
randomly sample a pair of approaches, there is a 50%p advantage that both criteria place the same approach
higher (or lower) than the other, rather than disagreeing on which one ranks higher. The criteria def and
def-data paired with ens or true have an average Kendall τ -b coefficient of around 0.25, showing only
modest agreement in the ranking of LFC approaches. Criterion ens versus criterion true has an average
Kendall τ -b coefficient of about 0.40, reflecting a moderate positive overlap of rankings. The violin plots,
however, make clear that these average Kendall τ -b coefficients mask considerable dispersion: dataset-wise
coefficients spread widely around each average, and a few even reach into the negative value range, showing
that two criteria reverse the ordering of approaches for some datasets.
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RQ2: Takeaway
With the HPS criterion ens, all one-stage LFC approaches, particularly geo-f and coin, outperform
the two-stage baselines. The approaches’ gains and rankings vary with the criterion, underscoring a
criterion’s importance for a fair and realistic evaluation.

4.3 Recommendations for Experimentation

Based on crowd-hpo with its experimental study and related ones (see Section 2), we make recommendations
towards more realistic and fairer experimentation in LFC settings via HPO. We use the term experimentation
to emphasize our focus on experiments to set up a benchmark, while a study’s specific objectives guide the
subsequent analyses. Our recommendations address the following central aspects.

• Datasets: Focus on datasets with noisy class labels collected from human crowdworkers. Many existing
experimental studies in LFC primarily rely on datasets with simulated crowdworkers (see Table 2).
Typically, these simulations apply hand-crafted noise models to probe specific properties of an LFC
approach, e.g., robustness to adversarial crowdworkers (Cao et al., 2019) or varying noise levels (Li et al.,
2022). Yet, how well such noise models mirror real human labeling behavior is unclear. A more realistic
alternative is to create variants of noisy label sets (Wei et al., 2021; Herde et al., 2024a) for the datasets
with human crowdworkers (see Table 2), which also enables the study of LFC approaches under different
noise levels and label redundancies.

• Learning from crowds approaches: Evaluate LFC approaches with different training principles and
crowdworker performance modeling. By including approaches with two-stage and one-stage training (Li
et al., 2022), a study can systematically contrast label aggregation as a separate stage with end-to-end
training, enabling the investigation of how factors such as label redundancy and noise level influence
their predictive performances. Further, experimenting with approaches modeling class-dependent or
instance-dependent crowdworker performances (Herde et al., 2023) allows a fundamental assessment of
when additional modeling complexity is justified.

• Hyperparameter selection criteria: Employ non-default HPS criteria. Default HPCs lead to underestimating
the LFC approaches’ actual performances and rendering ranking results less meaningful. In applications
where assuming the availability of a separate validation set with true labels is reasonable, validating
with those labels (corresponding to the criterion true) is fine. Otherwise, crowd-hpo offers criteria for
crowd-labeled validation data to enable fairer and more realistic experimentation. Given that the optimal
criterion may depend on the individual LFC approach, a basic criterion such as aeu or the more robust
ensemble-based criterion ens is recommended. In the future, a novel LFC approach should be introduced
alongside an HPS criterion tailored to its specific characteristics, thereby improving real-world applicability.
This recommendation mirrors recent findings from partial label learning, where HPO with only partial
labels for validation has likewise been identified as a key challenge (Wang et al., 2025).

• Hyperparameter search spaces: Define tight search spaces covering the most critical HPs for each LFC
approach. Established findings in HPO (Bergstra & Bengio, 2012) revealed a substantial impact of the
complexity of the search space ΩΛ on the efficiency and effectiveness of a search strategy. To reduce this
complexity, we need to know suitable search spaces for the critical HPs of an LFC approach. Therefore,
we advocate that future LFC approaches should include recommendations for search spaces of their
approach-specific HPs. When such guidance is unavailable, reasonable search spaces should be established
based on theoretical considerations, each HP’s role, or potential ablation studies.

Our recommendations have several limitations. First, due to inherent interdependencies, we cannot make
design choices regarding the above aspects in isolation. For example, the choice of the best HPS criterion
for an approach can vary across datasets (see Table 14 in Appendix C.2). Second, other essential aspects,
such as the HPO search strategy, the number of folds K for the cross-validation, and fine-tuning pre-trained
backbones, remain unexplored. These aspects can strongly affect the computational complexity of the HPO.
Second, our analysis based on computing means across all datasets does not account for the influence of
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specific dataset attributes, including the number of crowdworkers and label redundancy. In other words,
latent patterns in these characteristics may help decide the HPS criterion or even allow optimizing the risk
estimates’ weighting for the ensemble-based criterion ens via techniques from metalearning (Brazdil et al.,
2022). Third, while our observations refer to the zero-one loss function, alternative loss functions such as
the Brier score (Brier, 1950) may also be relevant when assessing probabilistic estimates. A brief analysis
in Appendix C.2 confirms the benefit of employing the proposed HPS criteria for the Brier score as loss
function, while the choice of the best HPS criterion changes. Fourth and finally, we refer to the number |Λ| of
candidate HPCs as the computational budget, which does not account for different training and inference
complexities between the LFC approaches.

5 Conclusion

We introduced crowd-hpo as a framework to enable more realistic and fairer benchmarking of LFC approaches
by leveraging HPO with only access to crowd-labeled validation data. We started with exemplary results
demonstrating notable zero-one loss reductions and changes in the rankings of LFC approaches when
performing HPO with true class labels in the validation set compared to default HPCs. Subsequently, we
identified a lack of research regarding HPO with crowd-labeled validation data. Therefore, we proposed
and evaluated HPS criteria accounting for the potential noise in class labels from crowdworkers. Across
extensive experiments, our proposed HPS criteria strongly reduced the losses of the LFC approaches relative
to their default HPCs. This applies particularly to the ensemble-based criterion ens, which is also easily
extensible by including future empirical risk measures for crowd-labeled validation data. However, the ranking
of LFC approaches shifted with the criterion applied. These findings grounded our recommendations for
future experimentation and benchmarking in LFC settings. To further improve the HPS, future work should
rigorously explore advanced HP search strategies, particularly Bayesian optimization (Wang et al., 2023),
and examine how they interact with criteria accounting for crowd-labeled validation data. Progress can
also be achieved through HPS criteria with alternative loss functions, label weighting, label aggregation, or
resampling schemes, e.g., by allowing per-class crowdworker biases during validation. Finally, crowd-hpo
serves as a starting point for developing empirical risk measures that are not only suited for improving
HPS given crowd-labeled validation data but ultimately should provide reliable estimates of the approaches’
generalization performances given only crowd-labeled test data.

Broader Impact Statement

In a broader context, we identify an impact on real-world applications and crowdworkers as two branches of
potential societal consequences of crowd-hpo. (1) On the one hand, the validation with noisy class labels
from the crowd makes the LFC approaches’ employment more practical in real-world applications because
potential users do not need to rely on default or manually picked HPCs when training the LFC approaches.
However, selecting the best HPC is different from accurate risk estimates. In the first case, we need only to
rank the HPCs, while in the latter case, we want to have a precise estimate of the resulting data classification
model’s risk. In other words, despite being able to optimize the selection of the HPC, we do not know the
actual generalization performance of the data classification model after training. Correspondingly, there
is still no solution to how practitioners can obtain such an estimate without access to a separate test set
with true labels. Therefore, practitioners must only employ LFC approaches in safety-critical applications
after thorough evaluation based on a separate test set with true labels. (2) On the other hand, wider
adoption of LFC approaches can raise demand for crowdworkers. However, crowdworkers often endure difficult
working conditions (Bhatti et al., 2020), e.g., insufficient payments and job insecurity. Therefore, collecting
crowd-labeled data for training LFC approaches should always be coupled with explicit provisions for fair
working conditions.
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A Inference Mechanisms of Learning from Crowds Approaches

This appendix overviews the common inference mechanisms of LFC approaches to better understand the
connections between the data classification model fθ, the crowdworker classification model gϕ, and the
crowdworker performance model hψ. Moreover, the probabilistic estimates of Eqs. (3)-(5) are required to
evaluate our presented HPS criteria. To explain the inference, we distinguish between two architecture types
employed by LFCs approaches: the ones with probabilistic confusion matrices and those with non-probabilistic
noise adaptation layers.

A.1 Probabilistic Confusion Matrices

Many LFC approaches (Dawid & Skene, 1979; Tanno et al., 2019; Ibrahim et al., 2023; Cao et al., 2023; Herde
et al., 2023; 2024b; Nguyen et al., 2024) estimate crowdworker performances through confusion matrices,
which we formalize as a function Qβ : ΩX × [M ] → ∆C

C with parameters β ∈ ΩB. Thereby, a confusion
matrix entry has the following probabilistic interpretation:

[Qβ(xn, m)]c,k := Pr (znm = ek |xn,yn = ec, m,β) . (30)

This confusion matrix entry in row c ∈ [C] and column k ∈ [C] is the probability that crowdworker m assigns
the class label ek to instance xn with ec as its true class label. Depending on the assumptions of the LFC
approach, there are confusion matrices differing in their degrees of freedom ν ∈ N>0 (Herde et al., 2023). Here,
we distinguish between class-independent (ν = 1) and class-dependent (ν = C(C − 1)) confusion matrices.
Moreover, the confusion matrices can be modeled as instance-independent:

∀xn,xl ∈ ΩX : Qβ(xn, m) = Qβ(xl, m), (31)

or as an instance-dependent function. Despite different assumptions about confusion matrices, the LFC
approaches share the inference schemes for their crowdworker classification model with parameters ϕ := (θ,β):

gϕ(xn, m) := QT
β(xn, m)fθ(xn) (32)

and for their crowdworker performance model with parameters ψ := (θ,β):

hψ(xn, m) :=
∑

c∈[C]

[fθ(xn)]c · [Qβ(xn, m)]c,c. (33)

A.2 Non-probabilistic Noise Adaptation Layers

In contrast to probabilistic confusion matrices, we refer to noise adaptation layers in LFC approaches (Ro-
drigues & Pereira, 2018; Chu et al., 2021; Wei et al., 2023) as unconstrained transformations of the estimated
true class probabilities. For this purpose, the approach cl (Rodrigues & Pereira, 2018) introduces a noise
adaptation layer Wm ∈ RC×C for each crowdworker m ∈ [M ]. Then, the crowdworker classification model
with parameters ϕ := (θ,W1, . . . ,WM ) performs inference via:

gϕ(xn, m) := softmax
(
WT

mfθ(xn)
)

. (34)

The approach conal (Chu et al., 2021) extends the crowdworker-specific noise adaptation layers by another
layer W ∈ RC×C modeling common confusions across crowdworkers, which leads to:

gϕ(xn, m) := (1 − sγ(xn, m)) · softmax
(
WT

mfθ(xn)
)

+ sγ(xn, m) · softmax
(
W

T
fθ(xn)

)
, (35)
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where sγ : ΩX × [M ] → [0, 1] is an auxiliary network with parameters γ ∈ ΩΓ. It outputs an instance- and
crowdworker-dependent scalar as the estimated degree to which a crowdworker’s class label distribution follows
common confusions across crowdworkers. Accordingly, the crowdworker classification model in Eq. (35) has the
parameters ϕ := (θ,W1, . . . ,WM ,W ,γ). Another variant of a noise adaptation layer is implemented by the
LFC approaches union-a and union-b (Wei et al., 2023). Instead of treating the crowdworkers independently,
the two approaches model the crowdworkers as a union via a single noise adaptation layer W̃ ∈ RC×(C·M).
Therefore, they do not directly implement a crowdworker classification model but a classification model
g̃ϕ : ΩX → ∆C·M parameterized by ϕ := (θ, W̃ ) and treating the crowdworkers’ class labels as a union:

g̃ϕ(xn) := softmax
(
W̃Tfθ(xn)

)
(union-a), (36)

g̃ϕ(xn) := softmax
(
W̃
)T
fθ(xn) (union-b), (37)

where the softmax is applied row-wise in the case of union-b. As a workaround for approximating the
crowdworker classification model, we normalize the outputs associated with each crowdworker, which
corresponds to:

gϕ(xn, m) := normalize
(

[g̃ϕ(xn)](m−1)·C+1:m·C

)
, (38)

where [·]i:j denotes the entries from index i to index j in a vector. For all these LFC approaches, which do not
explicitly implement a probabilistic confusion matrix per crowdworker, we resort to using marginal alignment
accuracy, which is computed as the agreement between the predicted crowdworker distribution and the
predicted true label distribution as an instance-level proxy measure for crowdworker accuracy. Consequently,
the crowdworker performance model with parameters ψ := (θ,ϕ) performs inference via:

hψ(xn, m) := fT
θ (xn)gϕ(xn, m). (39)

B Theoretical Analysis of Hyperparameter Selection Criteria

This appendix expands on our design decisions underlying the HPS criteria framework introduced in Section 3.
Using simple propositions, we show that richer modeling assumptions can inject class-specific bias into the
posterior computation of Eq. (16). We then prove that the computation we adopt in Eq. (17) is immune to
this issue and remains class-agnostic. Finally, we overview the time complexities of the HPS criteria.

B.1 Prior Class Probabilities

Proposition 1 motivates our design choice not to use non-uniform prior class probabilities when computing
the posterior class probabilities in Eq. (16). Intuitively, if the prior class probabilities are sufficiently biased
toward a particular class, this bias will dominate in the posterior regardless of the observed class labels from
the crowdworkers. Therefore, relying on the class probabilities estimated by the data classification model fθ
as prior can bias the aggregated class labels towards the data classification model’s predictions.

Proposition 1 For an instance xn ∈ X , let us assume strictly positive likelihoods for the class labels such
that ∀ec ∈ ΩY and ∀m ∈ Mn:

P̂r(znm|xn,yn = ec, m) > 0. (40)

Then, for any non-empty allocation of observed class labels Zn ∈ P(ΩY ) \ {∅} and for any class label ek ∈ ΩY ,
there exists a constant ε ∈ (0, 1) such that from P̂r(yn = ek |xn) > ε follows:

z(xn, Zn) = ek. (41)
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Proof For a fixed instance xn ∈ X and class label ek ∈ ΩY , we first define

lc :=
∏

m∈Mn

P̂r(znm|xn,yn = ec, m), (42)

lmax := max
c∈[C]\{k}

(lc) , (43)

ε := lmax

lmax + lk
. (44)

Now, let P̂r(yn = ek |xn) > ε. Our goal is to show that for any ec ∈ ΩY \{ek} we have P̂r(yn = ek |xn, Zn) >

P̂r(yn = ec|xn, Zn), since then we get z(xn, Zn) = ek. Starting from Bayes’ theorem in Eq. (15) and the
conditional independence assumption in Eq. (16), we have

P̂r(yn = ek |xn, Zn) = 1
P̂r(Zn|xn)

P̂r(yn = ek |xn)︸ ︷︷ ︸
> lmax

lmax+lk

∏
m∈Mn

P̂r(znm|xn,yn = ek, m)︸ ︷︷ ︸
=lk

(45)

>
1

P̂r(Zn|xn)
lmax

lmax + lk
lk (46)

= 1
P̂r(Zn|xn)

lk
lmax + lk

lmax. (47)

While the first factor in Eq. (47) with P̂r(Zn|xn) > 0 is for normalization, we get for the second factor

lk
lmax + lk

= lmax + lk − lmax

lmax + lk
(48)

= 1 − lmax

lmax + lk
(49)

> 1 − P̂r(yn = ek |xn) (50)

= P̂r(yn ̸= ek |xn) (51)

≥ P̂r(yn = ec|xn), (52)

where Eq. (50) follows by definition of ε as −P̂r(yn = ek |xn) < −ε = − lmax
lmax+lk

and Eq. (52) follows by
monotonicity as yn = ec =⇒ yn ̸= ek. For the third factor, we have

lmax ≥ lc =
∏

m∈Mn

P̂r(znm|xn,yn = ec, m) (53)

by definition of lmax. Incorporating both inequalities into Eq. (47), we get

1
P̂r(Zn|xn)

lk
lmax + lk

lmax >
1

P̂r(Zn|xn)
P̂r(yn = ec|xn)

∏
m∈Mn

P̂r(znm|xn,yn = ec, m) (54)

= P̂r(yn = ec|xn, Zn) (55)

and therefore P̂r(yn = ek |xn, Zn) > P̂r(yn = ec|xn, Zn) as desired.

B.2 Crowdworker Confusion Probabilities

Proposition 2 motivates our design choice not to use full confusion probability estimates for computing
the posterior class probabilities in Eq. (16). Intuitively, suppose the full confusion probabilities for the
crowdworkers are sufficiently biased toward a particular class (see sufficient condition in Eq. (58)). In that
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case, this bias will dominate in the posterior regardless of uniform prior class probabilities and observed
class labels from the crowdworkers. Therefore, relying on full confusion matrices, as estimated by many
LFC approaches in the form of Qβ in Appendix A, can bias the aggregated class labels towards their own
predictions.

Proposition 2 For an instance xn ∈ X , suppose uniform prior class probabilities according to Eq. (17).
Then, for any non-empty allocation of observed class labels Zn ∈ P(ΩY ) \ {∅} and for any class label ek ∈ ΩY ,
there exist confusion probability estimates P̂r(znm|xn,yn, m) such that:

z(xn, Zn) = ek. (56)

Proof With uniform prior class probabilities and P̂r(Zn|xn) > 0 for normalization, the posterior probability
for class label ec ∈ ΩY from Eq. (15) and Eq. (16) is given by:

P̂r(yn = ec|xn, Zn)= 1
P̂r(Zn|xn)

1
C

∏
m∈Mn

P̂r(znm|xn,yn = ec, m). (57)

Therefore, by requiring that ∀ec ∈ ΩY \ {ek} and ∀m ∈ Mn:

P̂r(znm|xn,yn = ek, m) > P̂r(znm|xn,yn = ec, m), (58)

we obtain ∀ec ∈ ΩY \ {ek}:

P̂r(yn = ek |xn, Zn)= 1
P̂r(Zn|xn)

1
C

∏
m∈Mn

P̂r(znm|xn,yn = ek, m) (59)

>
1

P̂r(Zn|xn)
1
C

∏
m∈Mn

P̂r(znm|xn,yn = ec, m) (60)

=P̂r(yn = ec|xn, Zn), (61)

which implies that ek ∈ ΩY is our MAP estimate and, thus, our aggregated class label.

B.3 Maximum-a-posterior Estimate as Weighted Majority Vote

Proposition 3 motivates our design choice to use uniform prior class probabilities as in Eq. (17) and a
scalar performance-based model for the instance-wise crowdworkers’ confusion probabilities as in Eq. (18).
Intuitively, the posterior class probabilities correspond to a soft weighted majority vote, so the MAP estimate
is the label with the most “soft votes”. This weighted majority voting treats all classes symmetrically, and
any difference in posterior probabilities or the MAP estimate arises only from the class labels provided by
the crowdworkers, never from a built-in preference for a particular class.

Proposition 3 Given the posterior class probability computation from Eq. (19) for an instance xn ∈ X with
any non-empty allocation of observed class labels Zn ∈ P(ΩY ) \ {∅}, the aggregated label in Eq. (22) equals a
weighted majority vote such that:

z(xn, Zn) = arg max
ec∈ΩY

( ∑
m∈Mn

ln
(

P̂r(zT
nmyn = 1|xn, m)(C − 1)

P̂r(zT
nmyn = 0|xn, m)

)
·
(
zT

nmec

))
. (62)

Proof For ease of notation, let us define:

αnm := P̂r(zT
nmyn = 1|xn, m) ∈ (0, 1). (63)
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Then, we can rewrite the un-normalized posterior probability from Eq. (19) according to:

P̂r(yn = ec|xn, Zn) ∝ exp
(

ln
( ∏

m∈Mn

(αnm)z
T
nmec

(
1 − αnm

C − 1

)1−zT
nmec

))

= exp
( ∑

m∈Mn

ln
(

(αnm)z
T
nmec

(
1 − αnm

C − 1

)1−zT
nmec

))

= exp
( ∑

m∈Mn

(zT
nmec) ln(αnm) +

(
1 − zT

nmec

)
ln
(

1 − αnm

C − 1

))

= exp
( ∑

m∈Mn

(zT
nmec)

(
ln(αnm) − ln

(
1 − αnm

C − 1

))
+ ln

(
1 − αnm

C − 1

))

∝ exp
( ∑

m∈Mn

(zT
nmec)

(
ln(αnm) − ln

(
1 − αnm

C − 1

)))

= exp
( ∑

m∈Mn

(zT
nmec) ln

(
αnm(C − 1)

1 − αnm

))
. (64)

Replacing αnm with its definition from Eq. (63), we get the input of the arg max function in Eq. (62).

B.4 Worst-case Time Complexity Analysis

Figure 8: Computation times. Given an AMD
Ryzen 9 7950X as CPU, the sum of training times
for the LFC approach coin (Nguyen et al., 2024)
with its default HPC and the times for comput-
ing all empirical risks in R (see Section 3.4) are
reported in seconds across a K = 5-fold cross-
validation for the dataset variant dopanim-full.

We analyze the time complexity when evaluating an HPS
criterion as one part of the HPO pipeline. More specifi-
cally, Table 6 presents the worst-case time complexity of
individual steps involved by the non-default HPS criteria
in O-notation. Typically, the training time complexity
is the most expensive part of HPO. Figure 8 provides
an example of this. Here, the training times are almost
100 times higher than computing the empirical risks (in-
cluding previous steps such as prediction computation)
for evaluating the HPS criterion ens. Even when using a
GPU, the difference can be higher for more complex neural
network architectures, e.g., when we would fully fine-tune
a backbone. Accordingly, differences between time com-
plexities when evaluating the different HPS criteria are of
minor importance. Since the training time complexity is
identical for each HPS criterion, we do not further analyze
this complexity and focus only on the steps related to the
actual evaluation of an HPS criterion in the following.

Prediction Computation Computing model predictions represents the first step of an HPO criterion’s
evaluation. This step’s complexity is affected by which of the three models, i.e., data classification model fθ,
crowdworker classification model gϕ, or crowdworker performance model hψ, is required to make predictions.
If only the data classification model is involved, we need class probability predictions for each validation
instance. When performing a K-fold cross-validation, each instance is used for validation once. Accordingly,
this step scales linearly with N as the number of observed instances and |Λ| as the number of candidate HPCs.
The variable T denotes the time complexity for obtaining a prediction from one of the three models. The
step’s complexity increases if the crowdworker classification or crowdworker performance model is involved,
because then we need to compute for each of the N · M instance-crowdworker pairs a prediction in the worst
case, where each crowdworker has labeled every observed instance.
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Table 6: Worst-case time complexity analysis. Each row corresponds to one HPS criterion, with its name
indicated by the first column. The other column headings refer to the steps of evaluating an HPS criterion.
The colors distinguish between baseline, aggregation-level, crowd-level, and ensemble-based criteria. There
are N observed instances, M crowdworkers, |Λ| candidate HPCs, and C classes. The variable T denotes the
worst-case time complexity of performing a single forward pass for any model trained by an LFC approach.
A ⋆ marks criteria that had access to the true validation labels.

Hyperparameter Prediction True Label Posterior Empirical Risk Winner
Selection Criterion Computation Probability Estimation Computation Selection

true⋆ O (|Λ| · N · T ) N/A O(|Λ| · N · C) O(|Λ|)
aeu O (|Λ| · N · T ) O (|Λ| · N · (M + C)) O (|Λ| · N · C) O(|Λ|)
aec O (|Λ| · N · T ) O (|Λ| · N · (M + C)) O (|Λ| · N · C) O(|Λ|)
ale O (|Λ| · N · M · T ) O (|Λ| · N · (M + C)) O (|Λ| · N · C) O(|Λ|)
alc O (|Λ| · N · M · T ) O (|Λ| · N · (M + C)) O (|Λ| · N · C) O(|Λ|)
cxu O (|Λ| · N · M · T ) N/A O (|Λ| · N · M · C) O(|Λ|)
cec O (|Λ| · N · M · T ) O (|Λ| · N · (M + C)) O (|Λ| · N · M · C) O(|Λ|)
clc O (|Λ| · N · M · T ) O (|Λ| · N · (M + C)) O (|Λ| · N · M · C) O(|Λ|)
ens O (|Λ| · N · M · T ) O (J · |Λ| · N · (M + C)) O (J · |Λ| · N · M · C) O(J · |Λ| · ln |Λ|)

True Label Posterior Probability Estimation The HPS criteria true and cxu do not require any
posterior probabilities. For the other criteria, the posterior probabilities are obtained according to Eq. (19)
by iterating over all of the M (worst case) observed class labels per instance and normalizing across all C
classes. Accordingly, this computation has a complexity of O(M + C) and must be repeated for each of the
N observed instances and for each of the |Λ| candidate HPCs. For the ensemble-based criterion ens, this
process is additionally repeated for each of its J members.

Empirical Risk Computation Given the probabilistic model predictions and the targets, this step refers
to computing the zero-one losses, which are then averaged to obtain the empirical risk measurement. For the
HPS criterion true and the aggregation level HPS criteria, we need to find one of the C class labels with the
maximum probability predicted by the classification model for each of the N observed instances. In the case
of the crowd-level criteria, this step extends to each of the N · M instance-crowdworker pairs. We need to
repeat this step for each of the |Λ| candidate HPCs. For the HPS criterion ens, this step must also cover
each of its J members.

Winner Selection For nearly all HPS criteria, we find the winner HPC by selecting the one with the
lowest empirical risk from the |Λ| candidate HPCs. Only for the ensemble-based HPS criterion, we need to
compute the Borda count. In this case, the complexity of sorting the |Λ| candidate HPCs according to each
of their J empirical risk measurements is dominating the subsequent summation and finding of the minimum.
In other words, the reported worst-case complexity corresponds to sorting J lists of |Λ| elements with the
merge sort algorithm.

C Experimental Evaluation

This appendix describes our computational resources for experimentation and provides additional results to
the experimental evaluation presented in Section 4.

C.1 Computational Resources

Table 14 lists the results for all 35 dataset variants, 13 LFC approaches, and 11 HPS criteria. Moreover, we
report the results for training with the ground truth (gt) class labels as the upper baseline approach. Each
test zero-one loss value is the result of determining the selected HPC from a candidate set of |Λ| = 51 HPCs
via a K = 5-fold cross-validation, of which 50 HPCs have been generated via Sobol squences (Sobol, 1998)
and one corresponds to the default (def) HPC. Subsequently, each selected HPC is tested with 5 different
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initializations of the respective neural network architecture. In total, this corresponds to almost

5︸︷︷︸
datasets

· 7︸︷︷︸
variants

· 14︸︷︷︸
approaches

 51︸︷︷︸
HPCs

· 5︸︷︷︸
training & validation

+ 11︸︷︷︸
criteria

· 5︸︷︷︸
training & testing

 = 151,900 (65)

training and evaluation runs. We executed all runs on a compute cluster equipped with NVIDIA A100
and V100 GPU servers, which we used to pre-compute the image and text embeddings. Almost all other
computations were executed with AMD EPYC 7742 CPU servers. The time measurements from Appendix B.4
are the only exception because they refer to an AMD Ryzen 9 7950X as the CPU of local workstation.

C.2 Supplementary Results

We present supplementary results regarding the HPS criteria’ and LFC approaches’ performances. Further,
we ablate the members’ impact on the ensemble-based criterion ens, analyze the impact of the noise level,
the number of candidate HPCs, an architecture search for the data classification model, and the loss function.

Hyperparameter Selection Criteria Figure 9 depicts (analog graphic to Figure 6) the criteria’s relative
zero-one loss reductions compared to the lower baseline criterion def. The results confirm our observations
for the absolute zero-one loss reductions, namely, that a criterion’s benefit varies across the LFC approaches,
while ens is the most robust one for noisy crowd-labeled validation data.

dsmv annot-mix coinconalcl geo-fgeo-w madltrace union-a crowd-arunion-b

Figure 9: Relative zero–one loss reductions of HPS criteria. For each LFC approach (x-axis), the
scatter plot displays the mean and standard error of a criterion’s reduction in zero–one loss (y-axis) as
a percentage [%] relative to training with default (def) HPC. Higher reductions correspond to greater
improvements. A ⋆ marks criteria that had access to the true validation labels.

Beyond reporting average reductions in zero-one loss relative to the default HPC, we also examine how
performance is distributed across pairs of HPS criteria. Figure 10, therefore, presents a pairwise win-rate
matrix, including the results from the pairwise significance tests, where each cell shows the proportion
of experiments in which the row criterion beats the column criterion. The matrix shows that the true
criterion dominates all alternatives: its win-rate is consistently higher than its loss-rate. Several cell pairs
do not sum to one, indicating ties in which the two criteria selected HPCs with identical performance. For
the default baselines, def loses to every other criterion, confirming that a single global default HPC per
approach is inadequate. def-data, which transfers HPCs optimized on classification tasks without any
noisy labels, performs somewhat better yet still lags behind. Accordingly, optimizing the HPC of a standard
classification model per dataset with access to true validation labels does not satisfy the LFC approaches’
individual requirements. Among criteria that explicitly account for noisy crowd-labeled validation data, the
ensemble-based criterion performs best: against every rival except true, it wins more often than it loses.
Together with true, it is the only criterion whose loss-rate versus def stays below 10%.

Learning from Crowds Approaches Figure 11 depicts (analog to Figure 6) the approaches’ relative
zero-one loss reductions compared to the lower baseline approach mv[def], which corresponds to training
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Comparison is significant.

Figure 10: Pairwise win-rate matrix for HPS criteria. Across all datasets and LFC approaches, a
cell reports the percentage [%] on which the row criterion selects an HPC outperforming the HPC selected
by the column criterion. A cell’s color decodes whether the row criterion has more wins or loses than the
column criterion, whereas a circle • indicates whether this comparison is significant. The diagonal shows not
applicable (N/A) because a criterion is not compared with itself. A ⋆ marks criteria that had access to the
true validation labels.

with the majority vote labels and the default HPC. The results confirm our observations for the absolute
zero-one loss reductions, namely, that one-stage approaches can achieve high performance gains, while the
choice of the criterion affects the comparison of the approaches with each other.

conalcl geo-fgeo-wtrace union-a union-b annot-mix coinmadl crowd-ardsmv

Figure 11: Relative zero–one loss reductions of LFC approaches. For each HPS criterion (x-axis), the
scatter plot displays the mean and standard error of an LFC approach’s reduction in zero–one loss (y-axis) as
percentage [%] compared to majority voting (mv) trained with the default (def) HPC. Higher reductions
correspond to greater improvements. A ⋆ marks criteria that had access to the true validation labels.

Beyond reporting average reductions in zero-one loss relative to the lower baseline approach mv[def], we
also examine how performance is distributed across pairs of approaches. Figure 10, therefore, presents a
pairwise win-rate matrix, including the results from the pairwise significance tests, with ens as the HPS
criterion, where each cell shows the proportion of dataset variants on which the row approach beats the
column approach. Several cell pairs do not sum to one, indicating ties in which the two approaches reached
identical performance. The two-stage baseline mv loses to every other approach, confirming that estimating
crowdworkers’ performances is beneficial. The other two-stage approach ds, (Dawid & Skene, 1979), estimating
crowdworker performances for label aggregation in the first stage, performs somewhat better yet still lags
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dsmv annot-mix coinconalcl geo-fgeo-w madltrace union-a crowd-arunion-b
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Comparison is significant.

Figure 12: Pairwise win-rate matrix for LFC approaches with ens as HPS criterion. Across
all dataset variants, a cell reports the percentage [%] on which the row approach outperforms the column
approach. A cell’s color decodes whether the row approach has more wins or loses than the column approach,
whereas a circle • indicates whether this comparison is significant. The diagonal shows not applicable (N/A)
because an approach is not compared with itself.

behind. Accordingly, one-stage LFC approaches combining the crowdworker performance and true label
estimation in one joint training lead to superior performances. Among these one-stage approaches, the coin
approach (Nguyen et al., 2024) dominates all alternatives: its win-rate is consistently higher than its loss-rate.
Together with geo-f (Ibrahim et al., 2023), it is the only approach whose loss-rate versus mv stays below 10%.

Ablation Study We ablate the individual members’ impact on the ensemble-based HPS criterion ens.
Therefore, we demonstrate the effect of removing risk measures from R (see Section 3.4) in the ranking order
of their respective criterion from Table 4, starting with the worst one. We observe that removing members
mostly leads to a lower absolute and relative reduction of the zero-one loss compared to the def criterion.
This observation confirms the importance of individual members. Nevertheless, there might be unexplored
combinations of multiple members leading to higher reductions than the full ensemble.

Table 7: Ablation study for ens. In comparison to def as HPS criterion, each column reports the zero-one
loss reductions (absolute as percentage points [%p] and relative as percentages [%]) for one subset of risk
measures in R when employing the HPS criterion ens. The full set is given in the leftmost column, while
each succeeding column shows the results after removing one criterion with its associated risk measure. The
rightmost column refers to the case when only one member is remaining, corresponding to the criterion alu.
The colors distinguish between baseline, aggregation-level, crowd-level, and ensemble-based criteria. Means
and standard errors are computed over all combinations of dataset variants and LFC approaches (excluding
the approach mv that is not compatible with each criterion’s empirical risk measure). The arrows indicate
that higher (↑) values are better. The best and second best value is marked per result type.

ens −clc −aeu −alc −aec −cxu −cec = alu
Absolute Zero-one Loss Reductions Compared to def (∆def L0/1 [%p] ↑)

+ 5.15 + 5.03 + 5.09 + 4.96 + 4.84 + 4.96 + 4.73
± 0.26 ± 0.26 ± 0.27 ± 0.26 ± 0.27 ± 0.27 ± 0.26

Relative Zero-one Loss Reductions Compared to def (∆def L0/1 [%] ↑)
+17.60 +17.49 +17.43 +17.17 +16.56 +17.14 +16.48
± 0.77 ± 0.76 ± 0.78 ± 0.77 ± 0.78 ± 0.78 ± 0.80
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Analysis Stratified by Noise To assess how label noise impacts the performances of HPS criteria and
LFC approaches, we group the dataset variants into low and high noise via a class-count–invariant correction
of the aggregation noise. Let χ ∈ [0, 1] be the aggregation noise rate, i.e., the fraction of instances whose
majority vote label disagrees with the true label, from Table 2. We define the class-corrected aggregation
noise:

χ̃ := χ

1 − 1/C
. (66)

This normalization removes the chance-level dependence of 1/C, making noise levels more comparable across
datasets with different numbers of classes. We use a median split across all dataset variants (median
χ̃0.5 := 0.439) such that 18 dataset variants with χ̃ ≤ χ̃0.5 are assigned to the low-noise group, and 17 dataset
variants with χ̃ > χ̃0.5 to the high-noise group. Note that this grouping does not purely reflect the noise
level, as confounding factors such as the number of labels per instance or the inherent difficulty of a dataset
may also play a role. Table 8 breaks down the results from Table 4 according to these two groups of noise
levels. We observe that the benefit of HPO is higher in the case of high-noise dataset variants, especially in
combination with the HPS criteria true and ens. For both groups of noise levels, the results confirm that
ens is the best performing HPS criterion with only access to crowd-labeled validation data. For Table 5 with
the results of the LFC approaches, an analog breakdown is given by Table 9. Here, the performance gains
of one-stage over two-stage LFC approaches are higher for the high- in comparison to the low-noise group
of dataset variants. Accordingly, the ranking of the LFC approaches is also affected by the noise level. For
example, cl (Rodrigues & Pereira, 2018), union-a (Wei et al., 2023), and annot-mix (Herde et al., 2024b)
achieve much better ranks for the high-noise level. Figure 13 extends our stratified noise level analysis to the
violin plots from Figure 7. Here, Kendall τ -b coefficients between the two groups are differently distributed.
In particular, there is a higher spread of the Kendall τ -b coefficients for the group of high-noise dataset
variants when comparing rankings for the default (def, def-data) HPCs with the rankings after HPO (via
true or ens), although their means remain similar.

Table 8: HPS criteria’s results stratified by noise levels. One column per criterion reports the rank
compared to the other criteria and the zero-one loss reductions (absolute as percentage points [%p] and
relative as percentages [%]) compared to def as criterion. Means and standard errors are computed over all
combinations of dataset variants in a noise level and LFC approaches (excluding the approach mv that is not
compatible with each criterion). The arrows show whether a smaller (↓) or higher (↑) value is better. The
best and second best value is marked per result type and noise level. A ⋆ marks criteria that had access to
the true validation labels.

Noise Baseline Aggregation-level Crowd-level Ensemble
Level true⋆ def-data⋆ def aeu aec alu alc cxu cec clc ens

Ranks (↓)

High 4.60 8.62 9.56 5.71 5.55 5.22 5.58 5.35 5.40 5.70 4.70
± 0.21 ± 0.20 ± 0.16 ± 0.17 ± 0.17 ± 0.16 ± 0.19 ± 0.15 ± 0.15 ± 0.18 ± 0.13

Low 4.69 7.10 9.94 5.62 5.60 5.36 5.62 5.57 5.33 6.11 5.07
± 0.21 ± 0.26 ± 0.14 ± 0.15 ± 0.14 ± 0.17 ± 0.18 ± 0.16 ± 0.16 ± 0.18 ± 0.13

Absolute Zero-one Loss Reductions Compared to def (∆def L0/1 [%p] ↑)

High + 7.24 + 1.01 + 0.00 + 5.99 + 6.08 + 6.43 + 5.97 + 6.23 + 6.15 + 5.64 + 7.06
± 0.41 ± 0.42 ± 0.00 ± 0.47 ± 0.48 ± 0.47 ± 0.50 ± 0.52 ± 0.52 ± 0.55 ± 0.47

Low + 3.59 + 0.53 0.00 + 3.18 + 3.18 + 3.13 + 2.97 + 2.91 + 3.09 + 2.58 + 3.34
± 0.19 ± 0.45 ± 0.00 ± 0.18 ± 0.18 ± 0.20 ± 0.21 ± 0.23 ± 0.21 ± 0.25 ± 0.19

Relative Zero-one Loss Reductions Compared to def (∆def L0/1 [%] ↑)

High +19.84 + 4.29 + 0.00 +17.63 +17.81 +18.58 +15.85 +17.64 +17.51 +15.11 +19.76
± 1.17 ± 1.08 ± 0.00 ± 1.32 ± 1.33 ± 1.32 ± 1.34 ± 1.43 ± 1.43 ± 1.45 ± 1.31

Low +16.66 + 3.05 + 0.00 +14.81 +14.82 +14.49 +13.54 +13.44 +14.44 +11.59 +15.56
± 0.88 ± 1.92 ± 0.00 ± 0.78 ± 0.76 ± 0.92 ± 0.93 ± 0.99 ± 0.89 ± 1.13 ± 0.81

Analysis Stratified by Hyperparameter Budget To assess how the size of the candidate set |Λ| (our
proxy for the HP budget) affects the performances of non-default HPS criteria and LFC approaches, we
complement the main setting |Λ| = 51 in Section 4.2 with evaluations at |Λ| ∈ {11, 31}. Table 10 breaks
down the results from Table 4 according to these two additional HP budgets. As one might expect, the
benefit of the non-default HPS criteria is lowered by reducing the HP budget, while still achieving notable
improvements over the default HPS criteria. This is likely because the selection is restricted due to the lower
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Table 9: LFC approaches’ results stratified by noise levels with ens as HPS criterion. One column
per approach reports the rank compared to the other approaches and the zero-one loss reductions (absolute
as percentage points [%p] and relative as percentages [%]) compared to the approach mv trained with its
default (def) HPC. Means and standard errors are computed over all dataset variants of the respective label
noise level. The arrows indicate whether a smaller (↓) or higher (↑) value is better. The best and second best
value is marked per result type and noise level.

Noise Baseline Class-dependent Instance-dependent
Level mv ds cl trace conal union-a union-b geo-w geo-f madl crowd-ar annot-mix coin

Ranks (↓)

High 11.32 10.03 6.68 7.35 8.59 6.26 7.88 5.15 4.35 5.59 9.06 4.35 4.38
± 0.25 ± 0.71 ± 0.98 ± 0.83 ± 0.63 ± 0.91 ± 0.73 ± 0.91 ± 0.51 ± 0.86 ± 0.66 ± 0.76 ± 0.80

Low 9.86 8.19 9.06 7.28 6.22 8.86 7.36 6.44 3.86 5.14 8.89 6.28 3.56
± 0.68 ± 0.73 ± 0.76 ± 0.71 ± 0.76 ± 0.89 ± 0.82 ± 0.74 ± 0.75 ± 0.95 ± 0.59 ± 1.01 ± 0.63

Absolute Zero-one Loss Reductions Compared to mv with def (∆mv[def] L0/1 [%p] ↑)

High + 6.23 + 6.83 +11.53 + 9.81 + 8.34 + 9.30 + 9.41 +13.44 +13.15 +10.45 + 8.18 +12.16 +12.64
± 1.71 ± 2.32 ± 2.04 ± 1.96 ± 1.73 ± 1.64 ± 1.95 ± 2.16 ± 1.74 ± 2.54 ± 1.79 ± 1.41 ± 1.60

Low + 5.00 + 5.32 + 4.74 + 5.93 + 6.09 + 4.93 + 5.55 + 6.17 + 7.13 + 6.71 + 5.63 + 6.42 + 7.27
± 0.71 ± 0.71 ± 0.68 ± 0.87 ± 0.73 ± 0.86 ± 0.70 ± 0.82 ± 0.89 ± 0.86 ± 0.77 ± 0.82 ± 0.84

Relative Zero-one Loss Reductions Compared to mv with def (∆mv[def] L0/1 [%] ↑)

High +16.86 +18.81 +27.71 +25.16 +22.25 +22.97 +24.03 +31.90 +31.71 +26.92 +21.65 +30.05 +31.30
± 4.92 ± 5.85 ± 5.27 ± 5.46 ± 5.12 ± 4.94 ± 5.28 ± 5.27 ± 4.91 ± 6.38 ± 5.13 ± 4.47 ± 5.00

Low +21.63 +23.15 +20.40 +24.83 +26.04 +20.44 +23.61 +25.77 +29.92 +28.35 +23.65 +26.50 +30.45
± 2.67 ± 2.71 ± 2.74 ± 3.14 ± 2.71 ± 3.36 ± 2.65 ± 3.02 ± 3.19 ± 3.19 ± 2.91 ± 2.87 ± 3.04

vs.TRUE DEF vs.DEF DEF-DATA vs.ENS DEF-DATA vs. DEFENSvs.TRUE ENSvs.TRUE DEF-DATA

High-Noise Low-Noise

Figure 13: Rank correlation between HPS criteria stratified by noise levels. Each violin plot shows
the mean and distribution of pairwise Kendall τ -b coefficients, visualized as dots and obtained from the high-
and low-noise groups of dataset variants when comparing the ranking of LFC approaches with their HPCs
selected via baseline and ensemble-based criteria. Higher coefficients indicate stronger correlation. A ⋆ marks
criteria that had access to the true validation labels.

number of candidate HPCs. The results also confirm that ens is the best performing HPS criterion with
only access to crowd-labeled validation data across all tested budgets. For Table 5 containing the main
results of the LFC approaches, an analog breakdown is given by Table 11. Here, the performances of the LFC
approaches also decrease with a decreasing HP budget, while the one-stage approaches still take the lead over
the two-stage approaches. The ranking of the approaches is also affected by the HP budget. For example, the
approaches conal (Chu et al., 2021) and madl (Herde et al., 2023) achieve worse ranks for lower HP budgets.
Figure 14 extends our stratified HP budget analysis to the violin plots from Figure 7. The rankings obtained
via the criterion true and ens get more similar for a lower HP budget, as indicated by higher Kendall τ -b
coefficients. This can be explained by a lower selection variability for a smaller set of candidate HPCs.

Hyperparameter Optimization with Data Classification Model Architecture Search In the main
experiments of Section 4, we keep the architecture of the data classification model fθ fixed, tuning only the
optimizer and LFC approach-specific HPs. This design keeps the HP space ΩΛ tractable for our budget of
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Table 10: HPS criteria’s results stratified by HP budgets. One column per criterion reports the rank
compared to the other criteria and the zero-one loss reductions (absolute as percentage points [%p] and
relative as percentages [%]) compared to def as criterion. For the given HP budget |Λ|, means and standard
errors are computed over all combinations of dataset variants and LFC approaches (excluding the approach
mv that is not compatible with each criterion). The arrows show whether a smaller (↓) or higher (↑) value is
better. The best and second best value is marked per result type and HP budget. A ⋆ marks criteria that
had access to the true validation labels.

HP Baseline Aggregation-level Crowd-level Ensemble
Budget true⋆ def-data⋆ def aeu aec alu alc cxu cec clc ens

Ranks (↓)

|Λ| = 31 4.59 7.78 9.77 5.62 5.58 5.41 5.57 5.57 5.36 5.90 4.85
± 0.14 ± 0.17 ± 0.11 ± 0.11 ± 0.11 ± 0.11 ± 0.13 ± 0.12 ± 0.11 ± 0.12 ± 0.09

|Λ| = 11 4.75 7.24 9.36 5.71 5.62 5.41 5.84 5.43 5.42 5.99 5.22
± 0.12 ± 0.19 ± 0.13 ± 0.10 ± 0.10 ± 0.10 ± 0.12 ± 0.10 ± 0.10 ± 0.12 ± 0.07

Absolute Zero-one Loss Reductions Compared to def (∆def L0/1 [%p] ↑)

|Λ| = 31 + 5.18 + 0.76 + 0.00 + 4.41 + 4.40 + 4.56 + 4.19 + 4.38 + 4.51 + 3.98 + 5.00
± 0.24 ± 0.31 ± 0.00 ± 0.25 ± 0.25 ± 0.26 ± 0.30 ± 0.29 ± 0.28 ± 0.31 ± 0.26

|Λ| = 11 + 4.50 + 0.76 + 0.00 + 3.70 + 3.74 + 3.94 + 3.36 + 3.94 + 3.96 + 3.14 + 4.33
± 0.23 ± 0.31 ± 0.00 ± 0.25 ± 0.25 ± 0.27 ± 0.32 ± 0.27 ± 0.27 ± 0.33 ± 0.25

Relative Zero-one Loss Reductions Compared to def (∆def L0/1 [%] ↑)

|Λ| = 31 +17.70 + 3.65 + 0.00 +15.76 +15.73 +16.04 +14.09 +14.87 +15.65 +13.31 +17.24
± 0.72 ± 1.12 ± 0.00 ± 0.76 ± 0.76 ± 0.80 ± 0.95 ± 0.87 ± 0.82 ± 0.91 ± 0.74

|Λ| = 11 +15.42 + 3.65 + 0.00 +13.35 +13.55 +13.71 +11.17 +13.41 +13.69 +10.32 +14.76
± 0.72 ± 1.12 ± 0.00 ± 0.74 ± 0.74 ± 0.89 ± 1.05 ± 0.80 ± 0.78 ± 1.08 ± 0.71

Table 11: LFC approaches’ results stratified by HP budgets with ens as HPS criterion. One
column per approach reports the rank compared to the other approaches and the zero-one loss reductions
(absolute as percentage points [%p] and relative as percentages [%]) compared to the approach mv trained with
its default (def) HPC. Means and standard errors are computed over all dataset variants for the respective
HP budget. The arrows indicate whether a smaller (↓) or higher (↑) value is better. The best and second best
value is marked per result type and HP budget.

Noise Baseline Class-dependent Instance-dependent
Level mv ds cl trace conal union-a union-b geo-w geo-f madl crowd-ar annot-mix coin

Ranks (↓)

|Λ| = 31 10.49 9.33 7.90 7.17 7.74 7.17 7.40 5.96 3.63 5.86 9.24 4.99 4.13
± 0.38 ± 0.56 ± 0.64 ± 0.60 ± 0.48 ± 0.68 ± 0.50 ± 0.60 ± 0.36 ± 0.65 ± 0.45 ± 0.58 ± 0.49

|Λ| = 11 10.10 8.46 8.13 7.23 8.63 7.56 6.97 5.41 3.71 6.51 8.63 5.49 4.17
± 0.51 ± 0.60 ± 0.66 ± 0.53 ± 0.52 ± 0.65 ± 0.49 ± 0.46 ± 0.44 ± 0.72 ± 0.48 ± 0.70 ± 0.44

Absolute Zero-one Loss Reductions Compared to mv with def (∆mv[def] L0/1 [%p] ↑)

|Λ| = 31 + 5.19 + 5.61 + 7.77 + 7.80 + 6.97 + 7.17 + 7.37 + 9.51 +10.06 + 8.10 + 6.57 + 9.46 + 9.66
± 0.76 ± 1.07 ± 1.21 ± 0.98 ± 0.88 ± 0.93 ± 0.96 ± 1.31 ± 1.06 ± 1.34 ± 0.90 ± 1.00 ± 1.00

|Λ| = 11 + 3.93 + 5.04 + 6.92 + 7.04 + 6.11 + 6.41 + 7.16 + 9.20 + 9.50 + 7.75 + 6.09 + 8.16 + 8.65
± 0.56 ± 1.00 ± 1.21 ± 0.89 ± 0.85 ± 0.94 ± 0.99 ± 1.32 ± 1.08 ± 1.31 ± 0.90 ± 0.98 ± 0.90

Relative Zero-one Loss Reductions Compared to mv with def (∆mv[def] L0/1 [%] ↑)

|Λ| = 31 +18.10 +19.53 +23.11 +24.91 +23.50 +22.36 +23.85 +28.33 +30.96 +26.65 +21.93 +28.87 +30.39
± 2.51 ± 2.89 ± 3.09 ± 2.83 ± 2.77 ± 2.93 ± 2.72 ± 3.09 ± 2.82 ± 3.44 ± 2.75 ± 2.60 ± 2.92

|Λ| = 11 +14.21 +18.04 +20.81 +22.74 +20.32 +19.70 +23.03 +27.38 +29.27 +23.90 +20.95 +24.97 +27.33
± 1.80 ± 2.61 ± 2.97 ± 2.64 ± 2.73 ± 2.79 ± 2.68 ± 3.07 ± 2.88 ± 3.23 ± 2.79 ± 2.71 ± 2.66

|Λ| = 51 candidate HPCs. To demonstrate feasibility rather than to redefine the benchmark, we additionally
run a targeted study for the dataset variants of label-me and dopanim that includes the classification head
architecture in the search. Concretely, instead of using a fixed MLP with (256, 128) neurons in its two
hidden layers, we now extend our search to different numbers of layers and neurons sampled according to
uniform ({(256), (512), (256, 128), (512, 256)}). Because of the more complex HP space ΩΛ, we also increase
the number of candidate HPCs to |Λ| = 101, of which one HPC corresponds to the default one from the main
experiments. Table 12 reports results in the same format as Table 4. Nevertheless, both tables’ zero-one
loss reductions are not directly comparable because the aggregation of Table 4 additionally encompasses
the results from variants of the other datasets mgc, reuters, and spc. Moreover, our goal is not to assess
the benefit of a potential architecture search, but to investigate whether our main conclusions persist under
heterogeneous head architectures. In this context, we observe non-default HPS criteria remain beneficial, and
only true surpasses ens in rank and in zero-one loss reductions.
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vs.TRUE DEF vs.DEF DEF-DATA vs.ENS DEF-DATA vs. DEFENSvs.TRUE ENSvs.TRUE DEF-DATA

Figure 14: Rank correlation between HPS criteria stratified by HP budgets. Each violin plot
shows the mean and distribution of pairwise Kendall τ -b coefficients, visualized as dots and obtained from all
dataset variants when comparing the ranking of LFC approaches with their HPCs selected via baseline and
ensemble-based criteria. The HP budget |Λ| is only relevant for the non-default criteria. Higher coefficients
indicate stronger correlation. A ⋆ marks criteria that had access to the true validation labels.

Table 12: HPS criteria’s results with architecture search. One column per criterion reports the rank
compared to the other criteria and the zero-one loss reductions (absolute as percentage points [%p] and
relative as percentages [%]) compared to def as criterion. Including a simple classification head architecture
search, means and standard errors are computed over all combinations of label-me and dopanim dataset
variants and LFC approaches (excluding the approach mv that is not compatible with each criterion). The
arrows show whether a smaller (↓) or higher (↑) value is better. The best and second best value is marked
per result type. A ⋆ marks criteria that had access to the true validation labels.

Baseline Aggregation-level Crowd-level Ensemble
true⋆ def-data⋆ def aeu aec alu alc cxu cec clc ens

Ranks (↓)
3.59 8.87 9.27 5.74 5.88 5.14 5.21 5.58 5.63 6.02 5.06

± 0.23 ± 0.21 ± 0.17 ± 0.20 ± 0.19 ± 0.19 ± 0.22 ± 0.19 ± 0.17 ± 0.21 ± 0.15
Absolute Zero-one Loss Reductions Compared to def (∆def L0/1 [%p] ↑)

+ 3.81 + 0.30 + 0.00 + 2.31 + 2.18 + 2.64 + 2.20 + 2.67 + 2.73 + 1.57 + 2.76
± 0.22 ± 0.17 ± 0.00 ± 0.18 ± 0.18 ± 0.19 ± 0.50 ± 0.23 ± 0.22 ± 0.54 ± 0.18

Relative Zero-one Loss Reductions Compared to def (∆def L0/1 [%] ↑)
+15.17 + 0.45 + 0.00 +10.46 + 9.98 +11.65 + 8.82 +10.73 +11.09 + 5.65 +11.82
± 0.70 ± 0.61 ± 0.00 ± 0.76 ± 0.76 ± 0.78 ± 2.44 ± 0.84 ± 0.77 ± 2.70 ± 0.71

Loss Functions Beyond Zero-one Loss So far, we have only focused on the zero-one loss (see Eq. (2))
as our target performance measure. However, a trained data classification model fθ is often also required to
output meaningful probabilities, which can be evaluated using the Brier score (Brier, 1950) as a loss function:

LBS (y, ŷ) := (y − ŷ)T(y − ŷ). (67)

At the same time, the data classification model fθ ideally achieves a low zero-one loss. In this case, we have
a kind of multi-objective optimization problem, whose solution is beyond our scope. Instead, we present a
brief analysis demonstrating that the search for the best performing HPS criterion depends on the target
loss function(s). Specifically, we compare the non-default criteria using the Brier score as a loss function for
selecting the best HPC, whereas the two default criteria remain unchanged. Table 13 shows that conducting
HPO with an alternative loss function remains beneficial in the LFC setting. In particular, the proposed
criterion alc using estimates of the crowdworker performance model hψ for label aggregation and weighting
excels. Overall, the criteria based on aggregation-level risk measures strongly outperform those only relying
on crowd-level risk measures. A likely reason is that crowd-level measures overemphasize the ability of the
crowdworker classification model gϕ to assign high probabilities to the workers’ noisy labels. Consequently,
HPS criteria cannot be transferred naively from one loss function to another. Despite not being the overall
best criterion, the ensemble-based approach ens remains appealing, as its flexible design allows combining
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risk measures derived from different loss functions. Exploring such combinations represents a promising
direction for future work.

Table 13: HPS criteria’s results with Brier score as loss function. One column per criterion reports
the Brier score reductions (absolute as unitless [−] and relative as percentages [%]) compared to def as
criterion. Means and standard errors are computed over all combinations of dataset variants and LFC
approaches (excluding the approach mv that is not compatible with each criterion). The arrows show whether
a smaller (↓) or higher (↑) value is better. The best and second best value is marked per result type. A ⋆
marks criteria that had access to the true validation labels.

Baseline Aggregation-level Crowd-level Ensemble
true⋆ def-data⋆ def aeu aec alu alc cxu cec clc ens

Ranks (↓)
3.93 8.16 9.13 5.45 4.98 4.52 4.46 6.58 6.73 6.81 5.25

± 0.13 ± 0.15 ± 0.11 ± 0.13 ± 0.11 ± 0.10 ± 0.10 ± 0.14 ± 0.13 ± 0.14 ± 0.11
Absolute Brier Score Reductions Compared to def (∆def LBS [−] ↑)

+0.092 −0.024 +0.000 +0.068 +0.072 +0.078 +0.080 +0.030 +0.030 +0.020 +0.067
±0.005 ±0.008 ±0.000 ±0.004 ±0.004 ±0.004 ±0.004 ±0.006 ±0.006 ±0.007 ±0.004

Relative Brier Score Reductions Compared to def (∆def LBS [%] ↑)
+18.70 − 2.59 + 0.00 +13.24 +14.32 +15.78 +16.43 + 7.74 + 7.65 + 5.08 +13.88
± 0.67 ± 1.51 ± 0.00 ± 0.61 ± 0.58 ± 0.59 ± 0.63 ± 1.10 ± 1.10 ± 1.36 ± 0.64
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Table 14: Zero-one loss results [%] (part I) — The first column lists the LFC approaches and the remaining
columns the HPS criteria. Each criterion selects the estimated best HPC per approach, and results are
reported as means with standard deviations. The best-performing approach per column (excluding gt) and
the best-performing selection criterion per row (excluding true) are highlighted. The symbol ⋆ marks criteria
with access to true validation labels. Some criteria are not applicable (N/A) to all approaches.

Approach Baseline Aggregation-level Crowd-level Ensemble
true⋆ def-data⋆ def aeu aec alu alc cxu cec clc ens

mgc-worst-1
gt 20.27±0.83 20.27±0.83 24.60±1.12 21.00±1.94 21.00±1.94 N/A N/A N/A N/A N/A 21.00±1.94
mv 81.27±1.32 86.93±1.30 81.47±0.96 79.73±1.75 79.73±1.75 N/A N/A N/A N/A N/A 79.73±1.75
ds 81.27±1.32 86.93±1.30 81.47±0.96 79.73±1.75 79.73±1.75 79.73±1.75 79.73±1.75 79.73±1.75 79.73±1.75 79.73±1.75 79.73±1.75
cl 74.33±4.29 85.67±1.93 79.73±1.67 80.53±1.54 80.53±1.54 80.53±1.54 74.33±4.29 80.53±1.54 80.53±1.54 74.33±4.29 74.33±4.29
trace 70.60±2.29 86.73±0.83 81.80±0.77 82.27±0.98 82.27±0.98 82.27±0.98 70.60±2.29 82.27±0.98 82.27±0.98 70.60±2.29 82.27±0.98
conal 79.53±1.71 85.87±1.89 82.07±1.85 80.87±1.19 80.87±1.19 80.87±1.19 79.53±1.71 80.87±1.19 80.87±1.19 79.53±1.71 80.87±1.19
union-a 71.07±3.57 84.13±1.39 79.47±0.77 75.93±3.85 75.93±3.85 75.93±3.85 74.20±2.34 75.93±3.85 75.93±3.85 71.07±3.57 75.93±3.85
union-b 78.87±1.63 85.73±1.04 80.20±2.13 78.93±2.63 78.93±2.63 78.93±2.63 85.80±4.56 78.93±2.63 78.93±2.63 87.93±0.15 78.93±2.63
geo-w 75.60±1.06 84.87±1.50 80.00±2.04 74.33±2.96 74.33±2.96 75.60±1.06 74.33±2.96 74.33±2.96 74.33±2.96 74.33±2.96 74.33±2.96
geo-f 71.73±4.79 84.60±1.53 79.27±1.01 69.80±3.18 69.80±3.18 69.80±3.18 69.80±3.18 73.60±3.46 73.60±3.46 69.80±3.18 73.60±3.46
madl 72.07±4.01 87.53±0.69 82.27±1.23 80.67±2.36 80.67±2.36 80.67±2.36 69.13±3.04 81.27±1.66 81.27±1.66 69.13±3.04 80.67±2.36
crowd-ar 80.13±1.98 84.67±1.37 81.33±0.85 78.53±1.35 78.53±1.35 78.53±1.35 89.07±2.65 78.53±1.35 78.53±1.35 89.07±2.65 78.53±1.35
annot-mix 72.40±3.96 87.53±1.91 80.27±1.79 79.87±2.54 79.87±2.54 79.87±2.54 72.40±3.96 78.20±5.50 78.20±5.50 72.40±3.96 78.20±5.50
coin 83.60±4.95 83.00±4.17 83.53±5.68 80.20±1.80 80.20±1.80 80.20±1.80 79.67±1.43 82.80±6.96 82.80±6.96 82.73±5.65 75.40±2.42

mgc-worst-2
gt 19.27±1.44 19.27±1.44 24.60±1.12 19.27±1.44 19.27±1.44 N/A N/A N/A N/A N/A 19.27±1.44
mv 58.53±2.54 68.27±0.86 58.53±2.54 58.60±1.92 58.60±1.92 N/A N/A N/A N/A N/A 58.60±1.92
ds 72.93±2.13 79.93±0.80 73.47±2.04 73.27±2.25 73.27±2.25 73.27±2.25 73.27±2.25 73.40±0.86 73.40±0.86 73.27±2.25 73.27±2.25
cl 52.93±1.09 50.73±2.64 57.80±1.12 60.87±3.46 60.87±3.46 53.60±1.62 57.07±2.50 52.93±1.09 52.93±1.09 53.60±1.62 53.60±1.62
trace 47.93±1.52 60.60±1.55 59.33±1.56 59.47±2.48 59.47±2.48 47.93±1.52 47.93±1.52 47.93±1.52 59.47±2.48 47.93±1.52 47.93±1.52
conal 53.33±1.03 55.53±2.41 55.80±0.90 59.33±1.75 54.67±1.13 57.60±1.77 55.73±1.59 57.60±1.77 54.67±1.13 54.67±1.13 54.67±1.13
union-a 52.07±1.38 51.67±0.97 54.73±1.14 52.07±1.38 52.07±1.38 59.20±3.85 52.07±1.38 48.93±2.15 48.93±2.15 52.07±1.38 51.47±1.28
union-b 58.80±2.22 61.47±2.29 58.40±1.28 59.87±2.19 58.80±2.22 58.80±2.22 59.53±2.64 58.80±2.22 56.73±0.86 59.53±2.64 58.80±2.22
geo-w 56.27±1.72 49.07±0.72 57.47±1.73 56.87±0.80 56.27±1.95 56.27±1.95 56.27±1.72 50.13±1.71 56.27±1.95 56.27±1.72 49.93±1.42
geo-f 54.40±2.23 45.20±1.64 55.87±1.50 57.13±1.39 57.13±1.39 53.00±1.33 54.40±2.23 54.93±1.66 54.93±1.66 54.40±2.23 48.33±2.19
madl 47.40±3.87 58.20±4.74 59.93±0.55 47.40±3.87 47.40±3.87 47.40±3.87 47.40±3.87 47.40±3.87 47.40±3.87 47.40±3.87 47.40±3.87
crowd-ar 57.00±1.56 53.00±3.01 56.67±1.62 57.47±1.71 57.47±1.71 54.33±1.18 54.33±1.18 57.47±1.71 57.47±1.71 57.47±1.71 57.47±1.71
annot-mix 44.87±1.73 45.60±1.62 57.07±1.19 47.87±3.50 47.87±3.50 44.87±1.73 49.00±0.97 47.87±3.50 47.87±3.50 44.87±1.73 47.87±3.50
coin 45.93±1.62 51.27±6.24 61.80±7.12 57.53±0.77 53.53±1.74 46.93±1.19 53.67±3.97 45.93±1.62 45.80±2.12 53.67±3.97 45.80±2.12

mgc-worst-v
gt 18.53±0.73 18.53±0.73 24.60±1.12 19.93±0.60 19.93±0.60 N/A N/A N/A N/A N/A 19.93±0.60
mv 53.73±1.91 56.07±1.38 50.53±2.18 50.53±2.18 50.53±0.84 N/A N/A N/A N/A N/A 53.73±1.91
ds 51.87±0.38 58.80±1.98 52.67±1.62 50.93±1.94 50.93±1.94 50.93±1.94 50.93±1.94 53.93±1.53 53.93±1.53 53.93±1.53 53.93±1.21
cl 42.60±1.71 47.53±1.43 48.47±1.35 45.27±0.55 45.27±0.55 50.13±2.85 50.13±2.85 46.87±1.68 45.27±0.55 45.80±1.26 45.27±0.55
trace 40.00±2.10 41.53±1.26 47.53±2.05 48.00±0.62 48.00±0.62 40.00±2.10 40.00±2.10 47.60±2.60 47.60±2.60 40.87±1.07 47.60±2.60
conal 44.00±0.53 42.53±1.76 46.27±1.48 45.67±1.25 45.67±1.25 43.73±1.19 45.47±2.75 45.67±1.25 45.67±1.25 44.00±0.53 44.00±0.53
union-a 41.93±0.83 43.67±2.15 46.87±1.92 43.07±0.76 43.07±0.76 43.07±0.76 41.67±1.94 43.07±0.76 43.07±0.76 42.13±2.06 43.07±0.76
union-b 44.33±1.11 49.40±1.09 47.80±0.84 44.67±1.90 46.33±1.31 48.13±1.35 48.13±1.35 43.60±0.86 43.53±1.35 44.13±2.19 48.13±1.35
geo-w 40.07±1.99 42.20±2.17 47.47±0.87 41.47±0.93 41.47±0.93 42.93±1.99 40.07±1.99 39.80±0.84 42.13±0.96 39.80±0.84 42.93±1.99
geo-f 38.00±2.78 38.93±0.60 45.33±1.78 41.13±0.87 41.13±0.87 41.60±2.41 41.60±2.41 39.80±1.56 39.80±1.56 39.80±1.56 41.13±0.87
madl 39.20±3.16 42.40±1.85 47.80±1.19 39.20±3.16 39.20±3.16 39.20±3.16 39.20±3.16 39.20±3.16 39.20±3.16 39.20±3.16 39.20±3.16
crowd-ar 43.33±0.97 44.87±2.26 48.07±0.60 50.13±3.27 50.13±3.27 50.13±3.27 50.13±3.27 50.13±3.27 50.13±3.27 50.13±3.27 50.13±3.27
annot-mix 37.27±1.67 38.07±1.57 48.00±1.33 38.13±0.80 38.13±0.80 38.13±0.80 39.93±1.09 39.13±1.09 39.60±1.19 38.13±0.80 38.13±0.80
coin 42.07±3.02 40.53±1.82 51.27±5.29 39.73±1.09 39.73±1.09 39.73±1.09 46.00±2.44 39.73±1.09 42.40±1.62 39.73±1.09 39.73±1.09

mgc-rand-1
gt 18.67±1.16 18.67±1.16 24.60±1.12 21.13±1.98 21.13±1.98 N/A N/A N/A N/A N/A 21.13±1.98
mv 39.20±1.71 40.13±2.22 40.07±2.10 40.07±2.10 40.07±2.10 N/A N/A N/A N/A N/A 40.07±2.10
ds 39.20±1.71 40.13±2.22 40.07±2.10 40.07±2.10 40.07±2.10 40.07±2.10 40.07±2.10 40.07±2.10 40.07±2.10 40.07±2.10 40.07±2.10
cl 38.67±2.30 49.67±4.50 41.60±1.98 38.67±2.30 38.67±2.30 41.00±4.12 49.67±4.50 41.20±3.06 41.20±3.06 49.67±4.50 41.00±4.12
trace 41.07±1.67 36.73±1.55 40.00±2.44 39.00±1.45 39.00±1.45 39.00±1.45 41.07±1.67 39.00±1.45 39.00±1.45 41.07±1.67 39.00±1.45
conal 37.53±0.90 38.87±1.80 40.33±2.19 37.07±2.01 37.07±2.01 37.07±2.01 38.00±1.78 37.07±2.01 37.07±2.01 38.00±1.78 37.07±2.01
union-a 33.53±0.96 40.80±4.78 36.60±3.01 35.53±3.96 35.53±3.96 35.53±3.96 45.93±2.13 35.53±3.96 35.53±3.96 44.00±6.58 35.53±3.96
union-b 39.40±1.12 49.67±1.79 40.80±1.68 38.80±1.28 38.80±1.28 38.80±1.28 52.47±1.45 38.80±1.28 38.80±1.28 52.47±1.45 38.80±1.28
geo-w 37.40±0.80 41.07±4.81 40.00±1.39 37.40±0.80 37.40±0.80 37.40±0.80 43.80±2.77 39.40±1.09 39.40±1.09 45.60±4.71 37.53±1.76
geo-f 35.33±0.41 39.07±1.91 37.73±1.48 37.13±1.94 37.13±1.94 37.13±1.94 38.60±1.59 35.87±1.26 35.87±1.26 38.60±1.59 37.13±1.94
madl 35.07±1.48 36.00±2.07 40.20±1.54 36.27±2.75 36.27±2.75 36.27±2.75 35.07±1.48 40.20±1.54 40.20±1.54 35.07±1.48 36.27±2.75
crowd-ar 39.07±2.88 44.60±2.13 39.73±1.09 36.87±2.97 36.87±2.97 36.87±2.97 39.07±2.88 36.87±2.97 36.87±2.97 39.07±2.88 36.87±2.97
annot-mix 33.27±1.32 37.13±3.32 39.00±1.79 33.27±1.32 33.27±1.32 36.53±0.51 36.53±0.51 33.27±1.32 33.27±1.32 36.53±0.51 33.27±1.32
coin 35.53±1.77 40.93±3.78 44.87±4.31 35.53±1.77 35.53±1.77 35.53±1.77 39.27±2.10 35.53±1.77 35.53±1.77 39.27±2.10 35.53±1.77
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Approach Baseline Aggregation-level Crowd-level Ensemble
true⋆ def-data⋆ def aeu aec alu alc cxu cec clc ens

mgc-rand-2
gt 19.07±0.28 19.07±0.28 24.60±1.12 18.93±0.76 18.93±0.76 N/A N/A N/A N/A N/A 18.93±0.76
mv 40.67±0.78 43.60±1.21 38.20±2.06 40.67±0.78 40.67±0.78 N/A N/A N/A N/A N/A 40.67±0.78
ds 39.53±2.09 44.53±1.52 41.07±1.79 38.40±0.72 38.40±0.72 39.53±2.09 40.27±2.89 42.13±0.77 42.13±0.77 42.13±0.77 39.53±2.09
cl 34.80±0.77 37.40±2.46 39.07±1.46 33.60±0.89 33.60±0.89 34.80±0.77 35.20±1.12 34.93±1.50 34.93±1.50 35.20±1.12 34.80±0.77
trace 33.47±1.07 35.00±1.05 35.87±2.17 33.47±1.07 33.47±1.07 33.47±1.07 33.47±1.07 36.00±3.26 36.53±1.45 33.47±1.07 36.53±1.45
conal 34.07±1.19 35.13±1.73 37.00±2.01 35.00±1.51 35.00±1.51 35.00±1.51 35.60±0.86 35.00±0.91 34.07±1.19 35.00±0.71 35.60±0.86
union-a 33.00±1.05 33.67±1.03 35.40±2.37 33.27±1.26 33.27±1.26 33.27±1.26 33.80±0.77 32.00±0.47 32.00±0.47 33.80±0.77 33.80±0.77
union-b 34.47±1.48 40.00±1.58 37.93±1.32 35.47±1.46 35.47±1.46 35.87±1.45 34.87±1.17 36.53±1.30 36.53±1.30 37.00±1.93 34.87±1.17
geo-w 33.60±0.55 34.27±0.76 36.80±1.50 32.73±0.98 32.40±1.85 33.13±0.96 33.13±0.96 32.40±1.85 32.40±1.85 34.27±0.55 33.13±0.96
geo-f 34.33±4.97 34.87±1.97 34.40±0.98 33.53±1.39 33.07±1.30 33.20±1.28 33.20±1.28 33.40±1.09 33.40±1.09 33.07±1.30 33.20±1.28
madl 34.40±2.86 38.60±1.38 35.53±2.29 33.53±0.90 33.53±0.90 33.53±0.90 34.40±2.86 33.53±0.90 34.87±1.77 33.53±0.90 33.53±0.90
crowd-ar 34.53±1.09 36.47±0.51 37.40±3.04 35.00±0.97 35.00±0.97 35.00±0.97 35.00±0.97 35.00±0.97 35.00±0.97 35.00±0.97 35.00±0.97
annot-mix 33.07±1.69 31.33±1.11 35.67±2.51 30.80±1.85 30.80±1.85 31.00±1.62 31.00±1.62 30.80±1.85 30.80±1.85 30.80±1.85 30.80±1.85
coin 32.93±2.38 31.53±1.61 41.93±4.82 33.00±1.43 33.00±1.43 33.00±1.43 33.00±1.43 32.93±2.38 32.93±2.38 31.60±2.28 33.00±1.43

mgc-rand-v
gt 19.40±0.36 19.40±0.36 24.60±1.12 20.00±0.91 20.00±0.91 N/A N/A N/A N/A N/A 20.00±0.91
mv 36.47±1.50 35.40±2.35 36.80±0.69 35.67±3.57 36.47±1.52 N/A N/A N/A N/A N/A 36.47±1.52
ds 38.73±0.55 36.87±1.26 37.67±0.91 38.73±0.55 38.73±0.55 38.00±1.78 38.00±1.78 38.00±1.78 38.00±1.78 38.00±1.78 38.00±1.78
cl 31.80±0.61 39.80±1.26 36.00±3.50 36.40±0.60 36.40±0.60 31.80±0.61 31.80±0.61 33.07±1.16 33.07±1.16 33.80±1.15 33.07±1.16
trace 31.07±1.36 32.67±0.62 35.60±1.92 31.53±0.69 31.53±0.69 31.53±0.69 31.07±1.36 36.27±2.22 36.27±2.22 31.53±0.69 36.27±2.22
conal 34.80±2.42 35.20±1.73 33.67±0.53 34.33±2.53 34.33±2.53 34.33±2.53 34.40±1.14 35.80±1.07 34.33±2.53 34.80±2.42 34.33±2.53
union-a 29.53±1.04 37.20±3.35 35.13±2.39 31.73±0.98 31.73±0.98 31.73±0.98 31.73±0.98 31.73±0.98 31.73±0.98 31.73±0.98 31.73±0.98
union-b 34.53±1.32 39.53±1.77 35.40±1.59 33.20±1.28 33.20±1.28 38.07±3.93 34.00±2.17 36.07±0.83 36.07±0.83 34.53±1.32 36.07±0.83
geo-w 32.20±0.93 34.73±2.02 35.33±1.75 32.20±0.93 32.40±1.30 32.20±0.93 32.67±1.11 32.40±1.30 32.40±1.30 32.40±1.30 32.20±0.93
geo-f 31.13±1.07 34.07±1.44 34.87±1.52 33.00±1.72 33.00±1.72 32.67±1.55 31.20±0.73 32.67±1.55 32.67±1.55 31.13±1.07 32.67±1.55
madl 32.93±1.12 32.00±1.62 36.27±0.89 34.13±2.15 35.47±1.80 35.67±2.96 32.93±1.12 36.40±2.25 36.40±2.25 32.93±1.12 34.13±2.15
crowd-ar 33.60±1.19 36.87±1.98 35.33±1.00 35.87±1.19 35.87±1.19 35.87±1.19 34.13±1.15 35.87±1.19 35.87±1.19 34.13±1.15 33.60±1.19
annot-mix 30.40±1.50 31.93±2.18 36.00±1.96 31.93±0.93 31.93±0.93 31.93±0.93 31.93±0.93 31.60±1.62 31.73±0.86 30.60±0.15 31.93±0.93
coin 33.93±2.02 37.60±4.75 40.00±3.46 33.93±2.02 33.93±2.02 33.20±3.00 33.20±3.00 32.00±1.00 32.00±1.00 32.00±1.00 30.87±0.77

mgc-full
gt 20.20±0.96 20.20±0.96 24.60±1.12 20.60±0.28 20.60±0.28 N/A N/A N/A N/A N/A 20.60±0.28
mv 34.67±1.62 37.73±1.59 36.00±1.33 34.67±1.62 34.67±1.62 N/A N/A N/A N/A N/A 34.67±1.62
ds 30.40±1.38 33.00±0.82 33.20±1.57 32.80±1.35 31.33±0.62 31.33±0.62 31.33±0.62 31.67±0.62 31.67±0.62 31.00±0.71 31.67±0.62
cl 31.40±1.04 30.47±0.90 37.27±3.18 31.40±1.04 31.40±1.04 31.40±1.04 33.20±1.22 31.40±1.04 31.40±1.04 31.40±1.04 31.40±1.04
trace 29.20±1.69 35.33±2.43 34.07±1.19 30.07±0.64 30.07±0.64 30.07±0.64 29.20±1.69 33.87±1.57 33.87±1.57 30.07±0.64 30.07±0.64
conal 31.60±1.34 30.47±1.46 33.47±1.15 31.60±0.72 31.87±1.19 32.00±1.08 32.67±1.27 32.60±1.44 32.60±1.44 32.60±1.44 32.60±1.44
union-a 31.20±0.73 30.07±1.79 34.47±2.81 31.20±0.73 31.20±0.73 30.53±1.07 32.00±0.82 31.20±0.73 31.20±0.73 31.20±1.04 31.20±0.73
union-b 31.07±0.72 30.93±1.01 35.47±0.90 31.07±0.72 31.07±0.72 31.00±1.05 32.87±2.39 31.07±0.72 31.07±0.72 31.07±0.72 31.07±0.72
geo-w 30.93±2.22 30.40±1.09 35.13±0.96 30.60±1.94 30.60±1.94 30.33±0.71 31.13±1.92 30.33±0.71 30.60±1.94 31.27±1.19 30.60±1.94
geo-f 28.67±1.43 30.80±0.77 34.53±1.71 30.20±0.96 31.13±0.69 30.27±1.38 30.73±0.43 31.13±0.69 30.73±0.43 30.93±1.23 30.20±0.96
madl 29.13±1.77 31.00±1.03 34.93±1.82 31.33±1.35 29.73±1.16 32.27±2.66 32.27±2.66 29.73±1.16 29.73±1.16 29.73±1.16 29.73±1.16
crowd-ar 31.67±1.33 31.20±0.38 35.00±1.35 31.73±1.32 31.73±1.32 31.73±1.32 31.47±1.74 31.67±1.33 31.67±1.33 31.73±1.32 31.73±1.32
annot-mix 27.20±2.04 28.13±0.38 33.93±2.24 29.47±0.96 29.47±0.96 29.47±0.96 27.80±1.43 26.80±0.90 26.80±0.90 27.60±0.72 26.20±1.26
coin 31.60±2.44 30.20±1.89 40.00±2.79 31.80±1.24 31.80±1.24 30.00±0.71 28.80±1.59 30.00±0.71 28.80±1.59 28.80±1.59 28.80±1.59

label-me-worst-1
gt 6.40±0.27 6.40±0.27 6.31±0.27 9.48±0.85 9.48±0.85 N/A N/A N/A N/A N/A 9.48±0.85
mv 30.86±1.09 32.76±0.99 34.49±0.44 31.67±0.70 31.67±0.70 N/A N/A N/A N/A N/A 31.67±0.70
ds 30.86±1.09 32.76±0.99 34.49±0.44 31.67±0.70 31.67±0.70 31.67±0.70 31.67±0.70 31.67±0.70 31.67±0.70 31.67±0.70 31.67±0.70
cl 27.59±4.75 33.72±1.51 33.27±0.34 31.50±1.41 31.50±1.41 31.50±1.41 27.17±0.74 31.50±1.41 31.50±1.41 27.59±4.75 31.50±1.41
trace 31.20±0.59 32.48±0.79 34.38±0.53 31.25±0.81 31.25±0.81 31.25±0.81 31.25±0.81 31.25±0.81 31.25±0.81 31.25±0.81 31.25±0.81
conal 31.26±1.50 31.11±2.53 34.33±0.44 31.35±0.73 31.35±0.73 31.35±0.73 31.26±1.50 31.35±0.73 31.35±0.73 31.26±1.50 30.98±0.76
union-a 22.64±1.90 29.07±1.96 32.41±0.75 29.98±1.72 29.98±1.72 29.98±1.72 29.98±1.72 29.41±0.87 29.41±0.87 29.73±2.20 29.98±1.72
union-b 26.50±2.23 32.04±1.28 34.34±0.63 31.48±1.24 31.48±1.24 31.48±1.24 31.48±1.24 31.48±1.24 31.48±1.24 31.48±1.24 31.48±1.24
geo-w 28.16±0.53 32.17±1.30 34.41±0.55 31.57±1.27 31.57±1.27 31.57±1.27 29.02±1.19 31.57±1.27 31.57±1.27 29.02±1.19 31.57±1.27
geo-f 28.48±1.27 31.90±0.96 34.01±0.70 31.40±1.26 31.40±1.26 31.40±1.26 25.40±2.88 31.40±1.26 31.40±1.26 25.40±2.88 31.40±1.26
madl 29.02±7.43 32.54±1.37 34.78±0.78 30.30±1.62 30.30±1.62 30.30±1.62 29.02±7.43 30.30±1.62 30.30±1.62 29.02±7.43 30.30±1.62
crowd-ar 32.02±0.24 31.03±1.63 34.88±1.13 32.37±0.97 32.37±0.97 32.37±0.97 32.37±0.97 32.37±0.97 32.37±0.97 32.37±0.97 32.37±0.97
annot-mix 30.10±1.22 30.88±2.83 33.18±0.73 30.86±0.94 30.86±0.94 30.86±0.94 31.50±1.38 30.86±0.94 30.86±0.94 30.86±0.94 30.86±0.94
coin 31.73±5.01 30.15±2.11 30.98±0.56 30.25±0.71 30.25±0.71 30.25±0.71 26.70±2.04 30.25±0.71 30.25±0.71 26.70±2.04 30.25±0.71
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Approach Baseline Aggregation-level Crowd-level Ensemble
true⋆ def-data⋆ def aeu aec alu alc cxu cec clc ens

label-me-worst-2
gt 6.43±0.44 6.43±0.44 6.31±0.27 6.75±0.14 6.75±0.14 N/A N/A N/A N/A N/A 6.75±0.14
mv 18.08±0.77 24.97±0.47 22.20±0.95 17.41±0.70 17.41±0.70 N/A N/A N/A N/A N/A 17.41±0.70
ds 18.00±0.51 25.57±0.50 22.44±1.01 18.13±1.64 17.59±0.66 17.66±0.67 17.66±0.67 17.66±0.67 17.66±0.67 17.66±0.67 17.66±0.67
cl 16.58±0.89 17.29±1.49 20.82±0.26 17.71±1.17 17.71±1.17 17.71±1.17 17.71±1.17 17.71±1.17 17.71±1.17 17.71±1.17 17.71±1.17
trace 16.03±1.11 23.42±0.65 22.76±0.45 17.73±1.51 17.73±1.51 17.73±1.51 17.73±1.51 17.73±1.51 17.73±1.51 17.73±1.51 17.73±1.51
conal 19.14±0.96 22.24±0.70 22.19±0.97 17.07±0.48 17.07±0.48 19.02±0.43 18.86±1.18 17.07±0.48 17.07±0.48 18.13±1.42 17.07±0.48
union-a 14.02±1.30 16.79±0.60 20.79±0.45 21.09±0.58 18.82±1.45 15.35±1.79 16.80±0.72 17.31±0.73 18.03±0.55 21.99±0.95 21.09±0.58
union-b 16.55±1.93 17.91±0.43 21.57±0.49 19.21±0.71 16.38±0.57 16.38±0.57 16.38±0.57 17.07±0.88 17.07±0.88 17.07±0.88 16.38±0.57
geo-w 15.74±1.03 18.06±0.54 21.52±0.42 17.32±0.60 17.12±1.05 15.74±1.03 15.74±1.03 17.12±1.05 17.12±1.05 18.70±0.81 17.12±1.05
geo-f 17.52±0.86 18.16±0.62 21.46±0.38 17.20±0.50 16.36±0.65 16.21±0.69 16.36±0.65 15.67±0.66 15.67±0.66 17.98±0.78 16.36±0.65
madl 15.72±0.94 20.00±0.67 23.21±0.61 19.41±0.74 19.41±0.74 18.00±0.27 18.00±0.27 19.41±0.74 19.41±0.74 19.41±0.74 19.41±0.74
crowd-ar 18.06±1.18 20.72±0.68 21.82±0.69 20.03±0.37 20.03±0.37 18.65±2.48 20.03±0.37 20.03±0.37 20.03±0.37 20.03±0.37 20.03±0.37
annot-mix 18.75±1.47 20.88±0.58 21.72±1.48 16.95±0.56 16.95±0.56 20.37±0.76 20.37±0.76 16.95±0.56 16.95±0.56 16.95±0.56 18.75±1.47
coin 16.03±0.61 16.75±0.56 19.93±0.21 17.59±1.26 17.59±1.26 18.20±1.39 18.20±1.39 18.20±1.39 16.60±1.58 18.20±1.39 18.20±1.39

label-me-worst-v
gt 5.99±0.33 5.99±0.33 6.31±0.27 7.47±0.25 7.47±0.25 N/A N/A N/A N/A N/A 7.47±0.25
mv 19.41±0.87 24.44±0.36 24.21±0.43 19.41±0.87 19.41±0.87 N/A N/A N/A N/A N/A 19.41±0.87
ds 21.04±0.91 24.90±0.57 24.82±0.46 19.36±0.92 21.04±0.91 19.36±0.92 21.04±0.91 21.04±0.91 21.04±0.91 21.04±0.91 21.04±0.91
cl 17.93±0.85 22.26±0.45 22.37±0.47 22.51±0.63 22.51±0.63 22.07±0.48 19.85±1.73 18.92±0.70 18.92±0.70 19.85±1.73 22.51±0.63
trace 19.66±1.15 23.15±0.72 23.11±0.86 20.57±0.89 20.57±0.89 19.66±1.10 19.66±1.10 19.66±1.15 19.66±1.10 19.66±1.15 19.66±1.10
conal 19.19±0.42 23.18±0.41 23.62±1.13 18.18±0.49 19.19±0.42 18.18±0.49 18.08±1.00 18.18±0.49 19.19±0.42 18.18±0.49 18.18±0.49
union-a 17.29±1.20 21.23±0.55 21.70±0.47 18.96±1.62 18.96±1.62 16.33±0.91 18.23±0.95 18.23±0.95 18.23±0.95 18.23±0.95 18.23±0.95
union-b 15.46±1.30 22.63±0.47 22.83±0.62 18.92±0.71 18.92±0.71 19.83±0.40 18.59±0.79 19.58±0.39 19.58±0.39 18.92±0.71 18.92±0.71
geo-w 19.55±0.56 22.63±0.57 22.90±0.52 18.84±0.80 18.84±0.80 21.14±0.46 17.56±1.36 19.76±0.46 19.70±0.61 19.70±0.61 21.14±0.46
geo-f 16.60±0.62 22.49±0.68 22.56±0.56 18.01±0.17 18.01±0.17 19.68±0.63 19.68±0.63 19.68±0.63 19.68±0.63 19.68±0.63 18.01±0.17
madl 19.14±0.63 22.76±0.63 23.60±0.70 19.38±0.70 19.38±0.70 18.37±0.66 18.37±0.69 18.37±0.66 19.14±0.63 18.37±0.69 19.38±0.70
crowd-ar 18.70±0.31 23.37±0.54 23.25±0.51 20.05±0.64 20.05±0.64 23.25±0.51 19.90±1.00 18.97±0.71 20.05±0.64 18.97±0.71 20.05±0.64
annot-mix 18.28±0.97 22.41±0.90 22.56±0.60 19.95±1.01 19.95±1.01 19.92±0.67 20.56±0.41 20.56±0.41 20.56±0.41 20.56±0.41 22.05±0.51
coin 16.90±3.19 21.21±0.44 20.89±0.49 18.13±1.05 18.13±1.05 18.30±1.46 16.90±3.19 18.13±1.05 18.13±1.05 18.13±1.05 18.13±1.05

label-me-rand-1
gt 6.28±0.26 6.28±0.26 6.31±0.27 7.36±0.39 7.36±0.39 N/A N/A N/A N/A N/A 7.36±0.39
mv 14.76±0.60 19.50±0.57 18.45±0.51 14.49±0.69 14.49±0.69 N/A N/A N/A N/A N/A 14.49±0.69
ds 14.76±0.60 19.50±0.57 18.45±0.51 14.49±0.69 14.49±0.69 14.49±0.69 14.49±0.69 14.49±0.69 14.49±0.69 14.49±0.69 14.49±0.69
cl 15.56±0.44 17.26±1.06 18.97±0.47 15.00±0.63 15.00±0.63 15.00±0.63 15.00±0.63 15.00±0.63 15.00±0.63 15.00±0.63 15.00±0.63
trace 14.34±1.00 19.88±0.66 18.38±0.47 17.52±0.74 17.52±0.74 17.52±0.74 17.52±0.74 17.52±0.74 17.52±0.74 17.52±0.74 17.52±0.74
conal 15.05±0.68 18.00±1.80 19.24±0.57 14.48±0.38 14.48±0.38 14.48±0.38 14.48±0.38 14.48±0.38 14.48±0.38 14.48±0.38 14.48±0.38
union-a 15.07±0.59 16.84±0.73 18.65±0.43 15.07±0.59 15.07±0.59 15.07±0.59 16.06±0.70 15.07±0.59 15.07±0.59 14.75±0.60 15.07±0.59
union-b 15.37±0.53 17.88±0.42 19.07±0.63 15.39±0.68 15.39±0.68 15.39±0.68 15.39±0.68 15.39±0.68 15.39±0.68 15.39±0.68 15.39±0.68
geo-w 15.74±1.30 17.66±0.91 19.11±0.63 15.40±0.68 15.40±0.68 15.40±0.68 15.39±0.69 15.40±0.68 15.40±0.68 15.76±0.86 15.40±0.68
geo-f 14.46±0.65 17.86±0.39 19.04±0.56 15.30±0.79 15.30±0.79 15.30±0.79 15.54±1.13 15.30±0.79 15.30±0.79 15.54±1.13 15.30±0.79
madl 14.83±0.53 20.94±0.81 19.01±0.69 13.11±0.62 13.11±0.62 13.11±0.62 13.11±0.62 13.11±0.62 13.11±0.62 13.11±0.62 13.11±0.62
crowd-ar 15.77±0.51 18.10±0.92 19.41±0.22 16.41±0.72 16.41±0.72 16.41±0.72 16.41±0.72 16.41±0.72 16.41±0.72 16.41±0.72 16.41±0.72
annot-mix 14.46±0.89 17.91±0.29 18.27±0.34 15.76±1.25 15.76±1.25 15.76±1.25 15.76±1.25 15.76±1.25 15.76±1.25 15.76±1.25 15.76±1.25
coin 12.58±0.70 17.46±1.00 18.08±0.28 13.75±0.51 13.75±0.51 13.75±0.51 12.58±1.12 13.87±0.25 13.87±0.25 12.58±1.12 13.87±0.25

label-me-rand-2
gt 6.21±0.26 6.21±0.26 6.31±0.27 6.21±0.26 6.21±0.26 N/A N/A N/A N/A N/A 6.21±0.26
mv 15.42±0.52 16.60±0.68 19.02±0.24 16.16±0.41 16.35±0.41 N/A N/A N/A N/A N/A 16.35±0.41
ds 15.13±0.63 15.02±0.41 17.24±0.46 14.41±0.35 15.13±0.63 15.02±0.41 15.02±0.41 15.02±0.41 15.02±0.41 15.02±0.41 15.02±0.41
cl 13.11±1.23 14.60±0.35 15.82±0.41 15.25±0.48 15.13±0.49 15.27±0.50 14.11±0.59 15.27±0.50 15.62±0.79 13.77±0.47 15.27±0.50
trace 14.53±0.55 14.43±0.72 17.95±0.51 15.15±0.95 15.15±0.95 15.15±0.95 15.15±0.95 15.15±0.95 15.15±0.95 15.15±0.95 15.15±0.95
conal 15.62±0.71 14.29±0.62 17.12±1.05 15.67±0.68 15.67±0.68 15.67±0.68 15.72±2.79 13.92±0.42 13.92±0.42 13.94±0.78 14.63±0.37
union-a 15.44±4.74 14.44±0.78 15.74±0.50 14.78±0.82 14.78±0.82 15.44±4.74 13.72±0.66 13.37±0.29 14.16±0.53 13.72±0.66 14.16±0.53
union-b 12.95±1.11 14.34±0.69 16.60±0.41 14.34±0.62 14.98±0.97 13.16±0.75 14.34±0.62 17.04±0.49 15.79±0.93 15.79±0.93 15.79±0.93
geo-w 13.10±0.49 14.33±0.72 16.57±0.35 15.76±1.04 15.76±1.04 13.10±0.49 15.76±1.04 14.78±0.46 14.78±0.46 14.78±0.46 15.76±1.04
geo-f 13.57±0.33 14.09±0.73 16.36±0.49 14.04±0.78 14.04±0.78 12.21±0.32 14.36±0.60 15.61±0.50 14.04±0.78 13.94±0.60 14.36±0.60
madl 14.28±0.64 14.19±1.06 18.13±0.38 13.55±0.33 13.55±0.33 14.28±0.64 13.55±0.33 13.55±0.33 13.55±0.33 13.55±0.33 13.55±0.33
crowd-ar 16.25±0.53 14.73±0.38 16.38±0.51 14.26±0.38 14.26±0.38 16.31±0.89 14.26±0.38 14.26±0.38 14.26±0.38 14.26±0.38 14.26±0.38
annot-mix 14.43±0.46 13.64±0.73 16.52±0.77 13.82±0.54 13.82±0.54 15.29±0.59 15.29±0.59 18.54±0.14 18.54±0.14 17.84±0.86 13.82±0.54
coin 13.64±0.15 13.01±0.68 14.48±0.59 13.05±0.57 13.05±0.57 13.82±0.89 13.05±0.57 15.71±0.41 13.05±0.57 14.09±0.56 13.05±0.57
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Table 14: Zero-one loss results (part IV) – Continued from the previous page.

Approach Baseline Aggregation-level Crowd-level Ensemble
true⋆ def-data⋆ def aeu aec alu alc cxu cec clc ens

label-me-rand-v
gt 6.35±0.39 6.35±0.39 6.31±0.27 6.35±0.39 6.43±0.27 N/A N/A N/A N/A N/A 6.43±0.27
mv 15.19±0.80 17.96±0.86 19.68±0.57 15.19±0.80 15.19±0.80 N/A N/A N/A N/A N/A 15.19±0.80
ds 14.34±0.65 17.42±0.73 18.60±0.61 15.54±0.27 15.54±0.27 15.54±0.27 15.54±0.27 13.91±0.53 13.91±0.53 17.58±0.69 14.34±0.65
cl 14.60±0.79 15.94±0.49 18.18±0.71 19.98±0.50 19.98±0.50 14.88±0.55 15.69±0.95 15.74±0.63 15.39±0.95 15.69±0.95 15.69±0.95
trace 13.82±0.91 16.75±0.65 19.31±0.79 16.21±1.03 16.21±1.03 16.67±0.82 16.67±0.82 13.82±0.91 13.82±0.91 13.82±0.91 16.18±0.51
conal 14.46±0.60 16.84±0.70 19.23±0.95 16.01±0.99 16.01±0.99 17.71±0.59 14.71±0.46 14.46±0.60 14.46±0.60 14.71±0.46 14.46±0.60
union-a 16.50±6.75 15.15±0.88 17.93±0.32 16.50±6.75 16.50±6.75 16.50±6.75 15.69±2.48 15.22±0.57 15.22±0.57 14.95±1.35 18.87±0.80
union-b 14.65±0.86 16.38±0.82 18.97±0.49 20.39±0.81 18.62±0.58 15.98±0.55 14.85±0.34 18.62±0.58 18.62±0.58 14.85±0.34 18.62±0.58
geo-w 15.76±2.80 16.36±0.59 18.84±0.61 15.20±0.57 15.20±0.57 15.20±0.57 15.20±0.57 20.24±0.42 18.57±0.78 15.20±0.57 15.20±0.57
geo-f 14.76±0.51 16.03±0.34 18.77±0.64 13.28±0.45 13.28±0.45 17.44±0.16 13.28±0.45 13.28±0.45 13.28±0.45 13.28±0.45 13.28±0.45
madl 14.75±0.98 17.00±0.23 19.41±0.60 14.75±0.98 14.75±0.98 18.64±0.79 18.64±0.79 14.75±0.98 14.75±0.98 17.49±0.43 14.75±0.98
crowd-ar 15.08±1.34 16.33±0.65 19.33±0.49 20.17±0.65 20.17±0.65 15.08±1.34 15.08±1.34 14.65±0.70 14.65±0.70 14.65±0.70 15.08±1.34
annot-mix 14.58±0.42 16.08±1.10 18.43±0.61 14.58±0.42 14.58±0.42 14.58±0.42 14.58±0.42 19.55±0.85 19.55±0.85 19.55±0.85 15.52±0.68
coin 12.00±0.77 13.96±0.57 16.77±0.51 14.54±0.43 14.54±0.43 14.54±0.43 14.54±0.43 14.54±0.43 14.54±0.43 14.54±0.43 14.54±0.43

label-me-full
gt 6.01±0.25 6.01±0.25 6.31±0.27 6.60±0.38 6.60±0.38 N/A N/A N/A N/A N/A 6.60±0.38
mv 14.76±0.50 16.89±0.71 18.42±0.47 14.53±0.49 14.38±0.91 N/A N/A N/A N/A N/A 14.38±0.91
ds 13.13±0.75 15.07±0.68 15.96±0.26 14.81±0.89 14.81±0.89 13.13±0.75 14.81±0.89 12.95±0.83 12.95±0.83 12.95±0.83 13.13±0.75
cl 12.91±0.74 13.77±0.78 15.02±0.48 14.38±0.97 14.38±0.97 14.11±1.24 13.86±0.80 14.73±0.31 14.73±0.31 13.82±0.68 13.82±0.68
trace 14.16±0.54 15.17±0.65 16.53±0.17 14.34±1.05 14.34±1.05 14.34±1.05 12.63±0.74 14.34±1.05 14.34±1.05 14.34±1.05 14.34±1.05
conal 13.54±0.69 14.80±1.04 16.80±0.57 13.54±0.69 13.54±0.69 13.54±0.69 16.95±2.17 13.54±0.69 13.54±0.69 16.95±2.17 13.54±0.69
union-a 12.73±0.49 13.72±0.70 15.12±0.24 14.16±0.84 14.16±0.84 15.64±0.60 14.06±0.55 14.29±0.63 13.52±1.01 17.69±2.35 14.06±0.55
union-b 12.98±0.80 13.97±0.83 16.03±0.26 13.86±0.61 13.86±0.61 13.37±0.59 13.57±0.62 14.58±0.16 14.58±0.16 13.57±0.62 12.95±0.57
geo-w 15.19±2.91 13.92±0.64 16.03±0.16 14.51±0.83 14.51±0.83 13.69±0.42 15.69±0.63 14.81±0.50 13.42±0.49 15.69±0.63 14.81±0.50
geo-f 26.58±35.3 13.74±0.73 15.82±0.21 12.86±0.48 12.86±0.48 26.58±35.3 26.58±35.3 14.76±0.61 12.66±0.78 13.33±1.00 12.66±0.78
madl 14.21±0.33 15.07±0.58 16.72±0.43 12.95±0.57 12.95±0.57 12.98±1.53 12.98±1.53 15.22±1.80 12.95±0.57 15.22±1.80 12.95±0.57
crowd-ar 14.66±0.58 14.78±0.96 15.79±0.55 13.77±0.51 13.77±0.51 14.53±0.78 13.77±0.51 13.65±0.41 13.65±0.41 13.77±0.51 13.77±0.51
annot-mix 13.64±0.38 14.95±0.45 16.03±0.27 14.90±0.73 14.90±0.73 16.43±0.34 13.64±0.38 16.35±0.67 16.35±0.67 16.35±0.67 14.90±0.73
coin 11.06±0.96 12.95±0.51 13.57±0.57 13.28±0.90 13.28±0.90 13.43±0.65 13.43±0.65 15.62±0.51 12.07±0.54 15.62±0.38 12.07±0.54

dopanim-worst-1
gt 10.59±0.14 10.59±0.14 10.52±0.22 28.15±1.23 28.15±1.23 N/A N/A N/A N/A N/A 28.15±1.23
mv 66.30±1.14 72.55±0.50 73.28±0.58 68.61±0.79 68.61±0.79 N/A N/A N/A N/A N/A 68.61±0.79
ds 66.30±1.14 72.55±0.50 73.28±0.58 68.61±0.79 68.61±0.79 68.61±0.79 68.61±0.79 68.61±0.79 68.61±0.79 68.61±0.79 68.61±0.79
cl 62.67±3.58 69.63±2.59 68.41±2.29 67.77±1.80 67.77±1.80 67.77±1.80 62.85±2.57 62.85±2.57 62.85±2.57 62.85±2.57 62.85±2.57
trace 52.79±3.43 71.63±0.25 73.16±0.42 70.62±0.33 70.62±0.33 70.62±0.33 64.92±1.53 64.92±1.53 64.92±1.53 52.79±3.43 64.60±1.30
conal 68.01±0.52 72.02±0.34 72.55±0.55 70.78±0.66 70.78±0.66 70.78±0.66 70.81±0.86 70.78±0.66 70.78±0.66 70.81±0.86 70.78±0.66
union-a 63.49±1.07 67.42±2.23 67.65±0.21 71.16±0.35 71.16±0.35 67.65±0.21 67.65±0.21 67.65±0.21 67.65±0.21 67.65±0.21 67.65±0.21
union-b 63.01±0.17 66.42±0.29 69.01±1.49 70.56±0.60 70.56±0.60 70.56±0.60 63.01±0.17 66.70±0.25 66.70±0.25 63.01±0.17 66.70±0.25
geo-w 65.30±2.51 67.28±1.22 71.55±0.82 71.05±0.61 71.05±0.61 71.05±0.61 66.15±0.19 66.15±0.19 66.15±0.19 66.15±0.19 66.15±0.19
geo-f 58.00±10.4 68.90±0.20 70.99±0.53 70.71±0.46 70.71±0.46 70.71±0.46 65.81±1.75 67.62±3.87 67.62±3.87 63.61±4.08 65.81±1.75
madl 57.60±3.71 71.98±1.18 73.53±1.01 70.93±0.68 70.93±0.68 70.93±0.68 63.87±3.34 67.17±3.40 67.17±3.40 63.87±3.34 68.88±1.63
crowd-ar 70.15±2.38 72.05±0.94 72.01±0.45 72.00±0.56 72.00±0.56 72.00±0.56 70.44±0.71 72.00±0.56 72.00±0.56 70.44±0.71 72.00±0.56
annot-mix 59.42±4.15 62.63±1.30 67.82±0.73 69.75±0.94 69.75±0.94 69.75±0.94 59.42±4.15 60.35±2.26 60.35±2.26 59.42±4.15 65.74±0.87
coin 67.15±2.02 67.04±2.15 68.38±1.13 69.37±1.03 69.37±1.03 69.37±1.03 65.33±2.83 68.06±5.02 68.06±5.02 68.06±5.02 67.72±1.11

dopanim-worst-2
gt 11.09±0.11 11.09±0.11 10.52±0.22 12.49±0.47 12.49±0.47 N/A N/A N/A N/A N/A 12.49±0.47
mv 52.77±0.38 54.39±0.95 56.83±0.40 52.42±0.40 52.43±0.38 N/A N/A N/A N/A N/A 52.42±0.40
ds 45.64±0.55 45.34±0.33 48.75±0.43 46.28±0.27 46.28±0.27 46.28±0.27 46.28±0.27 46.91±0.44 46.91±0.44 46.91±0.44 46.91±0.44
cl 50.95±0.31 71.92±2.73 55.63±1.68 55.87±2.94 55.87±2.94 56.59±1.07 52.91±2.03 58.33±4.03 58.33±4.03 58.33±4.03 53.32±1.85
trace 48.98±2.69 51.31±3.79 54.61±0.45 52.08±0.67 52.08±0.67 48.34±0.45 42.17±0.60 42.17±0.60 39.42±5.16 67.87±1.42 48.34±0.45
conal 52.94±1.01 70.58±3.39 53.94±0.78 52.99±0.22 52.99±0.22 52.99±0.22 53.51±1.43 52.99±0.22 52.99±0.22 53.51±1.43 52.95±0.19
union-a 52.35±2.34 73.77±4.48 51.89±4.25 53.53±1.89 53.53±1.89 51.89±4.25 51.89±4.25 51.89±4.25 51.89±4.25 51.89±4.25 51.89±4.25
union-b 51.40±3.11 72.28±2.00 50.55±0.30 54.16±2.28 52.82±0.81 51.40±3.11 51.40±3.11 52.95±4.03 51.40±3.11 51.40±3.11 51.40±3.11
geo-w 48.05±0.41 70.58±2.80 50.46±0.72 53.02±0.19 53.02±0.19 52.18±2.20 52.18±2.20 48.45±2.06 49.43±1.33 49.43±1.33 49.43±1.33
geo-f 52.04±2.09 61.45±7.15 50.36±0.18 51.99±0.33 51.86±0.21 49.77±1.85 51.57±1.87 51.57±1.87 51.57±1.87 51.57±1.87 49.77±1.85
madl 46.38±2.18 72.72±2.59 52.96±3.88 49.65±1.31 49.65±1.31 49.65±1.31 48.53±2.09 49.65±1.31 49.65±1.31 48.53±2.09 49.65±1.31
crowd-ar 55.13±1.44 64.58±4.46 54.12±0.42 54.27±1.73 54.27±1.73 54.27±1.73 53.93±0.71 54.27±1.73 54.27±1.73 53.93±0.71 53.93±0.71
annot-mix 44.16±3.15 50.74±1.79 47.75±0.72 49.98±1.29 49.98±1.29 47.60±1.14 43.95±3.35 47.35±0.91 47.60±1.14 47.35±0.91 47.35±0.91
coin 45.57±4.94 58.23±5.19 50.17±0.24 51.91±0.24 50.09±0.80 50.09±0.80 51.35±3.61 45.57±4.94 50.09±0.80 50.09±0.80 50.09±0.80
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Table 14: Zero-one loss results (part V) – Continued from the previous page.

Approach Baseline Aggregation-level Crowd-level Ensemble
true⋆ def-data⋆ def aeu aec alu alc cxu cec clc ens

dopanim-worst-v
gt 10.74±0.20 10.74±0.20 10.52±0.22 11.03±0.18 11.31±0.14 N/A N/A N/A N/A N/A 11.03±0.18
mv 34.12±0.43 36.47±0.49 41.50±0.69 34.12±0.43 34.09±0.73 N/A N/A N/A N/A N/A 34.09±0.73
ds 29.73±0.55 30.58±0.46 35.22±0.58 29.05±0.38 29.05±0.38 29.05±0.38 29.05±0.38 29.05±0.38 29.05±0.38 29.05±0.38 29.05±0.38
cl 35.03±3.68 43.26±5.96 38.46±1.71 35.03±3.68 35.03±3.68 37.22±1.40 35.03±3.68 44.13±2.40 44.13±2.40 35.03±3.68 35.03±3.68
trace 21.16±0.38 29.82±0.15 34.89±0.18 28.17±0.20 28.17±0.20 24.91±0.50 53.56±8.60 21.16±0.38 21.16±0.38 53.56±8.60 21.16±0.38
conal 30.75±1.47 32.52±0.42 33.93±0.27 32.40±0.32 32.40±0.32 32.40±0.32 32.08±1.92 32.34±0.36 30.86±0.40 32.08±1.92 33.17±0.22
union-a 33.65±2.42 43.92±5.72 37.73±0.68 36.84±4.34 36.84±4.34 37.73±0.68 37.73±0.68 37.73±0.68 37.73±0.68 37.73±0.68 37.73±0.68
union-b 31.69±0.78 31.85±1.45 33.35±1.08 31.69±0.78 31.69±0.78 32.62±3.13 31.85±0.55 36.76±1.72 32.62±3.13 31.85±0.55 31.69±0.78
geo-w 27.41±0.26 29.84±0.55 32.76±0.67 27.41±0.26 27.41±0.26 27.41±0.26 30.08±0.95 30.78±3.17 30.78±3.17 30.08±0.95 27.41±0.26
geo-f 21.91±0.38 26.32±0.73 28.99±0.44 25.44±0.40 29.45±0.52 23.16±1.32 25.84±0.77 24.40±2.51 23.16±1.32 25.84±0.77 23.16±1.32
madl 20.74±0.35 29.60±2.76 31.85±0.87 27.58±0.77 29.90±1.18 20.74±0.35 20.74±0.35 20.74±0.35 20.74±0.35 20.74±0.35 20.74±0.35
crowd-ar 31.59±0.57 31.89±0.41 34.07±0.97 32.66±2.17 32.66±2.17 32.66±2.17 31.96±1.40 30.98±0.58 30.98±0.58 31.96±1.40 31.55±1.37
annot-mix 21.61±0.51 24.09±0.62 26.29±0.47 28.09±1.26 28.09±1.26 22.32±0.38 22.32±0.38 22.32±0.38 23.45±0.24 23.82±0.58 23.45±0.24
coin 21.26±3.81 28.21±1.31 23.20±0.33 29.51±0.40 29.51±0.40 20.11±0.22 26.14±0.77 20.11±0.22 20.11±0.22 25.79±0.92 20.11±0.22

dopanim-rand-1
gt 10.97±0.39 10.97±0.39 10.52±0.22 11.28±0.26 11.28±0.26 N/A N/A N/A N/A N/A 11.28±0.26
mv 20.79±0.62 21.50±0.60 27.66±0.31 20.56±0.30 20.56±0.30 N/A N/A N/A N/A N/A 20.56±0.30
ds 20.79±0.62 21.50±0.60 27.66±0.31 20.56±0.30 20.56±0.30 20.56±0.30 20.56±0.30 20.56±0.30 20.56±0.30 20.56±0.30 20.56±0.30
cl 23.04±2.10 60.00±5.17 26.92±2.65 23.04±2.10 23.04±2.10 23.04±2.10 29.24±2.73 23.04±2.10 23.04±2.10 29.24±2.73 26.49±4.36
trace 22.33±3.73 23.53±2.66 27.48±0.64 17.34±0.44 17.34±0.44 20.08±0.54 27.47±0.60 17.34±0.44 17.34±0.44 46.79±2.83 17.34±0.44
conal 19.61±1.00 48.42±3.66 23.14±0.60 19.61±1.00 19.61±1.00 19.61±1.00 19.61±1.00 19.61±1.00 19.61±1.00 19.61±1.00 19.61±1.00
union-a 20.36±2.11 68.81±3.45 25.32±3.71 20.36±2.11 20.36±2.11 25.32±3.71 25.32±3.71 25.32±3.71 25.32±3.71 25.32±3.71 22.43±1.77
union-b 20.04±0.34 45.95±5.03 22.01±0.44 20.18±1.55 20.18±1.55 20.18±1.55 21.74±2.25 20.32±2.01 20.32±2.01 21.74±2.25 20.32±2.01
geo-w 18.88±0.57 45.03±7.25 22.50±0.30 18.88±0.57 18.88±0.57 18.88±0.57 19.68±2.50 19.20±0.35 19.20±0.35 19.68±2.50 19.20±0.35
geo-f 16.59±0.56 23.57±3.20 21.95±0.37 16.59±0.56 16.59±0.56 16.59±0.56 16.59±0.56 16.45±0.21 16.45±0.21 16.59±0.56 16.59±0.56
madl 16.78±0.98 24.20±0.94 27.79±0.96 16.78±0.98 16.78±0.98 16.78±0.98 16.78±0.98 16.78±0.98 16.78±0.98 16.78±0.98 16.78±0.98
crowd-ar 19.95±0.43 61.13±6.61 22.18±0.24 19.95±0.43 19.95±0.43 19.95±0.43 18.89±0.52 19.95±0.43 19.95±0.43 18.89±0.52 18.89±0.52
annot-mix 17.79±0.32 20.52±4.22 21.40±0.37 17.79±0.32 17.79±0.32 17.79±0.32 18.39±0.22 17.79±0.32 17.79±0.32 18.81±0.40 17.79±0.32
coin 17.09±2.69 21.04±2.92 19.16±0.61 17.78±0.29 17.78±0.29 17.78±0.29 17.09±2.69 17.09±2.69 17.09±2.69 17.09±2.69 17.09±2.69

dopanim-rand-2
gt 10.85±0.15 10.85±0.15 10.52±0.22 10.75±0.07 10.91±0.39 N/A N/A N/A N/A N/A 10.91±0.39
mv 20.76±0.30 23.31±0.57 28.22±0.41 20.76±0.30 20.76±0.30 N/A N/A N/A N/A N/A 20.76±0.30
ds 19.78±0.43 21.36±0.40 24.43±0.36 20.13±0.30 20.13±0.30 20.38±1.19 19.78±0.43 20.02±0.60 20.02±0.60 20.13±0.30 20.13±0.30
cl 23.72±3.45 33.33±4.67 24.26±3.93 23.72±3.45 23.72±3.45 23.72±3.45 23.43±3.46 31.02±2.75 31.02±2.75 23.80±1.76 23.72±3.45
trace 16.10±0.39 16.98±0.33 23.59±0.26 19.19±0.74 19.19±0.74 16.77±0.40 16.10±0.39 16.77±0.40 19.19±0.74 16.77±0.40 16.77±0.40
conal 18.59±0.30 18.90±0.39 20.42±0.17 18.77±0.41 18.48±0.25 18.48±0.25 19.79±0.23 18.59±0.30 18.59±0.30 19.79±0.23 18.59±0.30
union-a 21.30±4.32 34.20±4.06 23.75±3.17 21.30±4.32 21.30±4.32 23.75±3.17 23.75±3.17 23.75±3.17 23.75±3.17 23.75±3.17 20.20±1.99
union-b 18.80±0.36 24.79±2.82 19.17±0.24 19.48±0.63 19.48±0.63 20.03±2.55 18.80±0.36 20.03±2.55 20.13±2.28 19.48±0.63 19.48±0.63
geo-w 18.02±0.22 19.70±2.84 19.61±0.05 18.02±0.22 18.02±0.22 18.02±0.22 18.81±0.45 18.02±0.22 18.02±0.22 18.02±0.22 18.02±0.22
geo-f 15.29±0.25 15.93±0.32 19.07±0.45 15.29±0.25 15.29±0.25 15.29±0.25 17.42±0.14 15.29±0.25 17.49±0.33 17.49±0.33 15.29±0.25
madl 17.30±0.58 16.37±0.77 22.18±0.97 17.30±0.58 16.72±0.41 16.64±0.47 16.64±0.47 16.64±0.47 16.72±0.41 16.72±0.41 16.72±0.41
crowd-ar 18.74±0.48 21.10±1.81 19.18±0.52 18.74±0.48 18.74±0.48 18.74±0.48 18.74±0.55 18.74±0.48 18.74±0.48 18.74±0.55 18.74±0.55
annot-mix 17.18±0.37 16.43±0.49 18.12±0.33 17.18±0.37 17.18±0.37 17.18±0.37 16.92±0.52 16.92±0.52 16.92±0.52 16.92±0.52 16.92±0.52
coin 15.57±0.34 14.75±0.31 17.15±0.41 17.23±0.16 17.23±0.16 16.18±0.44 17.02±0.36 16.22±0.19 17.23±0.16 17.15±0.41 17.23±0.16

dopanim-rand-v
gt 10.43±0.15 10.43±0.15 10.52±0.22 11.23±0.15 11.23±0.15 N/A N/A N/A N/A N/A 11.23±0.15
mv 18.51±0.51 21.26±0.26 23.83±0.55 18.55±0.41 18.55±0.41 N/A N/A N/A N/A N/A 18.55±0.41
ds 17.59±0.42 19.34±0.52 21.08±0.36 17.59±0.42 17.59±0.42 17.59±0.42 17.59±0.42 17.59±0.42 17.59±0.42 17.59±0.42 17.59±0.42
cl 20.54±3.71 32.44±5.76 22.84±4.37 20.54±3.71 20.54±3.71 20.54±3.71 20.54±3.71 31.40±7.11 31.40±7.11 20.54±3.71 20.54±3.71
trace 14.62±0.17 17.75±0.28 20.36±0.26 17.83±0.21 17.83±0.21 15.87±0.11 14.62±0.17 16.89±0.27 16.89±0.27 16.89±0.27 16.89±0.27
conal 17.49±0.68 17.15±0.42 18.52±0.20 17.26±0.16 17.26±0.16 17.51±0.20 18.63±1.85 17.51±0.20 17.51±0.20 18.63±1.85 17.26±0.16
union-a 18.86±2.34 30.60±6.42 22.97±4.49 19.05±2.97 19.05±2.97 22.97±4.49 22.97±4.49 22.97±4.49 22.97±4.49 22.97±4.49 22.97±4.49
union-b 17.73±0.21 18.54±2.82 16.94±0.27 17.73±0.21 17.73±0.21 19.01±2.60 17.75±0.50 17.84±0.32 16.57±0.43 17.75±0.50 16.57±0.43
geo-w 17.14±0.38 18.70±2.64 17.44±0.30 17.14±0.38 17.14±0.38 18.81±2.89 17.23±0.16 17.97±0.48 17.97±0.48 17.14±0.38 17.14±0.38
geo-f 14.62±0.32 15.35±0.52 16.89±0.27 14.90±0.12 14.90±0.12 14.51±0.12 16.15±0.18 14.90±0.12 15.73±0.21 15.73±0.21 15.73±0.21
madl 14.24±0.33 15.64±0.52 20.12±1.24 14.88±0.65 14.88±0.65 14.88±0.65 14.88±0.65 14.73±0.57 14.73±0.57 15.11±0.47 14.73±0.57
crowd-ar 16.79±0.38 18.28±2.30 17.58±0.27 16.79±0.38 16.79±0.38 16.79±0.38 16.79±0.38 16.79±0.38 16.79±0.38 16.79±0.38 16.79±0.38
annot-mix 14.82±0.47 15.65±0.60 16.57±0.36 14.82±0.47 15.46±0.26 14.82±0.47 14.82±0.47 15.46±0.26 15.46±0.26 15.91±0.38 15.46±0.26
coin 14.27±0.13 16.10±0.75 15.63±0.32 16.32±0.31 16.32±0.31 14.36±0.28 16.17±0.14 15.86±0.49 16.32±0.31 16.17±0.14 16.32±0.31
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Table 14: Zero-one loss results (part VI) – Continued from the previous page.

Approach Baseline Aggregation-level Crowd-level Ensemble
true⋆ def-data⋆ def aeu aec alu alc cxu cec clc ens

dopanim-full
gt 11.02±0.28 11.02±0.28 10.52±0.22 10.57±0.26 10.57±0.26 N/A N/A N/A N/A N/A 10.57±0.26
mv 17.32±0.58 17.82±0.28 20.59±0.17 17.32±0.58 17.32±0.58 N/A N/A N/A N/A N/A 17.32±0.58
ds 16.82±0.51 17.16±0.27 19.07±0.17 17.45±0.29 17.45±0.29 16.82±0.51 16.82±0.51 17.45±0.29 17.33±0.31 17.33±0.31 17.45±0.29
cl 18.20±0.52 42.66±1.87 22.36±4.39 18.20±0.52 18.20±0.52 22.09±5.16 19.63±2.30 33.90±3.31 25.66±4.06 19.63±2.30 18.20±0.52
trace 13.80±0.20 15.19±0.15 18.55±0.40 14.12±0.27 15.89±0.17 14.12±0.27 14.12±0.27 16.85±0.25 17.20±0.76 17.20±0.76 15.89±0.17
conal 16.62±0.14 19.24±2.28 17.31±0.12 16.76±0.28 16.76±0.28 16.76±0.28 19.39±2.07 16.58±0.13 16.58±0.13 17.09±0.40 16.46±0.18
union-a 20.12±3.93 34.56±4.62 23.14±3.22 20.12±3.93 20.12±3.93 23.14±3.22 23.14±3.22 23.14±3.22 23.14±3.22 23.14±3.22 20.12±3.93
union-b 17.82±1.94 20.57±4.03 16.26±0.38 17.82±1.94 17.82±1.94 18.88±2.70 18.03±1.58 17.73±2.75 17.82±1.94 18.03±1.58 16.28±0.33
geo-w 16.06±0.29 19.94±2.55 16.50±0.25 16.06±0.29 16.06±0.29 16.54±0.18 17.48±0.53 16.59±0.15 16.06±0.29 16.06±0.29 16.06±0.29
geo-f 13.71±0.49 14.90±0.21 16.25±0.30 15.80±0.19 15.80±0.19 13.71±0.49 16.77±0.20 14.93±0.42 15.52±0.31 15.52±0.31 14.93±0.42
madl 14.15±0.28 14.99±0.50 17.86±1.98 16.44±0.12 16.44±0.12 15.26±1.17 15.26±1.17 14.91±0.92 17.95±1.37 14.22±0.28 14.91±0.92
crowd-ar 16.27±0.19 21.47±1.74 16.63±0.13 16.27±0.19 16.27±0.19 16.27±0.19 16.27±0.19 16.27±0.19 16.27±0.19 16.27±0.19 16.27±0.19
annot-mix 14.38±0.28 14.77±0.35 15.96±0.13 15.35±0.10 15.34±0.44 15.54±0.33 14.38±0.28 15.76±0.22 15.40±0.54 15.40±0.54 15.54±0.33
coin 14.12±0.12 21.41±9.11 14.72±0.31 14.90±0.19 14.90±0.19 15.12±0.31 15.87±0.28 15.12±0.31 14.90±0.19 14.90±0.19 14.90±0.19

reuters-worst-1
gt 3.98±0.17 3.98±0.17 4.14±0.07 7.25±0.52 7.25±0.52 N/A N/A N/A N/A N/A 7.25±0.52
mv 48.80±2.40 59.46±1.73 58.90±1.18 49.41±3.00 49.41±3.00 N/A N/A N/A N/A N/A 49.41±3.00
ds 48.80±2.40 59.46±1.73 58.90±1.18 49.41±3.00 49.41±3.00 49.41±3.00 49.41±3.00 49.41±3.00 49.41±3.00 49.41±3.00 49.41±3.00
cl 32.66±2.17 58.10±1.63 57.20±1.04 32.66±2.17 32.66±2.17 32.66±2.17 34.92±9.83 32.66±2.17 32.66±2.17 34.92±9.83 32.66±2.17
trace 48.77±2.32 58.69±0.77 58.50±1.25 51.75±5.58 51.75±5.58 51.75±5.58 51.75±5.58 52.53±0.61 52.53±0.61 52.53±0.61 51.75±5.58
conal 47.89±5.64 60.64±1.19 59.65±1.61 51.03±1.54 51.03±1.54 51.03±1.54 51.03±1.54 51.03±1.54 51.03±1.54 51.03±1.54 51.03±1.54
union-a 47.38±4.54 58.64±0.46 59.13±1.64 43.80±5.54 43.80±5.54 43.80±5.54 43.80±5.54 51.62±4.91 51.62±4.91 51.62±4.91 43.80±5.54
union-b 48.51±3.05 59.30±1.90 57.88±1.32 48.30±7.86 48.30±7.86 48.30±7.86 37.18±3.44 37.18±3.44 37.18±3.44 37.18±3.44 37.18±3.44
geo-w 48.47±2.96 57.97±0.94 57.77±1.30 51.26±4.89 51.26±4.89 51.26±4.89 36.11±1.45 36.11±1.45 36.11±1.45 36.11±1.45 36.11±1.45
geo-f 44.55±3.29 58.07±0.89 58.69±1.39 42.89±4.13 42.89±4.13 42.89±4.13 42.63±4.60 42.63±4.60 42.63±4.60 42.63±4.60 37.04±1.97
madl 51.41±0.78 59.77±1.62 59.32±1.10 51.41±0.78 51.41±0.78 51.41±0.78 51.41±0.78 41.45±0.27 41.45±0.27 41.45±0.27 41.45±0.27
crowd-ar 44.60±1.26 58.86±1.36 58.62±0.65 44.60±1.26 44.60±1.26 44.60±1.26 44.60±1.26 44.60±1.26 44.60±1.26 44.60±1.26 44.60±1.26
annot-mix 47.11±4.60 61.35±1.59 62.35±0.61 48.46±2.38 48.46±2.38 48.46±2.38 44.36±5.20 44.36±5.20 44.36±5.20 44.36±5.20 44.36±5.20
coin 48.06±1.59 59.24±0.54 62.95±2.82 48.06±1.59 48.06±1.59 48.06±1.59 53.01±7.20 72.12±5.67 72.12±5.67 53.01±7.20 48.06±1.59

reuters-worst-2
gt 3.79±0.14 3.79±0.14 4.14±0.07 4.14±0.07 4.14±0.07 N/A N/A N/A N/A N/A 4.14±0.07
mv 26.22±1.65 40.89±1.25 43.12±0.79 26.22±1.65 26.22±1.65 N/A N/A N/A N/A N/A 26.22±1.65
ds 23.34±0.58 33.63±0.49 34.38±0.72 23.34±0.58 23.34±0.58 23.34±0.58 23.34±0.58 23.12±1.07 23.12±1.07 23.12±1.07 23.34±0.58
cl 19.32±1.52 27.11±1.17 31.03±0.69 20.20±2.44 20.20±2.44 19.32±1.52 19.32±1.52 19.32±1.52 19.32±1.52 19.32±1.52 19.32±1.52
trace 20.58±1.58 36.63±1.01 35.76±0.83 20.58±1.58 20.58±1.58 20.58±1.58 26.25±1.32 26.25±1.32 26.25±1.32 26.25±1.32 20.58±1.58
conal 22.11±1.20 32.99±0.71 35.70±0.53 22.11±1.20 22.11±1.20 22.11±1.20 27.75±0.96 22.11±1.20 22.11±1.20 27.75±0.96 22.11±1.20
union-a 19.33±1.97 34.01±2.53 41.08±0.56 19.33±1.97 19.33±1.97 39.77±20.3 25.25±3.59 26.07±1.40 26.07±1.40 39.77±20.3 39.77±20.3
union-b 18.17±1.89 32.73±1.25 33.81±1.06 21.12±2.04 21.12±2.04 18.17±1.89 18.17±1.89 18.17±1.89 18.17±1.89 18.17±1.89 18.17±1.89
geo-w 20.86±2.02 30.19±1.60 33.34±0.80 20.86±2.02 20.86±2.02 17.23±3.02 18.49±1.39 18.49±1.39 18.49±1.39 18.49±1.39 17.23±3.02
geo-f 20.53±1.69 27.00±1.32 33.61±0.61 20.53±1.69 20.53±1.69 20.53±1.69 40.60±1.76 40.60±1.76 40.60±1.76 40.60±1.76 22.59±1.08
madl 23.38±0.61 35.00±5.88 37.64±3.49 23.38±0.61 23.38±0.61 24.60±3.76 19.57±5.84 19.57±5.84 19.57±5.84 19.57±5.84 19.57±5.84
crowd-ar 22.36±1.62 32.49±0.64 33.08±0.65 22.36±1.62 22.36±1.62 22.36±1.62 22.36±1.62 22.36±1.62 22.36±1.62 22.36±1.62 22.36±1.62
annot-mix 21.67±1.28 35.45±1.79 43.81±2.11 26.73±1.54 26.73±1.54 20.91±0.81 20.91±0.81 20.91±0.81 20.91±0.81 20.91±0.81 26.73±1.54
coin 23.79±1.16 31.78±2.40 36.86±1.47 23.79±1.16 23.79±1.16 23.79±1.16 29.43±1.76 69.49±2.90 69.49±2.90 69.49±2.90 26.07±1.32

reuters-worst-v
gt 3.88±0.09 3.88±0.09 4.14±0.07 4.13±0.11 3.75±0.14 N/A N/A N/A N/A N/A 4.13±0.11
mv 20.55±0.97 38.84±0.41 40.13±0.62 20.55±0.97 20.55±0.97 N/A N/A N/A N/A N/A 20.55±0.97
ds 18.92±0.96 30.49±1.15 32.04±1.14 18.92±0.96 18.92±0.96 18.92±0.96 18.92±0.96 23.31±1.09 24.64±0.40 24.64±0.40 18.92±0.96
cl 21.11±2.09 17.88±1.39 29.06±0.71 20.40±1.04 20.40±1.04 20.40±1.04 21.11±2.09 21.11±2.09 21.11±2.09 21.11±2.09 20.40±1.04
trace 18.48±0.51 31.18±0.47 31.48±1.24 18.48±0.51 18.48±0.51 24.66±2.03 24.66±2.03 24.66±2.03 24.66±2.03 24.66±2.03 18.48±0.51
conal 17.93±2.19 29.04±1.22 32.16±1.02 18.52±0.78 17.93±2.19 18.52±0.78 17.93±2.19 18.52±0.78 17.93±2.19 17.93±2.19 17.93±2.19
union-a 40.03±23.7 37.20±4.43 36.41±0.79 17.96±1.41 17.96±1.41 40.03±23.7 40.03±23.7 16.93±2.53 16.93±2.53 16.93±2.53 16.93±2.53
union-b 17.99±1.86 22.21±0.55 30.00±0.20 17.99±1.86 17.99±1.86 21.96±2.79 24.43±2.02 21.96±2.79 21.96±2.79 24.43±2.02 21.96±2.79
geo-w 18.20±1.84 17.25±0.44 30.25±0.61 18.20±1.84 18.20±1.84 19.85±1.26 19.85±1.26 19.85±1.26 19.85±1.26 25.73±2.57 19.85±1.26
geo-f 14.76±0.60 18.81±1.11 30.05±0.67 18.05±1.79 14.76±0.60 15.62±1.64 34.91±17.0 34.91±17.0 34.91±17.0 27.70±2.90 15.62±1.64
madl 17.48±0.82 29.76±8.49 32.66±2.65 17.48±0.82 17.48±0.82 17.06±0.83 17.06±0.83 17.06±0.83 17.06±0.83 17.06±0.83 17.06±0.83
crowd-ar 18.57±1.55 23.49±1.07 31.45±1.38 18.57±1.55 18.57±1.55 18.57±1.55 18.57±1.55 16.02±1.01 18.57±1.55 18.57±1.55 18.57±1.55
annot-mix 18.62±0.76 34.92±4.11 37.74±3.37 16.91±1.13 16.91±1.13 16.91±1.13 20.07±0.85 20.07±0.85 20.07±0.85 20.07±0.85 16.91±1.13
coin 16.86±0.93 27.14±1.86 35.68±0.83 16.86±0.93 16.86±0.93 19.13±3.81 19.13±3.81 19.13±3.81 19.13±3.81 19.13±3.81 19.13±3.81

Continued on the next page.

41



Under review as submission to TMLR

Table 14: Zero-one loss results (part VII) – Continued from the previous page.

Approach Baseline Aggregation-level Crowd-level Ensemble
true⋆ def-data⋆ def aeu aec alu alc cxu cec clc ens

reuters-rand-1
gt 3.94±0.15 3.94±0.15 4.14±0.07 4.05±0.21 4.05±0.21 N/A N/A N/A N/A N/A 4.05±0.21
mv 13.29±0.67 25.86±0.66 26.55±0.58 15.16±0.66 15.16±0.66 N/A N/A N/A N/A N/A 15.16±0.66
ds 13.29±0.67 25.86±0.66 26.55±0.58 15.16±0.66 15.16±0.66 15.16±0.66 15.16±0.66 15.16±0.66 15.16±0.66 15.16±0.66 15.16±0.66
cl 14.64±0.84 22.47±3.56 24.72±0.78 14.28±1.16 14.28±1.16 14.28±1.16 21.37±3.56 14.64±0.84 14.64±0.84 21.37±3.56 14.64±0.84
trace 13.86±0.47 15.17±0.88 26.64±0.74 14.91±0.41 14.91±0.41 14.91±0.41 18.23±0.97 14.91±0.41 14.91±0.41 18.23±0.97 14.91±0.41
conal 13.85±1.13 22.22±4.04 25.33±0.39 13.85±1.13 13.85±1.13 13.85±1.13 13.85±1.13 13.85±1.13 13.85±1.13 13.85±1.13 13.85±1.13
union-a 14.79±1.28 34.62±14.2 26.58±0.71 14.79±1.28 14.79±1.28 12.99±0.88 12.99±0.88 12.99±0.88 12.99±0.88 12.99±0.88 12.99±0.88
union-b 14.34±0.92 22.25±1.81 24.75±0.98 13.88±0.68 13.88±0.68 13.88±0.68 20.66±3.02 13.88±0.68 13.88±0.68 20.66±3.02 13.88±0.68
geo-w 14.44±0.94 20.68±1.09 25.00±0.72 13.92±0.61 13.92±0.61 13.92±0.61 19.53±2.90 15.24±1.83 15.24±1.83 19.53±2.90 15.24±1.83
geo-f 12.69±0.44 18.31±2.70 24.39±0.63 12.69±0.44 12.69±0.44 12.69±0.44 23.23±1.79 12.69±0.44 12.69±0.44 23.23±1.79 12.69±0.44
madl 14.97±1.34 23.88±12.7 27.26±1.41 18.36±0.42 18.36±0.42 18.36±0.42 21.78±2.97 14.97±1.34 14.97±1.34 21.78±2.97 14.98±1.19
crowd-ar 14.90±0.93 21.62±1.10 24.87±1.00 14.46±0.61 14.46±0.61 14.46±0.61 14.46±0.61 14.46±0.61 14.46±0.61 14.46±0.61 14.46±0.61
annot-mix 13.22±0.49 15.41±1.89 29.56±0.51 13.22±0.49 13.22±0.49 13.22±0.49 17.33±0.90 13.58±0.80 13.58±0.80 17.33±0.90 13.22±0.49
coin 11.01±0.57 53.89±9.36 28.43±0.84 11.01±0.57 11.01±0.57 11.01±0.57 37.92±5.72 11.01±0.57 11.01±0.57 37.92±5.72 11.01±0.57

reuters-rand-2
gt 3.84±0.09 3.84±0.09 4.14±0.07 4.14±0.07 4.14±0.07 N/A N/A N/A N/A N/A 4.14±0.07
mv 13.05±0.76 27.22±0.67 29.22±0.98 13.05±0.76 13.05±0.76 N/A N/A N/A N/A N/A 13.05±0.76
ds 12.87±0.95 19.77±0.65 20.53±0.60 12.87±0.95 12.87±0.95 14.99±0.37 14.99±0.37 14.76±0.64 14.76±0.64 14.76±0.64 14.99±0.37
cl 11.45±0.77 13.17±0.33 15.31±0.31 11.45±0.77 11.45±0.77 11.41±1.77 15.04±1.08 11.41±1.77 11.45±0.77 15.04±1.08 11.41±1.77
trace 11.22±0.58 20.91±1.10 18.92±0.68 11.22±0.58 11.22±0.58 11.22±0.58 11.55±0.73 11.55±0.73 11.22±0.58 11.55±0.73 11.22±0.58
conal 11.51±0.57 15.58±0.85 18.44±0.94 11.36±0.59 11.36±0.59 12.19±0.38 12.19±0.38 11.36±0.59 11.36±0.59 11.51±0.57 11.36±0.59
union-a 11.45±0.48 27.37±2.46 28.28±1.02 11.45±0.48 11.45±0.48 10.67±1.05 10.67±1.05 10.67±1.05 10.67±1.05 10.67±1.05 10.67±1.05
union-b 11.53±0.57 15.46±0.17 17.36±0.64 11.06±0.73 11.06±0.73 11.06±0.73 11.85±1.39 11.85±1.39 11.06±0.73 11.85±1.39 11.85±1.39
geo-w 11.53±0.46 14.63±1.36 17.50±0.59 11.06±0.83 11.06±0.83 11.53±0.46 18.55±2.09 11.98±0.48 11.98±0.48 18.55±2.09 11.53±0.46
geo-f 11.15±0.44 12.98±0.49 16.96±0.26 11.15±0.44 11.15±0.44 10.72±0.55 15.95±2.60 14.40±1.72 10.72±0.55 15.95±2.60 10.72±0.55
madl 11.58±0.72 20.23±6.91 21.27±2.06 12.36±1.05 11.58±0.72 9.55±1.64 9.55±1.64 9.55±1.64 9.55±1.64 9.55±1.64 9.55±1.64
crowd-ar 11.87±0.80 14.64±0.79 17.14±0.47 11.00±0.34 11.00±0.34 11.00±0.34 21.66±0.88 11.00±0.34 11.00±0.34 11.00±0.34 11.00±0.34
annot-mix 12.02±1.07 19.94±0.49 29.09±1.31 12.02±1.07 12.02±1.07 11.74±0.61 11.74±0.61 14.08±0.62 14.08±0.62 14.08±0.62 11.74±0.61
coin 9.25±0.44 19.82±0.77 21.23±1.46 9.53±0.62 9.53±0.62 9.25±0.44 9.25±0.44 9.25±0.44 9.25±0.44 9.25±0.44 9.25±0.44

reuters-rand-v
gt 3.86±0.14 3.86±0.14 4.14±0.07 4.14±0.07 4.14±0.07 N/A N/A N/A N/A N/A 4.14±0.07
mv 14.11±0.47 24.86±0.75 26.32±0.80 14.11±0.47 14.11±0.47 N/A N/A N/A N/A N/A 14.11±0.47
ds 13.63±0.59 22.15±0.98 22.66±0.61 13.63±0.59 13.63±0.59 17.25±1.13 17.25±1.13 17.25±1.13 17.25±1.13 17.25±1.13 17.25±1.13
cl 13.09±0.42 15.80±2.67 18.30±0.73 13.09±0.42 13.09±0.42 15.22±1.79 18.84±3.45 14.53±1.43 15.22±1.79 18.84±3.45 15.22±1.79
trace 13.75±0.56 21.16±1.22 19.91±1.09 16.17±0.64 16.17±0.64 13.75±0.56 16.34±0.93 13.75±0.56 13.75±0.56 16.34±0.93 13.75±0.56
conal 13.72±1.02 16.28±0.98 20.40±0.50 13.72±1.02 13.72±1.02 13.72±1.02 13.72±1.02 13.72±1.02 13.72±1.02 13.72±1.02 13.72±1.02
union-a 15.41±1.42 20.84±2.62 24.98±1.02 15.41±1.42 15.41±1.42 12.67±1.02 11.99±1.64 13.60±1.09 13.60±1.09 13.60±1.09 13.60±1.09
union-b 14.94±0.98 16.09±1.98 19.50±0.53 14.94±0.98 14.94±0.98 15.12±2.83 15.12±2.83 15.12±2.83 14.94±0.98 19.61±1.40 15.12±2.83
geo-w 10.86±0.49 14.20±0.66 18.90±0.45 14.85±1.04 14.85±1.04 10.86±0.49 10.86±0.49 12.39±1.01 12.57±1.86 12.57±1.86 12.57±1.86
geo-f 12.03±0.53 19.19±2.04 18.74±0.67 12.03±0.53 12.03±0.53 10.78±1.14 14.37±2.76 10.78±1.14 10.78±1.14 10.78±1.14 10.78±1.14
madl 13.01±0.48 20.61±10.2 22.02±2.45 14.99±0.97 14.99±0.97 13.46±2.34 13.46±2.34 13.46±2.34 13.01±0.48 13.46±2.34 13.46±2.34
crowd-ar 12.34±0.70 15.43±0.56 19.88±0.57 14.16±0.58 14.16±0.58 14.16±0.58 21.99±1.34 14.16±0.58 14.16±0.58 21.99±1.34 14.16±0.58
annot-mix 13.59±1.05 21.78±5.18 27.51±0.75 15.26±1.77 15.42±0.68 15.26±1.77 15.26±1.77 15.37±1.38 15.42±0.68 15.37±1.38 15.26±1.77
coin 10.17±1.32 34.36±3.17 24.04±1.06 10.17±1.32 12.47±0.34 10.17±1.32 10.17±1.32 10.17±1.32 10.17±1.32 10.17±1.32 10.17±1.32

reuters-full
gt 3.80±0.15 3.80±0.15 4.14±0.07 4.20±0.25 3.80±0.15 N/A N/A N/A N/A N/A 4.16±0.29
mv 16.71±0.52 22.84±0.41 24.32±0.23 13.96±0.98 13.96±0.98 N/A N/A N/A N/A N/A 13.96±0.98
ds 11.64±0.33 17.78±0.42 19.88±0.92 11.64±0.33 11.64±0.33 11.64±0.33 11.64±0.33 11.64±0.33 16.91±1.05 17.68±0.58 11.64±0.33
cl 10.52±0.79 12.20±1.51 14.90±0.39 10.52±0.79 10.52±0.79 12.54±2.09 16.93±0.33 12.54±2.09 10.52±0.79 16.93±0.33 12.54±2.09
trace 11.50±0.64 16.80±0.77 16.61±0.61 11.50±0.64 11.50±0.64 18.44±3.40 18.44±3.40 18.44±3.40 11.50±0.64 18.44±3.40 11.50±0.64
conal 11.53±0.74 16.32±0.82 17.07±1.02 11.46±0.76 11.26±0.60 11.26±0.60 11.53±0.74 11.53±0.74 11.53±0.74 11.53±0.74 11.53±0.74
union-a 15.53±13.4 20.36±3.28 23.36±0.37 11.08±0.64 15.53±13.4 15.53±13.4 15.53±13.4 10.95±0.72 10.95±0.72 10.95±0.72 10.95±0.72
union-b 12.13±0.56 13.34±0.42 15.79±0.25 12.13±0.56 12.13±0.56 11.61±0.50 17.15±1.94 14.90±0.72 10.81±0.88 17.15±1.94 13.79±0.59
geo-w 12.11±0.40 11.42±0.43 15.10±0.28 12.11±0.40 12.11±0.40 10.47±0.56 10.24±1.93 10.24±1.93 12.01±0.68 10.24±1.93 10.29±0.27
geo-f 10.22±0.31 9.53±0.89 14.99±0.52 10.46±0.61 10.46±0.61 10.35±0.83 12.96±2.48 12.96±2.48 10.35±0.83 12.96±2.48 10.35±0.83
madl 9.45±1.40 14.38±1.50 20.16±3.18 13.12±0.70 11.47±0.49 9.45±1.40 9.45±1.40 9.45±1.40 9.45±1.40 9.45±1.40 9.45±1.40
crowd-ar 11.78±0.30 14.55±0.37 16.11±0.31 11.78±0.30 11.78±0.30 11.78±0.30 11.78±0.30 11.78±0.30 11.78±0.30 22.59±1.06 11.78±0.30
annot-mix 10.33±1.13 17.37±1.83 27.09±0.76 11.95±0.55 11.95±0.55 10.33±1.13 10.33±1.13 10.33±1.13 10.33±1.13 10.33±1.13 10.33±1.13
coin 10.11±1.01 28.18±3.04 20.50±0.83 10.11±1.01 10.11±1.01 10.11±1.01 10.77±0.93 27.27±4.41 13.44±1.01 27.27±4.41 10.11±1.01

Continued on the next page.
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Approach Baseline Aggregation-level Crowd-level Ensemble
true⋆ def-data⋆ def aeu aec alu alc cxu cec clc ens

spc-worst-1
gt 15.47±0.33 15.47±0.33 17.27±0.31 16.17±0.33 16.17±0.33 N/A N/A N/A N/A N/A 16.17±0.33
mv 53.87±0.43 51.47±0.85 51.51±0.97 53.44±2.57 53.44±2.57 N/A N/A N/A N/A N/A 53.44±2.57
ds 53.87±0.43 51.47±0.85 51.51±0.97 53.44±2.57 53.44±2.57 53.44±2.57 53.44±2.57 53.44±2.57 53.44±2.57 53.44±2.57 53.44±2.57
cl 32.29±27.6 51.72±1.08 52.56±0.77 32.29±27.6 32.29±27.6 32.29±27.6 32.29±27.6 32.29±27.6 32.29±27.6 32.29±27.6 32.29±27.6
trace 52.37±4.65 51.73±1.11 51.46±1.04 50.76±3.69 50.76±3.69 52.37±4.65 52.37±4.65 52.37±4.65 52.37±4.65 52.37±4.65 52.37±4.65
conal 53.18±1.43 52.03±1.22 51.82±0.75 52.03±1.26 52.03±1.26 52.03±1.26 52.03±1.26 52.03±1.26 52.03±1.26 52.03±1.26 52.03±1.26
union-a 39.57±26.2 52.34±0.60 52.69±0.51 81.50±0.56 81.50±0.56 39.57±26.2 39.57±26.2 39.57±26.2 39.57±26.2 39.57±26.2 39.57±26.2
union-b 49.98±0.00 51.67±1.18 51.96±0.94 49.98±0.00 49.98±0.00 49.98±0.00 49.98±0.00 49.98±0.00 49.98±0.00 49.98±0.00 49.98±0.00
geo-w 18.21±0.44 51.99±1.09 52.23±0.79 18.00±0.23 18.00±0.23 18.00±0.23 18.00±0.23 18.00±0.23 18.00±0.23 18.00±0.23 18.00±0.23
geo-f 42.60±34.9 51.78±0.96 51.86±1.37 31.33±29.1 31.33±29.1 31.33±29.1 31.33±29.1 31.33±29.1 31.33±29.1 31.33±29.1 31.33±29.1
madl 62.25±27.0 52.03±0.92 47.86±5.05 50.69±2.59 50.69±2.59 69.72±27.7 56.28±24.2 69.72±27.7 69.72±27.7 69.61±25.9 69.61±25.9
crowd-ar 52.92±2.63 52.25±0.77 51.21±0.47 52.33±0.98 52.33±0.98 50.10±0.29 50.10±0.29 52.33±0.98 52.33±0.98 52.33±0.98 50.10±0.29
annot-mix 44.33±12.6 53.09±2.93 50.13±1.27 42.61±26.1 42.61±26.1 31.50±16.9 31.50±16.9 40.36±16.6 40.36±16.6 31.50±16.9 42.61±26.1
coin 43.31±35.3 51.85±1.27 52.28±0.86 31.77±20.5 31.77±20.5 31.77±20.5 31.77±20.5 43.31±35.3 43.31±35.3 43.31±35.3 31.77±20.5

spc-worst-2
gt 15.67±0.29 15.67±0.29 17.27±0.31 16.03±0.19 16.03±0.19 N/A N/A N/A N/A N/A 16.03±0.19
mv 28.93±0.64 30.45±1.00 38.55±0.33 28.93±0.64 28.93±0.64 N/A N/A N/A N/A N/A 28.93±0.64
ds 20.85±0.88 20.85±0.88 28.28±0.47 19.63±0.59 19.63±0.59 19.63±0.59 19.63±0.59 19.63±0.59 19.63±0.59 19.63±0.59 19.63±0.59
cl 25.84±1.12 25.84±1.12 31.54±0.83 25.28±0.72 25.28±0.72 16.21±0.52 16.21±0.52 17.15±0.76 17.15±0.76 17.15±0.76 16.21±0.52
trace 25.75±0.76 28.72±1.39 35.13±1.28 25.75±0.76 28.95±1.11 19.36±0.33 19.36±0.33 19.49±1.06 19.49±1.06 19.49±1.06 19.49±1.06
conal 25.61±1.36 29.52±0.52 35.80±1.08 23.85±0.87 23.85±0.87 23.85±0.87 23.85±0.87 23.85±0.87 23.85±0.87 23.85±0.87 23.85±0.87
union-a 16.73±1.15 22.49±0.34 30.14±0.71 16.73±1.15 16.73±1.15 16.73±1.15 16.73±1.15 16.73±1.15 16.73±1.15 16.73±1.15 16.73±1.15
union-b 23.25±1.13 26.03±1.28 34.04±0.53 20.95±4.76 20.95±4.76 20.95±4.76 20.95±4.76 20.95±4.76 20.95±4.76 20.95±4.76 20.95±4.76
geo-w 22.82±1.24 25.47±1.17 32.03±0.76 26.89±0.92 16.20±0.78 16.20±0.78 16.20±0.78 16.20±0.78 16.20±0.78 16.20±0.78 16.20±0.78
geo-f 22.79±1.10 25.26±1.15 31.47±0.92 17.44±0.54 17.44±0.54 16.55±0.97 16.55±0.97 16.55±0.97 16.55±0.97 17.44±0.54 17.44±0.54
madl 21.78±1.76 28.74±6.19 28.61±12.2 16.20±0.23 16.20±0.23 16.98±0.51 17.16±0.74 18.10±0.47 18.10±0.47 18.10±0.47 18.10±0.47
crowd-ar 24.85±1.27 29.46±1.06 35.72±0.78 24.85±1.27 24.85±1.27 25.76±0.94 25.20±3.64 24.85±1.27 24.85±1.27 25.20±3.64 25.20±3.64
annot-mix 17.39±0.81 26.30±2.04 25.48±0.86 16.94±0.40 16.94±0.40 18.46±0.26 16.70±0.68 16.94±0.40 16.94±0.40 16.70±0.68 16.94±0.40
coin 24.65±1.41 23.68±1.29 31.00±0.50 22.20±1.01 22.20±1.01 16.35±0.35 16.35±0.35 16.35±0.35 16.35±0.35 17.28±0.34 16.35±0.35

spc-worst-v
gt 15.85±0.43 15.85±0.43 17.27±0.31 15.16±0.09 15.16±0.09 N/A N/A N/A N/A N/A 15.16±0.09
mv 20.44±0.70 22.86±0.28 27.91±0.72 18.50±0.53 18.50±0.53 N/A N/A N/A N/A N/A 18.50±0.53
ds 18.64±0.49 18.64±0.49 22.72±0.63 16.98±0.31 16.98±0.31 16.98±0.31 16.98±0.31 16.98±0.31 16.98±0.31 16.98±0.31 16.98±0.31
cl 18.09±0.28 18.09±0.28 21.50±0.86 16.54±0.36 16.54±0.36 16.13±0.51 16.13±0.51 16.13±0.51 16.54±0.36 16.22±0.26 16.13±0.51
trace 16.50±0.40 20.20±0.72 26.02±0.62 16.50±0.40 16.50±0.40 16.86±0.25 17.44±0.38 16.50±0.40 16.50±0.40 16.50±0.40 16.50±0.40
conal 17.36±0.60 20.30±0.74 25.43±0.54 16.86±0.57 16.86±0.57 16.86±0.57 16.86±0.57 17.36±0.60 17.36±0.60 17.36±0.60 16.86±0.57
union-a 16.27±0.47 18.06±0.25 20.43±0.51 16.13±0.49 16.13±0.49 25.12±14.0 16.13±0.49 25.12±14.0 25.12±14.0 25.12±14.0 25.12±14.0
union-b 17.81±0.33 18.31±0.42 22.50±0.42 17.96±0.51 17.96±0.51 16.20±0.71 16.20±0.71 16.03±0.53 17.24±0.33 17.24±0.33 16.03±0.53
geo-w 17.72±0.26 18.01±0.18 21.33±0.55 17.72±0.26 17.72±0.26 15.74±0.08 17.53±1.00 15.74±0.08 17.78±0.38 17.78±0.38 15.74±0.08
geo-f 17.69±0.31 18.03±0.28 21.22±0.37 17.69±0.31 17.69±0.31 15.78±0.60 15.78±0.60 16.12±0.24 17.69±0.31 17.74±0.47 16.23±0.35
madl 18.10±1.46 18.59±1.49 18.15±0.73 16.10±0.43 16.16±0.33 16.16±0.33 17.83±1.14 16.16±0.33 16.05±0.40 16.87±0.69 16.16±0.33
crowd-ar 17.82±0.85 20.38±1.53 25.34±0.27 17.56±0.47 17.56±0.47 17.56±0.47 19.56±1.46 17.56±0.47 17.56±0.47 17.56±0.47 17.56±0.47
annot-mix 15.96±0.39 19.61±1.26 19.31±0.44 15.96±0.39 16.87±0.72 15.96±0.39 16.26±0.33 15.96±0.39 16.87±0.72 15.96±0.39 15.96±0.39
coin 16.83±0.69 17.58±0.31 20.93±0.27 16.71±0.35 16.71±0.35 16.68±0.58 16.29±0.52 17.39±1.02 16.71±0.35 16.71±0.35 16.71±0.35

spc-rand-1
gt 15.18±0.24 15.18±0.24 17.27±0.31 15.18±0.24 15.18±0.24 N/A N/A N/A N/A N/A 15.18±0.24
mv 16.21±0.33 16.21±0.33 22.89±0.41 16.07±0.61 16.07±0.61 N/A N/A N/A N/A N/A 16.07±0.61
ds 16.21±0.33 16.21±0.33 22.89±0.41 16.07±0.61 16.07±0.61 16.07±0.61 16.07±0.61 16.07±0.61 16.07±0.61 16.07±0.61 16.07±0.61
cl 15.58±0.29 15.58±0.29 21.60±0.60 15.58±0.29 15.58±0.29 15.58±0.29 15.58±0.29 15.58±0.29 15.58±0.29 15.58±0.29 15.58±0.29
trace 18.88±0.53 16.21±0.44 23.12±0.49 16.15±0.67 16.15±0.67 16.15±0.67 16.15±0.67 16.15±0.67 16.15±0.67 16.15±0.67 16.15±0.67
conal 16.05±0.40 16.14±0.42 22.35±0.31 16.05±0.40 16.05±0.40 16.05±0.40 16.05±0.40 16.05±0.40 16.05±0.40 16.05±0.40 16.05±0.40
union-a 17.36±0.43 15.64±0.23 21.56±0.73 17.36±0.43 17.36±0.43 17.36±0.43 17.36±0.43 17.36±0.43 17.36±0.43 17.36±0.43 17.36±0.43
union-b 17.90±0.58 15.59±0.34 21.92±0.49 17.42±0.43 17.42±0.43 15.42±0.34 15.42±0.34 15.42±0.34 15.42±0.34 16.70±0.52 15.42±0.34
geo-w 17.97±0.65 15.57±0.28 21.84±0.82 17.40±0.44 17.40±0.44 17.40±0.44 17.40±0.44 15.40±0.34 15.40±0.34 15.40±0.34 15.40±0.34
geo-f 17.94±0.59 15.57±0.27 21.72±0.91 17.36±0.45 17.36±0.45 17.36±0.45 17.03±0.65 16.28±0.33 16.28±0.33 17.03±0.65 17.36±0.45
madl 16.67±0.59 16.49±0.73 19.01±1.07 16.79±0.87 16.79±0.87 16.79±0.87 16.67±0.59 16.79±0.87 16.79±0.87 38.75±15.4 16.79±0.87
crowd-ar 16.32±0.52 16.20±0.33 22.92±0.57 16.21±0.36 16.21±0.36 16.32±0.52 16.32±0.52 16.21±0.36 16.21±0.36 16.32±0.52 16.32±0.52
annot-mix 16.37±0.81 16.16±0.39 21.43±0.48 16.63±0.91 16.63±0.91 16.63±0.91 16.63±0.91 16.36±0.61 16.36±0.61 16.36±0.61 16.63±0.91
coin 15.66±0.23 15.55±0.29 21.02±0.31 15.66±0.23 15.66±0.23 15.66±0.23 16.45±0.33 15.66±0.23 15.66±0.23 16.45±0.33 15.66±0.23

Continued on the next page.
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Table 14: Zero-one loss results (part IX) – Continued from the previous page.

Approach Baseline Aggregation-level Crowd-level Ensemble
true⋆ def-data⋆ def aeu aec alu alc cxu cec clc ens

spc-rand-2
gt 15.19±0.22 15.19±0.22 17.27±0.31 15.93±0.21 15.19±0.22 N/A N/A N/A N/A N/A 15.93±0.21
mv 19.53±0.68 16.58±0.58 22.82±0.40 16.58±0.58 16.58±0.58 N/A N/A N/A N/A N/A 16.58±0.58
ds 15.87±0.16 15.87±0.16 20.28±0.50 15.78±0.26 15.87±0.16 15.87±0.16 15.87±0.16 15.87±0.16 15.87±0.16 16.27±0.29 15.87±0.16
cl 17.02±0.66 15.69±0.36 18.99±0.42 15.97±0.17 15.69±0.36 15.75±0.14 15.75±0.14 15.69±0.36 15.69±0.36 16.46±0.34 15.69±0.36
trace 15.21±0.29 15.79±0.23 20.26±0.72 16.22±0.45 16.22±0.45 16.05±0.39 16.05±0.39 16.22±0.45 16.22±0.45 16.22±0.45 16.22±0.45
conal 16.41±0.17 15.46±0.56 19.83±0.54 15.20±0.70 15.20±0.70 15.20±0.70 16.21±0.38 15.20±0.70 15.20±0.70 16.21±0.38 15.20±0.70
union-a 16.34±0.25 15.35±0.09 18.70±0.18 16.34±0.25 16.34±0.25 16.34±0.25 18.00±0.50 16.65±0.12 16.65±0.12 18.00±0.50 16.34±0.25
union-b 16.39±0.35 15.65±0.29 19.06±0.50 16.39±0.35 15.67±0.20 15.67±0.20 15.67±0.20 15.67±0.20 15.67±0.20 16.39±0.35 15.67±0.20
geo-w 15.65±0.28 15.60±0.32 18.63±0.56 15.46±0.28 15.65±0.28 15.65±0.28 15.65±0.28 15.65±0.28 15.65±0.28 16.58±0.54 15.65±0.28
geo-f 15.62±0.27 15.61±0.38 18.93±0.31 15.62±0.27 15.62±0.27 15.62±0.27 15.62±0.27 15.62±0.27 15.62±0.27 15.62±0.27 15.62±0.27
madl 17.87±2.96 15.85±0.51 17.90±0.62 17.43±0.52 17.43±0.52 17.52±0.67 17.52±0.67 16.59±0.71 16.59±0.71 16.59±0.71 16.59±0.71
crowd-ar 16.98±0.52 15.49±0.59 19.81±0.33 16.62±0.51 16.06±0.22 16.48±0.71 16.48±0.71 16.48±0.71 16.48±0.71 16.48±0.71 16.48±0.71
annot-mix 16.10±0.54 15.21±0.37 18.79±0.28 15.99±0.26 15.99±0.26 16.05±0.67 15.99±0.26 15.99±0.26 15.99±0.26 15.99±0.26 15.99±0.26
coin 15.77±0.30 15.63±0.42 19.15±0.51 15.77±0.30 15.77±0.30 15.77±0.30 15.77±0.30 15.77±0.30 15.77±0.30 16.33±0.30 15.77±0.30

spc-rand-var
gt 15.76±0.29 15.76±0.29 17.27±0.31 15.28±0.28 15.28±0.28 N/A N/A N/A N/A N/A 15.28±0.28
mv 16.69±0.73 16.32±0.61 18.89±0.17 16.69±0.73 16.32±0.61 N/A N/A N/A N/A N/A 16.69±0.73
ds 15.72±0.26 15.71±0.40 18.29±0.34 15.72±0.26 15.72±0.26 15.44±0.14 15.72±0.26 15.11±0.26 14.89±0.43 14.89±0.43 15.44±0.14
cl 15.72±0.51 15.91±0.56 16.37±0.49 15.72±0.51 15.69±0.60 15.61±0.63 15.61±0.63 15.61±0.63 15.40±0.31 15.54±0.31 15.69±0.60
trace 15.22±0.41 16.31±0.81 18.34±0.38 15.22±0.41 15.22±0.41 15.22±0.41 15.22±0.41 15.22±0.41 15.99±0.25 15.22±0.41 15.22±0.41
conal 16.47±0.41 15.63±0.38 17.45±0.55 16.04±0.29 16.04±0.29 15.68±0.45 15.42±0.43 16.04±0.29 16.04±0.29 16.04±0.29 16.04±0.29
union-a 15.57±0.32 15.83±0.08 16.43±0.52 15.57±0.32 15.57±0.32 15.57±0.32 15.57±0.32 15.57±0.32 15.57±0.32 15.57±0.32 15.57±0.32
union-b 15.30±0.41 15.90±0.59 16.48±0.65 15.30±0.41 15.30±0.41 15.58±0.38 15.30±0.41 15.30±0.41 15.30±0.41 15.30±0.41 15.30±0.41
geo-w 15.78±0.53 15.80±0.59 16.41±0.41 15.61±0.37 15.61±0.37 15.32±0.37 15.32±0.37 15.32±0.37 15.78±0.53 15.78±0.53 15.61±0.37
geo-f 15.76±0.57 15.80±0.59 16.14±0.50 15.63±0.24 15.63±0.24 15.81±0.38 15.81±0.38 15.81±0.38 15.76±0.57 16.03±0.57 15.63±0.24
madl 15.88±0.54 16.41±1.33 16.24±0.46 15.59±0.63 15.59±0.63 15.19±0.17 15.19±0.17 15.37±0.50 15.59±0.63 15.59±0.63 15.59±0.63
crowd-ar 16.74±0.41 15.94±0.48 17.70±0.33 16.29±0.90 16.29±0.90 16.29±0.90 16.29±0.90 16.29±0.90 16.29±0.90 16.29±0.90 16.29±0.90
annot-mix 15.71±0.40 16.15±0.30 16.58±0.77 15.66±0.37 15.66±0.37 15.66±0.37 15.66±0.37 15.14±0.23 15.52±0.23 15.52±0.23 15.14±0.23
coin 15.67±0.30 15.80±0.48 16.15±0.25 15.67±0.30 15.67±0.30 15.54±0.26 15.67±0.29 15.72±0.39 15.55±0.30 15.67±0.29 15.67±0.30

spc-full
gt 15.24±0.18 15.24±0.18 17.27±0.31 15.09±0.20 15.09±0.20 N/A N/A N/A N/A N/A 15.09±0.20
mv 15.64±0.28 15.10±0.48 17.93±0.51 15.24±0.30 15.24±0.30 N/A N/A N/A N/A N/A 15.24±0.30
ds 15.23±0.10 15.14±0.33 16.80±0.50 15.23±0.10 15.23±0.10 15.23±0.10 15.23±0.10 15.23±0.10 15.26±0.29 15.26±0.29 15.23±0.10
cl 14.89±0.17 14.87±0.43 15.24±0.36 14.89±0.17 14.89±0.17 15.33±0.31 15.33±0.36 15.33±0.31 14.87±0.31 15.23±0.19 14.87±0.31
trace 16.56±0.58 14.66±0.11 16.74±0.38 14.73±0.33 14.73±0.33 14.73±0.33 14.73±0.33 14.73±0.33 14.94±0.38 14.94±0.38 14.94±0.38
conal 15.60±0.43 14.79±0.29 16.81±0.24 15.60±0.43 15.60±0.43 14.85±0.39 15.60±0.43 15.60±0.43 15.60±0.43 14.85±0.39 14.85±0.39
union-a 15.70±0.32 14.79±0.37 15.30±0.23 15.63±0.27 15.63±0.27 15.63±0.27 14.93±0.29 15.33±0.47 15.33±0.47 15.63±0.27 15.63±0.27
union-b 15.33±0.52 14.82±0.47 15.11±0.33 15.28±0.42 15.28±0.42 14.74±0.13 15.28±0.42 15.28±0.42 15.28±0.42 15.17±0.33 15.28±0.42
geo-w 15.30±0.56 14.77±0.49 15.34±0.38 15.30±0.56 15.30±0.56 15.11±0.47 14.97±0.35 15.21±0.41 14.97±0.35 15.15±0.35 14.97±0.35
geo-f 15.32±0.64 14.86±0.40 15.26±0.21 14.86±0.49 14.86±0.49 14.86±0.49 14.86±0.49 15.15±0.75 14.86±0.49 15.43±0.24 14.86±0.49
madl 15.53±0.79 15.09±0.52 15.71±0.60 15.53±0.79 15.53±0.79 15.07±0.31 15.53±0.79 15.08±0.37 15.20±0.60 14.57±0.34 15.53±0.79
crowd-ar 16.60±3.12 14.68±0.31 16.28±0.39 15.06±0.53 15.06±0.53 15.30±0.40 16.20±0.40 15.41±0.43 15.41±0.43 15.30±0.40 16.20±0.40
annot-mix 14.73±0.25 14.25±0.35 15.83±0.20 14.73±0.25 14.73±0.25 14.73±0.25 14.73±0.25 14.73±0.25 15.66±0.69 15.66±0.69 14.73±0.25
coin 14.99±0.30 14.75±0.42 15.35±0.39 14.99±0.30 14.99±0.30 14.99±0.30 14.99±0.30 15.25±0.73 15.12±0.31 15.12±0.31 14.99±0.30
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