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Abstract

This paper presents a new mechanism to facilitate the training of mask transformers
for efficient panoptic segmentation, democratizing its deployment. We observe that
due to the high complexity in the training objective of panoptic segmentation, it will
inevitably lead to much higher penalization on false positive. Such unbalanced loss
makes the training process of the end-to-end mask-transformer based architectures
difficult, especially for efficient models. In this paper, we present ReMaX that adds
relaxation to mask predictions and class predictions during the training phase for
panoptic segmentation. We demonstrate that via these simple relaxation techniques
during training, our model can be consistently improved by a clear margin without
any extra computational cost on inference. By combining our method with efficient
backbones like MobileNetV3-Small, our method achieves new state-of-the-art
results for efficient panoptic segmentation on COCO, ADE20K and Cityscapes.
Code and pre-trained checkpoints will be available at https://github.com/
google-research/deeplab2.

1 Introduction

Panoptic segmentation [36] aims to provide a holistic scene understanding [63] by unifying instance
segmentation [21] and semantic segmentation [24]. The comprehensive understanding of the scene is
obtained by assigning each pixel a label, encoding both semantic class and instance identity. Prior
works adopt separate segmentation modules, specific to instance and semantic segmentation, followed
by another fusion module to resolve the discrepancy [71, 12, 35, 70, 53, 42]. More recently, thanks
to the transformer architecture [64, 4], mask transformers [66, 13, 76, 43, 72, 14, 73] are proposed
for end-to-end panoptic segmentation by directly predicting class-labeled masks.

Although the definition of panoptic segmentation only permits each pixel to be associated with
just one mask entity, some recent mask transformer-based methods [13, 76, 14, 40] apply sigmoid
cross-entropy loss (i.e., not enforcing a single prediction via softmax cross-entropy loss) for mask
supervision. This allows each pixel to be associated with multiple mask predictions, leading to an
extremely unbalanced loss during training. As shown in Figure 1, when using the sigmoid cross-
entropy loss to supervise the mask branch, the false-positive (FP) loss can be even 103× larger than
the false-negative (FN) loss. Surprisingly, such unbalanced loss leads to better results than using
softmax cross-entropy, which indicates that the gradients produced by the FP loss are still helpful for
better performance.

However, the radical imbalance in the losses makes it difficult for the network to produce confident
predictions, especially for efficient backbones [28, 57, 27], as they tend to make more mistakes given
the smaller model size. Meanwhile, the training process will also become unstable due to the large
scale loss fluctuation. To address this issue, recent approaches [4, 13, 14, 40] need to carefully clip
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Figure 1: The histogram shows the ratio of
false positives to false negatives for the cross-
entropy loss, on a logarithmic scale. When
using sigmoid as the activation function, the false
positive loss is always over 100× greater than
the false negative, making the total loss to be
extremely unbalanced.
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Figure 2: The overall pipeline for mask-
transformers. ⊗ represents the matrix multipli-
cation. Here xi

pan and xi
sem represent the input

features of the ith stage for panoptic and seman-
tic heads respectively.

the gradients during training to a very small value like 0.01; otherwise, the loss would explode and
the training would collapse. In this way, the convergence of the network will also be slower. A natural
question thus emerges: Is there a way to keep those positive gradients, while better stabilizing the
training of the network?

To deal with the aforementioned conflicts in the learning objectives, one naïve solution is to apply
weighted sigmoid cross entropy loss during training. However, simply applying the hand-crafted
weights would equivalently scale the losses for all data points, which means those positive and helpful
gradients will be also scaled down. Therefore, in this paper, we present a way that can adaptively adjust
the loss weights by only adding training-time relaxation to mask-transformers [73, 66, 13, 14, 43, 76].
In particular, we propose two types of relaxation: Relaxation on Masks (ReMask) and Relaxation on
Classes (ReClass).

The proposed ReMask is motivated by the observation that semantic segmentation is a relatively
easier task than panoptic segmentation, where only the predicted semantic class is required for each
pixel without distinguishing between multiple instances of the same class. As a result, semantic
segmentation prediction could serve as a coarse-grained task and guide the semantic learning of
panoptic segmentation. Specifically, instead of directly learning to predict the panoptic masks, we
add another auxiliary branch during training to predict the semantic segmentation outputs for the
corresponding image. The panoptic prediction is then calibrated by the semantic segmentation outputs
to avoid producing too many false positive predictions. In this way, the network can be penalized less
by false positive losses.

The proposed ReClass is motivated by the observation that each predicted mask may potentially
contain regions involving multiple classes, especially during the early training stage, although each
ground-truth mask and final predicted mask should only contain one target in the mask transformer
framework [66]. To account for this discrepancy, we replace the original one-hot class label for each
mask with a softened label, allowing the ground-truth labels to have multiple classes. The weights of
each class is determined by the overlap of each predicted mask with all ground-truth masks.

By applying such simple techniques for relaxation to the state-of-the-art kMaX-DeepLab [73], our
method, called ReMaX, can train the network stably without any gradient-clipping operation with a
over 10× greater learning rate than the baseline. Experimental results have shown that our method
not only speeds up the training by 3×, but also leads to much better results for panoptic segmentation.
Overall, ReMaX sets a new state-of-the-art record for efficient panoptic segmentation. Notably,
for efficient backbones like MobileNetV3-Small and MobileNetV3-Large [27], our method can
outperform the strong baseline by 4.9 and 5.2 in PQ on COCO panoptic for short schedule training;
while achieves 2.9 and 2.1 improvement in PQ for the final results (i.e., long schedules). Meanwhile,
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our model with a Axial-ResNet50 (MaX-S) [65] backbone outperforms all state-of-the-art methods
with 3× larger backbones like ConvNeXt-L [47] on Cityscapes [17]. Our model can also achieve
the state-of-the-art performance when compared with the other state-of-the-art efficient panoptic
segmentation architectures like YOSO [29] and MaskConver [55] on COCO [44], ADE20K [77] and
Cityscapes [17] for efficient panoptic segmentation.

2 Related Work

Mask Transformers for image segmentation. Recent advancements in image segmentation has
proven that Mask Transformers [66], which predict class-labeled object masks through the Hungarian
matching of predicted and ground truth masks using Transformers as task decoders [64, 4], outperform
box-based methods [35, 70, 54] that decompose panoptic segmentation into multiple surrogate tasks,
such as predicting masks for detected object bounding boxes [23] and fusing instance and semantic
segmentation [48, 10] with merging modules [42, 53, 45, 71, 12, 41]. The Mask Transformer based
methods rely on converting object queries to mask embedding vectors [32, 62, 67], which are then
multiplied with pixel features to generate predicted masks. Other approaches such as Segmenter
[59] and MaskFormer [14] have also used mask transformers for semantic segmentation. K-Net [76]
proposes dynamic kernels for generating masks. CMT-DeepLab [72] suggests an additional clustering
update term to improve transformer’s cross-attention. Panoptic Segformer [43] enhances mask
transformers with deformable attention [79]. Mask2Former [14] adopts masked-attention, along with
other technical improvements such as cascaded transformer decoders [4], deformable attention [79],
and uncertainty-based point supervision [37], while kMaX-DeepLab [73] employs k-means cross-
attention. OneFormer [31] extends Mask2Former with a multi-task train-once design. Our work
builds on top of the modern mask transformer, kMaX-DeepLab [73], and adopts novel relaxation
methods to improve model capacity.

The proposed Relaxation on Masks (ReMask) is similar to the masked-attention in Mask2Former [14]
and the k-means attention in kMaX-DeepLab [73] in the sense that we also apply pixel-filtering
operations to the predicted masks. However, our ReMask operation is fundamentally distinct from
theirs in several ways: (1) we learn the threshold used to filter pixels in panoptic mask predictions
through a semantic head during training, while both masked-attention [14] and k-means attention [73]
use either hard thresholding or argmax operation on pixel-wise confidence for filtering; (2) our
approach relaxes the training objective by applying a pixel-wise semantic loss on the semantic mask
for ReMask, while they do not have explicit supervision for that purpose; and (3) we demonstrate
that ReMask can complement k-means attention in Section 4.

Acceleration for Mask Transformers for efficient panoptic segmentation. DETR [4] success-
fully proves that Transformer-based approaches can be used as decoders for panoptic segmentation,
however, it still suffer from the slow training problem which requires over 300 epochs for just one go.
Recent works [14, 73, 79, 50] have found that applying locality-enhanced attention mechanism can
help to boost the speed of training for instance and panoptic segmentation. Meanwhile, some other
works [76, 43, 33] found that by removing the bi-partite matching for stuff classes and applying a
separate group of mask queries for stuff classes can also help to speed up the convergence. Unlike
them, which apply architectural level changes to the network, our method only applies training-time
relaxation to the framework, which do not introduce any extra cost during testing. Apart from the
training acceleration, recent works [26, 29, 12, 55, 51] focus on how to make the system for panoptic
segmentation more efficient. However, all these works focus on the modulated architecutural design
while our approach focus on the training pipeline, which should be two orthogonal directions.

Coarse-to-fine refinement for image segmentation. In the field of computer vision, it is a com-
mon practice to learn representations from coarse to fine, particularly in image segmentation.
For instance, DeepLab [6, 8] proposes a graph-based approach [38, 7] that gradually refines seg-
mentation results. Recently, transformer-based methods for image and video segmentation such
as [66, 14, 76, 69, 43, 20, 74, 78] have also adopted a multi-stage strategy to iteratively improve
predicted segmentation outcomes in transformer decoders. The concept of using coarse-grained
features (e.g., semantic segmentation) to adjust fine-grained predictions (e.g., instance segmentation)
is present in certain existing works, including [11, 2, 3]. However, these approaches can lead to
a substantial increase in model size and number of parameters during both training and inference.
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Figure 4: Demonstration on how ReClass works.
We utilize the mask rendered in blue as an example.
Our ReClass operation aims to soften the class-wise
ground-truth by considering the degree of overlap
between the prediction and ground-truth mask. The
blue mask intersects with both masks of "baseball
glove" and "person", so the final class weights contain
both and the activation of "person" in the prediction
will no longer be regarded as a false positive case
during training.

By contrast, our ReMaX focuses solely on utilizing the coarse-fine hierarchy for relaxation without
introducing any additional parameters or computational costs during inference.

Regularization and relaxation techniques. The proposed Relaxation on Classes (ReClass) in-
volves adjusting label weights based on the prior knowledge of mask overlaps, which is analogous
to the re-labeling strategy employed in CutMix-based methods such as [75, 5, 60], as well as label
smoothing [61] used in image classification. However, the problem that we are tackling is substantially
different from the above label smoothing related methods in image classification. In image classifica-
tion, especially for large-scale single-class image recognition benchmarks like ImageNet [56], it is
unavoidable for images to cover some of the content for other similar classes, and label smoothing
is proposed to alleviate such labelling noise into the training process. However, since our approach
is designed for Mask Transformers [66, 13, 14, 73, 72] for panoptic segmentation, each image is
precisely labelled to pixel-level, there is no such label noise in our dataset. We observe that other than
the class prediction, the Mask Transformer approaches also introduce a primary class identification
task. The proposal of ReClass operation reduces the complexity for the classification task in Mask
Transformers. Prior to the emergence of Mask Transformers, earlier approaches did not encounter
this issue as they predicted class labels directly on pixels instead of masks.

3 Method

Before delving into the details of our method, we briefly recap the framework of mask transform-
ers [66] for end-to-end panoptic segmentation. Mask Transformers like [66, 14, 76, 69, 43] perform
both semantic and instance segmentation on the entire image using a single Transformer-based
model. These approaches basically divide the entire framework into 3 parts: a backbone for feature
extraction, a pixel decoder with feature pyramid that fuses the feature generated by the backbone,
and a transformer mask decoder that translates features from the pixel decoder into panoptic masks
and their corresponding class categories.

In the transformer decoder, a set of mask queries is learnt to segment the image into a set of masks
by a mask head and their corresponding categories by a classification head. These queries are
updated within each transformer decoder (typically, there are at least 6 transformer decoders) by the
cross-attention mechanism [64] so that the mask and class predictions are gradually refined. The set
of predictions are matched with the ground truth via bipartite matching during training; while these
queries will be filtered with different thresholds as post-processing during inference. We follow the
same post-processing as kMaX-DeepLab [73].
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3.1 Relaxation on Masks (ReMask)

The proposed Relaxation on Masks (ReMask) aims to ease the training of panoptic segmentation
models. Panoptic segmentation is commonly viewed as a more intricate task than semantic seg-
mentation, since it requires the model to undertake two types of segmentation (namely, instance
segmentation and semantic segmentation). In semantic segmentation, all pixels in an image are
labeled with their respective class, without distinguishing between multiple instances (things) of
the same class. As a result, semantic segmentation is regarded as a more coarse-grained task when
compared to panoptic segmentation. Current trend in panoptic segmentation is to model things and
stuff in a unified framework and resorts to train both the coarse-grained segmentation task on stuff
and the more fine-grained segmentation task on things together using a stricter composite objective
on things, which makes the model training more difficult. We thus propose ReMask to exploit an
auxiliary semantic segmentation branch to facilitate the training.

Definition. Here we first define H,W as the height and width of the feature, NQ as the number of
mask queries. NC denotes the number of semantic classes for the target dataset, dq is the number of
channels for the query representation, and dsem is the number of channels for the input of semantic
head. As shown in Figure 2 and 3, given a mask representation xpan ∈ RHW×NQ , we apply a
panoptic mask head to generate panoptic mask logits mpan ∈ RHW×NQ . A mask classification
head to generate the corresponding classification result p ∈ RNQ×NC is applied for each query
representation q ∈ RNQ×dq . A semantic head is applied after the semantic feature xsem ∈ RHW×dsem

from the pixel decoder to produces a pixel-wise semantic segmentation map msem ∈ RHW×NC

assigning a class label to each pixel. As for the structure for semantic head, we apply an ASPP
module [9] and a 1× 1 convolution layer afterwards to transform dsem channels into NC channels
as the semantic prediction. Note that the whole auxiliary semantic branch will be skipped during
inference as shown in Figure 3. Since the channel dimensionality between msem and mpan is different,
we map the semantic masks into the panoptic space by:

m̂sem = σ(msem)σ(p
ᵀ), (1)

where σ(·) function represents the sigmoid function that normalizes the logits into interval [0, 1].
Then we can generate the relaxed panoptic outputs m̂pan in the semantic masking process as follows:

m̂pan = mpan + (m̂sem �mpan), (2)

where the � represents the Hadamard product operation. Through the ReMask operation, the false
positive predictions in mpan can be suppressed by m̂sem, so that during training each relaxed mask
query can quickly focus on areas of their corresponding classes. Here we apply identity mapping
to keep the original magnitude of mpan so that we can remove the semantic branch during testing.
This makes ReMask as a complete relaxation technique that does not incur any overhead cost during
testing. The re-scaled panoptic outputs m̂pan will be supervised by the losses Lpan.

Stop gradient for a simpler objective to m̂sem. In order to prevent the losses designed for panoptic
segmentation from affecting the parameters in the semantic head, we halt the gradient flow to msem,
as illustrated in Figure 3. This means that the semantic head is solely supervised by a semantic loss
Lsem, so that it can focus on the objective of semantic segmentation, which is a less complex task.

How does ReMask work? As defined above, there are two factors that ReMask operation helps
training, (1) the Hadamard product operation between the semantic outputs and the panoptic outputs
that helps to suppress the false positive loss; and (2) the relaxation on training objectives that trains
the entire network simultaneously with consistent (coarse-grained) semantic predictions. Since
the semantic masking can also enhance the locality of the transformer decoder like [14, 73], we
conducted experiments by replacing msem with ground truth semantic masks to determine whether it
is the training relaxation or the local enhancement that improves the training. When msem is assigned
with ground truth, there will be no Lsem applied to each stage, so that mpan is applied with the most
accurate local enhancement. In this way, there are large amount of false positive predictions masked
by the ground truth semantic masks, so that the false positive gradient will be greatly reduced. The
results will be reported in Section 4. The semantic masking can be viewed as local enhancement as it
would suppress the extreme false-positive predictions via a simple masking operation.
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Figure 5: Performance on COCO val compared
to the baseline kMaX-DeepLab [73]. ReMaX can
lead to 3× faster convergence compared to the
baseline, and can improve the baselines by a clear
margin. The performance of ResNet-50 can be
further improved to 54.2 PQ when the model is
trained for 200K iterations.

Method Backbone Resolution FPS PQ
Panoptic-DeepLab [12] MNV3-L [27] 641×641 26.3 30.0
Panoptic-DeepLab [12] R50 [22] 641×641 20.0 35.1
Real-time [26] R50 [22] 800×1333 15.9 37.1
MaskConver [55] MN-MH [16] 640×640 40.2 37.2
MaskFormer [14] R50 [22] 800×1333 17.6 46.5
YOSO [29] R50 [22] 800×1333 23.6 48.4
YOSO [29] R50 [22] 512×800 45.6 46.4
kMaX-DeepLab [73] R50 [22] 1281×1281 16.3 53.0
ReMaX-T† MNV3-S [27] 641×641 108.7 40.4
ReMaX-S† MNV3-L [27] 641×641 80.9 44.6
ReMaX-M‡ R50 [22] 641×641 51.9 49.1
ReMaX-B R50 [22] 1281×1281 16.3 54.2

Table 1: Comparison with other state-of-the-art ef-
ficient models (≥ 15 FPS) on COCO val set. The
Pareto curve is shown in Figure 6 (b). The FPS of
all models are evaluated on a NVIDIA V100 GPU
with batch size 1. †‡ represent the application of
efficient pixel and transformer decoders. Please
check the appendix for details.

3.2 Relaxation on Classes (ReClass)

Mask Transformers [66, 14, 73, 43] operate under the assumption that each mask prediction corre-
sponds to a single class, and therefore, the ground truth for the classification head are one-hot vectors.
However, in practice, each imperfect mask predicted by the model during the training process may
intersect with multiple ground truth masks, especially during the early stage of training. As shown
in Figure 4, the blue mask, which is the mask prediction, actually covers two classes ("baseball
glove" and "person") defined in the ground truth. If the class-wise ground truth only contains the
class "baseball glove", the prediction for “person” will be regarded as a false positive case. However,
the existence of features of other entities would bring over-penalization that makes the network
predictions to be under-confident.

To resolve the above problem, we introduce another relaxation strategy on class logits, namely Class-
wise Relaxation (ReClass), that re-assigns the class confidence for the label of each predicted mask
according to the overlap between the predicted and ground truth semantic masks. We denote the one-
hot class labels as y, the ground truth binary semantic masks as S = [s0, ..., sHW ] ∈ {0, 1}HW×NC ,
the supplement class weights is calculated by:

ym =
σ(mpan)

ᵀS∑HW
i si

, (3)

where ym denotes the label weighted by the normalized intersections between the predicted and the
ground truth masks. With ym, we further define the final class weight ŷ ∈ [0, 1]NC as follows:

ŷ = ηym + (1− ηym)y, (4)

where the η denotes the smooth factor for ReClass that controls the degree of the relaxation applying
to the classification head.

4 Experimental Results

4.1 Datasets and Evaluation Metric

Our study of ReMaX involves analyzing its performance on three commonly used image segmentation
datasets. COCO [44] supports semantic, instance, and panoptic segmentation with 80 “things” and 53
“stuff” categories; Cityscapes [17] consists of 8 “things” and 11 “stuff” categories; and ADE20K [77]
contains 100 “things” and 50 “stuff” categories. We evaluate our method using the Panoptic Quality
(PQ) metric defined in [36] (for panoptic segmentation), the Average Precision defined in [44] (for
instance segmentation), and the mIoU [19] metric (for semantic segmentation).
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Figure 6: FPS-PQ Pareto curve on (a) COCO Panoptic val set and (b) Cityscapes val set. Details
of the corresponding data points can be found in Table 1 and 9. We compare our method with
other state-of-the-art efficient pipelines for panoptic segmentation including kMaX-DeepLab [73],
Mask2Former [14], YOSO [29], Panoptic-DeepLab [12], Real-time Panoptic Segmentation [26],
UPSNet [70], LPSNet [25], MaskFormer [13], and MaskConver [55].

4.2 Results on COCO Panoptic

Implementation details. The macro-architecture of ReMaX basically follows kMaX-
DeepLab [73], while we incorporate our modules introduced in Section 3 into the corresponding
heads. Concretely, we use the key in each k-means cross-attention operation as xsem defined in
Figure 3. The semantic head introduced during training consists of an ASPP module [8] and a 1× 1
convolution that outputs NC number of channels. The specification of models with different size is
introduced in the appendix. For other details like post-processing and data preparation, we strictly
follow kMaX-DeepLab [73].

Training details. We basically follow the training recipe proposed in kMaX-DeepLab [73] but
make some changes to the hyper-parameters since we add more relaxation to the network. Here
we high-light the necessary and the full training details and specification of our models can be also
found in the appendix. The learning rate for the ImageNet-pretrained [56] backbone is multiplied
with a smaller learning rate factor 0.1. For training augmentations, we adopt multi-scale training
by randomly scaling the input images with a scaling ratio from 0.3 to 1.7 and then cropping it into
resolution 1281× 1281. Following [66, 72, 73], we further apply random color jittering [18], and
panoptic copy-paste augmentation [33, 58] to train the network. DropPath [30, 39] is applied to the
backbone, the transformer decoder. AdamW [34, 49] optimizer is used with weight decay 0.005 for
short schedule 50K and 100K with a batch size 64. For long schedule, we set the weight decay to
0.02. The initial learning rate is set to 0.006, which is multiplied by a decay factor of 0.1 when the
training reaches 85% and 95% of the total iterations. The entire framework is implemented with
DeepLab2 [68] in TensorFlow [1]. Following [66], we apply a PQ-style loss, a Mask-ID cross-entropy
loss, and the instance discrimination loss to better learn the feature extracted from the backbone.

For all experiments if not specified, we default to use ResNet-50 as the backbone and apply ReMask
to the first 4 stages of transformer decoder. The η for ReClass operation is set to 0.1. All models
are trained for 27 epochs (i.e., 50K iterations). The loss weight for the auxiliary semantic loss Lsem
applied to each stage in the transformer decoder is set to 0.5 and the weights for those loss terms in
Lpan are set the same as kMaX-Deeplab[73].

ReMaX significantly improves the training convergence and outperforms the baseline by a
large margin. As shown in Figure 5, we can see that when training the model under different
training schedules 50K, 100K and 150K, our method outperform the baselines by a clear margin
for all different schedules. Concretely, ReMaX can outperform the state-of-the-art baseline kMaX-
DeepLab by a significant 3.6 PQ when trained under a short-term schedule 50K iterations (27 epochs)
for backbone ResNet-50. Notably, our model trained with only 50K iterations performs even better
than kMaX-DeepLab [73] trained for the 100K iterations (54 epochs), which means that our model
can speed up the training process by approximately 2×. We kindly note that the performance of
ResNet-50 can be further improved to 54.2 PQ for 200K iterations. ReMaX works very well with
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Activation w/
ReMaX?

w/ grad-
clip? PQ

softmax × × 48.8
softmax X × 49.5
sigmoid × × 50.4
sigmoid × X 51.2
sigmoid X × 52.4

Table 2: The impact of ac-
tivation function and gradi-
ent clipping.

#ReMasks 0 2 4 6
PQ 50.4 51.9 52.4 51.5

Table 3: The effect of number of
ReMask applied. ReMaX per-
forms the best when ReMask is ap-
plied to the first 4 stages of the trans-
former decoder.

η 0 0.01 0.05 0.1 0.2
PQ 51.7 51.7 51.9 52.4 51.5

Table 4: The impact of dif-
fernt η defined in Eq. 4 for
ReClass. Here we observe
that the result reaches its peak
when η = 0.1.

w/ identity
mapping?

w/ ReMask
in test? PQ

X × 52.4
X X 52.4
× X 52.1
× × 51.9

Table 5: Effect of applying
identity mapping and auxil-
iary head for ReMask dur-
ing testing. Removing the
auxiliary semantic head will
not lead to performance drop
when m̂pan is applied with
identity mapping.

Method Backbone FPS PQ
MaskFormer [13]

R50 [22]

17.6 46.5
K-Net [76] - 47.1
PanSegFormer [43] 7.8 49.6
Mask2Former [14] 8.6 51.9
kMaX-DeepLab [73] 26.3 53.0
MaskDINO [40] 16.8‡ 53.0
ReMaX 26.3† 54.2

Table 6: Comparison on COCO
val with other models using
ResNet-50 as the backbone. †The
FPS here is evaluated under resolu-
tion 1200 × 800 on V100 and the
model is trained for 200K iterations.
‡ is evaluated using a A100 GPU.

w/ stop-grad? w/ gt? PQ
X × 52.4

N/A X 45.1
× × 36.6∗

Table 7: The effect of stop
gradient and gt-masking.
The denotation w/ gt? means
whether we use ground-truth
semantic masks for msem.
∗ The result without the
stop-gradient operation does
not well converge in training.

efficient backbones including MobileNetV3-Small [27] and MobileNetV3-Large [27], which surpass
the baseline performance by 4.9 and 5.2 PQ for 50K iterations, and 3.3 and 2.5 PQ respectively for
150K iterations. These results demonstrate that the proposed relaxation can significantly boost the
convergence speed, yet can lead to better results when the network is trained under a longer schedule.

ReMaX vs. other state-of-the-art models for efficient panoptic segmentation. Table 1 and Figure
6 (a) compares our method with other state-of-the-art methods for efficient panoptic segmentation
on COCO Panoptic. We present 4 models with different resolution and model capacity, namely
ReMaX-Tiny (T), ReMaX-Small (S), ReMaX-Medium (M) and ReMaX-Base (B). Due to the limit
of space, the detailed specification of these models is included in the appendix. According to the
Pareto curve shown in Figure 6 (a), our approach outperforms the previous state-of-the-art efficient
models by a clear margin. Specifically, on COCO Panoptic val set, our models achieve 40.4, 44.6,
49.1 and 54.2 PQ with 109, 81, 52 and 16 FPS for ReMaX-T, ReMaX-S, ReMaX-M and ReMaX-B
respectively. The speed of these models is evaluated under the resolution 641 × 641 except for
ReMaX-Base, which is evaluated under resolution 1281× 1281. Meanwhile, as shown in Table 6,
our largest model with the backbone ResNet-50 also achieves better performance than the other
non-efficient state-of-the-art methods with the same backbone.

Effect of different activation, and the use of gradient clipping. Table 2 presents the effect of using
different activation function (sigmoid vs. softmax) for the Mask-ID cross-entropy loss and the σ(·)
defined in Eq (1). From the table we observe that ReMask performs better when using sigmoid as
the activation function, but our method can get rid of gradient clipping and still get a better result.

Can we use the ground-truth masks for local enhancement instead of ReMask? As discussed in
Section 3, to figure out whether it is the loss relaxation or the pixel filtering that improves the training,
we propose experiments to replace msem with the ground truth semantic masks during training. When
msem is changed into the ground truth, all positive predictions outside the ground-truth masks will be
removed, which means that the false positive loss would be significantly scaled down. The huge drop
(52.4 vs. 45.1 PQ in Table 7) indicates that the gradients from false positive losses can benefit the
final performance. Table 7 also shows that when enabling the gradient flow from the panoptic loss
to the semantic predictions, the whole framework cannot converge well and lead to a drastic drop
in performance (36.6 PQ). The semantic masks msem faces a simpler objective (i.e. only semantic
segmentation) if the gradient flow is halted.
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w/semantic masking
(local enhancement)

w/Lsem

(loss relaxation)
w/ ReClass

? Iterations PQ

× × × 50K 50.4
× × × 150K 53.0
× X × 50K 51.3
× X × 150K 53.0
X X × 50K 51.7
X X X 50K 52.4
X X X 150K 54.0

Table 8: The relative impact of loss relaxation and semantic masking (local enhancement) on COCO
Panoptic val set under short (50K) and long (150K) training schedule.

The relative contribution of loss relaxation and local enhancement in ReMask. The auxiliary
semantic loss term can be viewed as loss relaxation, while the semantic masking branch can be
viewed as local enhancement. To disentangle the relative contribution of loss relaxation and local
enhancement, we conducted another ablation study that removes the semantic masking branch (the
concrete grey arrow right under "stop grad" in Figure 3), which would remove the local enhancement
(semantic masking) but keep the auxiliary semantic loss term for loss relaxation. The results are
reported in Table 8. The short training schedule of 50K iterations shows that the semantic loss
relaxation leads to a 0.9 increase in PQ; while the semantic masking contributes to an additional 0.4
gain in PQ. The long-schedule training (i.e. 150K iterations) demonstrates that semantic masking is
critical in ReMask because applying semantic loss relaxation alone without semantic masking does
not result in any improvement. In other words, only using semantic loss relaxation may expedite the
early stage of training (e.g, 50K iterations), but it fails to improve the ultimate convergence quality.

The number of mask relaxation. Table 3 shows the effect of the number of ReMask applied to
each stage, from which we can observe that the performance gradually increases and reaches its peak
at 52.4 PQ when the number of ReMask is 4, which is also our final setting for all other ablation
studies. Using too many ReMask (> 4) operations in the network may add too many relaxation to the
framework, so that it cannot fit well to the final complex goal for panoptic segmentation.

ReClass can also help improve the performance for ReMaX. We investigate ReClass and its
hyper-parameter η in this part and report the results in Table 4. In Table 4, we ablate 5 different η
from 0 to 0.2 and find that ReClass performs the best when η = 0.1, leading to a 0.5 gain compared
to the strong baseline. The efficacy of ReClass validates our assumption that each mask may cover
regions of multiple classes.

Effect of the removing auxiliary semantic head for ReMask during testing. The ReMask op-
eration can be both applied and removed during testing. In Table 5, it shows that the accuracy
is comparable under the two settings. In Table 5 we also show the necessity of applying identity
mapping to mpan during training in order to remove the auxiliary semantic head during testing.
Without the identity mapping at training, removing semantic head during testing would lead to 0.5
drop from 52.4 (the first row in Table 5) to 51.9.

4.3 Results on Cityscapes

Implementation details. Our models are trained using a batch size of 32 on 32 TPUv3 cores, with
a total of 60K iterations. The first 5K iterations constitute the warm-up stage, where the learning rate
gradually increases from 0 to 3× 10−3. During training, the input images are padded to 1025× 2049
pixels. In addition, we employ a multi-task loss function that includes four loss components with
different weights. Specifically, the weights for the PQ-style loss (part of Lpan), auxiliary semantic
loss Lsem, mask-id cross-entropy loss (part of Lpan), and instance discrimination loss are set to 3.0,
1.0, 0.3 and 1.0, respectively. To generate feature representations for our model, we use 256 cluster
centers and incorporate an extra bottleneck block in the pixel decoder, which produces features with
an output stride of 2. These design are basically proposed in kMaX-DeepLab [73] and we simply
follow here for fair comparison.

Results on Cityscapes. As shown in Table 9 and Figure 6 (b), it shows that our method can achieve
even better performance when using a smaller backbone MobileNetV3-Large (62.5 PQ) while the
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Method Backbone FPS PQ
Mask2Former [14] R50 [22] 4.1 62.1
Panoptic-DeepLab [12] Xception-71 [15] 5.7 63.0
LPSNet [25] R50 [22] 7.7 59.7
Panoptic-DeepLab [12] R50 [22] 8.5 59.7
kMaX-DeepLab [73] R50 [22] 9.0 64.3
Real-time [26] R50 [22] 10.1 58.8
YOSO [29] R50 [22] 11.1 59.7
kMaX-DeepLab [73] MNV3-L [27] 22.8 60.2
ReMaX R50 [22] 9.0 65.4
ReMaX MNV3-L [27] 22.8 62.5
ReMaX MNV3-S [27] 25.6 57.7

Table 9: Cityscapes val set results for lightweight
backbones. We consider methods without pre-
training on extra data like COCO [44] and Map-
illary Vistas [52] and test-time augmentation for
fair comparison. We evaluate our FPS with resolu-
tion 1025× 2049 and a V100 GPU. The FPS for
other methods are evaluated using the resolution
reported in their original papers.

Method Backbone FPS #params PQ
Mask2Former [73] Swin-L† [46] - 216M 66.6
kMaX-DeepLab [73] MaX-S† [66] 6.5 74M 66.4
kMaX-DeepLab [73] ConvNeXt-L† [47] 3.1 232M 68.4
OneFormer [31] ConvNeXt-L† [47] - 220M 68.5
ReMaX MaX-S† [27] 6.5 74M 68.7

Table 10: Cityscapes val set results for larger
backbones. †Pre-trained on ImageNet-22k.

Method Backbone Resolution FPS PQ mIoU
MaskFormer [13]

R50 [22]

640-2560 - 34.7 -
Mask2Former [14] 640-2560 - 39.7 46.1
YOSO [29] 640-2560 35.4 38.0 -
kMaX-DeepLab [73] 641×641 38.7 41.5 45.0
kMaX-DeepLab [73] 1281×1281 14.4 42.3 45.3
ReMaX

R50 [22]
641×641 38.7 41.9 45.7

ReMaX 1281×1281 14.4 43.4 46.9
Table 11: ADE20K val set results. Our FPS is
evaluated on a NVIDIA V100 GPU under the
corresponding resolution reported in the table.

other methods are based on ResNet-50. Meanwhile, our model with Axial-ResNet-50 (i.e., MaX-
S, 74M parameters) as the backbone can outperform the state-of-the-art models [31, 73] with a
ConvNeXt-L backbone (> 220M parameters). The Pareto curve in Figure 6 (b) clearly demonstrates
the efficacy of our method in terms of speed-accuracy trade-off.

4.4 Results on ADE20K

Implementation details. We basically follow the same experimental setup as the COCO dataset,
with the exception that we train our model for 100K iterations (54 epochs). In addition, we conduct
experiments using input resolutions of 1281 × 1281 pixels and 641 × 641 respectively. During
inference, we process the entire input image as a whole and resize longer side to target size then
pad the shorter side. Previous approaches use a sliding window approach, which may require more
computational resources, but it is expected to yield better performance in terms of accuracy and
detection quality. As for the hyper-parameter for ReMask and ReClass, we used the same setting as
what we propose on COCO.

Results on ADE20K. In Table 11, we compared the performance of ReMaX with other methods,
using ResNet-50 as the backbone, and found that our model outperforms the baseline model by 1.6
in terms of mIOU, which is a clear margin compared to the baseline, since we do not require any
additional computational cost but only the relaxation during training. We also find that our model
can surpass the baseline model kMaX-DeepLab by 1.1 in terms of PQ. When comparing with other
frameworks that also incorporate ResNet-50 as the backbone, we show that our model is significantly
better than Mask2Former and MaskFormer by 3.7 and 8.7 PQ respectively.

5 Conclusion

This paper presents a novel approach called ReMaX, comprising two components, ReMask and
ReClass, that leads to better training for panoptic segmentation with Mask Transformers. The
proposed method is shown to have a significant impact on training speed and final performance,
especially for efficient models. In principle, ReMaX has the potential to be generalized to other non-
transformer-based panoptic segmentation frameworks as long as it has a panoptic mask representation
and a semantic mask representation . In this paper, we mainly verify our method based on state-of-
the-art mask transformers [73]. We will further validate the generalization capability of our method
in future work. We hope that our work will inspire further investigation in this direction, leading to
more efficient and accurate panoptic segmentation models.
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Appendix

A Loss Visualization of ReMaX

Figure 7: The histogram shows the ratio
of false positives to false negatives for the
cross-entropy loss, on a logarithmic scale.

Method Backbone #Params FLOPs FPS PQ
kMaX-DeepLab [73] ConvNeXt-T† [66] 61M 172G 21.8 55.3
ReMaX ConvNeXt-T† [66] 61M 172G 21.8 55.9
Mask2Former [14] Swin-B† [46] 107M 466G - 56.4
kMaX-DeepLab [73] ConvNeXt-S† [66] 83M 251G 16.5 56.3
ReMaX ConvNeXt-S† [66] 83M 251G 16.5 56.6

Table 12: Results for larger models on COCO val set.
FLOPs and FPS are evaluated with the input size 1200×
800 and a V100 GPU. †: ImageNet-22K pretraining.

We visualize the loss applied with ReMask and the loss applied without ReMask in Figure 7, from
which we can observe that ReMask can effectively reduce extremely high false positive losses;
therefore, our method can stabilize the training of the framework.

B Model Specification

Model Backbone Resolution #Pixel
Decoders

#Transformer
Decoders #FLOPs #Params FPS

ReMaX-T MNV3-S [27] 641× 641 [1, 1, 1, 1] [1, 1, 1] 18.8G 18.6M 109
ReMaX-S MNV3-L [27] 641× 641 [1, 1, 1, 1] [1, 1, 1] 20.9G 22.0M 81
ReMaX-M R50 [22] 641× 641 [1, 5, 1, 1] [1, 1, 1] 67.8G 50.8M 52
ReMaX-B R50 [22] 1281× 1281 [1, 5, 1, 1] [2, 2, 2] 294.7G 56.6M 26

Table 13: Specification of different models in ReMaX family.

We provide the specification of our models and their corresponding number of parameters and FLOPs
in Table 13. We kindly note that the numbers of pixel decoders with the format [·, ·, ·, ·] represent the
numbers for features with [ 1

32 ,
1
16 ,

1
8 ,

1
4 ] times of the input size. We use Axial attention [65] for all

feature maps with resolution 1
32 ,

1
16 of the input size, and regular bottleneck residual blocks [22] for

the rest. The denotation [·, ·, ·] for the transformer decoders represents the numbers for resolution of
[ 1
16 ,

1
8 ,

1
4 ] times of the input size.

C Performance for Larger Models

We also validate the performance of ReMaX for larger models e.g. ConvNeXt-Tiny (T) and ConvNeXt-
Small (S). From Table 12 we can find that ReMaX can achieve better results compared to the baseline
kMaX-DeepLab [73] and Mask2Former [14]. However, the improvement of ReMaX gets saturated
when the numbers become high. Notably, when using ConvNeXt-T backbone, ReMaX can lead to 0.6
PQ increase over kMaX-DeepLab, while incurring no extra computational cost during inference. The
improvement is noticeable, as kMaX-DeepLab only further improves 1.0 PQ by using ConvNeXt-S
backbone, at the cost of extra 36% more parameters (22M) and 46% more FLOPs (79G).

D Limitations

Since we implement our method in TensorFlow, the baselines we can build upon is limited. We
have re-implemented ReMaX in PyTorch and applied it with Mask2former [14]. The result is
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Methods Epochs PQ
Mask2former 24 48.36

Mask2former + ReMaX 24 50.24
Table 14: ReMaX is effective on Mask2Former [14] on COCO Panoptic val set.

reported in table 14. Due to the time limit, we did not reproduce the originally reported Mask2Former
results by fully exploring all the hyper-parameters. However, the table above shows that based on
the same Mask2Former baseline ReMaX boost the overall accuracy. This could demonstrate that
ReMaX is also effective for other segmentation frameworks like Mask2former. In future work, we
need to validate ReMaX based on more frameworks such as YOSO in PyTorch to demonstrate its
effectiveness. Meanwhile, ReClass measures the weight of each class according to the size of each
mask, which may not be accurate and can be further improved in the future.

E Boarder Impact

Our method can help better train models for efficient panoptic segmentation. It can also be used to
develop new applications in areas such as autonomous driving, robotics, and augmented reality. For
example, in autonomous driving, efficient panoptic segmentation can be used to identify and track
other vehicles, pedestrians, and obstacles on the road. This information can be used to help the car
navigate safely. In robotics, efficient panoptic segmentation can be used to help robots understand
their surroundings and avoid obstacles. This information can be used to help robots perform tasks
such as picking and placing objects or navigating through cluttered environments. In augmented
reality, efficient panoptic segmentation can be used to overlay digital information on top of the real
world. This information can be used to provide users with information about their surroundings or to
help them with tasks such as finding their way around a new city. Overall, our method can be used to
boost a variety of applications in the field of computer vision and robotics.
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