Under review as a conference paper at ICLR 2025

LLARGE LANGUAGE MODELS SUFFER FROM THEIR
OwWN OUTPUT: AN ANALYSIS OF THE SELF-
CONSUMING TRAINING LOOP

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLM) are already widely used to generate content for
a variety of online platforms. As we are not able to safely distinguish LLM-
generated content from human-produced content, LLM-generated content is used
to train the next generation of LLMs, giving rise to a self-consuming training
loop. From the image generation domain we know that such a self-consuming
training loop reduces both quality and diversity of images finally ending in a
model collapse. However, it is unclear whether this alarming effect can also be
observed for LLMs. Therefore, we present the first study investigating the self-
consuming training loop for LLMs. Further, we propose a novel method based
on logic expressions that allows us to unambiguously verify the correctness of
LLM-generated content, which is difficult for natural language text. We find that
the self-consuming training loop produces correct outputs, however, the output
declines in its diversity depending on the proportion of the used generated data.
Fresh data can slow down this decline, but not stop it. Further, we observe simi-
lar results on a real natural language dataset. Given these concerning results, we
encourage researchers to study methods to negate this process.

1 INTRODUCTION

Transformer-based language models have received much attention in the machine learning commu-
nity in recent years. Especially large language models (LLM) trained on massive amounts of data
from the internet became state of the art in many benchmarks (Brown et al., |2020) and specialized
conversational LLM applications like ChatGPT|'|have a massive influence on society already. LLMs
can be used for multiple tasks ranging from code generation (Chen et al.|[2021;|Sobania et al., 2022
Fan et al.| |2023) and automated program repair (Sobania et al., [2023) to text summarization (Yang
et al.,[2023)) and teaching assistance (Baidoo-Anu & Ansah, [2023)).

Due to their convincing generated outputs, LLMs can be used to generate a large amount of content
that is posted online to coding platforms like GitHub and Stackoverﬂowﬂ social media platforms
like RedditE] and other platforms on the internet. Even academic writing is already being influenced
by LLM outputs (Geng & Trottal,[2024; [Liang et al.||2024). Such LLM-generated text is often hard to
distinguish from human-generated content (Sadasivan et al.,|2023) and in turn might unwillingly be
used to train the next generation of LLMs. Even paying for human-generated content might not be
an option in the future, as workers at paid services like Amazon’s Mechanical Turk also use LLMs
to produce content (Veselovsky et al.|[2023). Consequently, a self-consuming training loop emerges
in which future models are trained repeatedly on LLM-generated data from previous generations.
This process was first observed for generative models in the image domain (Martinez et al., 2023
Alemohammad et al.l [2023; [Shumailov et al.l [2024; [Bertrand et al., 2023)). These studies found that
this self-consuming training loop leads to a decline in quality and diversity of generated images,
ultimately resulting in a so called model collapse. This was also observed for repeatably fine-tuning
LLMs leading to a decrease in diversity (Guo et al. 2023} |[Shumailov et al.| 2024). However, it

Uhttps://openai.com/blog/chatgpt
Zhttps://www.microsoft.com/en-us/Investor/events/FY-2023/Morgan-Stanley-TMT-Conference
3https://www.vice.com/en/article/jg5qy8/reddit-moderators-brace-for-a-chatgpt-spam-apocalypse

https://openai.com/blog/chatgpt
https://www.microsoft.com/en-us/Investor/events/FY-2023/Morgan-Stanley-TMT-Conference
https://www.vice.com/en/article/jg5qy8/reddit-moderators-brace-for-a-chatgpt-spam-apocalypse

Under review as a conference paper at ICLR 2025

is unclear what happens with LLMs that are trained in such a self-consuming training loop from
scratch, as usually done in real-world applications like ChatGPT.

Therefore, we present the first study analyzing the behavior of LLMs trained over many generations
in a self-consuming training loop. We conduct experiments on a GPT-style model in different set-
tings and measure both quality and diversity of samples from the trained model at each generation in
the self-consuming training loop. The settings differ in the way a dataset is created for each gener-
ation (so called data cycles) as well as the proportion of original real and LLM-generated synthetic
data samples. To better analyze the behavior of the trained models we conduct our experiments on
a dataset consisting of logic expressions. In contrast to natural language, this logic expressions can
be evaluated unambiguously. This allows us to analytically and accurately measure correctness and
diversity of the generated samples. Furthermore, to confirm the generalizability of our results we
conduct additional experiments on a natural language dataset.

We find that repeatedly training new models with synthetic data from previous models initially
improves quality. However, diversity degenerates and the learned distribution inevitably collapses
to a single point. In extreme cases this happens already after less than 10 generations. Additionally,
we find that the speed at which diversity degenerates depends on the data cycle as well as on the
proportion of real and synthetic data. Fresh real data added during the data cycle slows down but
can not negate the effects of a self-consuming training loop.

In summary, our main contributions are as follows:

* The first comprehensive empirical study of the self-consuming training loop for LLMs
trained from scratch,

* A novel method to unambiguously evaluate quality/correctness and diversity of LLM-
generated outputs,

* An in-depth analysis and discussion of the effects and implications of this self-consuming
training loop for LLMs.

Following this introduction, Sect. 2]describes the self-consuming training loop and gives an overview
of related work. In Sect.[3] we describe our experimental setting. Sectiond]presents the experimental
results, followed by a discussion in Sect. [5|and limitations in Sect.[6} Section[7]concludes the paper.

2 THE SELF-CONSUMING TRAINING LooOP

Current generations of LLMs are usually
trained on large amounts of unstructured data
like text and code gathered from the Internet m
(Brown et al., [2020). Due to their generative

nature and capacity those models can in turn be Do M De
used to generate new synthetic data, often indis- {

tinguishable from the original real data (Sada- W {3

sivan et al., [2023). This synthetic data ends

up back on the internet and thus in the next

large dataset, which is used to train the next \/
generation of LLMs. These LLMs in turn pro-

duce new content and data, setting in motion
a repetitive cycle in which new generations of
models are trained each time with a higher pro-
portion of synthetic data from previous gener-
ations. We call this process a self-consuming
training loop, depicted in Figure[I]

sample

Figure 1: Self-consuming training loop: In the
first generation ¢ = 1 a model M, is initially
trained on a real dataset Dy. From this model M;
a sample S; is drawn to build a new dataset D;.
The new dataset D; is in turn used to train a new
More specifically, consider a dataset Dy con- model M, from scratch for the next generation
sisting of real data points x € X sampled ¢+ 1. This process is repeated iteratively until the
from the original distribution Px. A generative maximum number of generations 7 is reached.
model M is trained on this original dataset Dy

until the data is sufficiently fitted, producing the

Under review as a conference paper at ICLR 2025

first generation ¢ = 1 of generative models. In a self-consuming training loop, a new set of m syn-
thetic data points S; is now sampled from the previous generation of generative models M;. The
next generation of generative models M, is then trained from scratch on the new dataset D;.
This self-consuming training loop is repeated until the maximum number of generations ¢ = T is
reached. Algorithm [I]in Appendix [A]presents a pseudo-code of this self-consuming training loop.

This self-consuming training loop differs from self-training to improve LLMs (Huang et al.| 2022}
Wang et al.l 2022} |Gulcehre et al., 2023 Singh et al., |2023; [Zhang et al) 2024) as the synthetic
data is not used intentionally, but rather as a consequence of LLM-generated data published on the
internet without being labeled as such.

Related Work Current research has analyzed the self-consuming training loop mostly in the context
of image generating models. Martinez et al.| (2023) first studied the self-consuming training loop
for diffusion models and find that the self-consuming training loop leads to a collapse in diversity
of the generated images. Other work have given theoretical frameworks for this phenomenon and
investigate more complex data cycles in the context of image generation (Alemohammad et al.,
2023 \IShumailov et al., [2024; Bertrand et al., [2023)). Both|Alemohammad et al.|(2023) and |Bertrand
et al.|(2023) find that fresh real data can lead to stability within the self-consuming training loop.

Shumailov et al.|(2024) observe a degeneration of diversity for Variational Autoencoders and Gaus-
sian Mixture Models if some of the output is used again as input. Additionally, the authors perform
experiments for iteratively fine-tuning LLMs in a self-consuming way and observe a degradation in
quality. They find that degradation is less strong than in the imagine generation context and that
keeping some original data helps mitigating this phenomenon. Other contemporary work also an-
alyzed repeated fine-tuning of LLMs in a self-consuming way and observed a decrease in lexical
diversity (Guo et al., 2023).

However, new generations of LLMs are usually trained from scratch with web scraped datasets while
fine-tuning is mainly done with curated datasets. So the analysis of the self-consuming training loop
when training from scratch is of pressing concern. To the best of our knowledge, we are the first
to study the behavior of LLMs trained in a self-consuming loop from scratch. Furthermore, self-
consuming loops in LLMs have not yet been analyzed with a method that allows to unambiguously
evaluate the quality and diversity of generated model output.

3 EXPERIMENTAL SETUP

In this section, we present our logic expression dataset, which is the foundation for the verification
of the language model’s output. Additionally, we specify the natural language experiments. Fur-
thermore, we explain the data cycles we analyze in our experiments and describe the used model
architecture in detail.

3.1 VERIFICATION WITH A LOGIC EXPRESSION DATASET

LLMs usually generate natural language texts and their performance is typically measured by using
similarity metrics like the BLEU score (Papineni et al., 2002), ROUGE score (Lin, [2004) and BERT
score (Zhang et al.| [2019)) as well as perplexity (Jurafsky & Martin, [2009). However, those metrics
rely on measuring similarity of outputs with expected reference data, which can only serve as a proxy
for quality of a language model (Callison-Burch et al.| [2006; |Gehrmann et al., 2023). Consequently,
we propose using a dataset consisting of logic expressions. Those expressions can be represented as
a sequence making them a good fit for language modeling. In contrast to natural language text, we
can easily and systematically evaluate the quality of logic expressions by verifying their correctness.
An expression is defined to be syntactically correct, if it can be parsed without an error. The semantic
correctness can be evaluated if an expression is either True or False. If the original dataset only
consists of True expressions, then a high-quality trained model should also only generate True
expressions.

We build a logic expression as a tree in a recursive way specified in the function
GeneratelogicExpression (d), where d is the desired depth of a logic expression tree. If the
desired tree depth is reached when calling the function, a random Boolean is returned (either True
or False). Otherwise, a logic operator (not, and, or) is selected and the function is called again

Under review as a conference paper at ICLR 2025

recursively with d — 1. To build the entire original dataset we use this recursive function to sample
new random logic expression trees with a random depth between d,,;,, and d,q, until we have a
dataset with m unique expressions that evaluate in a True Boolean expression. The complexity
of the dataset can be easily controlled by adjusting d,,,,. For our experiments we chose a initial
dataset size of m = 10,000 with expressions of minimum depth d,,;,, = 1 and maximum depth
dmaz = 5. Algorithm [2]in Appendix [B]describes the generation of our logic expression dataset in
pseudo-code.

The resulting logic expression trees can then be saved as strings, e.g., not (True and
False). This allows us to evaluate them in Python using the eval () function to test whether
they are correct or trigger an error and whether they evaluate to a True or False Boolean. Ad-
ditionally, we can encode those strings to a sequence of tokens (True, False, not, and,
or, (,), <eos>, where <eos> is a stop token and indicates the end of an expression) and
use these sequences to train a language model. Examples of logical expressions can be found in

Appendix

3.2 NATURAL LANGUAGE EXPERIMENTS

While using the logic expression dataset enables us to design a controlled experimental setting in
which we can unambiguously measure both quality and diversity of a trained model, this dataset
might not fully cover the characteristics of real textual data. Therefore, we conduct additional
experiments using the tiny Shakespeare dataset (Karpathyl |2015), a collection of 40, 000 lines of
Shakespeare text with over 1, 1 million characters. Since there is no way to analytically investigate
the correctness of the generated text for this dataset, we focus on the diversity in this experiments.
Examples of the original dataset as well as generated samples within the self-consuming training
loop can be found in Appendix [E.2]

3.3 MEASURING THE DIVERSITY OF THE MODEL’S OUTPUT

A generative model does not only need to generate correct outputs but also a diverse set of outputs.
To measure the diversity of a sample from a LLM in the logic expression experiments we use the
Levenshtein diversity (Beijering et al., 2008} |Wittenberg et al.,|2023)) in our experiments. This metric
calculates the pairwise Levenshtein distance between each expression in the sample normalized by
the number of tokens of the longer expression of each pairwise comparison and averaged over the
number of pairwise comparisons. If the average pairwise normalized Levenshtein distance is close
to zero the diversity within a sample is low. A value closer to one suggests a stronger diversity within
a sample. The Levenshtein distance itself is a metric for measuring the distance between two strings
and is defined as the number of edits (deletion, addition, substitution) required to change one string
to another (Levenshtein et al.,|1966)). Normally, this edit distance is calculated on a character basis,
however, we calculate it on the tokens from our encoding of the logic expressions to accommodate
for the different length each token has in character representation.

To measure the diversity of a sample in the natural language experiments we employ the n-gram
diversity score (Meister et al.l 2023} [Li et al., [2023; [Padmakumar & He, |2024) which measures
the ratio between unique and total n-grams in a text. A smaller value indicates less diversity. We
also investigate the compression rate (Shaib et al., 2024) and the vocabulary size of the generated
samples.

We provide further details for all diversity metrics in Appendix

3.4 DATA CYCLES

We define a data cycle as the way a dataset D; is constructed in generation ¢ from the original data
Dy, potential fresh data F; from the original distribution, and the generated data from the current
and previous generations Si. ;. This way of constructing a new dataset may vary and different
data cycles are possible. In the image generation domain, previous work suggests that the self-
consuming training loop is influenced by the data cycle being used (Alemohammad et al.| [2023).
Therefore, inspired by their work we conduct our experiments with the following four different data
cycles (also depicted in Fig. [2):

Under review as a conference paper at ICLR 2025

5, 5 |5 |

(b) Balanced Data Cycle (c) Incremental Data Cycle

(d) Expanding Data Cycle

Figure 2: Each sub figure represents a different data cycle exemplary for four generations. The first
row in each sub figure is the original dataset Dy. The second, third and fourth row depict the dataset
D1, Dy, and D5 respectively.

Full Synthetic Data Cycle: In the most extreme case of a self-consuming training loop a new model
M is only trained on the generated data from the last generation so that D;_1 = S;_1. We call this
a full synthetic data cycle. Normally, new datasets would still contain the original data when they
are collected in practice. However, we can use this data cycle to study the most extreme changes in
behavior of models from generation to generation.

Balanced Data Cycle: We refer to the second data cycle as the balanced data cycle. In this data
cycle, we construct the new dataset D, from equal parts of all the previous samples S ¢ and the
original dataset Dy so that every previous generation contributes m * —— logic expressions to the

t+1
new dataset D; of size m.

Incremental Data Cycle: The third data cycle we study is called the incremental data cycle. In this
data cycle, the new dataset is created by a portion (1 — \) of the last dataset D;_; and a portion A of
new sampled data S; so that D; = (1 —) = Dy;_1 + A * S, while holding the size m of the dataset
constant each generation. A A = 1 would result in a full synthetic data cycle. We chose A = 0.1 for
our initial experiments and later used different values of A to study the influence of this parameter
on diversity.

Expanding Data Cycle: The first three data cycles create a dataset of equal size in each generation.
In practice, however, the dataset would grow each generation by adding new generated data to the
already existing dataset. Additionally, fresh data samples F; from the original distribution (e.g.
human generated) would also be added at each generation. Consequently, the last data cycle we
study is an expanding data cycle. At each generation the new dataset is created so that D, =
Dioq 4+ (1 = A) = Ft + A xS, where) is the portion of generated data we add each generation
and (1 — \) is the portion of fresh real data added at each generation. For this data cycle, we chose
A = 0.9 for our initial experiments and later used different values of A to study the influence of fresh
data in an expanding data cycle on diversity.

3.5 MODEL ARCHITECTURE AND TRAINING

We employ a GPT-style LLM using the open-source implementation nanoGPTEl (MIT license) in
our experiments. The model accepts a context of up to 256 tokens and consists of 6 attention layers
with 6 attention heads each and an embedding dimensionality of 384, resulting in roughly 10.6
million parameters.

*https://github.com/karpathy/nanoGPT

https://github.com/karpathy/nanoGPT

Under review as a conference paper at ICLR 2025

During training we use a batch size of 64 and a dropout rate of 0.2, training for 5000 iterations
minimizing cross entropy loss, starting with a learning rate of 10~2 decaying to 10~%, to achieve a
sufficient fitting of the training data. We split the dataset in 90% training and 10% validation data.
During training we calculate the validation error every 250 iterations and use the model parameters
with the lowest validation error as our final model M, for each generation ¢ in the self-consuming
training loop.

We use the trained model at each generation to sample 10, 000 logic expressions. We also performed
experiments for larger amounts of logical expressions (20, 000, 30,000, & 40,000) and observed
no impact on the results for varying dataset sizes (see Appendix [D.4). During sampling, we auto-
regressively generate new tokens with temperature 0.8 and feed them back into the model until a stop
token <eos> is sampled up to a maximum of 200 tokens per expression. We run the self-consuming
training loop for 7" = 50 generations in each experiment.

We use the same model and setup to run the self-consuming training loop for our natural language
experiments but tokenize the text on a character level resulting in a vocabulary size of 65. During
sampling, we auto-regressively generate text of 1000 tokens in length until our sample S; is of
equal size as the original dataset Dy (approximately 1.1 million tokens per generation). For the
expanding data cycle in the natural language experiments we only use a subset of Dy in order to
have enough fresh original data for 50 generations. Consequently, we generate less tokens each
generation (approximately 186, 000 tokens per generation).

All experiments are performed on a workstation using consumer NVIDIA graphics cards.

4 RESULTS

In this section, we present our experimental results in terms of correctness and diversity of model
outputs trained in a self-consuming training loop.

4.1 CORRECTNESS OF GENERATED CONTENT

We first study the correctness of the expressions within a generated sample S; from a model M, at
each generation ¢. As described in Sect.[3.1] we consider an expression to be syntactically correct if
it can be parsed without error. Since the original dataset D only consists of True expressions, we
consider a generated expression to be semantically correct if it also evaluates to True. A semanti-
cally correct expression is also syntactically correct.

Figure [3| displays the composition of samples S; generated during a self-consuming training loop.
Each subplot presents the results for a different data cycle: a) full synthetic, b) balanced, c) incre-
mental, and d) expanding. Every bar in a subplot displays the composition of S; generated from
model M, at generation t, except for the first bar in each subplot which displays Dy. The green
portion of a bar indicates the number of syntactically correct expressions that evaluate to True in
that sample. The yellow part of a bar represents the number of syntactically correct expressions
that evaluate to False, and the red part of a bar displays the number of syntactically incorrect
expressions that result in an error when being parsed.

Overall, we see that only very few expressions are syntactically incorrect. This indicates that the
models are sufficiently trained and can correctly learn the syntactic rules of a logic expression. We
see a drop of around 20% in the number of semantically correct expressions from the original data
Dy to the first sample S; in every data cycle. Interestingly, the number of semantically correct
expressions increases afterwards over the course of the self-consuming training loop. The speed
at which this number increases depends on the data cycle. We can see the fastest increase for the
full synthetic data cycle in which the whole sample consists of True expressions by generation
t = 6. The incremental data cycle takes consistently longer but also nearly reaches this point by
generation ¢ = 36. While the balanced data cycle has an initially steeper increase in semantically
correct expressions, it does not reach the point of a completely semantically correct sample by the
end of 50 generations but comes very close to it. Lastly, the expanding data cycle shows this trend
as well. Overall, we see that the self-consuming training loop seems to help with generating more
semantically correct expressions in our experiments and the rate at which this happens differs by
data cycle.

Under review as a conference paper at ICLR 2025

Count
Count

10 20 30 40 10 20 30 40 50
Generation Generation

(a) Full Synthetic Data Cycle (b) Balanced Data Cycle

Count
Count

10 20 30 40

10 20 30 40 50

Generation Generation
(c) Incremental Data Cycle (d) Expanding Data Cycle
BN True (Green) False (Yellow) H Error (Red) J

Figure 3: The composition of each sample S; from model M, at generation ¢ (the first bar displays
the composition of D) with regards to the number of syntactically and semantically correct ex-
pressions. Green indicates syntactically correct expressions that evaluate to True, yellow indicates
syntactically correct expressions that evaluate to False, and red indicates syntactically incorrect
expressions that result in an error when being parsed. Each subplot displays the results for a different
data cycle.

4.2 DIVERSITY OF GENERATED CONTENT

While we can see an increase in correctness over generations in our experiments, contemporary
work in the image generation domain suggests, that this comes with a loss of diversity
et all, 2023 [Alemohammad et al.} 2023}, [Bertrand et al} [2023). Therefore, in this section we study
the diversity within a sample S; of model M, for each generation ¢.

Figure [displays the average pairwise normalized Levenshtein distance over generations of a self-
consuming training loop for different data cycles. For each data cycle, we observe a decrease in
diversity over the course of generations, with the degree of decrease varying depending on the data
cycle. For the full synthetic data cycle we see a steep decline in diversity with a collapse into a
single point by generation ¢ = 39. The incremental data cycle is initially stable, but decreases
in diversity from the 10th generation onwards, with a decrease of 68% in diversity by the end of
the 50 generations. The balanced and expanding data cycle also decrease in diversity, however,
this decrease is way slower, with a 30% decrease in diversity for the balanced data cycle and a
22% decrease for the expanding data cycle. While not all data cycles fully collapse in diversity
by generation 50, ultimately, we expect all of them to eventually reach zero diversity if the self-
consuming training loop is run for enough generations.

Under review as a conference paper at ICLR 2025

S o o o
o L ES n
!

e

Average Normalized Levenshtein Distance

o
o
|

0 10 20 30 40 50

Generation
—o— Full Synthetic —®B— Incremental
Balanced -+ Expanding

Figure 4: Average pairwise normalized Lev-
enshtein distance over generations of a self-
consuming training loop for different data
cycles. Line markers added every 5 gener-
ations for better display.

o o o o
[w E W

e

Average Normalized Levenshtein Distance

e
o

0 10 20 30 40 50
Generation

—o— A=1.00 - A=0.50 —— A=0.10
A=0.90 e A=025

Figure 5: Average pairwise normalized Lev-
enshtein distance over the course of a self-
consuming training loop for the expanding
data cycle for different portions A of gener-
ated data and (1 — A) of fresh data. Line

markers added every 5 generations for bet-
ter display.

To get further insight into the decline in diversity, we also inspect the number of unique expres-
sions sampled per generation for the full synthetic data cycle. We find that the number of unique
expressions is stable at first while the diversity already declines and then rapidly decreases within 5
generations to very few unique expressions (see Appendix [D.T).

To better understand the influence of the amount of generated data in each generation on the diver-
sity, we also study the incremental data cycle in more detail with different portions A of new sampled
data. Figure[5]displays the average pairwise normalized Levenshtein distance over generations in a
self-consuming training loop for the incremental data cycle with different values of \. We observe,
that the loss in diversity is stronger for a higher share of generated data added in each generation
of the self-consuming training loop. Even with as little as A = 0.25, we reach the complete loss
of diversity within 50 generations. Only for our experimental run with A = 0.10 the diversity does
not drop to zero, but to a value around 0.17 after 50 generations. However, we see that the speed
at which diversity decreases does not scale linear with the amount of generated data. Instead we
observe a more exponential increase in speed where larger amounts of generated data lead to an
even quicker decay in diversity.

Lastly, we study the expanding data cycle in more detail with regard to the proportion between
generated data and fresh data added to the training data at each generation. Figure [6] displays the
average pairwise normalized Levenshtein distance over generations in a self-consuming training
loop for the expanding data cycle with different portions A of generated data and (1 — \) fresh real
data. We observe, that while each configuration declines in diversity, the rate of this decline depends
on the proportion between generated and fresh data. The more fresh data is added at each generation,
the slower diversity decreases. With no fresh data or only 1% of fresh data the diversity decreases
by approximately 36%. If the portion of fresh data is 25% we only observe a decrease in diversity
of approximately 11%. This indicates that fresh data cannot stop the self-consuming training loop
but enough fresh data can slow down the rate of the decline in diversity.

4.3 DIVERSITY OF GENERATED NATURAL LANGUAGE

To extend our results past the domain of logic expression we also study the self-consuming training
loop for a real textual dataset. We first investigate the diversity of generated content. Figure
displays the n-gram diversity over generations in a self-consuming training loop for different data

Under review as a conference paper at ICLR 2025

0.501

At 34
VA,
0.45 \/;'\/‘
[
AN S
14 \,lw\\‘/\‘ -
\
0.40 \/\,\ A n

0.35 v\\/\\/\lu\/\ |

0 10 20 30 40 50
Generation

Average Normalized Levenshtein Distance

—o— A=1.00 —m— A=095
A=0.99 4 A=0.90

—— A=0.75

Figure 6: Average pairwise normalized Lev-
enshtein distance over the course of a self-
consuming training loop for the expanding
data cycle for different portions A of gener-
ated data and (1 — \) of fresh data. Line
markers added every 5 generations for bet-

N-Gram Diversity Score
(=3
(=1
N

0 10 20 30 40 50
Generation

—e— Full Synthetic —®— Incremental

Balanced -#- Expanding

Figure 7: N-gram diversity score over the
course of a self-consuming training loop for
different data cycles for textual data. The
sample size is truncated to equal length for
better comparability. Line markers added ev-
ery 5 generations for better display.

ter display.

cycles. As diversity scores for text are sensitive to text length, we truncated the samples to be of
equal size as suggested in (Shaib et al.| [2024), to better compare the data cycles with each other.
Similar to our results in the logic expression domain, we observe a decline in diversity for all data
cycles. As expected, this is most severe for the full synthetic data cycle dropping to zero n-gram
diversity by generation 15, followed by the incremental and balanced data cycle. The expanding
data cycle retains the most diversity but also declines strongly over the course of the self-consuming
training loop. We also investigate the compression rate and vocabulary size and find similar effects
(see Appendix [D.5). Overall, this confirms our findings from the logic expression dataset in terms
of diversity also for textual data.

While we cannot evaluate the correctness of the generated automatically, we manually inspect text
samples for a qualitative assessment. We find that while the models produce some hallucinated
words in first generations the quality of the generated text is subjectively mostly correct and Shake-
speare like. However, the stark decline in diversity quickly leads to repetitive outputs and makes the
models unusable, further confirming the effects of the self-consuming training loop. More details
and examples of generated text can be found in Appendix

5 DISCUSSION

In our experiments we found that iteratively re-training LLMs from scratch with self generated data
might help with correctness of model output. This is sometimes already done in practice where
the output of LLMs is used to improve their performance (Huang et al.| [2022; |Wang et al., 2022}
Gulcehre et al., 2023} Singh et al., 2023} Zhang et al., [2024)) or generate new training data (Yu et al.}
2023). In this self-training setting the origin of data is known and researchers can carefully filter
and adjust the data. However, the self-consuming training loop is an emerging trend where the data
source is not known and LLM-generated content from the internet is unwillingly used to train new
models. This trend is concerning as we also found that this self-consuming training loop eventually
leads to a drastic loss of diversity of a model’s output. Our results confirm the findings on the
self-consuming training loop in the field of image generation (Martinez et al., 2023; | Alemohammad
et al., 2023} [Shumailov et al.| [2024; Bertrand et al., 2023)), further highlighting the importance of
this issue for generative models and LLMs in particular. These LLMs have an even greater impact
on society than image generation models, leading to more LLM-generated data being produced and

Under review as a conference paper at ICLR 2025

potentially having a greater impact on society as a whole, as many people already rely on good
model performance.

Consequently, as we expect that a self-consuming training loop will harm model performance in the
future, researchers and practitioners should carefully choose their data when training their models
and test those models sufficiently for diversity. Additionally, the machine learning community at
large needs to find ways to deal with this problem as generated text data is already present in new
internet scraped datasets. While our results indicate that fresh real data can slow down the self-
consuming training loop, other studies suggest that this is not an option as we will run out of real
data eventually and have to rely on generated data for future models (Villalobos et al., 2022). Addi-
tionally, LLM-generated data has already found its way onto the internet, even infecting academic
publications (Geng & Trottal 2024; Liang et al., 2024), and LLM-generated data may soon overtake
real data on the internet.

Furthermore, this LLM-generated data is hard to differentiate from real data (Kreps et al., 2022;
Sadasivan et al., 2023 |Huschens et al., 2023), making it difficult to curate datasets scraped from the
web. This makes the self-consuming training loop inevitable in the future. Therefore, we advise to
further study ways to maintain diversity of generative model outputs like quality diversity methods
(Pugh et al.; 2015} |[Fontaine & Nikolaidis, [2021)).

6 LIMITATIONS

One cause for limitations of our work are restricted computational resources. First, we ran our
experiments with a smaller GPT-style model than for example GPT-4. Even though we expect that
larger models with billions of parameters still suffer from the same loss of diversity if trained in a
self-consuming training loop, we note that the behavior may vary for those larger models. However,
a study for models of those size is not feasible with current compute options nor is it responsible in
terms of the expected CO2 emissions (Strubell et al., |2019). Nevertheless, we performed additional
experiments for the full synthetic data cycle with varying model sizes in Appendix [D.3] and still
observe the loss in diversity across smaller and larger models. Therefore, we expect that our results
can be generalized to models of different size.

Second, the main results of this work consist of only one run per experimental configuration. With
more runs per experiment the results would be more robust, but conducting more runs for our exper-
iments was simply not feasible with our available computing resources. As all our experiments point
towards the same direction, however, we do not believe that this limitation is crucial. Nevertheless,
to further mitigate this limitation we performed additional experiments for the full synthetic data
cycle with fewer generations over multiple runs and with different initializations in Appendix [D.2}
These results show that the trend of a decline in diversity still holds true over multiple runs.

Lastly, datasets used to train LLMs cover a wide range of different data sources with different
characteristics. Therefore, our results might be slightly different when performed with a real web
scraped corpora. However, the experiments with textual data show that our results generalize past
logic expressions.

7 CONCLUSION

In this paper we studied the behavior of LLMs trained in a self-consuming training loop and found
that iteratively training LLMs from scratch with self generated data can initially help with correct-
ness of model outputs. However, this comes at a price, as the diversity of generated data eventually
degenerates and collapses into a single point. The rate of this decline in diversity depends on the
data cycle creating the training data at each generation. Furthermore, we found that fresh data can
slow down this process and preserve diversity of a model output for longer. This should encourage
researches to carefully monitor their datasets and models to mitigate such a harmful self-consuming
training loop in the future.

In future work, we will study how fine-tuning can influence the self-consuming training loop for
LLMs. Additionally, we plan to further investigate how the effects of a self-consuming training loop
can be slowed down or completely negated.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Sina Alemohammad, Josue Casco-Rodriguez, Lorenzo Luzi, Ahmed Imtiaz Humayun, Hossein
Babaei, Daniel LeJeune, Ali Siahkoohi, and Richard G Baraniuk. Self-consuming generative
models go mad. arXiv preprint arXiv:2307.01850, 2023.

David Baidoo-Anu and Leticia Owusu Ansah. Education in the era of generative artificial intelli-
gence (ai): Understanding the potential benefits of chatgpt in promoting teaching and learning.
Journal of Al 7(1):52-62, 2023.

Karin Beijering, Charlotte Gooskens, and Wilbert Heeringa. Predicting intelligibility and perceived
linguistic distance by means of the levenshtein algorithm. Linguistics in the Netherlands, 25(1):
13-24, 2008.

Quentin Bertrand, Avishek Joey Bose, Alexandre Duplessis, Marco Jiralerspong, and Gauthier
Gidel. On the stability of iterative retraining of generative models on their own data. arXiv
preprint arXiv:2310.00429, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Chris Callison-Burch, Miles Osborne, and Philipp Koehn. Re-evaluating the role of bleu in machine
translation research. In 11th conference of the european chapter of the association for computa-
tional linguistics, pp. 249-256, 2006.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta, Shin Yoo, and
Jie M Zhang. Large language models for software engineering: Survey and open problems. arXiv
preprint arXiv:2310.03533, 2023.

Matthew Fontaine and Stefanos Nikolaidis. Differentiable quality diversity. Advances in Neural
Information Processing Systems, 34:10040-10052, 2021.

Sebastian Gehrmann, Elizabeth Clark, and Thibault Sellam. Repairing the cracked foundation: A
survey of obstacles in evaluation practices for generated text. Journal of Artificial Intelligence
Research, 77:103-166, 2023.

Mingmeng Geng and Roberto Trotta. Is chatgpt transforming academics’ writing style? arXiv
preprint arXiv:2404.08627, 2024.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced self-training
(rest) for language modeling. arXiv preprint arXiv:2308.08998, 2023.

Yanzhu Guo, Guokan Shang, Michalis Vazirgiannis, and Chloé Clavel. The curious decline of lin-
guistic diversity: Training language models on synthetic text. arXiv preprint arXiv:2311.09807,
2023.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei
Han. Large language models can self-improve. arXiv preprint arXiv:2210.11610, 2022.

Martin Huschens, Martin Briesch, Dominik Sobania, and Franz Rothlauf. Do you trust chatgpt?—
perceived credibility of human and ai-generated content. arXiv preprint arXiv:2309.02524, 2023.

Dan Jurafsky and James H Martin. Speech and language processing: An introduction to natural
language processing, computational linguistics, and speech recognition. Prentice Hall, Pearson

Education, Upper Saddle River, NJ, USA, 2009.

Andrej Karpathy. char-rnn. https://github.com/karpathy/char-rnn, 2015.

11

https://github.com/karpathy/char-rnn

Under review as a conference paper at ICLR 2025

Sarah Kreps, R Miles McCain, and Miles Brundage. All the news that’s fit to fabricate: Ai-generated
text as a tool of media misinformation. Journal of experimental political science, 9(1):104-117,
2022.

Vladimir I Levenshtein et al. Binary codes capable of correcting deletions, insertions, and reversals.
In Soviet physics doklady, volume 10, pp. 707-710. Soviet Union, 1966.

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, Jason Eisner, Tatsunori B Hashimoto, Luke
Zettlemoyer, and Mike Lewis. Contrastive decoding: Open-ended text generation as optimiza-
tion. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 1228612312, 2023.

Weixin Liang, Yaohui Zhang, Zhengxuan Wu, Haley Lepp, Wenlong Ji, Xuandong Zhao, Hancheng
Cao, Sheng Liu, Siyu He, Zhi Huang, et al. Mapping the increasing use of 1lms in scientific
papers. arXiv preprint arXiv:2404.01268, 2024.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74-81, 2004.

Gonzalo Martinez, Lauren Watson, Pedro Reviriego, José Alberto Herndndez, Marc Juarez, and Rik
Sarkar. Towards understanding the interplay of generative artificial intelligence and the internet.
arXiv preprint arXiv:2306.06130, 2023.

Clara Meister, Tiago Pimentel, Gian Wiher, and Ryan Cotterell. Locally typical sampling. Transac-
tions of the Association for Computational Linguistics, 11:102—-121, 2023.

Vishakh Padmakumar and He He. Does writing with language models reduce content diversity? In
The Twelfth International Conference on Learning Representations, 2024.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pp. 311-318, 2002.

Justin K Pugh, Lisa B Soros, Paul A Szerlip, and Kenneth O Stanley. Confronting the challenge
of quality diversity. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary
Computation, pp. 967-974, 2015.

Vinu Sankar Sadasivan, Aounon Kumar, Sriram Balasubramanian, Wenxiao Wang, and Soheil Feizi.
Can ai-generated text be reliably detected? arXiv preprint arXiv:2303.11156, 2023.

Chantal Shaib, Joe Barrow, Jiuding Sun, Alexa F Siu, Byron C Wallace, and Ani Nenkova. Stan-
dardizing the measurement of text diversity: A tool and a comparative analysis of scores. arXiv
preprint arXiv:2403.00553, 2024.

[lia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross Anderson, and Yarin Gal.
Ai models collapse when trained on recursively generated data. Nature, 631(8022):755-759,
2024.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Peter J Liu, James
Harrison, Jaechoon Lee, Kelvin Xu, Aaron Parisi, et al. Beyond human data: Scaling self-training
for problem-solving with language models. arXiv preprint arXiv:2312.06585, 2023.

Dominik Sobania, Martin Briesch, and Franz Rothlauf. Choose your programming copilot: A com-
parison of the program synthesis performance of github copilot and genetic programming. In
Proceedings of the genetic and evolutionary computation conference, pp. 1019-1027, 2022.

Dominik Sobania, Martin Briesch, Carol Hanna, and Justyna Petke. An analysis of the automatic
bug fixing performance of chatgpt. In 2023 IEEE/ACM International Workshop on Automated
Program Repair (APR), pp. 23-30, Los Alamitos, CA, USA, 2023. IEEE Computer Society.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep
learning in nlp. arXiv preprint arXiv:1906.02243, 2019.

12

Under review as a conference paper at ICLR 2025

Veniamin Veselovsky, Manoel Horta Ribeiro, and Robert West. Artificial artificial artificial intelli-
gence: Crowd workers widely use large language models for text production tasks. arXiv preprint
arXiv:2306.07899, 2023.

Pablo Villalobos, Jaime Sevilla, Lennart Heim, Tamay Besiroglu, Marius Hobbhahn, and Anson Ho.
Will we run out of data? an analysis of the limits of scaling datasets in machine learning. arXiv
preprint arXiv:2211.04325, 2022.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language model with self generated instructions.
arXiv preprint arXiv:2212.10560, 2022.

David Wittenberg, Franz Rothlauf, and Christian Gagné. Denoising autoencoder genetic program-
ming: strategies to control exploration and exploitation in search. Genetic Programming and
Evolvable Machines, 24(2):17, 2023.

Xianjun Yang, Yan Li, Xinlu Zhang, Haifeng Chen, and Wei Cheng. Exploring the limits of chatgpt
for query or aspect-based text summarization. arXiv preprint arXiv:2302.08081, 2023.

Yue Yu, Yuchen Zhuang, Jieyu Zhang, Yu Meng, Alexander Ratner, Ranjay Krishna, Jiaming Shen,
and Chao Zhang. Large language model as attributed training data generator: A tale of diversity
and bias. arXiv preprint arXiv:2306.15895, 2023.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm
self-training via process reward guided tree search. arXiv preprint arXiv:2406.03816, 2024.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluat-
ing text generation with bert. arXiv preprint arXiv:1904.09675, 2019.

A PSEUDOCODE: SELF-CONSUMING TRAINING LOOP

Algorithm [T]describes the self-consuming training loop in detail.

Algorithm 1 Self-Consuming Training Loop

Input: Number of generations 7', data cycle
Initialize: Sample Dy from Px

fort=1tot =T do

Train model M; with D;_4

Sample S; from M,

Create D, from Dy and S; . ¢ according to data cycle
end for

Output: Trained models M p, samples S, datasets Dy 1

13

Under review as a conference paper at ICLR 2025

B PSEUDOCODE: GENERATION OF THE LOGIC EXPRESSION DATASET

Algorithm 2] describes the generation of our logic expression dataset in detail.

Algorithm 2 Generate Logic Expression Dataset

Input: Number of unique expressions m, minimum tree depth d,,,;,,, maximum tree depth d;, 4,
Initialize: Dy = {}

function GenerateLogicExpression(d) :
if d = 0 then
return RandomBoolean()
else
op + RandomLogicOperator ()
if op = "not’ then
return op + GenerateLogicExpression(d — 1)
else
leftExpr < GenerateLogicExpression(d — 1)
right Expr < GenerateLogicExpression(d — 1)
return le ft Expr + op + right Expr
end if
end if
end function

while [Dy| < m do
i < RandomIntegerInRange(d.nin, dmaz)
expr < GenerateLogicExpression(d = 1)
if EvaluateBooleanExpression(expr) = True then
Dy < Do U {expr}
end if
end while

Output: D

C DIVERSITY METRICS

In this section we provide more detail on the diversity metrics used for the experiments using logic
expression as well as textual data.

The average normalized Levenshtein distance (Levenshtein diversity) (Beijering et al., 2008} |Wit-
tenberg et al.| |2023) used in our logic expression experiments is defined as:

dr(A, B)
len(A),len(B))

1
Average Normalized Levenshtein Distance = — Z
QI 5, max(

where @ is the set of unique pairs of logic expressions within a sample S; and dr, (A, B) is the
Levenshtein distance between two logic expressions A and B.

The n-gram diversity score (Meister et al., 2023; |Li et al., 2023; [Padmakumar & He, 2024) used
to investigate the diversity of textual data is defined as the number of unique n-grams divided by the
total number of n-grams in a sample S;:

4
N-Gram Diversity Score = Z

n=1

unique n-grams in S

n-grams in S;

14

Under review as a conference paper at ICLR 2025

r 10000

r 8000

r 6000

r 4000

o
)
Number of Unique Strings

r 2000

e

Average Normalized Levenshtein Distance

A
T que o
0 10 20 30 40 50
Generations

o
o

—&— Average Normalized Levenshtein Distance
-+~ Number of Unique Strings

Figure 8: Average pairwise normalized Levenshtein distance (left y-axis) and number of unique
expressions in a sample (right y-axis) over generations of a self-consuming training loop for the full
synthetic data cycle. Line markers added every 5 generations for better display.

The compression rate as a measure for diversity of a text (Shaib et al., 2024)) is defined as the size
of a sample S; divided by the size of the same sample compressed by a compression algorithm (e.g.

gZip):

size of S;

Compression Rate = -
p compressed size of S;

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 UNIQUE EXPRESSIONS GENERATED

To better understand the decline of diversity, we inspect the number of unique expressions sampled
at each generation. We focus on the full synthetic data cycle, as this data cycle fully collapses to a
single point within 50 generations.

Figure [§ displays the number of unique expressions (right y-axis) generated at each generation of
a self-consuming training loop in comparison to the diversity measured as the average pairwise
normalized Levenshtein distance (left y-axis). We observe that in the beginning the number of
unique expressions stays stable while the diversity is already in a steep decline. Only by generation
t = 10 the number of unique individuals starts to decline rapidly and by generation ¢ = 15 only
around 400 unique expressions are sampled while the decline in diversity slows down. In generation
t = 21 the number of unique individuals is below 10 and in generation { = 39 only a single
individual is sampled at each generation. Consequently, the diversity is collapsed to zero.

This shows that it is not enough to only track unique outputs of a model, but that diversity needs
to be tracked as well. By the time a decrease in unique results is noticeable, the diversity already
decreased significantly.

D.2 IMPACT OF INITIALIZATION

So far we only investigated the self-consuming training loop starting from an initial dataset consist-
ing only of True expressions. To check whether our findings also hold for different initializations
of data across multiple runs, we conduct further experiments. Specifically, we analyze the full syn-
thetic data cycle with the original dataset Dy only consisting of (1) True expressions, (2) False
expressions, and (3) an equal mixture of both. The results from Sect.] indicate that the effect of
the self-consuming training loop for the full synthetic data cycle are already clearly visible in the

15

Under review as a conference paper at ICLR 2025

10000 10000

8000 8000

o -~ 6000 ~ 6000
5 E g
S 3 3

4000 4000

2000 2000

0 0 0

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Generation Generation Generation
(a) True Initialization (b) False Initialization (c) Mixed Initialization
B True (Green) False (Yellow) Il Error (Red) J

Figure 9: The composition of each sample S; from model M; at generation ¢ (the first bar dis-
plays the composition of Dy) with regards to the number of syntactically and semantically correct
expressions averaged over 5 runs. Green indicates syntactically correct expressions that evaluate to
True, yellow indicates syntactically correct expressions that evaluate to False, and red indicates
syntactically incorrect expressions that result in an error when being parsed. Each subplot displays
the results for the full synthetic data cycle with different initializations (True, False, Mixed).

0.5 1

0.4 4

0.3 1

0.2 1

Average Normalized Levenshtein Distance

0 2 4 6 8 10

Generation
—o— True —®— Mixed
-+~ False

Figure 10: Average pairwise normalized Levenshtein distance over generations of a self-consuming
training loop for the full synthetic data cycle with different initializations. Displayed is the mean
and standard deviation at each generation for each initialization over 5 runs. Line markers added
every 5 generations for better display.

first 10 generations. Therefore, we conduct experiments with only 10 generations. With this saved
computing time, we conduct 5 independent runs for each initialization.

Figure [9] displays the composition of samples S; generated during a self-consuming training loop.
Each subplot presents the composition for a different initialization for the full synthetic data cycle
averaged over 5 independent runs: a) only True expressions, b) only False expressions, and c¢)
half True expressions and half False expressions. Every bar in a subplot displays the composi-
tion of S; generated from model M; at generation ¢, except for the first bar in each subplot which
displays Dy. The green portion of a bar indicates the number of syntactically correct expressions
that evaluate to True in that sample. The yellow part of a bar represents the number of syntacti-
cally correct expressions that evaluate to False, and the red part of a bar displays the number of
syntactically incorrect expressions that result in an error when being parsed.

16

Under review as a conference paper at ICLR 2025

o

wn

<
|

o

n

(=}
L

N

'S

O
|

N

'S

(=}
L

=

0w

vy
|

o

w

S
.

¢

)

G
L

e

%)

S
!

Average Normalized Levenshtein Distance

o
7
|

Generation

—e— 32M —m= 252M
10.6M o4 492M

Figure 11: Average pairwise normalized Levenshtein distance over generations of a self-consuming
training loop for the full synthetic data cycle with different model sizes. Line markers added every
5 generations for better display.

Similar to our results in Sect.[d.I] we observe an initial drop of True expressions by 20% in favor of
False expressions for the initialization with only True expressions in the first generation. After-
wards, the number of True expressions in a sample increases again over the course of generations.
For the initialization with only False expressions, we observe a similar effect, only in the opposite
direction. The number of False expression first drops by around 20% and then increases again
until the whole sample consists of only False expressions. When initialized with an equal amount
of True and False expressions, we can observe that the proportion of both expression types first
stays stable and then by generation ¢ = 6 starts to slightly shift towards True expressions. Upon
further inspection of the 5 runs, we find that one run quickly shifts towards only True expressions,
one run shifts quickly to only False expression, one run shifts slowly to True expressions, and two
runs maintain equal proportions between True and False expressions across the 10 generations.

Figure [T0]displays the diversity measured in the average pairwise normalized Levenshtein distance
for the three different initializations. Displayed is the mean and standard deviation of five runs over
the number of generations. We observe that the diversity declines for all three types of initialization,
further confirming our results from Sect.[d.2] The initializations with only True and only False
expressions decline at around the same speed. The initialization with equal proportions of True
and False expressions declines a bit slower but shows the same effect.

Overall these findings indicate that the effects of the self-consuming training loop apply to different
initializations across multiple runs, partially mitigating the limitations mentioned in Sect. 6]

D.3 IMPACT OF MODEL SIZE

To investigate if our results can be generalized to different model sizes and architectures we repeated
our experiments for the full synthetic data cycle for 10 generations with multiple different model
sizes. We conducted experiments for models with parameters ranging from 3.2 million to 49.2
million. Table[T] describes the details of those models.

Figure [TT]displays the diversity measured in the average pairwise normalized Levenshtein distance
for different model sizes. Similar to our results in Sect. we observe a steady decline in diversity
over generations regardless of model size. While the decrease in diversity happens quicker for the
smaller model it is also clearly present in the larger models. Therefore, we argue that the effects of
a self-consuming training loop is also present for different model sizes.

17

Under review as a conference paper at ICLR 2025

Table 1: Details of the model architectures for the additional experiments. Displayed is the total
number of parameters in millions, the number of layers, number of attention heads per layer, and the
embedding dimensionality.

#PARAMETERS #LAYERS #ATTENTION HEADS EMBEDDING DIMENSION

3.2M 4 4 256
10.6M 6 6 384
25.2M 8 8 512
49.2M 10 10 640
0.5
L

o

n

(=}
T

N

'S

O
|

N

'S

(=}
L

Average Normalized Levenshtein Distance
[=}
w
W

=3 =3
) L
G 53
./.
Y
4

S

%)

S
.

Generation

—e— 10k —= 30k |
20k -4+ 40k

Figure 12: Average pairwise normalized Levenshtein distance over generations of a self-consuming
training loop for the full synthetic data cycle with different dataset sizes. Line markers added every
5 generations for better display.

D.4 IMPACT OF DATASET SIZE

While we used 10, 0000 logic expressions for our main experiments, we conducted additional ex-
periments for larger amounts of logical expressions (20, 000, 30,000, and 40, 000) to analyze the
impact of varying amounts of training data on the self-consuming training loop. Specifically, we
conducted experiments for the full synthetic data cycle over 10 generations.

Figure [12]displays the diversity measured in the average pairwise normalized Levenshtein distance
for different dataset sizes. We observe that for all dataset sizes the diversity decreases over the course
of generations. This indicates that the effect of the self-consuming training loop occurs regardless
of dataset size.

D.5 ADDITIONAL DIVERSITY METRICS FOR THE NATURAL LANGUAGE DATASET

In addition to our results in section@]we also inspect the compression rate (Shaib et al., [2024)) and
the vocabulary size of samples obtained in the self-consuming training loop for textual data. Once
again we truncate the data samples to be of equal size for better comparability between the different
data cycles.

Figure[I3]displays the compression rate over generations of a self-consuming training loop. A higher
compression rate indicates a less diverse sample. Similar to our results in the logic expression do-
main we observe the highest increase in compression rate and therefore decrease in diversity for the
full synthetic data cycle. The incremental data cycle also has a stark increase in compression rate
followed by the balanced data cycle. The expanding data cycle also shows an increase in compres-

18

Under review as a conference paper at ICLR 2025

%3 [8]
(=3 W (=3
= = =]
! ! !

Compression Rate
%
=1

0 10 20 30 40 50
Generation
—e— Full Synthetic —=— Incremental
Balanced -4+ Expanding

Figure 13: Compression rate over generations of a self-consuming training loop for different data
cycles for textual data. A higher compression rate indicates less diversity. The sample size is trun-

cated to equal length for better comparability. Line markers added every 5 generations for better
display.

5000 4

4000

3000

2000

Vocab Size (Words)

10001

0 10 20 30 40 50
Generation
—e— Full Synthetic —®— Incremental
Balanced -¢-- Expanding

Figure 14: Vocabulary size over generations of a self-consuming training loop for different data
cycles for textual data. The vocabulary size is defined as the number of unique words in a sample.
The sample size is truncated to equal length for better comparability. Line markers added every 5
generations for better display.

sion rate, however, not as severe as for the other data cycles. This indicates that fresh data can slow
down the effects of the self-consuming training as observed for the logic expression dataset.

Figure [T4] displays the vocabulary size measured as unique words within a sample. Similar to the
previous results we observe a decline in vocabulary size for all data cycles. While the full synthetic
data cycle fully collapses in vocabulary size, closely followed by the balanced, and incremental
data cycle, the expanding data cycle stabilizes around 500 words. However, this is still a drop in
vocabulary size by 95%. Once again, this confirms a strong decline in diversity for all data cycles.

19

Under review as a conference paper at ICLR 2025

E EXAMPLE OUTPUTS

E.1 EXAMPLES OF LOGIC EXPRESSIONS

Table [2] provides examples of logic expressions that evaluate to True or False, as well as syn-
tactically incorrect logic expressions (Error). In the erroneous example the logic expression is
syntactically incorrect because of a missing parentheses. Additionally, all generated logic expres-
sions from our experiments are provided in the supplementary material

Table 2: Examples of logic expressions that evaluate to True, False, or cannot be evaluated
(Error).

TYPE EXPRESSION
True (not (((True and True) and (not True))
or ((False or False) and (not True)))) <eos>
False ((((True and False) and (True or False)) or
(not (False or True))) and (((True and True)
and (True or False)) or ((True or True)
and (True or True)))) <eos>
Error (((False or True) and (not True) or ((not True)

or (not False))) <eos>

E.2 EXAMPLES OF NATURAL LANGUAGE

Figure [I5}{I8] provide example outputs of models trained in a self-consuming training loop on the
natural language dataset for all data cycles. Displayed is an example of the initial input and examples
for generations 1, 10, 25, and 50. The examples are truncated for better display. All generated text
samples are also provided in the supplementary material.

We manually inspect the text samples for the first few generations and notice a few hallucinated
words that are not present in the original corpus, indicating a drop in correctness. However, overall
the generated text is subjectively mostly correct and Shakespeare like with a diverse set of samples.

By generation 10 the diversity is already declining for all data cycles. This is most severe for the full
synthetic data cycle which produces nearly the same output every time. The incremental data cycle
is also very repetitive text with repeating words in half of the time. In the other half (not shown
in the example), the output is just a repetition of a role without text (e.g. GLOUCESTER:\n\n
GLOUCESTER:\n\n GLOUCESTER:\n\n). The other two data cycles (balanced and expanding)
show a strong repetition of words.

By generation 25 the full synthetic data cycle is fully converged producing the same outputs for the
rest of the self-consuming training loop. The incremental data cycle also shows heavy repetition
or just samples a role repeatedly and by generation 50 only very few roles are sampled repeatedly
without text besides a very few exceptions. The other two data cycles continue the trend of producing
repetitive words and n-grams and by generation 50 only small diverse text samples are generated
before the same word or n-gram is produced repeatedly.

Overall, while one could argue that the text is more correct (fewer hallucinated words) at the end
of a self-consuming training loop, the stark decrease in diversity and the generation of meaningless
text makes the language model unusable.

>https://figshare.com/s/b09d5bdb3b216998d330 - Anonymized for review

20

https://figshare.com/s/b09d5bdb3b216998d330

Under review as a conference paper at ICLR 2025

Full Synthetic Data Cycle

Initial:
First Citizen:
Before we proceed any further, hear me speak.

All:
Speak, speak.

First Citizen:

You are all resolved rather to die than to famish?

Generationl:
YORK:

I think you where you have seen to be envious death.

LORD STANLEY:
No more, my lord: let me speak with men and my soul
Your proof interior marriage, with it end.

WARWICK:

Fair lords, and Warwick, where she lives you lies?

Generation10:
WARWICK:

What with his wisdom?

WARWICK:
Why, what with his soul?

WARWICK:

‘What with his soul?

Generation2s:
WARWICK:

‘What with his wisdom?

WARWICK:
‘What with his wisdom?

WARWICK:
‘What with his wisdom?

Generations0:

WARWICK:
What with his wisdom?

WARWICK:
‘What with his wisdom?

WARWICK:
What with his wisdom?

Figure 15: Example model outputs of the full synthetic data cycle for the natural language experi-
ments over generations of a self-consuming training loop.

21

Under review as a conference paper at ICLR 2025

Balanced Data Cycle

Initial:
First Citizen:
Before we proceed any further, hear me speak.

All:
Speak, speak.

First Citizen:

You are all resolved rather to die than to famish?

Genmeration1:
ANGELO:

Anon I would have no more for your better.

ANGELO:
I will be so not better, whom you flow.

ISABELLA:

I would he that would see your behalf.

Generation 10:

CORIOLANUS:

You will not speak to the people of the prince of the people,

Be so she is a man in the prince of the prince,

And the traitor of the prince of the prince,

And the prince of the prince of the prince,

And the prince of the prince of the prince of the prince of the prince,
And the seat of the prince of the state of the prince of the prince,

And so she shall be so she is not so shall not speak to the prince of the prince of the prince,
And the seat of the seat of the state of the prince of the state of the state,
Generation 25:

And give me dead, I have then,

And I have done to see your holy proofits of York,

And so shall be so stand to the state of the man in the man in the story of the state,
And so shall be spent for the seat of the seat of the first me of the prince,
And the state of the state of the state of the state,

And the state of the state of the state of the state of the state,

And the state of the state of the state of the state,

And the state of the state of the state of the state of the state,

And the state of the state of the state of the state,

Generation 50:

Here’s noble by so dead.

DUKE VINCENTIO:

Here’s a man in the prince of the prince, that the prince of the prince of the prince,
And the prince of the prince of the prince of the prince,

And the prince of the prince of the prince of the prince,

And the prince of the seat of the prince of

And the state of the state of the state of the state, ... (continues)

Figure 16: Example model outputs of the balanced data cycle for the natural language experiments
over generations of a self-consuming training loop.

22

Under review as a conference paper at ICLR 2025

Incremental Data Cycle

Initial:
First Citizen:
Before we proceed any further, hear me speak.

All:
Speak, speak.

First Citizen:

You are all resolved rather to die than to famish?

Gemerationl:
TYBALT:

I’ll stand my lord.

Marshal:
Tell her her and be solemned and soldiers,
For her wrong so understrange for Lancaster.

DUKE VINCENTIO:

Go you, good good lady.

Generation 10:

LADY CAPULET:

I will not say the world,

And thou hast not said to be so for the world,
And with the world.

LADY CAPULET:

I have said to shame the world,

And thou hast not said to show the world,
And thou shalt not say the world in the world,
That I have not said to shame the world.
Generation 25:

LADY ANNE:

I will not say the world.

LADY ANNE:
I will not say the world.

LADY ANNE:

I will not say the world,

And thou shalt not say the world in the world,
And thou hast not said to the world,
Generation 50:

DUKE OF YORK:

DUKE OF YORK:

DUKE OF YORK:

Figure 17: Example model outputs of the incremental data cycle for the natural language experi-
ments over generations of a self-consuming training loop.

23

Under review as a conference paper at ICLR 2025

Expanding Data Cycle

Initial:
First Citizen:
Before we proceed any further, hear me speak.

All:
Speak, speak.

First Citizen:

You are all resolved rather to die than to famish?
Generation 1:

SICINIUS:

The enemy noble are and true,

And like it to life he putinion.

VOLUMNIA:
So, let not for us.

CORIOLANUS:

No, I wise the take tower?

Generation 10:

LADY ANNE:

Would good we have my most for my soul, but your shouls

The can is sould distrother particularish,

And the such that the take tribunes,

Where the name and the vail the people and to still grave the truest roper in the people,
Which the port the people that who the hath the shall should to the people the people the
people

The people of the people and to the people tribuness of the people tribuness, the people,
Generation 25:

COMINIUS:

Say would be medd to the common of the give the stords

The people and the people the people tribuness, and the people tribuness

Of the people tribuness of the country’s noble the people,

Which the people and the stirly tribunes of the people tribuness of the people and to the
people tribuness of the people, and the people,

Which the people and the people the people trick of the people the people tribuness,

Who was in the people and the people the people and the people and the people the people
and the people, the people, and the people,

Generation 50:

LADY ANNE:

The gentleman is good more gone?

GLOUCESTER:
You have been my lord, I will be possess to the gods gods!

GLOUCESTER:
What the grace the people the people the people the people the people the people the people
the people the people the people the people the people the people the people . .. (continues)

Figure 18: Example model outputs of the expanding data cycle for the natural language experiments
over generations of a self-consuming training loop.

24

	Introduction
	The Self-Consuming Training Loop
	Experimental Setup
	Verification with a Logic Expression Dataset
	Natural Language Experiments
	Measuring the Diversity of the Model's Output
	Data Cycles
	Model Architecture and Training

	Results
	Correctness of Generated Content
	Diversity of Generated Content
	Diversity of Generated Natural Language

	Discussion
	Limitations
	Conclusion
	Pseudocode: Self-Consuming Training Loop
	Pseudocode: Generation of the Logic Expression Dataset
	Diversity Metrics
	Additional Experimental Results
	Unique Expressions Generated
	Impact of Initialization
	Impact of Model Size
	Impact of Dataset Size
	Additional Diversity Metrics for the Natural Language Dataset

	Example Outputs
	Examples of Logic Expressions
	Examples of Natural Language

