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ABSTRACT

Domain adaptation plays a pivotal role in deploying models when the inference data
distribution is different from the training data. It becomes particularly challenging
in source-free domain adaptation (SFDA) scenario, where access to the source
domain data is restricted due to data privacy concerns. To tackle such cases, existing
approaches often resort to generating source-like data for standard unsupervised
domain adaptation or endeavor to fine-tune a model pre-trained on a source domain
using self-supervised training techniques. Instead, our approach strikes a different
path by theoretically analyzing an empirical risk bound for SFDA. We identify
the population risk and domain drift as the major factors from the risk bound.
Subsequently, we introduce a top-k importance sampling to purify the pseudo
labels and thus reduce the population risk. We further present a nearest neighbor
voting-based semantic domain alignment to mitigate the domain drift. An iterative
optimization is finally proposed to combine the above two steps for multiple
rounds. Extensive experiments across three widely applied domain adaptation
datasets, i.e., Office-Home, DomainNet, and VisDA-C, demonstrate the consistently
advantageous performance over the state-of-the-art methods.

1 INTRODUCTION

Domain adaptation (DA) has shown wide applications in machine learning and computer vision
tasks, such as image or video recognition (Liu et al., 2021; Sahoo et al., 2021), segmentation (Chen
et al., 2022b), and object detection (Li et al., 2022). Many popular methods have presented large
success in above mentioned applications, e.g., adversarial learning (Goodfellow et al., 2020), self-
supervised learning (Jing & Tian, 2020), and self-training (Zou et al., 2019). However, data privacy
protection has emerged as a critical concern, with legislation such as the General Data Protection
Regulation (GDPR) in Europe aimed at safeguarding individuals’ information. This new focus on
privacy presents a unique challenge for DA where source domain data is no longer accessible. Many
traditional DA methods lose their effectiveness due to this restricted access.

In this paper, we delve into the concept of source-free domain adaptation (SFDA) (Yu et al., 2023),
where only a source domain pre-trained model and unlabeled target data are available for adaptation.
Various types of SFDA methods have emerged, with a primary focus on data generation (Kurmi et al.,
2021; Ding et al., 2022), self-training (Yang et al., 2022b; Litrico et al., 2023), and self-supervised
learning (Zhang et al., 2022; Chen et al., 2022a). Data generation based methods encounter the
challenge of accurately utilizing generated data to represent the unseen source domain. Meanwhile,
self-training based methods are vulnerable to the issue of noisy pseudo labels. Additionally, self-
supervised learning based methods come with added computational costs and necessitate the definition
of pre-defined pretext tasks. Nonetheless, none of these methods explicitly address the domain
divergence within the target domain during the adaptation of a pre-trained model to the target domain
with theoretical analysis.

In light of this, we seek to gain a deeper understanding of the SFDA problem through theoretical
analysis on the target domain empirical risk bound. Subsequently, we aim to extract some poten-
tially valuable insights to inform the design of novel algorithms for this challenging scenario. We
demonstrate that two key factors govern the target domain empirical risk in the SFDA problem: the
empirical population risk associated with pseudo-labeled target data, and the domain divergence
between pseudo-labeled target data and unlabeled target data. In this paper, we illustrate how to
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Figure 1: The proposed method overview. It is an iterative training process spanning across R Rounds.
Each round encompasses two fundamental stages: data selection and domain alignment. Dt denotes
the entirety of the unlabeled target dataset, with Dr

t,u and Dr
t,pl representing all unlabeled target

data and pseudo-labeled target data during the r-th round, respectively. Dr′

t,pl specifically refers to a
selected subset of pseudo-labeled target data at the r-th round. Besides, h is the target domain model
that is initialized with source domain pre-trained model hs and adapted every round.

craft a novel algorithm guided by these two crucial insights to effectively tackle the SFDA problem.
Specifically, we first propose a novel target data picking strategy to pseudo-label the samples with low
label noise. Secondly, we present a semantic domain alignment strategy to gradually align unlabeled
target data to the pseudo-labeled target data. Lastly, as shown in Figure 1, we introduce an iterative
optimization scheme to combine the above two steps for multiple rounds.

Our method can be summarized for the following contributions:

• We propose a theoretical analysis on target domain empirical risk bound for SFDA problem,
and derive the insights that we believe can inform the design of future SFDA algorithms.

• We introduce “Pick and Adapt”, an effective solution for SFDA based on the insights. This
iterative optimization regime jointly optimizes two key components: Top-k importance
sampling and nearest neighbor voting-based semantic domain alignment.

• Extensive experiments across three widely applied DA benchmarks demonstrate the advan-
tage of the proposed method for SFDA.

2 RELATED WORK

Unsupervised Domain Adaptation (UDA). Seminal works Ben-David et al. (2010) offer theoretical
guarantees for quantifying the discrepancy between the source and target domains. The following
works aim to either learn domain-invariant features or leverage adversarial learning to align and reduce
the domain discrepancy. For example, Deep Adaptation Network (DAN) (Long et al., 2015) proposes
to minimize the multi-kernel maximum mean discrepancy (MK-MMD) to reduce domain drift. The
Joint Adaptation Network (Long et al., 2017) provides joint maximum mean discrepancy (JMMD)
to align distribution across domains. Zhang et al. (2019) introduces Margin Disparity Discrepancy
(MDD) to measure the divergence across domains. Adversarial Discriminative Domain Adaptation
(ADDA) (Tzeng et al., 2017) combines discriminative modeling, untied weight sharing, and a GAN
loss to learn generalizable features across domains. Conditional Domain Adversarial Networks
(CDAN) (Long et al., 2018) aligns features across domains by exploiting discriminative information
conveyed in the classifier predictions. Feature Gradient Distribution Alignment (FGDA) (Gao et al.,
2021) employs a discriminator to differentiate the gradient distribution of features. Worth noting that
all the methods need both source and target domain data for adaptation.

Source-Free Domain Adaptation (SFDA). An early work Source HypOthesis Transfer
(SHOT) (Liang et al., 2020) proposes information maximization and clustering based pseudo-labeling
to encourage the model for confident predictions on the target domain. Semantic Consistency on the
Nearest Neighborhood (SCNNH) (Tang et al., 2021) shares a similar concept with SHOT, utilizing
estimated cluster centroids to derive semantic information. Following efforts lie in two streams. One
focuses on generating data to emulate the source domain, such as the Source Data free Domain
Adaptation (SDDA) (Kurmi et al., 2021). The Distribution Estimation (DE) (Ding et al., 2022)
focuses on estimating the class-conditioned feature distribution of the source domain by leveraging
the target data and its corresponding anchor points. The other direction is self-training with the
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label information provided by the pre-trained model, such as Neighborhood Reciprocity Clustering
(NRC) (Yang et al., 2021) and Attracting and Dispersing (AaD) (Yang et al., 2022b). Litrico et al.
(2023) improves the quality of pseudo labels by measuring their uncertainty. Divide and Contrast
(DaC) Zhang et al. (2022) splits target data into source-like and target-specific groups. Different from
all the above methods, our method roots from a rigorous theoretical analysis, where the population
risk and unlabeled v.s. pseudo-labeled data domain drift are identified. For each of the problems, we
specifically design the top-k importance sampling and nearest neighbor voting domain alignment to
effectively minimize the empirical risk.

Data Sampling (DS). Data sampling aims to select partial representative or reliable data from whole
dataset to improve the performance of learned model. For example, Posterior Sampling-based Outlier
Mining (POEM)(Ming et al., 2022) picks the most informative outlier data from an extensive pool
of auxiliary data points by selecting samples lying on the out-of-distribution decision boundary.
Adaptive Outlier Optimization (AUTO)(Yang et al., 2023) introduces an in-out-aware filter designed
to select and assign pseudo labels to data. The Importance Sampling method for Domain Adaptation
(ISDA)(Xu et al., 2019) proposes a loss function incorporating feature-norm and prediction entropy
to select data with significant information for effective domain. Cross-Domain Mixed Sampling
(DACS)(Tranheden et al., 2021) involves selecting half of the classes in a source domain image,
and then cutting out the corresponding pixels to paste them onto an image from the target domain.
Recently, several representative data sampling strategies have been proposed for SFDA problem,
for example, SHOT++ (Liang et al., 2021) utilizes the entropy values of predictions to partition the
unlabeled target dataset into two subsets, treating them as a labeled subset and an unlabeled subset.
ProxyMix (Ding et al., 2023) utilizes the weight of source pretrained classifier as the source class
centers, and selects N nearest data in target domain for each source class center as the labeled target
data. Black-Box Model Adaptation by Domain Division (BETA) (Yang et al., 2022a) categorizes the
unlabeled target dataset into two subsets, i.e., an easy-to-adapt subset and a hard-to-adapt subset by
calculating probabilities for each target data. Unlike existing methods, our data sampling involves a
gradual selection process throughout the training. In each round, we exclusively opt for target data
with high-quality pseudo-labels.

3 METHODOLOGY

The problem notations are introduced as: Ds = {(xi
s, y

i
s)}

ns
i=1 denotes the labeled source domain

dataset from source domain Ds with label space C = {1, 2, ..., C}, and Dt = {xi
t}

nt
i=1 indicates the

unlabeled target domain dataset from target domain Dt. In this work, we demonstrate with the image
classification task for the Source-free Domain Adaptation (SFDA) problem. Specifically, we target
at adapting the source domain dataset Ds pre-trained model hs(x) = (gs ◦ fs)(x) to the unlabeled
target domain dataset Dt, excluding the source data all through the process. The model includes a
feature extractor gs : x → z ∈ RD, mapping images to a D-dimensional feature embedding, and a
classifier fs : z → p ∈ RC , mapping the embedding to a C-dimensional probability vector.

3.1 THEORETICAL ANALYSIS ON SFDA

Based on the above setting, we first present a theoretical analysis on the target domain empirical
risk bound for Source-free Domain Adaptation (SFDA). The derived bound further guides to a novel
perspective for addressing this problem. Starting from a general empirical risk objective, we define it
as the error between the target domain adapted model h and the ground truth model ht on the target
domain data xt ∈ Dt:

ϵt(h) = Ext∈Dt

[
|h(xt)− ht(xt)|

]
, (1)

Within the unlabeled target domain data, we assume that it is able to assign the ground truth label yit
to a portion of the unlabeled target samples xi

t. In this way, the target domain data can be divided into
two subsets: the labeled subset denoted by Dt,l and the unlabeled subset Dt,u. We further assume
that Dt,l and Dt,u are i.i.d sampled from the target domain Dt with the size of m. As details shown
in Appendix A.1, we present the following empirical risk bound on the target domain.

Theorem 3.1. (proved in Appendix A.1) Consider a loss function ϵ(·, ·) applied to a hypothesis h and
a dataset Dt for empirical risk minimization. If h is determined by the parameter θ and is trained on
Dt, and it belongs to a hypothesis space H with a VC-dimension of d, with a probability of at least
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1− p over the sample selection process, the following inequality holds:

ϵt(h) ≤ 2ϵt,l(h) +
1

2
d̂H∆H(Dt,l, Dt,u) + 2

√
d log (2m) + log ( 2δ )

m
+ λ (2)

where d̂H∆H(Dl, Du) denotes the empirical distribution divergence, m indicates the size of Dt,l, λ
indicates the classification error on Dl.

From Theorem 3.1, we observe the main components to construct the risk bound, namely, the
population risk ϵt,l(h) observed on Dt,l, the empirical domain drift between Dt,l and Dt,u, and the
Dt,l size related variation. One challenge to computing the main components is: for population risk
ϵt,l(h), we do not have ground truth supervision from the unlabeled target domain data. Following
the self-supervised learning (SSL), we leverage the hs, the source domain pre-trained model, as
an alternative means to derive the pseudo label yit,pl on the target domain data xi

t. Consequently,
we assemble a pseudo-labeled target domain dataset, denoted as Dt,pl = {xi

t,pl, y
i
t,pl}

nt,pl

i=1 . The
empirical risk bound can be updated as the following:

ϵt(h) ≤ 2ϵt,pl(h)︸ ︷︷ ︸
population risk

+
1

2
d̂H∆H(Dt,pl, Dt,u)︸ ︷︷ ︸

domain divergence

+2

√
d log (2m) + log ( 2δ )

m︸ ︷︷ ︸
Dt,plsize related variation

+λ′ (3)

where λ′ = λ+γ and γ is a constant error introduced by the quality of the pseudo-labels within Dt,pl.
Equation 3 provides us a clear guidance that the target domain empirical risk for SFDA problem can
be optimized via two components: (1) the empirical risk associated with Dt,pl, and (2) the empirical
domain drift between Dt,pl and Dt,u.

Based on Equation 3, regarding each component, we specifically design our method in the following
sections. Section 3.2 tackles the first component, the population risk, by ensuring more accurate
pseudo-labeling of the unlabeled target data. For the second component, Section 3.3 further demon-
strates the proposed domain drift mitigation strategies. Section 3.4 summarizes the optimization
objectives and the overall training regime.

3.2 TOP-K IMPORTANCE SAMPLING FOR PSEUDO LABELING

A canonical pseudo-labeling mechanism is to directly leverage the classifier f from model h to assign
the class label, and conduct top-k sample selection as indicated below.

DC
t,pl =

C⋃
c=1

{
TopK(Dc

t,u)
}
, TopK(Dc

t,u) = {xi
t|i ∈ argsort

(
h(xi

t)
)
, xi

t ∈ Dc
t,u, i ≤ K},

(4)
where Dc

t,u denotes the unlabeled target data with pseudo label yit,pl = c, and K is the number of
selected data. We denote this as the classifier-based sampling strategy (C-sampling). The vanilla
C-sampling exhibits two main problems: (1) there is labeling bias inherited from the source domain
pre-trained model hs. (2) the selected samples with high confidence h(Dc

t,u) are mostly within
source domain distribution, since deep learning trained classifiers are highly data-driven with strong
distribution memorization. This enlarges the domain drift between Dt,pl and Dt,u.

To mitigate the above issues, we leverage the unsupervised information by clustering the centers
populated from the unlabeled target domain samples, which faithfully reflects the target domain
distribution and pops up the most confident samples for pseudo-labeling. We term it as target class
center based sampling strategy (T-sampling). Specifically, we apply the softmax over the logits after
classifier f to gauge the likelihood of correct classification, and select the top σ% of target data per
class denoted as Dc,σ

t , to form a reliable set. This set is then utilized to estimate the target class
centers through a weighted aggregation process:

µc =

∑
xi
t∈Dc,σ

t
pi,ct · zit∑

xi
t∈Dc,σ

t
pi,ct

, (5)
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Figure 2: An illustration of the proposed semantic domain alignment via nearest neighbors voting.

where pi,ct is the probability of the xi
t belongs to c-th class and zit is the feature of xi

t. Following this,
we calculate the cosine similarity between the estimated class centers µc and the unlabeled target
data, and proceed to select data with high cosine similarity from each class:

DT
t,pl =

C⋃
c=1

{
Topcos

K (Dt,u)
}
, Topcos

K (Dt,u) = {xi
t|i ∈ argsort(cos(xi

t, µc)), x
i
t ∈ Dt,u, i ≤ K}.

(6)
Intuitively, the closer the unlabeled samples are to the estimated class centers, the higher the likelihood
these samples belong to the specific classes. However, it is worth noting that the accuracy of the
estimated class centers heavily relies on the pseudo label information generated by the model updated
from the initial training rounds. This accuracy can be compromised due to inherent domain drift
issues.

To further improve the pseudo-labeling accuracy, we introduce an intersection based sampling,
denoted as I-sampling, to retrieve the intersection between C-sampling and T-sampling. With either
of the two sampling sets empty, it degrades empty for the c-th category.

DI
t,pl =

C⋃
c=1

{
TopK(Dc

t,u) ∩ Topcos
K (Dt,u)

}
. (7)

In Section 4.3, we empirically validate that I-sampling selects unlabeled target data with consistently
higher pseudo-label purity compared to C-sampling and T-sampling.

The supervised cross-entropy loss is then applied to those pseudo labeled data to update the model h:

LCE(h;Dt,pl) = −E(xi
t,pl,y

i
t,pl)∈Dt,pl

C∑
c=1

yi,ct,pl log σc

(
h(xi

t,pl)
)
, (8)

where σ is the softmax operation, σk indicates the c-th element in the softmax output of the model,
and yi,ct,pl denotes the c-th element in one-of-C encoding of yit,pl.

3.3 SEMANTIC DOMAIN ALIGNMENT VIA NEAREST NEIGHBORS VOTING

In this section, we primarily aim at aligning Dt,u with the Dt,pl obtained from Sec. 3.2 in order to
reduce the domain discrepancy. Rather than directly applying the successful adversarial feature align-
ment (Goodfellow et al., 2014), we face a challenge that there is usually a significant size imbalance
between Dt,pl and Dt,u, which can result in additional adverse effects on domain alignment.

We alleviate the imbalance by spectating into the vicinity of each sample and re-balancing the volume
by a uniform local density, e.g., the k nearest neighbors (KNN) (Taunk et al., 2019). As illustrated in
Figure 2, consider an unlabeled target data xi

t,u drawn from Dt,u, along with a data augmentation
operation denoted as Aug(·). We obtain the augmented data as xi′

t,u = Aug(xi
t,u). We establish two

memory banks: one for storing target features and the other for storing logits. The two memory banks
are dynamically updated, with features and their respective logits being added in each mini-batch
during the training process. For each unlabeled target data xi

t,u, we use its feature zit,u to search the k
nearest neighbors from the reliable set used in Equation 5. Consequently, the label information of the
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xi
t,u is refined by aggregating the logits from the selected k nearest neighbors via a cosine similarity

weighted mechanism:

p̃it,u =

K∑
k=1

αkpkt and αk =
exp (zit,u · zkt /τ)∑K
j=1 exp (z

i
t,u · zjt /τ)

, (9)

where zkt denotes the feature of the nearest neighbors alone with its logits pkt . αk measures the
cosine similarity between the current data xi

t,u and the k-th nearest neighbor xk
t . However, since the

refinement is an iterative process, the refined label information by neighborhood label propagation
can still be noisy. Inspired by (Fu et al., 2020), we propose a metric to indicate the certainty of the
refined label information via:

η(p̃it,u) =
(1− H(p̃it,u)) + Max(p̃it,u))

2
, (10)

where H(·) denotes the entropy calculation and Max(·) indicate the maximum probability value in
p̃it,u. We normalize the H(p̃it,u) and Max(p̃it,u) by minmax normalization to unify them within [0, 1]

before computing η(p̃it,u). This metric is designed to trade off the two ends. One is estimating
certainty solely based on entropy may falter in distinguishing between confident and extremely sharp
predictions. The other is relying solely on probability for certainty estimation may not effectively
address the challenge of distinguishing between various class distributions.

With the refined label information p̃it,u and its certainty estimation η(p̃it,u), we align the domain drift
between Dt,pl and Dt,u by a semantic alignment regularization, which pushes the data augmented
xi′

t,u = Aug(xi
t,u) to the corresponding class centers learned by the model h:

LSA(h;Dt,u) = Exi
t,u∈Dt,u

I
(
η(p̃it,u) ≥ β

)
ϕ
(
h
(
Aug(xi

t,u)
)
, wỹi

t,u

)
, (11)

where β is the threshold, ϕ(·, ·) is any differentiable distance measure. We pick Wasserstein distance
across all our experiments. w is the row-wise neuron weights from the classifier f viewed as the
model learned class centers, and ỹit,u = argmax(p̃it,u) is the label information for xi

t,u.

Throughout the training process, a natural curriculum unfolds, driven by this regularization technique.
Initially, the model generates lower-quality label information for xi

t,u. Applying the β parameter
serves to filter out these unlabeled target data points with inferior label quality, thus preventing the
risk of negative transfer. As training progresses, the unlabeled target data gradually aligns with the
class centers. Consequently, higher-quality label information emerges, fostering improved domain
alignment between the pseudo-labeled target data Dt,pl and the unlabeled target data Dt,u.

3.4 OPTIMIZATION REGIME

As illustrated in Figure 1, our training pipeline unfolds dynamically across a span of R rounds.
Each round consists of two pivotal steps: pseudo labeled target data selection and semantic domain
alignment via the nearest neighbor voting. To prevent the posterior collapse, we adhere to the
well-known regularization technique, the Information Maximization (IM) loss:

LIM (h;Dt,u) = −Exi
t,u∈Dt,u

C∑
c=1

σc

(
h(xi

t,u)
)
log

(
σc

(
h(xi

t,u)
))

+

C∑
c

Pc log(Pc), (12)

where σ is the softmax operation, and Pc = Exi
t,u∈Dt,u

[σc

(
h(xi

t,u)
]
. The overall objective for

source-free domain adaptation is:

LSFDA = LCE + LSA + ρLIM , (13)

where ρ is the loss balancing hyper-parameter.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Datasets: We demonstrate our method under image classification task on three standard domain
adaptation benchmarks as most of the literature does: Office-Home (Venkateswara et al., 2017),
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Table 1: Classification Accuracy (%) on Office-Home (ResNet-50). The best results under SFDA
setting are highlighted in bold. Note that “SF” means whether a method belongs to SFDA method.

Method SF A→C A→P A→R C→A C→P C→R P→A P→Cl Pr→R R→A R→C R→P Avg.

ERM × 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

CDAN × 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
CST × 59.0 79.6 83.4 68.4 77.1 76.7 68.9 56.4 83.0 75.3 62.2 85.1 73.0

SHOT ✓ 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
AaD ✓ 59.3 79.3 82.1 68.9 79.8 79.5 67.2 57.4 83.1 72.1 58.5 85.4 72.7
DaC ✓ 59.1 79.5 81.2 69.3 78.9 79.2 67.4 56.4 82.4 74.0 61.4 84.4 72.8
C-SFDA ✓ 60.3 80.2 82.9 69.3 80.1 78.8 67.3 58.1 83.4 73.6 61.3 86.3 73.5

Ours ✓ 61.2 80.9 82.7 69.3 81.2 81.4 68.1 58.8 83.4 74.6 62.4 85.7 74.1

Table 2: Classification Accuracy (%) on DomainNet (ResNet-50). The best results under SFDA
setting are highlighted in bold. Note that “SF” means whether the method belongs to SFDA method.

Method SF Re→Cl Re→Pa Pa→Cl Cl→Sk Sk→Pa Re→Sk Pa→Re Avg.

MCC × 44.8 65.7 41.9 34.9 47.3 35.3 72.4 48.9

SHOT ✓ 67.7 68.4 66.9 60.1 66.1 59.9 80.8 67.1
AC ✓ 70.2 69.8 68.6 58.0 65.9 61.5 80.5 67.8
GPUE ✓ 74.2 70.4 68.8 64.0 67.5 65.7 76.5 69.6

Ours ✓ 77.6 72.9 71.9 68.0 71.2 67.3 83.2 73.2

DomainNet (Peng et al., 2019), and VisDA-C 2017 (VisDA-C) (Peng et al., 2017). (1) Office-Home
consists of four domains (Art, Clipart, Produce, and Real_world) with 65 classes. (2) DomainNet is
one of the largest domain adaptation datasets which contains 6 domains and 345 classes. Following
the protocol in (Litrico et al., 2023), we use a subset including 126 classes from 4 domains (Clipart,
Painting, Real, Sketch), and evaluate on 7 designed domain tasks. (3) VisDA-C is a challenging
large-scale synthesis-to-real object recognition dataset that contains 12 classes. The source domain
includes 152k synthetic images and the target domain contains 55k real images. (The experimental
results on VisDA-C can be found in the Appendix)

Baselines: We compare to two main streams of methods that are most relevant to ours: (1) Unsuper-
vised Domain Adaptation methods, including CDAN (Long et al., 2018), MCC Jin et al. (2020), and
CST (Liu et al., 2021). (2) Source-Free Domain Adaptation methods, including SHOT (Liang et al.,
2020), AaD (Yang et al., 2022b), SDE (Ding et al., 2022), DaC (Zhang et al., 2022), GPUE (Litrico
et al., 2023), and C-SFDA (Karim et al., 2023). Besides, we include Empirical Risk Minimization
(ERM) (Koltchinskii, 2011) as a general baseline.

Evaluation Metrics: For Office-Home and DomainNet, we report the top-1 accuracy under each
domain task together with their average. For VisDA-C, we report the per-class top-1 accuracy and
their average. Each domain task is conducted independently 3 times and the average is reported.

Implementation Details: For a fair comparison, we adopt the pretraining methodology outlined in
SHOT (Liang et al., 2020) to get the source domain pre-trained model. In particular, we separately
employ ResNet50 for Office-Home and DomainNet, and ResNet101 for VisDA-C as the backbone
architectures. Subsequently, we replace the original final FC layer with a new bottleneck layer,
followed by Batch Normalization (BN). In the target domain adaptation phase, we initialize the
target model using the parameters from the pretrained source domain model. We utilize SGD
with momentum 0.9 and weight decay 1e−3 and batch size of 64 for all benchmarks. The initial
learning rates are 0.001 for Office-Home and DomainNet and 0.01 for VisDA-C, respectively. We
set ρ = exp (ite/max_ite)−1 where max_ite is the maximum number of the training iterations. More
implementation details can be found in Appendix.
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Table 3: Classification Accuracy (%) on VisDA-C (ResNet-101). The best results under SFDA setting
are highlighted in bold. Note that “SF” means whether the method belongs to SFDA method.

Method SF plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg.

ERM × 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4

CDAN × 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
MCC × 88.1 80.3 80.5 71.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8

SHOT ✓ 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9
AaD ✓ 97.4 90.5 80.8 76.2 97.3 96.1 89.8 82.9 95.5 93.0 92.0 64.7 88.0
DaC ✓ 96.6 86.8 86.4 78.4 96.4 96.2 93.6 83.8 96.8 95.1 89.6 50.0 87.3
GPUE ✓ 97.3 96.2 90.5 91.8 90.0 94.2 87.4 87.7 97.0 84.3 93.0 81.0 90.0
C-SFDA ✓ 97.6 88.8 86.1 72.2 97.2 94.4 92.1 84.7 93.0 90.7 93.1 63.5 87.8

Ours ✓ 94.6 86.4 85.4 96.8 96.7 92.2 96.1 82.6 88.2 88.4 89.8 72.4 89.1

4.2 EXPERIMENTAL RESULTS

Office-Home: Table 1 illustrates the quantitative comparison on Office-Home dataset. The methods
are organized into the top three rows, while ours is in the last row. The first row is the ERM result,
which serves as the lower bound. The second row shows three representative unsupervised domain
adaptation (UDA) methods, all of which necessitate the availability of the source domain dataset
during adaptation to the target domain. The third row contains seven cutting-edge source-free domain
adaptation (SFDA) methods, such as the SDE (Ding et al., 2022) and C-SFDA (Yang et al., 2022b).
Under the UDA setting, our approach surpasses the strong baseline CST by +1.1% and outperforms
all other UDA baselines by an even larger margin. This achievement is noteworthy considering that
we do not utilize any source data during source-free adaptation. In the more challenging SFDA
setting, we achieve a 2.2% improvement over U-SFAN, a 1.2% improvement over SDE, and a 0.6%
improvement over C-SFDA in terms of the ’Avg.’ metric. Furthermore, our method outperforms all
other SFDA baselines in 9 out of 12 domain tasks, firmly establishing its superiority.

DomainNet: The evaluation results on DomainNet are detailed in Table 2. We adhere to the
experimental protocol outlined in (Litrico et al., 2023), which allows us to showcase the performance
of our method across 7 different domain tasks. By comparing our method with both UDA and SFDA
baselines, our method achieves state-of-the-art performance among all baselines and is higher than
the second best GPUE by a margin of 3.6% in terms of ’Avg.’. Furthermore, our method attains the
highest accuracy across all 7 domain tasks. The achievement not only demonstrates the superiority of
our proposed method but also underscores the effectiveness of our proposed approach in addressing
source-free domain adaptation within the context of a large-scale benchmark.

VisDA-C: Table 3 presents a comparison between our method and state-of-the-art UDA and SFDA
approaches on the VisDA-C dataset, considering the synthetic-to-real shift. Following the similar
layout in Table 1, the top three rows show methods of ERM, UDA, and SFDA methods, with ERM
serving as the lower bound. In this evaluation, we consistently observe significant improvement
over most of the compared approaches. We achieve a performance increase of 1.9% on average
compared to CAN, without the need for access to source data during adaptation. Furthermore, our
method achieves comparable performance to the best SFDA baseline, GPUE, while surpassing all
other state-of-the-art SFDA methods by a considerable margin, such as a 1.1% advantage over AaD,
a 2.3% improvement over AC, and a 1.3% enhancement over C-SFDA, as measured by the ’Avg.’.

4.3 ANALYSIS AND DISCUSSIONS

Ablation Study: Table 4 shows the ablative results regarding the proposed modules. It is organized
into three rows. In the first row, we individually explore each module within our method. Notably,
the LSA module exhibits the lowest accuracy at 28.2% compared to the other two modules. This
discrepancy arises from the fact that training the model exclusively with the selected Dt,pl dataset
or failing to prevent poster collapse would lead to degradation from the original source domain pre-
trained model. This is because Dt,pl is relatively small and contains incorrect label information. In the
second row, we consistently observe improvements in accuracy when randomly combining two sub-
modules. Notably, when we combine LSA with either LCE or LIM , we achieve a significant accuracy
boost by more than 40.0%. Finally, in the last row, we showcase the performance enhancement
achieved by our full approach, which further improves accuracy by more than 2.0%.
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Table 4: Ablation study of sub-modules in our proposed method on Office-Home and DomainNet
datasets with six domain tasks, i.e., A→C, A→P, A→R, Re→Cl, Re→Pa, and Re→Sk. LCE is
the cross-entropy loss for Dt,pl. LSA is the semantic domain alignment loss for Dt,u. LIM is the
information maximization loss for Dt,u.

LSA LCE LIM A→C A→P A→R Re→Cl Re→Pa Re→Sk Avg.

× × ✓ 55.9 75.4 77.6 66.8 68.1 59.0 67.1
× ✓ × 56.9 73.7 78.5 66.1 62.5 57.2 65.8
✓ × × 12.7 33.3 40.7 24.2 38.6 19.9 28.2

× ✓ ✓ 58.7 75.7 81.1 70.2 67.9 60.7 69.0
✓ × ✓ 56.3 76.7 80.6 69.5 66.6 63.5 68.9
✓ ✓ × 59.5 78.7 80.5 74.9 69.7 64.4 71.3

✓ ✓ ✓ 61.2 80.9 82.7 77.6 72.9 67.3 73.8

0 1 2 3 4 5
Rounds

45

50

55

60

Pe
rc

en
t (

%
)

C-sampling
T-sampling
I-sampling

(a) Accuracy on Dt

0 1 2 3 4 5
Rounds

40

50

60

70

80

90

Ac
cu

ra
cy

(%
)

C-sampling
T-sampling
I-sampling

(b) Accuracy on Dr′
t,pl

0 1 2 3 4 5
Rounds

50

60

70

80

90

Ac
cu

ra
cy

(%
)

C-sampling
T-sampling
I-sampling

(c) Accuracy on Dr
t,pl

0 1 2 3 4 5
Rounds

25

30

35

40

45

50

55

Ac
cu

ra
cy

(%
)

C-sampling
T-sampling
I-sampling

(d) Accuracy on Dr
t,u

Figure 3: As shown from left to right, four figures illustrate the accuracy of different target subsets
during the training process with domain task A→C on Office-Home. (a) demonstrates the accuracy
of all target data Dt. (b) shows the accuracy of the selected pseudo labeled target data Dr′

t,pl at the
r-th round. (c) describes the accuracy of the all pseudo labeled target data Dr

t,pl at the r-th round. (d)
plots the trend of the accuracy of the remaining unlabeled target data Dt,u at the r-th round.

Accuracy of the Target Data. We explore the accuracy of the target data from different subsets, i.e.,
all target data Dt, selected pseudo labeled target Dk′

t,pl at r round, all pseudo labeled target data Dk
t,pl,

and remaining unlabeled target data Dt,u. Figure 3 (a) presents the overall trend on Dt. To delve
into the source of this advantage, we further examine the accuracy trend of two aspects: the selected
pseudo labeled target data Dr′

t,pl at each round, and the overall selected pseudo labeled target data
Dk

t,pl. As depicted in Figures 3 (b) and (c), we observe that I-sampling strategy excels in selecting
target data with more accurate labels, thereby enhancing model training. It’s worth noting that as the
data sampling process continues, the accuracy of selected target data with labels tends to decrease.
This arises from the fact that the most reliable target data with pseudo-labels are chosen in the initial
stages. Additionally, we see that the decline in accuracy for the selected pseudo labeled target data
Dr′

t,pl during the initial phase is less pronounced compared to the later stages. Conversely, the increase
in accuracy for the entire target data Dt during the early stages is more substantial than in the later
stages. It is likely that accuracy on non-selected target data experiences significant improvement in
the early training stages, leading to the selection of more reliable target data for labeling, which is
verified in Figure 3 (d).

5 CONCLUSION

In this work, we conduct a theoretical analysis on the empirical risk bound for the Source-Free Domain
Adaptation (SFDA) problem setting, where we identify two major factors to determine the bound,
the pseudo-labeled population empirical risk and the pseudo-labeled and unlabeled subsets domain
drift. We hope the theoretical analysis can inspire future new approaches from the identified factors.
Subsequently, we propose a top-k importance sampling strategy to purify the pseudo-labeling process
targeting for lower population risk, and a nearest neighbor voting-based semantic domain alignment
approach to close the domain gap between the pseudo-labeled and remaining unlabeled target data. An
iterative optimization is introduced to combine the two steps for multiple rounds. Across three major
domain adaptation benchmarks, we achieve consistently better classification accuracy compared to
the unsupervised domain adaptation and source-free domain adaptation methods.
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A APPENDIX

The appendix contains in-depth information regarding the theoretical analysis, algorithm descriptions,
implementation specifics, and supplementary experimental results.

A.1 THEORETICAL DETAILS

A hypothesis is a function represented as h : X → {0, 1}. The probability according to the
distribution D that a hypothesis h disagrees with a labeling function f (which can also be a hypothesis)
is defined as

ϵ(h, f) = Ex∈D

[
|h(x)− f(x)|

]
. (14)

When we intend to denote the source error of a hypothesis associated with source domain Ds, we use
the shorthand ϵs(h) = ϵs(h, fs). Further, we use the notation ϵ̂s(h) to represent the empirical source
error. Similarly, for the target domain Dt ≜ {xi

t}
nt
i=1, we employ the notations ϵt(h, ft), ϵt(h), and

ϵ̂(h). Suppose that for some unlabeled target data xi
t ∈ Dt, we can assign the ground truth label

yit to them. Thus, the target domain can be divided into two subsets: the labeled subset denoted as

Dl
t ≜ {(xi

t,l, y
i
t,l)}

nl
t

i=1 and the unlabeled subset indicated as Du
t ≜ {xi

t,u}
nu
t

i=1.

Definition A.1 (Based on Ben-David et al. (2010) ). Given a domain X with D and D′ probability
distribution over X , let H be a hypothesis class on X and denote by I(h) the set for which h ∈ H is
the characteristic function; that is, x ∈ I(h),. The H-divergence between D and D′ is

dH(D,D′) = 2 sup
h∈H

∣∣PrD(I(h))− PrD′ [I(h)]
∣∣ (15)

Lemma A.1 (Based on Ben-David et al. (2010) ). Let H be a hypothesis space on X with VC
dimension d, If U and U ′ are samples of size m from D and D′ respectively and d̂H(U ,U ′) is the
empirical H-divergence between samples, then for any δ ∈ (0, 1), with probability at least 1− δ,

dH(D,D′) ≤ d̂H(U ,U ′) + 4

√
d log (2m) + log ( 2δ )

m
(16)

Lemma A.2. For any hypothesis h, h′ ∈ H,∣∣ϵs(h, h′)− ϵt(h, h
′)
∣∣ ≤ sup

h,h′∈H

∣∣ϵs(h, h′)− ϵt(h, h
′)
∣∣

= sup
h,h′∈H

∣∣Prx∈Ds [h(x) ̸= h′(x)]− Prx∈Dt [h(x) ̸= h′(x)]
∣∣

=
1

2
dH∆H(Ds, Dt)

Theorem A.3. Given an unlabeled target domain Dt, we can assign the ground truth label yit to some
unlabeled target data xi

t. Thus, the target domain can be divided into two subsets: the pseudo-labeled
subset denoted as Dt,l and the unlabeled subset indicated as Dt,u. We assume that Ut,l and Ut,u are
i.i.d. induced from the Dt,l and Dt,u with size of m, respectively. Let ϵ(·, ·) be a loss function on a
hypothesis and a dataset (for empirical error) or a distribution (for generalization error). If h is
governed by the parameter θ trained on Dt and belongs to a hypothesis space H of VC-dimension d,
then with probability at least 1− p over the choice of samples, the inequality holds,

ϵt(h) ≤ 2ϵt,l(h) +
1

2
d̂H∆H(Dt,l, Dt,u) + 2

√
d log (2m) + log ( 2δ )

m
+ λ (17)

where dHδH(Dl, Du) denotes the distribution divergence, and λ = min{ϵt,l(h, ft), ϵt,u(h, ft)}.
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Proof. Recall that ϵt(h) = ϵt(h, ft), and Dt = {Dt,l, Dt,u}. Similarly, we have ϵt,l(h) =
ϵt,l(h, ft,l) and ϵt,u(h) = ϵt,u(h, ft,u).

ϵt(h) = Ext∈Dt

[∣∣h(xt)− f(xt)
∣∣] = Ext∈{Dt,l+Dt,u}

[∣∣h(xt)− f(xt)
∣∣]

≤ Ext,l∈Dt,l

[∣∣h(xt,l)− f(xt,l)
∣∣]+ Ext,u∈Dt,u

[∣∣h(xt,u)− f(xt,u)
∣∣] = ϵt,l(h) + ϵt,u(h)

= ϵt,l(h) + ϵt,u(h) + ϵt,l(h)− ϵt,l(h) + ϵt,l(h, ft,u)− ϵt,l(h, ft,u)

= 2ϵt,l(h) +
(
ϵt,l(h, ft,u)− ϵt,l(h)

)
+
(
ϵt,u(h)− ϵt,l(h, ft,u)

)
≤ 2ϵt,l(h) +

∣∣ϵt,u(h, ft,u)− ϵt,l(h, ft,u)
∣∣+ ∣∣ϵt,l(h, ft,u)− ϵt,l(h, ft,l)

∣∣
≤ 2ϵt,l(h) + sup

h,ft,u∈H

∣∣ϵt,u(h, ft,u)− ϵt,l(h, ft,u)
∣∣+ ∣∣ϵt,l(h, ft,u)− ϵt,l(h, ft,l)

∣∣
= 2ϵt,l(h) +

1

2
dH∆H(Dt,l, Dt,u) +

∣∣ϵt,l(h, ft,u)− ϵt,l(h, ft,l)
∣∣

≤ 2ϵt,l(h) +
1

2
dH∆H(Dt,l, Dt,u) + ϵt,l(h, ft,u) + ϵt,l(h, ft,l)

≤ 2ϵt,l(h) +
1

2
d̂H∆H(Ut,l,Ut,u) + 2

√
d log (2m) + log ( 2δ )

m
+ λ

The last step is an application of Lemma A.1 and A.2. λ comes from the classification error on Dt,l

with classifiers ft,u and ft,l.

A.2 ALGORITHM

Algorithm 1 illustrates details of our proposed method.

Algorithm 1 Our proposed Algorithm.

Require: Unlabeled target domain dataset Dt, initialized model h by source domain pretrained
model hs.

Ensure: Learned model h.
1: for r = 1 to R do ▷ R #Rounds
2: if Mod(r, Q)=0 then ▷ Q rounds interval
3: Apply Equation 7 for target data selection (Sec. 3.2)
4: end if
5: for i to I do ▷ I is the len of Dt

6: Apply overall loss Equation 13 to train h (Sec. 3.4)
7: end for
8: end for

A.3 DETAILS OF THE DATASETS AND IMPLEMENTATION

Office-Home is a challenging dataset, which includes 15,500 images from 65 categories in office and
home circumstances, consisting of four particularly dissimilar domains: Artistic images (A), Clip
Art (C), Product images (P), and Real-World images (R). We establish a total of 12 transfer tasks
by incorporating all available domains. we configure the top-K sample parameter in Equation 7 to
be 5, set the σ in Equation 5 at 50%, setup top-k neighbors selected for target data refinement in
Equation 9 to 5, and adjust the β to 0.9. The training process contains 5 rounds, with each round
consisting of 15 epochs.

DomainNet is a substantial domain adaptation dataset, notable for its extensive scale encompassing
6 domains and 345 classes. However, due to the presence of noisy labels in some domains and
classes, we follow a specific protocol mentioned in Litrico et al. (2023). In line with this protocol, 4
domains (Real, Clipart, Painting, Sketch) and 125 classes are selected. We focus on the adaptation
scenarios where the target domain is not real images, and construct 7 scenarios from the 4 domains.
we configure the top-K sample parameter in Equation 7 to be 15, set the σ in Equation 5 at 50%,

14



Under review as a conference paper at ICLR 2024

0 10 20
Top-k for picking

56

58

60

62

Pe
rc

en
t (

%
)

C-SFDA
Ours

(a)

0 2 4 6 8 10
Rounds

55

60

65

70

75

80

Ac
cu

ra
cy

(%
)

GPUE
Ours

(b)

Figure 4: (a) Visualizing the influence of Top-k in Equation 7 on the picking pseudo labeled target
data with domain task A→C on Office-Home. (b) Visualizing the training behavior of our method on
adaptation task Re→Cl on DomainNet.

setup top-k neighbors selected for target data refinement in Equation 9 to 5, and adjust the β to 0.9.
The training process contains 10 rounds, with each round consisting of 10 epochs.

VisDA-C is a challenging large-scale synthesis-to-real object recognition dataset that contains 12
classes. The source domain includes 152k synthetic images and the target domain contains 55k real
images. we configure the top-K sample parameter in Equation 7 to be 300, set the σ in Equation 5 at
50%, setup top-k neighbors selected for target data refinement in Equation 9 to 200, and adjust the β
to 0.9. The training process contains 10 rounds, with each round consisting of 4 epochs.

A.4 SENSITIVITY TO TOP-K IN EQUATION 7

To verify the impact of the Top-k in Equation 7, we conduct experiments on Office-Home with the
adaptation task A→C. The value of the Top-k varies from 1 to 25. As shown in Figure 4 (a), We
have observed that both a small and a large value for the Top-k lead to decreased performance in
our study. In the case of a small Top-k value, the performance suffers due to the limited selection of
pseudo-labeled data. This limitation negatively impacts the alignment between the pseudo-labeled and
unlabeled target data, ultimately affecting the overall performance. Conversely, when employing a
larger Top-k value, our method tends to select more data, including those with noisy label information.
This abundance of noisy data adversely influences the performance, resulting in a decrease in overall
effectiveness.

A.5 ACCURACY VS. ROUND NUMBER CURVE FOR DOMAINNET

We delve deeper into understanding the training behavior of our approach on DomainNet. As depicted
in Figure 4 (b), the accuracy trend of our method shows a gradual improvement. Notably, after four
rounds, our approach demonstrates a significant performance boost, surpassing the state-of-the-art
GPUE method (Litrico et al., 2023).

A.6 HYPER-PARAMETER ANALYSIS

We evaluate the sensitivity of hyper-parameters in our method. Namely, the length of the round, the
ratio of selected labeled data, the ratio of the selected reliable data, and the number of top-k data
for labeling. As illustrated in Figure 5 (a) and Figure 6 (a), our performance exhibits continuous
improvement with increasing round length. A longer round allows for more comprehensive model
training, resulting in enhanced model performance. In Figure 5 (b) and Figure 6 (b), we observe
the performance of our method across various ratios of target data selected as labeled data through
pseudo-label assignment. The performance consistently improves within the range of [0.1, 0.5].
However, beyond a ratio of 0.5, there is a slight performance degradation. This decline is attributed
to the inclusion of more target data as labeled data, which results in lower-quality pseudo-labels and
consequently, a deterioration in model performance. As shown in Figure 5 (c) and Figure 6 (c)„ we
observe that a small ratio of selected reliable data results in lower performance. This is because a
lower ratio of selected reliable data leads to a biased estimation of target class centers through the
assigned pseudo-labels. In Figure 5 (d) and Figure 6 (d), we notice that both a small size of neighbors
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Figure 5: As shown from left to right, four figures provide insights into the effect of hyperparameters
on our method when applied to the domain task A→C on Office-Home dataset. (a) illustrates the
impact of the length of rounds. (b) delves into the impact of the ratio of target data selected as labeled
data by assigning pseudo labels. (c) describes the effect of the σ ratio of reliable data selected from
the entire target data in Equation 5. (d) plots the influence of the top-k neighbors selected for target
data refinement in Equation 9.
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Figure 6: As shown from left to right, four figures provide insights into the effect of hyperparameters
on our method when applied to the domain task Re→Cl on DomainNet dataset. (a) illustrates the
impact of the length of rounds. (b) delves into the impact of the ratio of target data selected as labeled
data by assigning pseudo labels. (c) describes the effect of the σ ratio of reliable data selected from
the entire target data in Equation 5. (d) plots the influence of the top-k neighbors selected for target
data refinement in Equation 9.

and a large size of neighbors result in lower performance. A small neighbor size can introduce bias
since there are fewer neighbors to contribute to label information. Conversely, a larger neighbor size
can lead to a decrease in performance as it includes many dissimilar semantic neighbors, which in
turn deteriorates the quality of the refined labels.

A.7 PICKING AND ADAPTATION STRATEGIES STUDY

We integrated picking and adaptation strategies from two state-of-the-art methods, namely
SHOT++ (Liang et al., 2021) and AaD Yang et al. (2022b). We denote our methods as "our-
picking" + "our-adaptation". Specifically, we utilize the picking strategy from SHOT++, referred to as
"SHOT++-picking," and the adaptation strategy from AaD, denoted as "AaD-adaptation." We evaluate
the performance of "SHOT++-picking" + "our-adaptation" and "our-picking" + "AaD-adaptation" on
adaptation tasks, namely A→C, A→P, and A→R, using the Office-Home dataset.

In Table 5 We observed that adopting the picking strategy from SHOT++, which uses entropy as
the metric to select target data with entropy values larger than the average entropy values over the
entire dataset as pseudo-labeled data, results in "SHOT++-picking" + "our-adaptation" significantly
underperforming our results. This phenomenon can be attributed to two reasons. Firstly, "SHOT++-
picking" heavily relies on the entropy value, which may struggle to distinguish between confident
and extremely sharp predictions. Secondly, "SHOT++-picking" selects pseudo-labeled data only
once, and the large number of selected data leads to a low quality of pseudo labels. Therefore, it
demonstrates the advantage of our picking strategy compared to the picking strategy from SHOT++.
Combining "our-picking" with "AaD-adaptation," we observe that it also underperforms compared
to our approach. This is mainly due to "AaD-adaptation" blindly trusting the predicted semantic
information of the neighbors, which can lead to negative clustering when these predictions are
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Table 5: Picking and Adaption ablation study.

Method A→C A→P A→R

“SHOT++-Picking” + “our-adaptation” 58.7 79.2 81.9
“our-Picking” + “AaD-adaptation” 60.1 79.7 82.3

Ours 61.2 80.9 82.7

SHOT++ 57.9 79.7 82.5
AaD 59.3 79.3 82.1

Table 6: Ablation study for data sampling.

Sampling strategy C-sampling T-sampling I-sampling(Ours)

A→C (OfficeHome) 59.9 59.1 61.2
Re→Cl (DomainNet) 76.5 76.2 77.7

not very accurate. Additionally, the reliance on inaccurate local clusters can result in suboptimal
discriminative representation learning. Therefore, it proves the advantage of our adaptation strategy
over the adaptation strategy from AaD.

A.8 ABLATION STUDY FOR C-SAMPLING AND T-SAMPLING

We adopt the adaptation tasks A→C and Re → Cl from OfficeHome and DomainNet, respectively,
to investigate the performance of C-sampling and T-sampling. As depicted in Table 6, it is observed
that the I-sampling strategy outperforms both C-sampling and T-sampling across various adaptation
task.

A.9 SENSITIVITY STUDY FOR ρ IN EQ. 13

We have investigated the performance of our method across various values of ρ ranging from 0.1
to 1.0 on the adaptation task Re → Cl from DomainNet. As indicated in Table 7, our method
demonstrates lower sensitivity within the ρ range of 0.3 to 1.0.

Table 7: Sensitivity study for ρ in Eq. 13.

ρ 0.1 0.3 0.5 0.8 1.0

Re→Cl (DomainNet) 75.9 77.0 77.2 77.4 77.5
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