
Scalable Tree Search over Graphs with Learned Action Pruning for Power Grid Control

Scalable Tree Search over Graphs with
Learned Action Pruning for Power Grid Control

Florence Cloutier1, 2, Cyrus Neary 1, 2, Adriana Hugessen1, 2,
Viktor Todosijević2, Zina Kamel3, Glen Berseth1, 2

{florence.cloutier, cyrus.neary, adriana.knatchbull-hugessen,
zina.kamel, glen.berseth}@mila.quebec, todosijevicviktor998@gmail.com

1Université de Montréal 2Mila - Quebec AI Institute 3McGill University

Abstract

As real-world infrastructure systems become increasingly complex and large-scale,
there is a growing need for learning-based control strategies that can make informed
decisions in complex and dynamic environments. However, large-scale problems —
such as power grid control — introduce high-dimensional action spaces and necessi-
tate transferability across varying grid topologies. We introduce Hierarchical Expert-
Guided Reconfiguration Optimization for Graph Topologies, HERO-GT, a model-
based planning approach that combines a pretrained graph neural network (GNN) for
topology-aware action pruning with a Monte Carlo Tree Search (MCTS) planner for tar-
geted, structured exploration. More specifically, the high-level GNN predicts a promis-
ing subset of actions, which the low-level MCTS agent uses to focus its search and
reduce computational overhead while remaining adaptable to unseen graph structures.
Furthermore, the MCTS planner leverages a given default policy—which may be de-
fined, for example, by heuristics, problem relaxations, or rule-based methods—to bias
the search and prioritize actions that are expected to improve performance over the de-
fault. We deploy HERO-GT in power grid environments, demonstrating that it not only
improves over a strong default policy, but also scales to a realistic operational setting
where exhaustive search becomes computationally infeasible.

1 Introduction

Owing to their ability to learn performant policies that optimize complex objectives directly from
interaction data, deep reinforcement learning (RL) algorithms offer tremendous promise for tack-
ling real-world challenges in infrastructure systems such as power grids, traffic networks, and supply
chains. However, the scale, complexity, and safety-critical nature of such real-world systems intro-
duce significant practical challenges that prohibit the direct application of existing RL algorithms.
For example, controlling power grid line connections necessitates learning over a massive action
space that grows exponentially in the grid’s size. Moreover, the complex, distributed nature of
many large-scale infrastructure systems results in diverse, dynamically varying state and observa-
tion spaces. Finally, policies must be reliable; they should, for example, perform at least as well as
pre-existing approaches to solving the problem at hand.

To overcome these challenges, algorithms must handle high-dimensional action spaces while also
improving the performance of any prior systems. To address high-dimensional action spaces, many
planning methods adopt hierarchical control strategies that segment the overall action or exploration
space. To ensure monotonic improvement over prior systems, one can apply search starting from
a default policy: when initialized with a plan generated by a prior method, the search should only
improve upon that plan. We accordingly present Hierarchical Expert-guided Reconfiguration Op-

Reinforcement Learning Journal 2025

Rollouts
simulated
using default
policy 𝜋!"#$%&'

pruned
action
space

… …

ReLu ReLuGt

High-Level Agent, GNN

Default Policy, 𝜋!"#$%&'

Low-Level Agent, MCTS

at

G’

pruned
action
space

z

simulated
next

graph

selected
action

Figure 1: An overview of the proposed hierarchical expert-guided reconfiguration optimization for
graph topologies (HERO-GT) algorithm.

timization for Graph Topologies (HERO-GT)—a novel algorithm for sequential decision-making
on graphs. Figure 1 illustrates the proposed approach. HERO-GT simplifies exploration in large
combinatorial action spaces by using a pre-trained high-level agent to propose a set of promising
candidate actions at each timestep. A low-level agent is then tasked with selecting the optimal ac-
tion from this reduced set. To support transferability across varying graph topologies and scales,
the high-level agent uses a graph neural network (GNN), while the low-level agent operates as a
Monte Carlo tree search (MCTS) algorithm that is agnostic to graph structure. To ensure HERO-GT
performs at least as well as a given default policy—defined, for instance, by heuristics, problem
relaxations, rule-based methods, or human intuition—the low-level agent’s search procedure is de-
signed to incorporate a default policy as prior knowledge and act as a policy improvement operator
over it.

While the HERO-GT framework may be applied generally to a wide range of sequential decision
problems on graphs, in this work, we focus primarily on controlling power grid connectivity. More
specifically, we consider a sequential decision-making problem in which the decision-making agent
may change the connection structure of a power grid at each timestep during operation. The agent’s
objective is to minimize operational costs and maintain grid reliability under adversarial conditions,
such as line faults and demand peaks, without overloading the system. Novel approaches, such as
HERO-GT, are necessary to enhance power grid planning, reliability, resilience, and security while
accelerating the transition to low-carbon energy sources.

We demonstrate HERO-GT’s capabilities through simulated experiments on the Grid2Op plat-
form (Donnot, 2020)—a power grid simulation suite that provides realistic benchmarks for develop-
ing AI-based grid management strategies. We observe that even on relatively small grids, HERO-GT
achieves higher rewards and improved grid stability in comparison with a proximal policy optimiza-
tion (PPO) baseline (Schulman et al., 2017), while matching or exceeding the performance of both
the default policy and a standard MCTS algorithm that explores the full action space without prun-
ing. Furthermore, by using the high-level agent to restrict the action space, HERO-GT maintains
strong performance even on a larger grid where vanilla MCTS becomes computationally intractable.

2 Related Work

Graph-structured environments present unique challenges for planning algorithms due to the envi-
ronment’s complex combinatorics and topology. Recent surveys such as Nie et al. (2023) highlight
the growing interest in applying RL to graph domains. Several works leverage RL for graph gen-
eration in the context of molecule generation (You et al., 2018), neural architecture search Rupp &
Eckert (2024), communication networks (Darvariu et al., 2021), and transit network design (Holli-
day et al., 2024; Holliday, 2025). While these approaches share the objective of optimizing graph
topology, they operate in a generative setting, whereas our method addresses graph reconfiguration,
modifying an existing graph in a constrained, dynamic environment. A closer line of work involves

Scalable Tree Search over Graphs with Learned Action Pruning for Power Grid Control

graph rewiring (Peng et al., 2024), which uses RL to adjust graph connectivity to improve GNN per-
formance in learning tasks. In contrast, our method’s focus is on sequential decision-making tasks,
where topological changes directly impact behaviour and long-term performance of real-world sys-
tems. In robotics control, works such as AnyMorph (Trabucco et al., 2022), MetaMorph (Gupta
et al., 2022) and One Policy to Control Them All (Huang et al., 2020) aim to train controllers that
generalize across a wide variety of robot morphologies. While they address challenges inherent to
morphologically diverse agents, they typically focus on policy transfer across agents, whereas our
method also aims to deal with combinatorial action spaces, common in large infrastructure settings
such as power grids.

RL has been increasingly applied to power system control tasks such as topology optimization. In
the L2RPN benchmark (Marot et al., 2021), agents learn to manage grids under faults and demands
shifts. Recent work leverages GNNs to capture grid structure and improve generalization (de Jong
et al., 2025). Dorfer et al. (2022) use AlphaZero with MCTS and a reduced, greedily defined action
space for congestion management, which may limit flexibility and optimality. In contrast, we learn a
policy to dynamically select relevant actions based on the current grid state, enabling more adaptive
exploration. Prior work like van der Sar et al. (2023) applies hierarchical multi-agent RL to power
grid topology optimization, assigning agents to substations. While they also highlight the benefits
of hierarchical control, their experiments are limited to a small grid with 5 substations, whereas our
work addresses transferring performance to a larger grid.

3 Preliminaries

A Markov Decision Process (MDP) is a tuple M = (S,∆s0, A, T,R). Here, S denotes the MDP’s
set of states, ∆s0 is a distribution over initial states, A denotes its set of actions, T (s′|s, a) is the
probability of transitioning from state s ∈ S to s′ ∈ S under action a ∈ A, and R(s, a, s′) ∈ R
is the associated scalar reward. A policy π(a|s) is a function that maps states s to probabil-
ity distributions over actions a. We consider finite-horizon decision-making problems, in which
the objective is to find a policy π(a|s) that maximizes the expected sum of cumulative rewards
E[
∑H

t=1 R(st, at, st+1)], for some finite time horizon H .

Graph Neural Networks (GNNs) are a class of neural architectures designed to operate directly on
graph-structured data (Zhou et al., 2020). The input to a GNN is a graph G = (V,E, {ϕv | v ∈ V }),
with nodes V , edges E ⊆ V ×V , and feature vectors ϕv ∈ Rdv encoding attributes for each node v ∈
V . The GNN embeds these features into latent representations hv ∈ Rdh , which are then iteratively
updated through a message passing process. At every layer l of the GNN inference procedure, each
node’s latent features hl

v are updated through two distinct steps: 1) message aggregation, in which
information is collected on the latent features hl

v′ of all neighboring nodes v′ ∈ N(v), and 2) node
updating, in which the collected information is processed along with the current latent feature to
obtain the node’s latent feature hl+1

v of the next GNN layer. That is, at each layer l, each node v
aggregates information from its neighbors N(v) and updates its embedding according to

m(l)
v = AGGREGATE(l)

(
{h(l−1)

u : u ∈ N(v)}
)
, h(l)

v = UPDATE(l)
(
h(l−1)
v ,m(l)

v

)
, (1)

where AGGREGATE(l)(·) is a permutation invariant function (e.g., convolutions in the case of
Graph Convolutional Networks (Kipf & Welling, 2017)) and UPDATE(l)(·) is a learnable transfor-
mation such as a neural network. Through multiple message-passing layers, the latent node features
can capture increasingly rich, multihop neighborhood information. A key property of GNNs is their
ability to leverage the inductive biases specific to graph topologies—such as locality, permutation in-
variance, and relational inductive biases—in order to generalize across graphs of different sizes and
structures. This property makes GNNs well-suited for tasks where input graphs vary significantly
between training and deployment, such as for the power grid problems studied in this work.

Monte Carlo Tree Search (MCTS) is a sequential decision-making algorithm that searches for
optimal actions at every timestep by iteratively constructing a search tree via the following four

Reinforcement Learning Journal 2025

Figure 2: An illustration of a sequential decision-making problem on power grids. Taking a topo-
logical action ("change load to busbar 1") on a power grid with 5 substations (blue circles) and 2
busbars (parallel blue vertical lines) per substation results in updated connectivity and power flow.

steps: expansion, selection, simulation, and backpropagation (Świechowski et al., 2023). Each node
u of the search tree corresponds to a candidate environment state s, and stores data on the search,
such as the number of visits N(u) to each node, the number of times N(u, a) an action has been
taken from each node, and estimates of node-action values Q(u, a). During the selection phase, the
agent traverses the tree from the root to a leaf node by choosing actions that balance exploration and
exploitation. It does so by selecting an action a from a node u using a selection criterion, such as
the Upper Confidence Bound (UCB) in Equation (2), and moving to the corresponding child node.

a∗ = argmax
a

UCB(u, a) = argmax
a

[Q(u, a) + c

√
lnN(u)

N(u, a)
] (2)

Once a leaf node is reached, the expansion phase adds a child node to it by simulating the result
of taking an unexplored action from the corresponding environment state. In the simulation phase,
a so-called rollout policy πrollout is used to simulate a trajectory from a newly added child node
for a fixed time horizon, or until a terminal node is reached. The rewards of these trajectories are
then propagated up the tree in the backup phase, updating the value estimates for each of the visited
nodes along the trajectory, typically by averaging returns and incrementing visit counts. After a
user-specified number of iterations over these four steps, MCTS returns the action at the root node
with the highest visit count.

4 Hierarchical Expert-Guided Reconfiguration Optimization for Graph
Topologies

We consider a general class of sequential decision-making problems on graphs, which we define
in §4.1. To address the large and complex state and action spaces associated with this class of
problems, we then introduce HERO-GT, a two-stage framework for efficient and graph-agnostic
decision-making. Intuitively, the method splits the decision process into a high-level action pruning
stage (§4.2) and a low-level action selection stage (§4.3), in which the high-level agent significantly
simplifies the action space that the low-level agent is required to explore. We instantiate this frame-
work by implementing it on a representative problem in power grid control (§4.4).

4.1 Planning on Graphs

We model decision-making problems on graphs as an MDP M = (S,∆s0, A, T,R). More specifi-
cally, we consider the underlying graph to have a fixed set of nodes V , and we define each MDP state
s ∈ S to be given by a graph G = (V,E, {ϕv|v ∈ V }), with edges E and feature vectors ϕv ∈ Rdv .
We consider actions a ∈ A to correspond to direct modifications to the graph itself, which may
generally include adding, removing, or altering edges, or updating node features directly. In this

Scalable Tree Search over Graphs with Learned Action Pruning for Power Grid Control

work, however, we restrict our focus to discrete changes in graph connectivity via modifications to
the edge set E. The transition function T (s′ | s, a) encodes the dynamics of the environment, re-
turning a new graph s′ = G′ = (V,E′, {ϕ′

v|v ∈ V }) with updated edges E′ and node features ϕ′
v in

response to the action a taken from the previous state s. The reward function R(s, a, s′) is defined
over states and actions, reflecting task-specific objectives such as minimizing cost or maintaining
structural properties of the graph. In this work, we assume that the graph is fully observable to the
agent at each timestep. That is, at every time t, the agent may use all information relating to the
graph’s edges and node features to select an action a.

As an illustrative example, consider the problem of altering the connection structure of a power
grid, as is described in the introduction and depicted in Figure 2. In this setting, the nodes v ∈
V correspond to all of the buses, loads, generators, and transmission line endpoints in the grid,
while the edges E ⊆ V × V describe how those elements are connected at the current timestep.
Typically, loads, generators, and transmission line endpoints are connected to buses to enable power
flow and system operation. Meanwhile, the node features ϕv encode the relevant electrical and
structural properties in the grid, such as bus voltage magnitudes and angles, active and reactive power
injections, line thermal limits, and generator setpoints. At time t, the agent uses information from
the graph Gt to select an action at ∈ A corresponding to the addition, removal, or reconfiguration of
an edge in the graph—modeling the connection, disconnection, or switching of loads, generators, or
power lines between buses within a power grid substation. As a result of this change to the graph’s
connectivity, the power flow within the grid will also change accordingly, resulting in updated node
features and the graph Gt+1 modeling the state at the next timestep.

4.2 High-Level Agent

In the general case where actions represent arbitrary re-specifications of the edge set E, the number
of possible actions grows exponentially in the number of nodes. This large scale of the action space
renders exploration challenging. We accordingly train the high-level agent to take the full graph Gt

as input, and to output a candidate subset of actions that is likely to contain the optimal action a∗t .

More formally, we assume that a problem-specific decomposition of the action space is available in
the form of a partition P of the action space A. That is A =

⋃
Z∈P Z, with Z ⊆ A, Z ̸= ∅, and

Z ∩ Z ′ = ∅, for all Z,Z ′ ∈ P . In many applications, such a partition arises naturally from the
problem structure. In the running power grid scenario, for example, we define each subset Z ∈ P
of the partition to contain all edge modifications occurring at buses within a specific substation. We
also assume access to a behavioral cloning dataset D containing tuples of the form (Gt, a

∗
t), where

a∗t denotes the optimal action taken at graph Gt. Such a dataset may be constructed from histori-
cal operation data or through simulation on small-scale graphs where it is feasible to exhaustively
identify the action with the highest greedy reward. We then train the high-level policy πhigh as
a classifier that maps the current graph Gt to the subset Za∗

t
∈ P containing the optimal action

a∗t —i.e., πhigh(Gt) = Za∗
t
.

The high-level policy πhigh is implemented as a GNN. The GNN architecture supports heterogeneous
graphs: node types are embedded using dedicated MLP encoders, followed by message-passing
layers. This training approach enables πhigh to transfer across different grid topologies by learning
spatial and relational dependencies through the GNN architecture.

4.3 Low-Level Agent

The low-level agent’s objective is to select the optimal action a∗t at each timestep. We implement
the low-level policy as a MCTS algorithm that uses the high-level policy πhigh and a default policy
πdefault to inform the expansion and simulation phases of the search, respectively. The process
is illustrated in Figure 1. At every timestep t, the low-level agent instantiates a new search tree
beginning with a root node containing information on the current state st. It then proceeds with
MCTS from this root node, as described in §3, to obtain the action at to execute in the environment.

Reinforcement Learning Journal 2025

However, during each expansion phase of the MCTS, the low-level agent queries πhigh with the
graph G at the corresponding leaf node to obtain a set of candidate actions Z = πhigh(G). It then
only uses actions a from this subset Z ⊆ A to expand child nodes from that leaf. Intuitively, because
we train πhigh to output the subset Z containing the optimal action, this step significantly reduces
the tree’s branching factor without pruning optimal actions from consideration. We also note that
this reduction to the action space is related to the sampling-based reduction of large and complex
action spaces proposed by Hubert et al. (2021).

Meanwhile, during the simulation phase of the MCTS, the agent uses πdefault, instead of a uniform
random policy, to compute rollout-based estimates of the values of newly expanded child nodes. By
using πdefault to evaluate newly expanded nodes, the search procedure ensures that value estimates
reflect the default policy’s performance. This enables the low-level agent to identify higher-return
actions relative to πdefault, effectively refining upon πdefault, given sufficient search.

4.4 An Instantiation of HERO-GT for Power Grid Control

We apply HERO-GT to topological control over power networks, where the agent reconfigures grid
connections at each timestep to mitigate faults, avoid overloads, and maintain reliability. The envi-
ronment is modeled using Grid2Op (Donnot, 2020), which simulates realistic constraints, stochastic
events and cost-based rewards.

Each state Gt is a dynamic graph with nodes V (e.g. generators, loads, powerline extremities) and
edges E capture their connectivity via shared busbars in substations. Actions a ∈ A correspond
to modifying the connection status between these components and the busbars they are assigned to,
reconfiguring the grid topology. With multiple busbars per substation and many switchable compo-
nents, the action space grows exponentially, motivating action-restriction strategies like HERO-GT.

We train the high-level agent via behavior cloning on a small grid (14 substations and 57 nodes).
Supervision labels are generated using the greedy search from de Jong et al. (2024), which selects
the actionsimulates all available topological actions a ∈ A at each timestep and selects a∗t ∈ A, that
minimizes maximum line loading at each timestep. The substation affect by a∗t is used as the training
label. In power grids, a substation groups components(e.g. transmission lines, generators, loads),
connected by two busbars. The GNN-based high-level agent performs node-level classification to
identify the most relevant substation for intervention, reducing the action space to those within that
substation, i.e. πhigh(Gt) = Za∗

t
from §4.2. This greedy labeling approach is tractable only for

small grids because we are exhaustively simulating all possible actions, but we note that the trained
agent is designed to ensure scalability to larger topologies without needing additional supervision.

At inference time, the predicted substation is passed to the low-level agent, restricting the action
space to Z ⊆ A, i.e., actions associated with that substation §4.3. To estimate leaf node values
during MCTS, we use rollouts with a default policy πdefault, defined as the no-operation policy
that keeps the current topology unchanged. This reflects a key intuition in power grid operation
that under standard conditions, the system remains stable and interventions are required only in
response to contingencies. If Z remains too large for efficient MCTS, the low-level agent falls back
on πdefault, ensuring an action can still be selected, even under limited computational resources.

5 Experiments

We design experiments to evaluate whether HERO-GT can improve performance over a default
policy by incorporating MCTS while still retaining scalability to a larger environment in which
MCTS is computationally infeasible.

Environment We evaluate our algorithm in the Learning to Run a Power Network (L2RPN) Chal-
lenge environment (Dorfer et al., 2022), built on the Grid2Op platform (Donnot, 2020), which pro-
vides a realistic RL environment for power grid management. Agents must maintain grid reliability
under adversarial conditions, such as line faults and demand peaks, without overloading the system.

Scalable Tree Search over Graphs with Learned Action Pruning for Power Grid Control

Max Ep. Length 200 Max Ep. Length 600
0

50

100 96.18
81.69

99.27
88.54

100 100

A
vg

R
ew

ar
d

(%
)

PPO Default HERO-GT

Max Ep. Length 200 Max Ep. Length 600
0

50

100
99.95

84.42

100
89.04

100 100

A
vg

L
en

gt
h

(%
)

PPO Default HERO-GT

Figure 3: Performance of all methods on single held-out test scenario in Small Grid A. (Left)
Average cumulative reward on the power grid connectivity control problem as a percentage of the
reward achieved by an MCTS algorithm that expands all possible actions. (Right) Average episode
length as a percentage of the maximum episode time horizon.

Simulations in Grid2Op can be varied across (1) number of substations (2) initial edge configura-
tions (3) fixed scenarios for historical load and generation, which are needed to simulate realistic
operation of the grid over finite horizons. We perform evaluation over two grid sizes (1) Small
Grid which contains 14 substations (with a number of nodes |V| = 57), and (2) Large Grid
which contains 36 substations (with |V| = 177). We consider two initial edge configurations for
both Small Grid and Large Grid, which we refer to as Small Grid A and B and Large
Grid A and B, (see Appendix A for the corresponding Grid2Op graph names). For each initial
edge configuration, Grid2Op provides multiple load and generation profiles, three in the Small
Grid and ten in the Large Grid.

Ep. Length Reward

Small Grid A % MCTS % MCTS
T=200

HERO-GT 200 100 3382.38 100
Default 200 100 3357.76 99

T=600
HERO-GT 575 100 9497.38 100
Default 512 89 8409.38 89

Small Grid B
T=200

HERO-GT 200 100 3419.56 100
Default 200 100 3309.66 97

T=600
HERO-GT 575 100 9516.16 100
Default 600 104 9221.92 97

Large Grid A
T=200

HERO-GT 200 - 10231.32 -
Default 200 - 10231.32 -

T=600
HERO-GT 600 - 30477.12 -
Default 568 - 28822.24 -

Large Grid B
T=200

HERO-GT 185.7 - 9847.016 -
Default 185.7 - 9847.016 -

T=600
HERO-GT 416.3 - 21644.09 -
Default 416.3 - 21644.09 -

Table 1: Performance of HERO-GT and Default
policy on all grid topologies. Results are averaged
over all evaluation episodes: three load/generation
scenarios for the Small Grid and ten for the
Large Grid. Best results are shown in bold.
HERO-GT matches or improves the Default per-
formance across all topologies and horizons.

Baselines We conduct experiments to evalu-
ate how our method HERO-GT is able to im-
prove over a Default policy. In this case, the
Default policy is set to a no-operation agent.
Surprisingly, as we demonstrate, this no-op
agent provides a reasonably good default pol-
icy for power grids, which are generally oper-
ational without intervention under normal con-
ditions. In the Small Grid environment, we
report performance as a percentage of standard
MCTS without the high-level agent action-
pruning, which operates as an upper bound on
the performance of our method. In the larger
environment Large Grid, MCTS is infeasi-
ble to run, so we report raw results versus the
Default. Finally, we compare against PPO, a
standard RL algorithm.

Evaluation Metrics We evaluate Default,
MCTS and HERO-GT on the 3 scenarios in
Small Grid and 10 in Large Grid. As
both methods and environments are determinis-
tic, we run a single evaluation per scenario. We
report average episode length (grid stability)
and average reward (percentage below maxi-
mum thermal load on each transmission line).
Longer episodes reflect more stable control
while higher rewards demonstrate a measure
of overall control performance. In all experi-
ments, we evaluate over two episode lengths,

Reinforcement Learning Journal 2025

200 and 600. Except for in Figure 3, we report all results as an average over the available
load/generation scenarios. In Figure 3, to compare against PPO which requires historical scenarios
for training, we select two scenarios for training and one holdout scenario for testing. We provide
results on this single scenario across all methods for a fair comparison. Since the PPO algorithm
is stochastic, we train over three seeds and evaluate over 100 iterations and average the result. All
training hyperparameters can be found in Appendix A

HERO-GT Improves Performance over a Strong Default A core assumption of our method is
that, for certain applications like power grids, a strong default policy exists that can be relied upon
to provide default actions on the nodes not selected by the high-level policy. In Figure 3, we can
see that indeed the Default no-operation method does provide a strong baseline for HERO-GT. In
particular, it is not trivial to beat this baseline, as can be observed by the lower performance of PPO
which is a strong general-purpose RL method.

Provided with a strong Default control policy, we see in Table 1 that our method HERO-GT is able
to consistently improve over Default both in terms of episode length and total rewards, particularly
over the longer episode horizon. This suggests that actively exploring topological actions, even
when significantly pruning the action space, is able to provide benefit over strong Default policies.
In fact, we see in Table 1 that HERO-GT is able to match the performance of MCTS in both Small
Grid environments, even with significantly less computation, as we discuss next.

HERO-GT allows MCTS to scale MCTS is infeasible in Large Grid due to the large search
space. Without action pruning, expanding all candidate actions (in this case over 65 000 actions)
becomes extremely expensive, with each tree expansion step requiring evaluation of thousands of
possibilities. In contrast, by pruning actions to be restricted to within the high-level agent’s predicted
substation, HERO-GT, significantly reduces the effective branching factor of MCTS. In Small
Grid the number of nodes expanded in HERO-GT is only 7.1% of the nodes expanded by MCTS.
In the Large Grid this percentage drops to only 2.8%. This enables scalable decision-making
even on larger grids. Moreover, HERO-GT still offers performance enhancement over Default while
remaining computationally efficient, as can be seen in the results in Table 1. This is due to its focused
search guided by the high-level policy and structural transferability from the GNN.

6 Conclusion

In this work, we proposed HERO-GT (Hierarchical Expert-Guided Reconfiguration Optimization
for Graph Topologies), a model-based sequential decision making framework designed to address
two key challenges in real-world control tasks such as power grid topology optimization: navigat-
ing large combinatorial action spaces and transferability across different graph topologies. By
combining a pretrained graph neural network (GNN) for structure aware action subset prediction
with a Monte Carlo Tree Search (MCTS) planner for targeted search, HERO-GT enables more ef-
ficient sequential decision-making by reducing the search burden compared to conventional MCTS,
while maintaining adaptability across diverse environments. Simulated experiments in power grid
environments show that HERO-GT consistently improves cumulative reward over the baseline poli-
cies used for comparison. Furthermore, the results empirically show that HERO-GT scales to a
larger and more complex environment than the one used for training.

Future work will integrate policy and value networks into HERO-GT to learn from search-generated
data. While HERO-GT currently reduces the action space by operating at the substation level, it
relies on a default policy when that subset is still too large. A finer node-level decomposition could
improve efficiency in such cases.

Overall, HERO-GT is a promising, practical, scalable framework for real-world systems, offer-
ing valuable insights into real-world deployment of hierarchical, graph-informed planning, such as
power grid operation.

Scalable Tree Search over Graphs with Learned Action Pruning for Power Grid Control

Acknowledgments and Disclosure of Funding

We want to acknowledge funding support from NSERC and FRQNT, as well as compute support
from Mila IDT.

References
Victor-Alexandru Darvariu, Stephen Hailes, and Mirco Musolesi. Goal-directed graph construction

using reinforcement learning. Proceedings of the Royal Society A, 477(2254):20210168, 2021.

Matthijs de Jong, Jan Viebahn, and Yuliya Shapovalova. Imitation learning for intra-day power grid
operation through topology actions. arXiv preprint arXiv:2407.19865, 2024.

Matthijs de Jong, Jan Viebahn, and Yuliya Shapovalova. Generalizable graph neural networks for
robust power grid topology control, 2025. URL https://arxiv.org/abs/2501.07186.

B. Donnot. Grid2op- a testbed platform to model sequential decision making in power systems.,
2020. URL https://GitHub.com/Grid2Op/grid2op.

Matthias Dorfer, Anton R. Fuxjäger, Kristian Kozak, Patrick M. Blies, and Marcel Wasserer. Power
grid congestion management via topology optimization with alphazero, 2022. URL https:
//arxiv.org/abs/2211.05612.

Agrim Gupta, Linxi Fan, Surya Ganguli, and Li Fei-Fei. Metamorph: learning universal controllers
with transformers. In International Conference on Learning Representations. ICLR, 2022.

Andrew Holliday. Applications of deep reinforcement learning to urban transit network design.
2025.

Andrew Holliday, Ahmed El-Geneidy, and Gregory Dudek. Learning heuristics for transit network
design and improvement with deep reinforcement learning. arXiv preprint arXiv:2404.05894,
2024.

Wenlong Huang, Igor Mordatch, and Deepak Pathak. One policy to control them all: Shared modular
policies for agent-agnostic control. In International Conference on Machine Learning, pp. 4455–
4464. PMLR, 2020.

Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Mohammadamin Barekatain, Simon
Schmitt, and David Silver. Learning and planning in complex action spaces. In International
Conference on Machine Learning, pp. 4476–4486. PMLR, 2021.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations, 2017.

Antoine Marot, Benjamin Donnot, Gabriel Dulac-Arnold, Adrian Kelly, Aidan O’Sullivan, Jan
Viebahn, Mariette Awad, Isabelle Guyon, Patrick Panciatici, and Camilo Romero. Learning to run
a power network challenge: a retrospective analysis. In NeurIPS 2020 Competition and Demon-
stration Track, pp. 112–132. PMLR, 2021.

Mingshuo Nie, Dongming Chen, and Dongqi Wang. Reinforcement learning on graphs: A survey.
IEEE Transactions on Emerging Topics in Computational Intelligence, 7(4):1065–1082, 2023.

Tianhao Peng, Wenjun Wu, Haitao Yuan, Zhifeng Bao, Zhao Pengru, Xin Yu, Xuetao Lin, Yu Liang,
and Yanjun Pu. Graphrare: Reinforcement learning enhanced graph neural network with relative
entropy. In 2024 IEEE 40th International Conference on Data Engineering (ICDE), pp. 2489–
2502. IEEE, 2024.

Florian Rupp and Kai Eckert. G-pcgrl: Procedural graph data generation via reinforcement learning.
In 2024 IEEE Conference on Games (CoG), pp. 1–8. IEEE, 2024.

https://arxiv.org/abs/2501.07186
https://GitHub.com/Grid2Op/grid2op
https://arxiv.org/abs/2211.05612
https://arxiv.org/abs/2211.05612

Reinforcement Learning Journal 2025

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Maciej Świechowski, Konrad Godlewski, Bartosz Sawicki, and Jacek Mańdziuk. Monte carlo tree
search: A review of recent modifications and applications. Artificial Intelligence Review, 56(3):
2497–2562, 2023.

Brandon Trabucco, Mariano Phielipp, and Glen Berseth. AnyMorph: Learning transferable po-
lices by inferring agent morphology. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pp. 21677–21691. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/
v162/trabucco22b.html.

Erica van der Sar, Alessandro Zocca, and Sandjai Bhulai. Multi-agent reinforcement learning for
power grid topology optimization, 2023. URL https://arxiv.org/abs/2310.02605.

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional policy
network for goal-directed molecular graph generation. Advances in neural information processing
systems, 31, 2018.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applica-
tions. AI open, 1:57–81, 2020.

https://proceedings.mlr.press/v162/trabucco22b.html
https://proceedings.mlr.press/v162/trabucco22b.html
https://arxiv.org/abs/2310.02605

Scalable Tree Search over Graphs with Learned Action Pruning for Power Grid Control

A Experiment Details

A.1 Grid2Op Environment Names

The grids used in the experiments §5 refer to the following environments in Grid2Op:
Small Grid A refers to l2rpn_case14_sandbox environment.
Small Grid B refers to l2rpn_case14_sandbox_diff_grid environment.
Large Grid A refers to the l2rpn_wcci_2020 environment.
Large Grid B refers to the l2rpn_icaps_2021_small environment.

A.2 Hyperameters

PPO Training Setup

Topology Case 14
Seeds 3
Env. interactions (Depth 600) 1,860,000
Env. interactions (Depth 200) 1,460,000

PPO Hyperparameters

Batch size 128
Actor learning rate 3× 10−4

Critic learning rate 3× 10−4

γ (discount factor) 0.99
GAE λ 0.95
Max gradient norm 0.5
Update epochs 1
Clip coefficient 0.2
Entropy coefficient 0.01
Clip value loss coefficient 0.2
Value function coefficient (vf coef) 0.5

MCTS Parameters

Number of simulations 10 / 50 / 100
Rollout depth 200 / 600
Episode depth 200 / 600
Exploration parameter (c) 100

While we tested 10, 50 and 100 simulations with MCTS, we found 10 to be sufficient after simulating
once every expanded node. Therefore, we report the results in §5 to be with 10 simulations.

A.3 Additional Environment Figures

Reinforcement Learning Journal 2025

Figure 4: Small Grid Environment with 14 Substations

Figure 5: Large Grid Environment with 36 Substations

