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Abstract

Disentanglement via mechanism sparsity was in-
troduced recently as a principled approach to ex-
tract latent factors without supervision when the
causal graph relating them in time is sparse, and/or
when actions are observed and affect them sparsely.
However, this theory applies only to ground-truth
graphs satisfying a specific criterion. In this work,
we introduce a generalization of this theory which
applies to any ground-truth graph and specifies
qualitatively how disentangled the learned repre-
sentation is expected to be, via a new equivalence
relation over models we call consistency. This
equivalence captures which factors are expected
to remain entangled and which are not based on
the specific form of the ground-truth graph. We
call this weaker form of identifiability partial dis-
entanglement. The graphical criterion that allows
complete disentanglement, proposed in an earlier
work, can be derived as a special case of our the-
ory. Finally, we enforce graph sparsity with con-
strained optimization and illustrate our theory and
algorithm in simulations.

1 INTRODUCTION

The need for robustness, transferability and explainability in
machine learning is motivating recent efforts to develop sys-
tems that capture some form of causal understanding [Pearl,
2019, Schölkopf, 2019, Goyal and Bengio, 2021]. Driven by
this goal, the emerging field of causal representation learn-
ing [Schölkopf et al., 2021] proposes methods that attempt
to reconcile the strengths of deep representation learning,
which excels on high-dimensional low-level observations
like images, with the framework of causality, which offers
a formal language to describe and reason about causal rela-
tionships between high-level variables, e.g. object positions.

The notion of identifiability plays a special role in this quest
to more interpretability and robustness, since models that
aim at both extracting the causal variables and learning their
causal relationships can easily be overdetermined, thus loos-
ing all hope of being interpretable. The name of the game
is thus to come up with inductive biases that sufficiently
restrict the model class to be identifiable, while remaining
sufficiently expressive to model a complex environment.

Building from the identifiability analyses of the recent litera-
ture on nonlinear ICA [Hyvarinen and Morioka, 2016, 2017,
Hyvärinen et al., 2019, Khemakhem et al., 2020a,b], the
work of Lachapelle et al. [2022] proposed mechanism spar-
sity regularization as an inductive bias to identify the causal
latent factors. The authors showed how learning without
supervision simultaneously both the latent factors and the
sparse causal graph relating them can induce disentangle-
ment, as long as technical conditions are satisfied, including
a novel criterion on the ground-truth causal graph. A key dis-
tinction between other works that also learn a dependency
graph over latent variables [Yang et al., 2021, Yao et al.,
2022] and “disentanglement via mechanism sparsity" is that,
in the latter, disentanglement is driven by sparsity regular-
ization, which allows to identify model classes which are
usually not identifiable without this regularization.

Contributions: In this work, we extend the theory
of disentanglement via mechanism sparsity introduced
by Lachapelle et al. [2022]. Instead of requiring a graphical
criterion to guarantee complete disentanglement, our the-
ory applies to arbitrary ground-truth graphs and specifies
qualitatively how disentangled the learned representation
is expected to be, via a new equivalence relation over mod-
els we call consistency (Def. 7). This equivalence relation
captures which variables are expected to remain entangled
and which are not, hence the term partial disentanglement.
This allows, for example, to precisely express the fact that
we cannot typically identify the basis in which the position
of an object is expressed, but can typically disentangle it
from the other objects nonetheless. The graphical criterion
of Lachapelle et al. [2022], which allows complete disentan-
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glement, can be derived as a special case of our theory. We
also propose to enforce sparsity via constrained optimiza-
tion instead of regularization, following Gallego-Posada
et al. [2021]. We finally illustrate our theory in simulations.

Our contribution fits nicely into the framework of Ahuja et al.
[2022a], which shows how, in general, the equivariances of
the transition mechanisms characterize how identifiable the
representation is. Lippe et al. [2022] and Ahuja et al. [2022b]
consider settings similar to ours (by interpreting actions
as interventions), but the former assumes the intervention
targets are known and the notion of sparse perturbation of
the latter is closer to Locatello et al. [2020]. Also, Lippe
et al. [2022], Von Kügelgen et al. [2021] and Ahuja et al.
[2022b] allow for a form of block disentanglement similar
to our notion of partial disentanglement. We refer the reader
to Lachapelle et al. [2022] for a more extensive review of
the recent literature on disentanglement and nonlinear ICA.

2 BACKGROUND

2.1 A LATENT CAUSAL MODEL

This subsection is an almost exact transcription of the model
exposition of Lachapelle et al. [2022] which introduced it.

We observe the realization of a sequence of dx-dimensional
random vectors {Xt}Tt=1 and a sequence of da-dimensional
auxiliary vectors [Hyvärinen et al., 2019] {At}T−1

t=0 . The
coordinates of At are either discrete or continuous and can
potentially represent, for example, an action taken by an
agent, or a one-hot vector indexing which intervention the
corresponding observation was taken from. From now on,
we will refer to At as the action vector. We assume the
observations {Xt} are generated from a sequence of la-
tent dz-dimensional continuous random vectors {Zt}Tt=1

via the equation Xt = f(Zt) +N t where N t ∼ N (0, σ2I)
are mutually independent across time and independent of
all Zt and At. Throughout, we assume dz ≤ dx and that
f : Z → X is a diffeomorphism where Z is the support of
Zt for all t, and X := f(Z), i.e. the image of Z under f .
We suppose that each factor Zt

i represents interpretable in-
formation about the observation, e.g. for high-dimensional
images, the coordinates Zt

i might be the position of an
object, its color, or its orientation in space. We denote
Z≤t := [Z1 · · · Zt] ∈ Rdz×t and analogously for Z<t

and other random vectors.

Following previous work on nonlinear ICA [Hyvärinen et al.,
2019, Khemakhem et al., 2020a], we assume

p(zt | z<t, a<t) =

dz∏
i=1

p(zti | z<t, a<t) , (1)

where each p(zti | z<t, a<t) is in the exponential fam-
ily [Wainwright and Jordan, 2008], i.e. p(zti | z<t, a<t) ∝

hi(z
t
i) exp{Ti(z

t
i)

⊤λi(G
z
i ⊙ z<t, Ga

i ⊙ a<t)} . (2)

Note that this family includes many well-known distribu-
tions such as the Gaussian and beta distributions. In the
Gaussian case, the sufficient statistic is Ti(z) := (z, z2)
and the base measure is hi(z) := 1√

2π
. The function

λi(G
z
i ⊙ z<t, Ga

i ⊙ a<t) outputs the natural parameter
vector for the conditional distribution and can be itself
parametrized, for instance, by a multi-layer perceptron
(MLP) or a recurrent neural network (RNN). Lachapelle
et al. [2022] refers to the functions λi as the mechanisms
or the transition functions. In the Gaussian case, the natural
parameter is two-dimensional and is related to the usual pa-
rameters µ and σ2 via the equation (λ1, λ2) = ( µ

σ2 ,− 1
σ2 ).

We will denote by k the dimensionality of the natural pa-
rameter and that of the sufficient statistic (which are equal).
The binary vectors Gz

i ∈ {0, 1}dz and Ga
i ∈ {0, 1}da act

as masks selecting the direct parents of zti . The Hadamard
product ⊙ is applied element-wise and broadcasted along
the time dimension. Let Gz := [Gz

1 · · · Gz
dz
]⊤ ∈ Rdz×dz ,

Ga := [Ga
1 · · · Ga

da
]⊤ ∈ Rdz×da , G := [Gz Ga] which is

the adjacency matrix of the causal graph. Indeed, (1) & (2)
describes a causal graphical model over the unobserved
variables Z≤T conditioned on the auxiliary variables A<T .

Let λ(z<t, a<t) ∈ Rkdz be the concatenation of all
λi(G

z
i ⊙ z<t, Ga

i ⊙ a<t) and similarly for T(zt) ∈ Rkdz .
Note that λ(z<t, a<t) depends on G, implicitly to simplify
the notation.

The learnable parameters are θ := (f ,λ, G), which induce
a conditional probability distribution PX≤T |a;θ over X≤T ,
given A<T = a. Let A ⊂ Rda be the set of possible values
At can take. We assume p(a<T ) has probability mass over
all AT . This could arise, for instance, when At is sampled
from a policy π(at | zt) distribution with probability mass
everywhere in A.

2.2 MODEL EQUIVALENCE AND COMPLETE
DISENTANGLEMENT

Given how expressive the model of Sec. 2.1 is, there is
no hope of fully identifying the model from observations.
Fortunately, we will see that it is unnecessary to do so to
maintain interpretability. We now recall notions of model
equivalence from Khemakhem et al. [2020a] & Lachapelle
et al. [2022]. In what follows, we overload the notation by
defining f−1(z<t) := [f−1(z1) · · · f−1(zt−1)].

Definition 1 (Linear equivalence). Let X := f(Z) and
X̃ := f̃(Z), i.e., the image of the support of Zt under f and
f̃ , respectively. We say θ is linearly equivalent to θ̃, denoted
θ ∼lin θ̃, if and only if X = X̃ and there exists an invertible
matrix L ∈ Rkdz×kdz and vectors b, c ∈ Rkdz such that

1. for all x ∈ X ,

T(f−1(x)) = LT(f̃−1(x)) + b



2. and, for all t ∈ {1, ..., T}, x<t ∈ X t−1, a<t ∈ At,

L⊤λ(f−1(x<t), a<t) + c = λ̃(f̃−1(x<t), a<t) .

To interpret this definition, we consider the special case
where p(zt | z<t, a<t) follows a Gaussian distribution with
variance fixed to one. In that case, T(z) := z and λ outputs
the usual mean parameter µ (here, k = 1), and thus, the
first condition above requires that one can go from the rep-
resentation f̃−1(x) to the other representation f−1(x) via
an invertible affine transformation. The second condition on
λ and λ̃ is analogous.

To make sure the latent factors of two different models can
be interpreted in the same way, we need something stronger
than linear equivalence, since the matrix L can still “mix up”
different latent factors. The following equivalence relation,
adapted from Lachapelle et al. [2022], does not allow for
mixing. Here we assume k = 1 to lighten the notation.

Definition 2 (“Up to permutation” equivalence, k = 1).
We say two models θ := (f ,λ, G) and θ̃ := (f̃ , λ̃, G̃) are
equivalent up to permutation, denoted θ ∼perm θ̃, if and
only if there exists a permutation matrix P such that

1. Gz = P⊤G̃zP and Ga = P⊤G̃a , and

2. θ ∼lin θ̃ (Def. 1) with L = DP⊤, where the matrix D
is invertible and diagonal.

Coming back to the Gaussian case with a fixed variance,
equivalence up to permutation means that there exists a per-
mutation π such that each coordinate i of one representation
is equal to the scaled and shifted coordinate π(i) of the other.
Lachapelle et al. [2022] defines disentanglement as follows
(we specify “complete” to contrast with “partial” later on).

Definition 3 (Complete disentanglement). Given a ground-
truth model θ, we say a learned model θ̂ is completely
disentangled when θ ∼perm θ̂.

We will see later how complete disentanglement can be
relaxed to something which falls between linear equivalence
and permutation equivalence.

2.3 LINEAR IDENTIFIABILITY

Starting now, the reader should think of θ as the ground-truth
parameter and θ̂ as a learned parameter. The following
theorem is an adaptation and minor extension of Thm. 1
from Khemakhem et al. [2020a] by Lachapelle et al. [2022].
A proof can be found in the latter.

Theorem 4 (Conditions for linear identifiability - Khe-
makhem et al. [2020a], Lachapelle et al. [2022]). Suppose
we have two models as described in Sec. 2.1 with param-
eters θ = (f ,λ, G) and θ̂ = (f̂ , λ̂, Ĝ) for a fixed sequence
length T . Suppose the following assumptions hold:

1. For all i ∈ {1, ..., dz}, the sufficient statistic Ti is
minimal (Def. 9).

2. [Sufficient variability] There exist (z(p), a(p))
kdz
p=0 in

their respective supports such that the kdz-dimensional
vectors (λ(z(p), a(p))− λ(z(0), a(0)))

kdz
p=1 are linearly

independent.

Then, we have linear identifiability: PX≤T |a;θ = PX≤T |a;θ̂

for all a ∈ AT implies θ ∼lin θ̂.

The most important assumption is sufficient variability,
which states that the ground-truth transition function λ
should be “sufficiently complex”.

3 PARTIAL DISENTANGLEMENT VIA
MECHANISM SPARSITY

3.1 PARTIAL DISENTANGLEMENT AND
CONSISTENT MODELS

We now give a very simple definition of partial disentan-
glement, as something which lives strictly between linear
equivalence and equivalence up to permutation:

Definition 5 (Partial disentanglement). Given a ground-
truth model θ, we say a learned model θ̂ is partially dis-
entangled when θ ∼lin θ̂ with L having at least one zero
component and θ ̸∼perm θ̂.

This definition of partial disentanglement ranges from mod-
els that are almost completely entangled, i.e. those with
a very dense L, to ones that are very close to being com-
pletely disentangled, i.e. those with a very sparse L. Where
a learned model falls on this continuum will depend on
the ground-truth graph G underlying the data generating
process. To specify precisely where the zero entries of L
will be, we will introduce a new equivalence relation over
models we call consistency. In order to do so, we first need
to define the property of S-consistency for matrices.

Definition 6 (S-consistency). Given a binary matrix S ∈
{0, 1}m×n, a matrix C ∈ Rm×m is S-consistent when

∀i, j, [1− S(1− S)⊤]+i,j = 0 =⇒ Ci,j = 0 , (3)

where [·]+ := max{0, ·} and 1 is a matrix filled with ones
(assuming implicitly its correct size).

We will interpret this definition later on in Sec. 3.2.1. For
now, it is enough to understand that an S-consistent matrix
has zeros where the binary matrix [1 − S(1 − S)⊤]+ has
zeros. We can now define the novel consistency equivalence
relation over models:

Definition 7 (Consistency equivalence, k = 1). We say two
models θ := (f ,λ, G) and θ̃ := (f̃ , λ̃, G̃) are consistent,



denoted θ ∼con θ̃, if and only if there exists a permutation
matrix P such that

1. Gz = P⊤G̃zP and Ga = P⊤G̃a , and

2. θ ∼lin θ̃ (Def. 1) with L = CP⊤, where the matrix C
is Gz-consistent, (Gz)⊤-consistent and Ga-consistent
(Def. 6).

We demonstrate in App. A.2.4 that the consistency relation
over models is indeed an equivalence relation, as claimed
in the the above definition. This follows from the perhaps
surprising fact that the set of invertible S-consistent matrices
forms a group under matrix multiplication (see Thm. 20).

The equivalence ∼perm is stronger than ∼con, since a diag-
onal matrix is always S-consistent, for any S. To see this,
notice that [1− S(1− S)⊤]+i,i = 1 for all S and i.

3.2 IDENTIFYING THE EQUIVALENCE CLASS
OF CONSISTENT MODELS

We now present the main theorem of this work which can
be seen as a generalization of Thm. 5 from Lachapelle et al.
[2022]. It states that, under some conditions, a perfectly
fitted and maximally sparse model θ̂ will be consistent to
the ground-truth distribution θ, i.e. θ ∼con θ̂ (Def. 7). It
means we know qualitatively how disentangled the learned
representation is expected to be, based on the graph G. See
App. A.2.5 for a proof.

Theorem 8 (Disentanglement via mechanism sparsity). Sup-
pose we have two models as described in Sec. 2.1 with pa-
rameters θ = (f ,λ, G) and θ̂ = (f̂ , λ̂, Ĝ) representing the
same distribution, i.e. PX≤T |a;θ = PX≤T |a;θ̂ for all a ∈ AT .
Suppose the assumptions of Thm. 4 hold and that,

1. The sufficient statistic T is dz-dimensional (k = 1)
and is a diffeomorphism from Z to T(Z).

2. [Sufficient time-variability] The Jacobian of the
ground-truth transition function λ with respect to z
varies “sufficiently”, as formalized in App. A.2.5.

3. [Sufficient action-variability] The ground-truth tran-
sition function λ is affected “sufficiently strongly” by
each individual action aℓ, as formalized in App. A.2.5.

4. [Sparsity] ||Ĝ||0 ≤ ||G||0.

Then, θ̂ is consistent with θ, i.e. θ ∼con θ̂ (Def. 7).

The conclusion that θ ∼con θ̂ means that the learned graph
Ĝ is a permutation of the ground-truth graph G and that the
learned representation is either completely entangled, par-
tially disentangled or completely disentangled, depending
on the ground-truth graph G, as formalized by Def. 7.

The first assumption is satisfied for example by the Gaus-
sian case with variance fixed to one since T(z) = z is a

diffeomorphism. Rigorous statements of the two sufficient
variability assumptions, initially introduced by Lachapelle
et al. [2022], are relayed to App. A.2.5. Intuitively, they
both require that the ground-truth transition function λ is
complex enough. We note that these sufficient variability
assumptions play a role similar to the usual faithfulness as-
sumption in causal discovery [Peters et al., 2017, Section
6.5]. See App A.2.6 for more. The sparsity assumption
requires that the learned graph is at least as sparse as the
ground-truth graph. In Sec. 3.3, we suggest achieving this
by enforcing a sparsity constraint on Ĝ.

The graphical criterion of Lachapelle et al. [2022].
Thm. 8 can be seen as a generalization of Thm. 5 from
Lachapelle et al. [2022]. The latter requires that the ground-
truth graph G satisfies this criterion:1 ∀1 ≤ i ≤ dz , ⋂

j∈Chz
i

Pazj

 ∩
 ⋂

j∈Paz
i

Chz
j

 ∩
 ⋂

ℓ∈Paa
i

Cha
ℓ

 = {i} ,

where Pazi and Chz
i are the sets of parents and children of

node zi in Gz , respectively, while Cha
ℓ is the set of children

of aℓ in Ga. This assumption allows Lachapelle et al. [2022]
to identify θ up to∼perm (complete disentanglement) instead
of up to ∼con (possibly partial disentanglement). It turns out
that, when G satisfies the above criterion, the set of models
that are ∼con-equivalent to θ is equal to the set of models
that are ∼perm-equivalent to θ. Therefore, applying Thm. 8
to a ground-truth model that satisfies the graphical criterion
will guarantee complete disentanglement (see Prop. 25).

3.2.1 An example & interpretation

We now attempt to build intuition about the equivalence
∼con (Def. 7) and Thm. 8 by considering an example where
the ground-truth G is given by Gz = 0 (no temporal de-
pendencies) and Ga is given by the bottom left of Fig. 1b.
In that case, what does it mean for a model θ̂ to be con-
sistent with the ground-truth θ? Following Def. 7, we first
have that the learned graph Ĝ is the same as G, up to a
permutation. Secondly, we have that their representations
are linked via a linear transformation L = CP⊤ where
C is Gz-consistent, (Gz)⊤-consistent and Ga-consistent
(Def. 6). Since Gz = 0, the first two consistency properties
are vacuous, i.e. they do not impose anything on C. How-
ever, Ga-consistency forces C to have the same zeros as
the binary matrix [1−Ga(1−Ga)⊤]+. This binary matrix
is represented at the bottom right of Fig. 1b and captures
qualitatively how disentangled the learned representation
is expected to be (by Thm. 8). What does Thm. 8 mean in
this context? Assuming the permutation P from Def. 7 is
the identity for simplicity, App. A.2.8 derives the following
interpretation: the ground-truth factor zi is not a function

1This graphical criterion is a slight simplification of the one of
Lachapelle et al. [2022]. Prop. 24 shows they are equivalent.



Figure 1: Typical runs on the dataset with temporal dependence (a) and the dataset with actions (b). For both figures: Top
left: learned graph permuted by P̂ (the permutation found by MCC). Bottom left: the ground-truth graph. Top right: the
matrix of coefficients estimated for R, permuted by P̂ . Bottom right: Expected sparsity pattern of L̂P̂ , according to Thm. 8.

of the learned factor ẑj (Ci,j = 0) whenever there exists an
action aℓ that targets zi, but not zj .

A similar exercise can be done with different graphs G. For
instance, consider the case where Ga = 0 (no action) and
Gz is given by the bottom left of Fig. 1a. In that case, C
will have the same zeros as the bottom right of Fig. 1a.

3.3 SPARSE MODEL ESTIMATION

In order to estimate from data the model presented in previ-
ous sections, we use almost the same approach as Lachapelle
et al. [2022], except for how sparsity is encouraged.

To estimate the various parameters of the model, we use the
well-known framework of variational autoencoders (VAEs)
[Kingma and Welling, 2014] in which the decoder neural
network corresponds to the mixing function f . We consider
the same approximate posterior as Lachapelle et al. [2022],
that is q(z≤T | x≤T , a<T ) :=

∏T
t=1 q(z

t | xt), where
q(zt | xt) is a Gaussian distribution with mean and diagonal
covariance outputted by a neural network encoder(xt). In
our experiments, the transition functions λi are parameter-
ized by fully connected neural networks that look only at a
fixed window of s lagged latent variables. In all experiments,
p̂(zti | z<t, a<t) is Gaussian with a learned variance that
does not depend on (z<t, a<t) (see App. B.2 for details).
This variational inference model induces the following evi-
dence lower bound (ELBO) on log p̂(x≤T |a<T ):

T∑
t=1

E
Zt∼q(·|xt)

[log p̂(xt | Zt)]−

E
Z<t∼q(·|x<t)

KL(q(Zt | xt)||p̂(Zt | Z<t, a<t)) . (4)

See [Lachapelle et al., 2022] for a derivation of the above.

In order to obtain θ ∼con θ̂. Thm. 8 suggests that, while
fitting the model, we should restrict Ĝ to have at most

the same number of edges as G. To achieve this in prac-
tice, Lachapelle et al. [2022] introduced additional reg-
ularizing terms to the ELBO objective: −αz||Ĝz||0 and
−αa||Ĝa||0. Moreover, to make the objective amenable to
gradient-based optimization, they treat Ĝz

i,j and Ĝa
i,ℓ as in-

dependent Bernoulli random variables with probabilities of
success sigmoid(γz

i,j) and sigmoid(γa
i,ℓ), respectively,

and optimize the continuous parameters γz and γa using
the Gumbel-Softmax gradient estimator [Jang et al., 2017,
Maddison et al., 2017]. We employ a similar strategy, but
instead of adding regularization terms, we add a sparsity
constraint of the form E||Ĝ||0 ≤ β and solve it using a vari-
ant of gradient descent-ascent on the associated Lagrangian
function, as originally suggested by Gallego-Posada et al.
[2021] to learn sparse neural networks. We use the python li-
brary Cooper [Gallego-Posada and Ramirez, 2022] which
implements this algorithm for PyTorch. The main advantage
of the constrained approach is that the hyperparameter β, the
upper bound of the constraint, is easier to interpret than the
regularizer coefficients αz and αa, which results in easier
value selection, e.g. via cross-validation. Moreover, this in-
terpretability allowed us to design a very simple schedule for
the value of β: We start training with β = maxG ||G||0 and
linearly decrease its value until the desired number edges is
reached. See App. B.2 for optimization details.

4 EXPERIMENTS

The goal of this section is to demonstrate empirically that
Thm. 8 holds in practice, i.e. that we can identify the equiva-
lence class of models that are consistent (Def. 7) to the
ground-truth model. Our experimental setting is largely
based on the one of Lachapelle et al. [2022] and our imple-
mentation is also built on their publicly available code.

Synthetic datasets. We used the same synthetic datasets
as Lachapelle et al. [2022], but with different ground-truth
graphs to highlight partially identifiable cases where com-



Graph Sparsity SHD MCC Rcon R

Gz
(1) No — .61±.05 .70±.07 .98±.00

Yes 1.2±1.8 .87±.01 1.0±.00 1.0±.00

Gz
(2) No — .68±.03 .78±.02 .98±.00

Yes 5.6±5.0 .86±.02 .99±.01 1.0±.00

Graph Sparsity SHD MCC Rcon R

Ga
(1) No — .67±.04 .80±.08 .96±.00

Yes 0.4±0.9 .87±.03 .99±.00 .99±.00

Ga
(2) No — .69±.05 .83±.02 .95±.00

Yes 1.6±1.7 .81±.06 .98±.03 .99±.01

Table 1: Left table: datasets with temporal dependencies. Right table: datasets with actions. In both tables, two different
ground-truth graphs are considered (see App. B.1 for their definitions), and for each one, we compare performance with and
without the sparsity constraint. For SHD, lower is better, for MCC, Rcon and R, higher is better. By design, we always have
0 ≤ MCC ≤ Rcon ≤ R ≤ 1. Metrics are averaged over 5 random initializations and “±” indicates the standard deviation.

plete disentanglement is not guaranteed by previous works.
In these cases, our theory can predict qualitatively how
disentangled the learned representation is expected to be,
via the ∼con-equivalence (Def. 7). We consider two types
of datasets, those with temporal dependencies, and those
with actions. In both types of datasets, the ground-truth
decoder f is a neural network initialized randomly. The
latent variable Z and observation X have dimensionality
dz = 10 and dx = 20, respectively. For datasets with ac-
tions, da = 5. Just like in Lachapelle et al. [2022], the
ground-truth p(zt | z<t, a<t) is Gaussian with covariance
σ2
zI and a mean outputted by some function µG(z

t−1, at−1).
App. B.1 gives a detailed descriptions of the function µG for
both types of datasets. We note that the model is well speci-
fied, in the sense that transition model p̂(zt | zt−1, at−1) is
also Gaussian with a mean outputted by a MLP. For both
types of datasets, we consider two different graphs, Gz

(1)

and Gz
(2) for the temporal type, and Ga

(1) and Ga
(2) for the

action type. These graphs are specified in App. B.1.

Performance metrics. We report four metrics to verify if
we can recover the correct graphical structure as well as the
representation, up to the proper equivalence class.

To measure complete disentanglement (Def. 3), we re-
port the mean correlation coefficient (MCC), which
is obtained by first computing the Pearson correla-
tion matrix K ∈ Rdz×dz between the ground-truth
representation and the learned representation (Ki,j is
the correlation between zi and ẑj). Then MCC =

maxP∈permutations
1
dz

∑dz

i=1 |(KP )i,i|. We denote by P̂ the
optimal permutation found by MCC.

To evaluate whether the learned representation is linearly
equivalent to the ground-truth (Def. 1), we perform linear
regression to predict the ground-truth latent factors from
the learned ones, and report the mean of the Pearson corre-
lations between the predicted ground-truth latents and the
actual ones. This metric is sometimes called the coefficient
of multiple correlation, and happens to be the square root of
the better known coefficient of determination denoted by R2.
The advantage of using R instead of R2 is that the former is
comparable to MCC, and we always have MCC ≤ R. Let
us denote by L̂ the matrix of estimated coefficients, which

should be thought of as an estimation of L in Def. 1.

To evaluate whether the learned representation is consistent
to the ground-truth (Def. 7), as predicted by Thm. 8, we
perform linear regression on P̂⊤ẑ while constraining the
matrix of coefficient to have the same zeros as C from
Def. 7, and report the mean of the associated coefficients
of multiple correlation, denoted by Rcon. As a consequence,
we have that 0 ≤ MCC ≤ Rcon ≤ R ≤ 1. See App. B.3 for
more details on this novel metric.

Sparsity helps. Table 1 shows that the sparsity constraint
yields significant improvement in MCC and Rcon. When the
sparsity constraint is used, the gap between Rcon and R is
very small (both are almost 1), indicating that the learned
latents that were excluded from the linear regression to
compute Rcon add almost no predictive power. This indi-
cates that the learned model is consistent to the ground-truth
model (Def. 7), as predicted by Thm. 8. Moreover, the gap
between MCC and Rcon is always significant, indicating
that the learned representations are not completely disentan-
gled (Def. 3), but are only partially disentangled (Def. 5), as
expected. The small SHD values indicates the graph is prop-
erly learned. See Fig. 1a,b to visualize typical learned graphs.
In all runs using the sparsity constraint, we set the upper
bound to be β := ||G||0. In practice, ||G||0 is unknown and
β must be chosen, e.g. using unsupervised disentanglement
ranking (UDR) [Duan et al., 2020].

5 CONCLUSION

We introduced a generalization of the theory of disentan-
glement via mechanism sparsity [Lachapelle et al., 2022]
which applies to all ground-truth causal graphs G. We de-
fined a novel equivalence relation over models, we named
consistency (Def. 7), and gave conditions for when the cor-
responding equivalence class can be identified from obser-
vations by enforcing sparsity (Thm. 8). We showed that the
equivalences “∼con” and “∼perm” coincide when G satisfies
the criterion of Lachapelle et al. [2022], allowing complete
instead of partial disentanglement. Finally, we proposed
to enforce sparsity by solving a constrained optimization
problem and validated this approach on synthetic data.
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A THEORY

A.1 MINIMAL SUFFICIENT STATISTICS FOR EXPONENTIAL FAMILIES

The following defines what a minimal sufficient statistics is for an exponential family. This property ensures that the
parameter of an exponential family is identifiable. See for example Wainwright and Jordan [2008, p. 40] for details.



Definition 9 (Minimal sufficient statistic). Given a parameterized distribution in the exponential family, as in (2), we say its
sufficient statistic Ti is minimal when there is no v ̸= 0 such that v⊤Ti(z) is constant for all z ∈ Z .

A.2 THEORY FOR DISENTANGLEMENT VIA MECHANISM SPARSITY

A.2.1 First insight

Recall that the conditions of Thm. 4 implies that the learned model θ̂ is linearly equivalent to the ground-truth model θ, i.e.

T(f−1(x)) = LT(f̂−1(x)) + b (5)

L⊤λ(f−1(x<t), a<t) + c = λ̂(f̂−1(x<t), a<t) . (6)

The following specifies an important consequence of linear identifiability. Note that this argument is taken from Lachapelle
et al. [2022].

Lemma 10. Assume the dimensionality of every sufficient statistics Ti is k = 1.2 If two models θ := (f ,λ, G) and
θ̂ = (f̂ , λ̂, Ĝ) are linearly equivalent, i.e. θ ∼L θ̂ (Def. 1), then for all z<t, a<t, τ, ϵ⃗ in their respective supports,

L⊤Dτ
zλ(z

<t, a<t)DT(zτ )−1L = Dτ
z λ̂(v(z

<t), a<t)DT(v(zτ ))−1 , and (7)

L⊤∆τλ(z<t, a<t, ϵ⃗) = ∆τ λ̂(v(z<t), a<t, ϵ⃗) . (8)

where Dτ
zλ and Dτ

z λ̂ denote Jacobian matrices with respect to zτ and ∆τλ and ∆τ λ̂ denote matrices of partial differences
with respect to aτ , i.e.

∆τλ(z<t, a<t, ϵ⃗) := [∆τ
1λ(z

<t, a<t, ϵ1) . . .∆
τ
da
λ(z<t, a<t, ϵda)] ∈ Rdz×da .

See Equation (95) for the definition of ∆τ
ℓλ(z

<t, a<t, ϵℓ).

Proof. We can rearrange (5) to obtain

f̂−1(x) = T−1(L−1(T(f−1(x))− b)) (9)

f̂−1 ◦ f(z) = T−1(L−1(T(z)− b)) (10)

v(z) = T−1(L−1(T(z)− b)) , (11)

where we defined v := f̂−1 ◦ f . Taking the derivative of (11) w.r.t. z, we obtain

Dv(z) = DT−1(L−1(T(z)− b))L−1DT(z) (12)

= DT−1(T(v(z)))L−1DT(z) (13)

= DT(v(z))−1L−1DT(z) . (14)

We can rewrite (6) as

L⊤λ(z<t, a<t) + c = λ̂(v(z<t), a<t) . (15)

By taking the derivative of the above equation w.r.t. zτ for some τ ∈ {1, ..., t− 1}, we obtain

L⊤Dτ
zλ(z

<t, a<t) = Dτ
z λ̂(v(z

<t), a<t)Dv(zτ ) , (16)

where we use Dτ
z to make explicit the fact that we are taking the derivative with respect to zτ . By plugging (14) in the above

equation and rearranging the terms, we get the first desired equation:

L⊤Dτ
zλ(z

<t, a<t)DT(zτ )−1L = Dτ
z λ̂(v(z

<t), a<t)DT(v(zτ ))−1 . (17)

2This hypothesis is necessary only for (7) and not for (8).



To obtain the second equation, we take a partial difference w.r.t. aτℓ (defined in (95)) on both sides of (15) to obtain

L⊤∆τ
ℓλ(z

<t, a<t, ϵ) = ∆τ
ℓ λ̂(v(z

<t), a<t, ϵ) , (18)

where ϵ is some real number. We can regroup the partial differences for every ℓ ∈ {1, ..., da} and get

∆τλ(z<t, a<t, ϵ⃗) :=
[
∆τ

1λ(z
<t, a<t, ϵ1) . . .∆

τ
da
λ(z<t, a<t, ϵda

)
]
∈ Rdz×da .

This allows us to rewrite (18) and obtain the second desired equation

L⊤∆τλ(z<t, a<t, ϵ⃗) = ∆τ λ̂(v(z<t), a<t, ϵ⃗) . (19)

Following the exposition of Lachapelle et al. [2022] to improve readability and present our results in their full generality,
consider an arbitrary function of the form

Λ : Γ→ Rm×n , (20)

where Γ is some arbitrary set. Depending on the context, this function Λ(γ) will correspond either to
Dτ

zλ(z
<t, a<t)DT(zτ )−1, where Γ is the support of (z<t, a<t, τ), or ∆τλ(z<t, a<t, ϵ⃗), where Γ is the support of

(z<t, a<t, ϵ⃗, τ).

By doing the following substitutions:

L⊤ Dτ
zλ(z

<t, a<t)DT(zτ )−1︸ ︷︷ ︸
Λ(γ)

L = Dτ
z λ̂(v(z

<t), a<t)DT(v(zτ ))−1︸ ︷︷ ︸
Λ̂(γ)

, (21)

we get the equation:

L⊤Λ(γ)L = Λ̂(γ) , (22)

where the argument γ ∈ Γ of the abstract function Λ(γ) corresponds to (z<t, a<t, τ). We can do an analogous substitution

L⊤ ∆τλ(z<t, a<t, ϵ⃗)︸ ︷︷ ︸
Λ′(γ′)

= ∆τ λ̂(v(z<t), a<t, ϵ⃗)︸ ︷︷ ︸
Λ̂′(γ′)

, (23)

which yields

L⊤Λ′(γ′) = Λ̂′(γ′) , (24)

where the argument γ′ ∈ Γ′ of the abstract function Λ(γ′) corresponds to (z<t, a<t, ϵ⃗, τ).

Key observation from Lachapelle et al. [2022]: Notice how the zeros of Λ(γ) and Λ̂(γ) corresponds to the missing
edges in Gz and Ĝz , respectively, and how the zeros of Λ′(γ′) and Λ̂′(γ′) corresponds to the missing edges in Ga and Ĝa,
respectively. The intuition for why sparsity induce disentanglement is that enforcing sparsity of G results in a sparse Λ̂(γ)
and Λ̂′(γ′), which will result in a sparse L via equations (22) & (24). Since L relates the ground-truth representation with
the learned one, a sparse L means a “more disentangled” representation. The lemmas and definitions of the following section
make this intuition precise.

A.2.2 Central Lemmas and Definitions

In order to formalize the intuition presented in the above section, we need to set up some notation and definitions. Many
notation choices, definitions and results are taken from Lachapelle et al. [2022].

Notation. The jth column of Λ(γ) and its ith row will be denoted as Λ·,j(γ) and Λi,·(γ), respectively. For convenience, we
will sometimes treat a binary vector b as a set of indices {i | bi = 1} and sometimes treat a binary matrix B as a set index
couples {(i, j) | Bi,j = 1}. For example, this will allow us to write B·,j1 ∩ B·,j2 , which should be understood as either
the index set {i | B·,j1 = 1} ∩ {i | B·,j2 = 1} or the binary vector B·,j1 ⊙ B·,j2 (where ⊙ is the element-wise product),



depending on the context. Another example would be the complement of a binary vector bc which should be understood as
either {i | bi = 0} or 1− b, where 1 denotes a vector filled with ones. The usefulness of this notation will become apparent
later on.

We introduce further notations in the following definitions.

Definition 11 (Aligned subspaces of Rm). Given a binary vector b ∈ {0, 1}m, we define

Rm
b := {x ∈ Rm | bi = 0 =⇒ xi = 0} . (25)

Definition 12 (Aligned subspaces of Rm×n). Given a binary matrix B ∈ {0, 1}m×n, we define

Rm×n
B := {M ∈ Rm×n | Bi,j = 0 =⇒ Mi,j = 0} . (26)

Next, we define the sparsity pattern of Λ, which compactly captures which of its entries are always zero.

Definition 13 (Sparsity pattern of Λ [Lachapelle et al., 2022]). The sparsity pattern of Λ : Γ→ Rm×n is a binary matrix
S ∈ {0, 1}m×n such that

Si,j = 1 ⇐⇒ ∃γ ∈ Γ,Λi,j(γ) ̸= 0 .

An other way to phrase this is to say that the sparsity pattern of Λ is the sparsest binary matrix S such that Λ(Γ) ⊂ Rm×n
S .

We are now ready to present the lemmas that will be central to the main theorems of this work.

Lemma 14 (Lachapelle et al. [2022]). Let S, S′ ∈ {0, 1}m×m and let (A(i,j))(i,j)∈S be a basis of Rm×m
S . Let L be a real

m×m matrix. Then

∀ (i, j) ∈ S, L⊤A(i,j)L ∈ Rm×m
S′ ⇐⇒ ∀ (i, j) ∈ S, (Li,·)

⊤Lj,· ∈ Rm×m
S′ . (27)

Proof. We start with direction “ =⇒ ”. Choose (i0, j0) ∈ S. Since ei0e
⊤
j0
∈ Rm×m

S (where ei denotes the vector with a 1 at
entry i and 0 elsewhere) and the matrices A(i,j) form a basis of Rm×m

S , we can write ei0e
⊤
j0

=
∑

(i,j)∈S αi,jA
(i,j) for some

coefficients αi,j . Thus

(Li0,·)
⊤Lj0,· = L⊤ei0e

⊤
j0L (28)

= L⊤

 ∑
(i,j)∈S

αi,jA
(i,j)

L (29)

=
∑

(i,j)∈S

αi,jL
⊤A(i,j)L ∈ Rm×m

S′ , (30)

where the final “∈" holds because each element of the sum is in Rm×m
S′ .

We now show the reverse direction “⇐= ”. Let A ∈ Rm×m
S . We can write

A =
∑

(i,j)∈S

Ai,jeie
⊤
j (31)

L⊤AL =
∑

(i,j)∈S

Ai,jL
⊤eie

⊤
j L =

∑
(i,j)∈S

Ai,j(Li,·)
⊤Lj,· ∈ Rm×m

S′ , (32)

where the last “∈” hold because every term in the sum is in Rm×m
S′ .

Lemma 15 (Lachapelle et al. [2022]). Let s, s′ ∈ {0, 1}m and (a(i))i∈s be a basis of Rm
s . Let L be a real m×m matrix.

Then

∀ i ∈ s, L⊤a(i) ∈ Rm
s′ ⇐⇒ ∀ i ∈ s, (Li,·)

⊤ ∈ Rm
s′ . (33)



Proof. We start with “ =⇒ ”. Choose i0 ∈ s. We can write the one-hot vector ei0 as
∑

i∈s αia
(i) for some coefficients αi

(since (a(i))i∈s forms a basis). Thus

(Li0,·)
⊤ = L⊤ei0 = L⊤

∑
i∈s

αia
(i) =

∑
i∈s

αiL
⊤a(i) ∈ Rm

s′ , (34)

where the final “∈” holds because each element of the sum is in Rm
s′ .

We now show “⇐= ”. Let a ∈ Rm
s . We can write

a =
∑
i∈s

aiei (35)

L⊤a =
∑
i∈s

aiL
⊤ei =

∑
i∈s

ai(Li,·)
⊤ ∈ Rm

s′ , (36)

where the last “∈” holds because all terms in the sum are in Rm
s′ .

The following simple Lemma will be useful throughout this section. The argument is taken from Lachapelle et al. [2022].

Lemma 16 (Sparsity pattern of an invertible matrix contains a permutation). Let L ∈ Rm×m be an invertible matrix. Then,
there exists a permutation σ such that Li,σ(i) ̸= 0 for all i.

Proof. Since the matrix L is invertible, its determinant is non-zero, i.e.

det(L) :=
∑

σ∈Sm

sign(σ)
m∏
i=1

Li,σ(i) ̸= 0 , (37)

where Sm is the set of m-permutations. This equation implies that at least one term of the sum is non-zero, meaning

∃σ ∈ Sm,∀i ≤ m,Li,σ(i) ̸= 0 . (38)

The exact form of the ground-truth graph G will force some of the entries of the matrix L, which relates the ground-truth
and the learned representations, to be zero. Understanding which entries of L are zero is very important to understand
qualitatively how disentangled the learned representation is expected to be. We now recall the notion of S-consistency
(introduced in the main text) which will be crucial to precisely relate the form of the ground-truth graph G to the sparsity
pattern of L via the consistency equivalence relation (Def. 7) in Thm. 8. Note that it is reformulated with the notation
introduce in this appendix.

Definition 6 (S-consistency). Given a binary matrix S ∈ {0, 1}m×n, a matrix C ∈ Rm×m is S-consistent if

C ∈ Rm×m
[1−S(1−S)⊤]+

,

where [·]+ := max{0, ·} and 1 is a matrix filled with ones (assuming implicitly its correct size).

The following characterization of S-consistency will be useful later on to prove Lemma 18 & 19, to give an intuitive
interpretation of S-consistency (Sec. A.2.8) and to relate S-consistency to the graphical criterion introduced by Lachapelle
et al. [2022] (Sec. A.2.7).

Lemma 17 (Characterizing S-consistency). Let C ∈ Rm×m and S ∈ {0, 1}m×n. The following statements are equivalent.

1. C is S-consistent (Def. 6);

2. ∀i, (Ci,·)
⊤ ∈ Rm⋂

k∈Si,·
S·,k

;

3. ∀j, C·,j ∈ Rm⋂
k∈Sc

j,·
Sc
·,k

.



Proof. We proceed by showing how both the second and third statements are equivalent to the first one. Choose arbitrary i
and j.

[1− S(1− S)⊤]+i,j = 0 ⇐⇒ 1 ≤ Si,·(1− Sj,·)
⊤ (39)

⇐⇒ ∃k s.t. Si,k = 1 and Sj,k = 0 (40)

One can rephrase (40) as

∃k ∈ Si,· s.t. j ̸∈ S·,k ⇐⇒ j ̸∈
⋂

k∈Si,·

S·,k , (41)

which proves the first and second statements are equivalent. One can also rephrase (40) as

∃k ∈ Sc
j,· s.t. i ̸∈ Sc

·,k ⇐⇒ i ̸∈
⋂

k∈Sc
j,·

Sc
·,k , (42)

which proves the first and third statements are equivalent.

Later in Sec. A.2.3, we show that the set of invertible and S-consistent matrices form a group under matrix multiplication,
i.e. that it is closed under matrix multiplication and inversion. This will be crucial to show that the relation ∼con (Def. 7) is
an equivalence relation (Sec. A.2.4).

We are now ready to show the central lemmas that can be directly applied to easily prove the main theorem of this work,
Thm. 8. Note that Lemmas 18 & 19 can be thought of as generalizations of Lemmas 17 & 18 from Lachapelle et al.
[2022], respectively. The difference is that we do not assume anything about the specific form of S, which yields a different
(sometime weaker) conclusion.

Lemma 18 (L⊤Λ(·)L sparse implies L sparse). Let Λ : Γ → Rm×m with sparsity pattern S (Def. 13). Let L ∈ Rm×m

be an invertible matrix and Ŝ be the sparsity pattern of Λ̂(.) := L⊤Λ(·)L. Let σ be a permutation such that for all i,
Li,σ(i) ̸= 0 (Lemma 16) and let P be its associated permutation matrix, i.e. Pei = eσ(i) for all i. Assume that

1. [Sufficient Variability] span(Λ(Γ)) = Rm×m
S .

Then S ⊂ P⊤ŜP . Further assume that

2. [Sparsity] ||Ŝ||0 ≤ ||S||0 .

Then S = P⊤ŜP and L = CP⊤ where C is S-consistent and S⊤-consistent.

Proof. We separate the proof in four steps. The first step leverages the Assumption 1 and Lemma 14 to show that L must
contain “many" zeros. The second step leverages the invertibility of L to show that PSP⊤ ⊂ Ŝ. The third step uses
Assumption 2 to establish PSP⊤ = Ŝ and the fourth step concludes that L = CP⊤ where C is both S-consistent and
S⊤-consistent.

Step 1: By Assumption 1, there exists (γi,j)(i,j)∈S such that (Λ(γi,j))(i,j)∈S spans Rm×m
S . Moreover, by the definition of

Ŝ as sparsity pattern of L⊤Λ(.)L (Definition 13), we have for all (i, j) ∈ S

L⊤Λ(γi,j)L ∈ Rm×m

Ŝ
. (43)

Then, by Lemma 14, we must have

∀ (i, j) ∈ S, (Li,·)
⊤Lj,· ∈ Rm×m

Ŝ
. (44)

Step 2: Since ∀i, Li,σ(i) ̸= 0, (44) implies that for all (i, j) ∈ S,

(σ(i), σ(j)) ∈ Ŝ , (45)

which, in other words, means that

PSP⊤ ⊂ Ŝ . (46)
(47)



This proves the first claim of the theorem.

Step 3: By Assumption 2, ||Ŝ||0 ≤ ||S||0 = ||PSP⊤||0, we must have that

PSP⊤ = Ŝ , (48)

which proves the second statement of the theorem.

Step 4: We notice that, since Lj,σ(j) ̸= 0, (44) implies

∀i, ∀j ∈ Si,·, (Li,·)
⊤ ∈ Rm

Ŝ·,σ(j)
(49)

and ∀j, ∀i ∈ S·,j , (Lj,·)
⊤ ∈ Rm

Ŝσ(i),·
, (50)

We interchange indices i and j in the second equation above (this is purely a change of notation), which yields

∀i, ∀j ∈ S·,i, (Li,·)
⊤ ∈ Rm

Ŝσ(j),·
, (51)

Equations (49) & (51) can be rewritten as

∀i, (Li,·)
⊤ ∈

⋂
j∈Si,·

Rm
Ŝ·,σ(j)

= Rm⋂
j∈Si,·

Ŝ·,σ(j)
(52)

∀i, (Li,·)
⊤ ∈

⋂
j∈S·,i

Rm
Ŝσ(j),·

= Rm⋂
j∈S·,i

Ŝσ(j),·
(53)

Applying left multiplying both equations above by P⊤, we obtain

∀i, ((LP )i,·)
⊤ = P⊤(Li,·)

⊤ ∈ P⊤Rm⋂
j∈Si,·

Ŝ·,σ(j)
= Rm⋂

j∈Si,·
S·,j

(54)

∀i, ((LP )i,·)
⊤ = P⊤(Li,·)

⊤ ∈ P⊤Rm⋂
j∈S·,i

Ŝσ(j),·
= Rm⋂

j∈S·,i
Sj,·

= Rm⋂
j∈(S⊤)i,·

(S⊤)·,j
(55)

Let C := LP . Equations (54) & (55) imply that C is S-consistent and S⊤-consistent, respectively (by Lemma 17). Since
L = CP⊤, this completes the proof.

Lemma 19 (L⊤Λ(.) sparse implies L sparse). Let Λ : Γ→ Rm×n with sparsity pattern S. Let L ∈ Rm×m be an invertible
matrix and Ŝ be the sparsity pattern of Λ̂ := L⊤Λ. Let σ be a permutation such that for all i, Li,σ(i) ̸= 0 (Lemma 16) and
let P be its associated permutation matrix, i.e. Pei = eσ(i) for all i. Assume that

1. [Sufficient Variability] For all j ∈ {1, ..., n}, span(Λ·,j(Γ)) = Rm
S·,j

.

Then S ⊂ P⊤Ŝ. Further assume that

2. [Sparsity] ||Ŝ||0 ≤ ||S||0 .

Then S = P⊤Ŝ and L = CP⊤ where C is S-consistent.

Proof. We separate the proof in four steps. The first step leverages the Assumption 1 and Lemma 15 to show that L
must contain “many” zeros. The second step leverages the invertibility of L to show that PS ⊂ Ŝ. The third step uses
Assumption 2 to show this inclusion is in fact an equality and the fourth step concludes that L can be written as an
S-consistent matrix times P⊤.

Step 1: Fix j ∈ {1, ..., n}. By Assumption 1, there exists (γi)i∈S·,j such that (Λ·,j(γi))i∈S·,j spans Rm
S·,j

. Moreover, by the

definition of Ŝ as sparsity pattern of L⊤Λ(.) (Definition 13), we have for all i ∈ S·,j

L⊤Λ·,j(γi) ∈ Rm
Ŝ·,j

. (56)



By Lemma 15, we must have

∀ i ∈ S·,j , (Li,·)
⊤ ∈ Rm

Ŝ·,j
. (57)

Since j was arbitrary, this holds for all j, which allows us to rewrite as

∀(i, j) ∈ S, (Li,·)
⊤ ∈ Rm

Ŝ·,j
. (58)

Step 2: Since Li,σ(i) ̸= 0 for all i, (58) implies that

∀(i, j) ∈ S, (σ(i), j) ∈ Ŝ·,j , (59)

which can be rephrased as

PS ⊂ Ŝ . (60)

This proves the first statement of the theorem.

Step 3: By Assumption 2, ||Ŝ||0 ≤ ||S||0 = ||PS||0, so the inclusion (60) is actually an equality

PS = Ŝ , (61)

which proves the second statement.

Step 4: We notice that (58) can be rewritten as

∀i, ∀j ∈ Si,·, (Li,·)
⊤ ∈ Rm

Ŝ·,j
, (62)

which is equivalent to

∀i, (Li,·)
⊤ ∈

⋂
j∈Si,·

Rm
Ŝ·,j

= Rm⋂
j∈Si,·

Ŝ·,j
. (63)

We apply P⊤ on both sides of the above line and get

∀i, ((LP )i,·)
⊤ = P⊤(Li,·)

⊤ ∈ P⊤Rm⋂
j∈Si,·

Ŝ·,j
= Rm⋂

j∈Si,·
S·,j

, (64)

which means, by Lemma 17, that LP is S-consistent. By defining C := LP , we have that L = CP⊤, which is what we
wanted to prove.

A.2.3 Invertible S-consistent matrices form a group under matrix multiplication

The following theorem shows that, perhaps surprisingly, the set of invertible S-consistent matrices forms a group under
matrix multiplication, i.e. that the set is closed under multiplication and inversion. This will be very useful to show that the
consistence relation over models, ∼con (Def. 7), is an equivalence relation. The proof can be safely skipped at first read.

Theorem 20. Let S ∈ {0, 1}m×n.

1. The identity matrix I is S-consistent;

2. For any invertible S-consistent matrices C and C ′, the matrix product CC ′ is also S-consistent;

3. For any invertible S-consistent matrix C, C−1 is also S-consistent.

In other words, the set of invertible matrices that are S-consistent forms a group under matrix multiplication.

Proof. First, let i ≤ m. Notice that [1− S(1− S)⊤]+i,i = [1− Si,·(1i,· − Si,·)
⊤]+ = 1. Thus, I is S-consistent.



Second, we show closure under matrix multiplication. Let i, j such that [1−S(1−S)⊤]+i,j = 0. Consider (CC ′)i,j = Ci,·C
′
·,j .

By Lemma 17, we have that

(Ci,·)
⊤ ∈ Rm⋂

k∈Si,·
S·,k

(65)

C ′
·,j ∈ Rm⋂

k∈Sc
j,·

Sc
·,k

(66)

Notice that if the intersection
(⋂

k∈Si,·
S·,k

)
∩
(⋂

k∈Sc
j,·

Sc
·,k

)
is empty, the dot product Ci,·C

′
·,j is zero and the second

statement of this theorem holds. By (40) from the proof of Lemma 17, there exists a k such that k ∈ Si,· and k ∈ Sc
j,·, and,

since S·,k ∩ Sc
·,k = ∅, the initial intersection is itself empty.

Third, we show that the inverse C−1 is also S-consistent. Notice that, since C is invertible, there exists a sequence of
elementary row operations that will transform C into the identity. This process is sometimes called Gaussian elimination or
Gauss-Jordan elimination. The elementary row operations are (i) swapping two rows, (ii) multiplying a row by a nonzero
number, and (iii) adding a multiple of one row to another. These three elementary operation can be performed by left
multiplying by an elementary matrix, which have the following forms:

(i) Swapping two rows: 

1
. . .

0 1
. . .

1 0
. . .

1


; (67)

(ii) Multiplying a row by a nonzero number: 

1
. . .

1
α

1
. . .

1


; (68)

(iii) Adding a multiple of a row to another: 

1
. . .

1
. . .

α 1
. . .

1


. (69)

We will show that it is possible to transform C into the identity by using only elementary matrices that are themselves
S-consistent, i.e. that there exists a sequence of S-consistent elementary matrices E1, ..., Ep, such that Ep...E2E1C = I .
Since this implies C−1 = Ep...E2E1 and all elementary matrices are S-consistent, C−1 is also S-consistent (using closure
under multiplication shown above).

We now construct the sequence of Ei using standard Gaussian elimination. Start by initializing M := C. Throughout the
algorithm, M will be gradually transformed by elementary operations that are S-consistent (and invertible), thus M will



remain S-consistent (and invertible). We consider every column j = 1, ...,m from left to right. If Mj,j = 0, we will show
that rows j, ...,m can be permuted to obtain Mj,j ̸= 0 using an S-consistent permutation, but we delay this technical step to
the end of the proof to avoid breaking the flow of the exposition. For now, assume Mj,j ̸= 0. Rescale row j so that Mj,j = 1
using matrix of the form (68), which is S-consistent. Then, put zeroes below Mj,j by adding a multiple of row j to each row
i > j such that Mi,j ̸= 0. Each of these operations corresponds to an elementary matrix of the form (69) where the nonzero
entry below the diagonal is at position (i, j). Since M is S-consistent and Mi,j ̸= 0, these elementary matrices must also be
S-consistent. Once every element below Mj,j are zero go to the next column. Do that for all columns.

At this point, M is upper triangular with a diagonal filled with ones. We must now remove every nonzero elements above
the diagonal by a process similar to what we just did. Start with column j = n up to j = 1, from left to right. To remove
every nonzero elements above Mj,j , we can add a multiple of row j to the rows i < j that have Mi,j ̸= 0. This is equivalent
to multiplying M by an elementary matrix of the form (69) with its off diagonal nonzero entry by at position (i, j). Again,
since Mi,j ̸= 0 and M is S-consistent, this elementary matrix must also be S-consistent. Once all elements above Mj,j are
zeros, go to the next column and repeat for every columns until column j = 1 is reached.

At this point, M = I , which is what we wanted to show.

We now have to show what to do when Mj,j ̸= 0. We know that M has the following form

M =

[
U A
0 B

]
, (70)

where U ∈ R(j−1)×(j−1) is an upper triangular matrix with only ones on its diagonal and B is a square matrix with B1,1 = 0.
Since M is invertible, B is invertible too (otherwise, det(M) = det(U) det(B) = 0). Thus, by Lemma 16, there exists a
permutation σ such that for all i, Bσ(i),i ̸= 0. Consider its corresponding permutation matrix P := [eσ(1) · · · eσ(m−j+1)].
Notice that the matrix [

Ij−1 0
0 P

]
(71)

is S-consistent, since otherwise M is not. We know that the cyclic group {P k | k ∈ Z} forms a subgroup of the group of
permutations, and thus has finite order. Thus, there exists ℓ ∈ N such that P ℓ = I , and thus P−1 = P ℓ−1 [Artin, 2013,
Section 2.4]. Recall P−1 = P⊤ since P is a permutation. This means[

Ij−1 0
0 P⊤

]
(72)

is S-consistent, since it is a product of S-consistent matrices. Notice how (P⊤B)i,i = e⊤σ(i)B·,i = Bσ(i),i ̸= 0. In particular
(P⊤B)1,1 ̸= 0. We can thus update M by applying matrix (72) to it to get a nonzero entry at (j, j):

M ←
[
U A
0 P⊤B

]
︸ ︷︷ ︸
Still S-consistent

+ entry (j,j) nonzero

=

[
Ij−1 0
0 P⊤

]
︸ ︷︷ ︸

S-consistent

[
U A
0 B

]
︸ ︷︷ ︸

M

, (73)

which completes the proof.

A.2.4 The consistency relation (Def. 7) is an equivalence relation

We start by showing a fact that will be useful to show that ∼con is an equivalence relation.

Lemma 21. Let S ∈ {0, 1}m×n.

1. A matrix C ∈ Rm×m is S-consistent if and only if C is SP -consistent, where P is an n× n permutation matrix.

2. A matrix C ∈ Rm×m is S-consistent if and only if PCP⊤ is PS-consistent, where P is a m×m permutation matrix.

3. When m = n, a matrix C ∈ Rm×m is S-consistent if and only if PCP⊤ is PSP⊤-consistent, where P is a m ×m
permutation matrix.



Proof. To show the first statement, we simply have to notice that

[1− SP (1− SP )⊤]+ = [1− SPP⊤(1− S)⊤]+ (74)

= [1− S(1− S)⊤]+ (75)

To show the second statement, we start with

C ∈ Rm×m
[1−S(1−S)⊤]+

(76)

⇐⇒ PCP⊤ ∈ PRm×m
[1−S(1−S)⊤]+

P⊤ (77)

= Rm×m
P [1−S(1−S)⊤]+P⊤ (78)

= Rm×m
[1−PS(1−PS)⊤]+

. (79)

The third statement, is a combination of the first two.

Proposition 22. The consistency relation, ∼con (Def. 7), is an equivalence relation.

Proof. First, recall the fact that an intersection of subgroups is a subgroup. This means that, the set of invertible matrices
that are Gz-consistent, (Gz)⊤-consistent and Ga-consistent is a group, and thus is closed under matrix multiplication and
inversion.

Reflexivity. It is easy to see that θ ∼con θ, by simply setting L := I .

Symmetry. Assume θ ∼con θ̃. Hence, we have Gz = P⊤G̃zP and Ga = P⊤G̃a as well as

T(f−1(x)) = CP⊤T(f̃−1(x)) + b , and (80)

PC⊤λ(f−1(x<t), a<t) + c = λ̃(f̃−1(x<t), a<t) . (81)

where the matrix C is Gz-consistent, (Gz)⊤-consistent and Ga-consistent.

In order to show symmetry, we just need to show that the inverse of CP⊤ can be written as C̃P̃⊤ where P̃ is some
permutation and C̃ is G̃z-consistent, (G̃z)⊤-consistent and G̃a-consistent. Notice that (CP⊤)−1 = PC−1 and that C−1

is consistent to Gz , (Gz)⊤ and Ga by closure under inversion. Thus, by Lemma 21, we have that C̃ := PC−1P⊤ is
G̃z-consistent, (G̃z)⊤-consistent, G̃a-consistent. Hence

(CP⊤)−1 = PC−1 = PC−1P⊤︸ ︷︷ ︸
C̃

P︸︷︷︸
P̃⊤

= C̃P̃⊤ . (82)

Transitivity. Suppose θ ∼con θ̃ and θ̃ ∼con θ̂. This means

Gz = P⊤
1 G̃zP1 and Ga = P⊤

1 G̃a , (83)

T(f−1(x)) = C1P
⊤
1 T(f̃−1(x)) + b1 , and (84)

P1C
⊤
1 λ(f−1(x<t), a<t) + c1 = λ̃(f̃−1(x<t), a<t) , (85)

where C1 is consistent to Gz , (Gz)⊤ and Ga; and

G̃z = P⊤
2 ĜzP2 and G̃a = P⊤

2 Ĝa , (86)

T(f̃−1(x)) = C2P
⊤
2 T(f̂−1(x)) + b2 , and (87)

P2C
⊤
2 λ̃(f−1(x<t), a<t) + c2 = λ̂(f̂−1(x<t), a<t) , (88)

where C2 is consistent to G̃z , (G̃z)⊤ and G̃a.

To show that θ ∼con θ̂, we first combine (83) with (86) to get

Gz = P⊤
1 P⊤

2︸ ︷︷ ︸
P⊤

Ĝz P2P1︸ ︷︷ ︸
P

and Ga = P⊤
1 P⊤

2︸ ︷︷ ︸
P⊤

Ĝa . (89)



Moreover, we can combine (84) with (87) to get

T(f−1(x)) = C1P
⊤
1 (C2P

⊤
2 T(f̂−1(x)) + b2) + b1 (90)

= C1P
⊤
1 C2P

⊤
2 T(f̂−1(x)) + (C1P

⊤
1 b2 + b1) , (91)

and the same can be done for (85) and (88). We must now show that C1P
⊤
1 C2P

⊤
2 = CP⊤ where C is some matrix

consistent to Gz , (Gz)⊤ and Ga (Def. 6). Notice that

C1P
⊤
1 C2P

⊤
2 = C1P

⊤
1 P⊤

2 (P2C2P
⊤
2 )︸ ︷︷ ︸

Ĉ

, (92)

where Ĉ := P2C2P
⊤
2 is consistent to Ĝz , (Ĝz)⊤ and Ĝa, by Lemma 21. We can further write

C1P
⊤
1 C2P

⊤
2 = C1P

⊤
1 P⊤

2 Ĉ (93)

= C1 (P
⊤
1 P⊤

2 C̃P2P1)︸ ︷︷ ︸
C′

P⊤
1 P⊤

2︸ ︷︷ ︸
P⊤

, (94)

where C ′ := P⊤
1 P⊤

2 C̃P2P1 is consistent to Gz , (Gz)⊤ and Ga, by Lemma 21 and (89). Since C1 is also consistent to Gz ,
(Gz)⊤ and Ga, the product C := C1C

′ also is, because of closure under multiplication (Thm. 20). This concludes the proof
that θ ∼con θ̂.

A.2.5 Proof of Theorem 8

Finally, we can prove Thm. 8. Note that its proof reuses many arguments initially introduced by Lachapelle et al. [2022]. In
fact, the statement of Thm. 8 is identical to Thm. 5 of Lachapelle et al. [2022] except for (i) the absence of the graphical
criterion (Def. 23) and (ii) the conclusion, which is θ ∼con θ̂ instead of θ ∼perm θ̂. App. A.2.7 shows how Thm. 8 can be
seen as a generalization of Thm. 5 from Lachapelle et al. [2022].

Theorem 8 (Disentanglement via mechanism sparsity). Suppose we have two models as described in Sec. 2.1 with
parameters θ = (f ,λ, G) and θ̂ = (f̂ , λ̂, Ĝ) representing the same distribution, i.e. PX≤T |a;θ = PX≤T |a;θ̂ for all a ∈ AT .
Suppose the assumptions of Thm. 4 hold and that

1. The sufficient statistic T is dz-dimensional (k = 1) and is a diffeomorphism from Z to T(Z).

2. [Sufficient time-variability] There exist {(z(p), a(p), τ(p))}
||Gz||0
p=1 belonging to their respective support such that

span
{
D

τ(p)
z λ(z(p), a(p))DzT(z

τ(p)
(p) )

−1
}||Gz||0

p=1
= Rdz×dz

Gz ,

where D
τ(p)
z and Dz are the Jacobian operators with respect to zτ(p) and z, respectively.

Then, there exists a permutation matrix P such that Gz ⊂ P⊤ĜzP . Further assume that

3. [Sufficient action-variability] For all ℓ ∈ {1, ..., da}, there exist {(z(p), a(p), ϵ(p), τ(p))}
|Cha

ℓ |
p=1 belonging to their

respective support such that

span
{
∆

τ(p)
ℓ λ(z(p), a(p), ϵ(p))

)|Cha
ℓ |

p=1
= Rdz

Cha
ℓ
,

where Cha
ℓ is the set of children of aℓ and ∆τ

ℓλ(z
<t, a<t, ϵ) is a partial difference defined by

∆τ
ℓλ(z

<t, a<t, ϵ) := λ(z<t, a<t + ϵEℓ,τ )− λ(z<t, a<t) , (95)

where ϵ ∈ R and Eℓ,τ ∈ Rda×t is the one-hot matrix with the entry (ℓ, τ) set to one. Thus, (95) is the discrete analog
of a partial derivative w.r.t. aτℓ .

Then Ga ⊂ P⊤Ĝa. Further assume that



4. [Sparsity] ||Ĝ||0 ≤ ||G||0.

Then, θ̂ is consistent with θ, i.e. θ ∼con θ̂ (Def. 7).

Proof. First of all, since the assumptions of Thm. 4 hold, we have that θ and θ̂ are linearly equivalent. Since k = 1
(assumption 1), we can apply Lemma 10 to obtain the following equations:

L⊤ Dτ
zλ(z

<t, a<t)DT(zτ )−1︸ ︷︷ ︸
Λ(1)(γ)

L = Dτ
z λ̂(v(z

<t), a<t)DT(v(zτ ))−1︸ ︷︷ ︸
Λ̂(1)(γ)

, and (96)

L⊤ ∆τλ(z<t, a<t, ϵ⃗)︸ ︷︷ ︸
Λ(2)(γ)

= ∆τ λ̂(v(z<t), at91, ϵ⃗)︸ ︷︷ ︸
Λ̂(2)(γ)

, (97)

where we use the labelling of Sec. A.2.1 with Λ functions. Let us introduce S(1), Ŝ(1), S(2) and Ŝ(2), the sparsity patterns
of Λ(1), Λ̂(1),Λ(2) and Λ̂(2), respectively. As was hinted at in Sec. A.2.1, the relationship between the sparsity patterns and
the graphs is

S(1) ⊂ Gz, Ŝ(1) ⊂ Ĝz , (98)

S(2) ⊂ Ga, Ŝ(2) ⊂ Ĝa . (99)

Because of assumptions 2 & 3, we must have that

S(1) = Gz , (100)

S(2) = Ga.

Notice how assumption 2 corresponds to assumption 1 of Lemma 18 and how assumption 3 corresponds to assumption 1 of
Lemma 19. This means we can obtain the first conclusion of both Lemmas 18 & 19, i.e. that

S(1) ⊂ P⊤Ŝ(1)P , and S(2) ⊂ P⊤Ŝ(2) , (101)

which implies

||S(1)||0 ≤ ||Ŝ(1)||0 and ||S(2)||0 ≤ ||Ŝ(2)||0 (102)

All the above together with the sparsity assumption (||Ĝ||0 ≤ ||G||0) allows to write

||Ŝ(1)||0 + ||Ŝ(2)||0 ≤ ||Ĝz||0 + ||Ŝ(2)||0 [By (98)] (103)

≤ ||Ĝz||0 + ||Ĝa||0 [By (99)] (104)

= ||Ĝ||0 (105)
≤ ||G||0 [By assumption 4 (Sparsity)] (106)
= ||Gz||0 + ||Ga||0 (107)

= ||S(1)||0 + ||S(2)||0 [By (100)] (108)

≤ ||Ŝ(1)||0 + ||S(2)||0 [By (102)] (109)

≤ ||Ŝ(1)||0 + ||Ŝ(2)||0 [By (102)] . (110)

Since the l.h.s. of (103) equals the r.h.s. of (110), all the above inequalities are actually equalities. Hence we have

||Ŝ(1)||0 = ||S(1)||0 and ||Ŝ(2)||0 = ||S(2)||0 , (111)

as well as

||Ŝ(1)||0 = ||Ĝz||0 and ||Ŝ(2)||0 = ||Ĝa||0 . (112)

The latter, combined with the r.h.s. of (98) and (99), implies that

Ŝ(1) = Ĝz and Ŝ(2) = Ĝa . (113)

The equalities of (111) respectively implies the inequalities of the sparsity assumption of Lemmas 18 & 19, which allows us
to obtain their second and most important conclusion i.e. that S(1) = P⊤Ŝ(1)P , S(2) = P⊤Ŝ(2) and that L = CP⊤ where
C is S(1)-consistent, (S(1))⊤-consistent (Lemma 18) and S(2)-consistent (Lemma 19). Notice that because S(1) = Gz ,
S(2) = Ga, Ŝ(1) = Ĝz and Ŝ(2) = Ĝa, these are equivalent to what we wanted to show, i.e. that θ ∼con θ̂.



A.2.6 Understanding the sufficient variability assumptions of Thm. 8

To gain a better understanding of sufficient time-variability and sufficient action-variability assumptions of Thm. 8, we
provide examples of transition functions λ that do not satisfy them. The synthetic datasets used in our experiments are
examples of processes satisfying the sufficient variability assumption, their exact form can be found in App. B.1.

For the sake of simplicity, assume the latent variables are Gaussian with a variance fixed to one, which implies that T is the
identity. Further assume that the system is Markovian, meaning λ(z<t, a<t) = λ(zt−1, at−1). The sufficient time-variability
thus reduces to: There exist {(z(p), a(p))}

||Gz||0
p=1 belonging to their respective support such that

span
{
Dzλ(z(p), a(p))

}||Gz||0
p=1

= Rdz×dz

Gz .

Now, assume λ(zt−1, at−1) := Wzt−1, with W ∈ Rdz×dz

Gz . This implies that Dzλ(z
t−1, at−1) = W , which clearly means

that the sufficient time-variability assumption is not satisfied. In this context, this assumption requires that λ is sufficiently
nonlinear, in the sense that its Jacobian matrix varies sufficiently. We postulate that this assumption is a reasonable one,
given how complex real world dynamics can be.

Similarly, assume that λ(z<t−1, at−1) = Wat−1, with W ∈ Rdz×da

Ga . We thus have that

∆ℓλ(z
t−1, at−1, ϵ) := λ(zt−1, at−1 + ϵeℓ)− λ(zt−1, at−1) (114)

= W (at−1 + ϵeℓ)−Wat−1 (115)
= ϵW·,ℓ . (116)

Unless every aℓ has exactly one child, the sufficient action-variability assumption is violated, which, again, shows how
linearity can cause problem.

A.2.7 Connecting to the graphical criterion of Lachapelle et al. [2022]

We now clarify how the graphical criterion of Lachapelle et al. [2022], which guarantees complete disentanglement, is
related to Thm. 8. Let us first recall what this criterion is about.

Definition 23 (Graphical criterion of Lachapelle et al. [2022]). A graph G = [Gz Ga] ∈ {0, 1}dz×(dz+da) satisfies the
criterion of Lachapelle et al. [2022] if, for all i ∈ {1, ..., dz}, ⋂

j∈Chz
i

Pazj

 ∩
 ⋂

j∈Paz
i

Chz
j

 ∩
 ⋂

ℓ∈Paa
i

Cha
ℓ

 = {i} ,

where Pazi and Chz
i are the sets of parents and children of node zi in Gz , respectively, while Cha

ℓ is the set of children of
aℓ in Ga.

We note that the above definition is slightly different from the original one, since the intersections run over Chz
i , Pazi

and Paai instead of over some sets of indexes I,J ⊂ {1, ..., dz} and L ⊂ {1, ..., da}. This slightly simplified criterion is
equivalent to the original one, which we now demonstrate for the interested reader.

Proposition 24. Let G = [Gz Ga] ∈ {0, 1}dz×(dz+da). The criterion of Def. 23 holds for G if and only if the following
holds for G: For all i ∈ {1, ..., dz}, there exist sets I,J ⊂ {1, ..., dz} and L ⊂ {1, ..., da} such that⋂

j∈I
Pazj

 ∩
⋂

j∈J
Chz

j

 ∩(⋂
ℓ∈L

Cha
ℓ

)
= {i} ,

Proof. The direction “ =⇒ ” is trivial, since we can simply choose I := Chz
i , J := Pazi and L := Paai .

To show the other direction, we notice that we must have I ⊂ Chz
i , J ⊂ Pazi and L ⊂ Paai , otherwise one of the sets in

the intersection would not contain i, contradicting the criterion. Thus, the criterion of Def. 23 intersects the same sets or
more sets. Moreover these potential additional sets must contain i because of the obvious facts that j ∈ Chz

i ⇐⇒ i ∈ Pazj
and ℓ ∈ Paai ⇐⇒ i ∈ Cha

ℓ , thus they do not change the result of the intersection.



We can now derive the fact that, if all assumptions of Thm. 8 and the graphical criterion of Def. 23 hold, then the learned
representation will be completely disentangled:

Proposition 25 (Complete disentanglement as a special case). Suppose all assumptions of Thm. 8 and the graphical criterion
of Def. 23. Then, θ̂ is completely disentangled, i.e. θ̂ and θ are permutation-equivalent.

Proof. Since assumptions of Thm. 8 holds, we have that θ and θ̂ are equivalent up to CP⊤ where C is Gz-consistent,
(Gz)⊤-consistent and Ga-consistent. Using Lemma 17, we have that, for all i,

(Ci,·)
⊤ ∈ Rdz⋂

j∈Gz
i,·

Gz
·,j
∩ Rdz⋂

j∈((Gz)⊤)i,·
((Gz)⊤)·,j

∩ Rdz⋂
j∈Ga

i,·
Ga

·,j
(117)

= Rdz(⋂
j∈Gz

i,·
Gz

·,j

)
∩
(⋂

j∈Gz
·,i

Gz
j,·

)
∩
(⋂

j∈Ga
i,·

Ga
·,j

) (118)

= Rdz(⋂
j∈Paz

i
Chz

j

)
∩
(⋂

j∈Chz
i
Paz

j

)
∩
(⋂

ℓ∈Paa
i
Cha

ℓ

) (119)

= Rdz

{i} . (120)

Thus C is in fact a diagonal matrix, and hence θ̂ is completely disentangled.

A.2.8 Interpreting the meaning of Theorem 8 and the ∼con-equivalence (Def. 7)

To interpret the conclusion of Thm. 8, which is that the learned model θ̂ is consistent to the ground-truth model θ, i.e.
θ ∼con θ̂ (Def. 7), we recall the example introduced in Sec. 3.2.1: Consider the case where the ground-truth graphs Gz = 0
(no temporal dependencies) and Ga is

Ga =



1
1

1
1

1
1

1
1

1 1
1 1


,

which does not satisfy the graphical criterion of Def. 23. Then, θ ∼con θ̂ implies that: (i) Ĝ is the same as G, up to a
permutation, and (ii) both representations f−1 and f̂−1 are linked by a linear transformation L = CP⊤ (assuming T(z) := z
for simplicity) where the matrix C is Gz-consistent, (Gz)⊤-consistent and Ga-consistent. The conditions of Gz-consistency
and (Gz)⊤-consistency are vacuous, since [1 − 0(1 − 0)⊤]+ = 1, i.e. they do not enforce anything on C. However,
Ga-consistence forces C to have the same zeros as

[1−Ga(1−Ga)⊤]+ =



1 1 1 1
1 1 1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1


. (121)

Lemma 17 gives a different perspective by telling us that C being Ga-consistent is equivalent to having Ci,j = 0 whenever
j ̸∈

⋂
ℓ∈Ga

i,·
Ga

·,ℓ, which is equivalent to having j ∈
⋃

ℓ∈Paa
i
(Cha

ℓ )
c. This allows us to see that the ground-truth factor zi is

not a function of the learned factor ẑj (Ci,j = 0) whenever there exists an action aℓ that targets zi, but not zj .



B EXPERIMENTS

B.1 SYNTHETIC DATASETS

We now provide a detailed description of the synthetic datasets used in experiments of Sec. 4, which exactly match those
of Lachapelle et al. [2022], except for the graphs used. We nevertheless provide a full description of the datasets used here
for completeness.

For all experiments, the dimensionality of Xt is dx = 20 and the ground-truth f is a random neural network with three hidden
layers of 20 units with Leaky-ReLU activations with negative slope of 0.2. The weight matrices are sampled according
to a 0-1 Gaussian distribution and, to make sure f is injective as assumed in all theorems of this paper, we orthogonalize
its columns. Inspired by typical weight initialization in NN [Glorot and Bengio, 2010], we rescale the weight matrices

by
√

2
1+0.22

√
2

din+dout
. The standard deviation of the Gaussian noise added to f(zt) is set to σ = 10−2 throughout. All

datasets consist of 1 million examples.

We now present the different choices of ground-truth p(zt | z<t, a<t) we explored in our experiments. In all cases considered,
it is a Gaussian with covariance 0.0001I independent of (z<t, a<t) and a mean given by some function µ(zt−1, at−1)
carefully chosen to satisfy the assumptions of Thm. 8. Notice that we hence are in the case where k = 1 which is not
covered by the theory of Khemakhem et al. [2020a]. We suppose throughout that dz = 10 and da = 5. In all time-sparsity
experiments, sequences have length T = 2. In action-sparsity experiments, the value of T has no consequence since we
assume there is no time dependence.

Transition function of the time-sparsity datasets (left of Table 1). The mean function in this case is given by

µ(zt91, at91) := zt91 + 0.5


Gz

1 · sin( 3π z
t91)

Gz
2 · sin( 4π z

t91 + 1)
...

Gz
dz
· sin(dz+2

π zt91 + dz − 1)

 , (122)

where Gz
i is the ith row of the ground-truth causal graph Gz , the sin function is applied element-wise, the · is the dot product

between two vectors and the summation in the sin function is broadcasted. The various frequencies and phases in the sin
functions ensures the sufficient time-variability assumption of Thm. 8 is satisfied.

Graphs of the datasets with temporal dependence (left of Table 1).

Gz
(1) :=



1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1


Gz

(2) :=



1 1 1 1
1 1 1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1 1 1 1 1
1 1 1 1 1 1


(123)

Transition function of the action-sparsity datasets (right of Table 1). The mean function is given by

µ(zt91, at91) :=


Ga

1 · sin( 3πa
t91)

Ga
2 · sin( 4πa

t91 + 1)
...

Ga
dz
· sin(dz+2

π at91 + dz − 1)

 , (124)

which is analogous to (122).

Graphs of the datasets with actions (right of Table 1).



Ga
(1) :=



1
1

1
1

1
1

1
1

1
1


Ga

(2) :=



1
1

1
1

1
1

1
1

1 1
1 1


(125)

B.2 IMPLEMENTATION DETAILS OF THE CONSTRAINED VAE APPROACH

All details of our implementation matches those of Lachapelle et al. [2022] (except for the constrained optimization which is
novel to our work). We nevertheless repeat all details here for completeness.

Learned mechanisms. Every coordinate zi of the latent vector has its own mechanism p̂(zti | z<t, a<t) that is Gaussian
with mean outputted by µ̂i(z

t−1, at−1) (a multilayer perceptron with 5 layers of 512 units) and a learned variance which
does not depend on the previous time steps. For learning, we use the typical parameterization of the Gaussian distribution
with µ and σ2 and not its exponential family parameterization. Throughout, the dimensionality of Zt in the learned model
always match the dimensionality of the ground-truth (same for baselines). Learning the dimensionality of Zt is left for
future work.

Prior of Z1 in time-sparsity experiments. In time-sparsity experiments, the prior of the first latent p̂(Z1) (when t = 1) is
modelled separately as a Gaussian with learned mean and learned diagonal covariance. Note that this learned covariance at
time t = 1 is different from the subsequent learned conditional covariance at time t > 1.

Learned graphs Ĝz and Ĝa. As explained in Sec. 3.3, to allow for gradient-based optimization, each edge Ĝi,j is viewed
as a Bernoulli random variable with probability of success sigmoid(γi,j), where γi,j is a learned parameter. The gradient of
the loss with respect to the parameter γi,j is estimated using the Gumbel-Softmax Gradient estimator [Jang et al., 2017,
Maddison et al., 2017]. We found that initializing the parameters γi,j to a large value such that the probability of sampling
all edge is almost one improved performance. In time-sparsity experiments, there is no action so Ĝa is fixed to 0, i.e. it is not
learned. Analogously, in action-sparsity experiments, there is no temporal dependence so Ĝz is fixed to 0.

Encoder/Decoder. In all experiments, including baselines, both the encoder and the decoder is modelled by a neural network
with 6 fully connected hidden layers of 512 units with LeakyReLU activation with negative slope 0.2. For all VAE-based
methods, the encoder outputs the mean and a diagonal covariance. Moreover, p(x|z) has a learned isotropic covariance σ2I .
Note that σ2I corresponds to the covariance of the independent noise N t in the equation Xt = f(Zt) +N t.

Constrained optimization. Let ELBO(f̂ , λ̂, Ĝ, q) be the ELBO objective evaluated on the whole dataset. The constrained
optimization we want to solve is

max
f̂ ,λ̂,γ,q

EĜ∼σ(γ)ELBO(f̂ , λ̂, Ĝ, q) subject to EĜ∼σ(γ)||Ĝ||0 ≤ β . (126)

where Ĝ ∼ σ(γ) means that Ĝi,j are independent and distributed according to σ(γi,j). Because EĜ∼σ(γ)||Ĝ||0 = ||σ(γ)||1
where σ(γ) is matrix, the constraint becomes ||σ(γ)||1 ≤ β. To solve this problem, we perform gradient descent-ascent on
the Lagrangian function given by

EĜ∼σ(γ)ELBO(f̂ , λ̂, Ĝ, q)− α(||σ(γ)||1 − β) (127)

where the ascent step is performed w.r.t. f̂ , λ̂, Ĝ and q; and the descent step is performed w.r.t. Lagrangian multiplier α,
which is forced to remain greater or equal to zero via a simple projection step. As suggested by Gallego-Posada et al. [2021],
we perform dual restarts which simply means that, as soon as the constraint is satisfied, the Lagrangian multiplier is reset to
0. We used the library Cooper [Gallego-Posada and Ramirez, 2022], which implement many constrained optimization
procedure in Python, including the one described above. Note that we use Adam [Kingma and Ba, 2015] for the ascent steps
and standard gradient descent for the descent step on the Lagrangian multiplier α.



We also found empircally that the following schedule for β is helpful: We start training with β = maxĜ ||G||0 and linearly
decreasing its value until the desired number of edges is reached. This avoid getting a sparse graph too quickly while training,
thus letting enough time to the model parameters to learn. In each experiment, we trained for 300K iterations, and the β
takes 150K to reach to go from its initial value to its desired value.

B.3 DETAILS ABOUT THE Rcon METRIC AND ITS RELATION TO MCC AND R

To evaluate whether the learned representation is consistent to the ground-truth (Def. 7), as predicted by Thm. 8, we came
up with a novel metric, denoted by Rcon. Computing Rcon goes as follows: First, we permute the learned representations ẑ
using the permutation P̂ found by MCC (Sec. 4), i.e. ẑperm := P̂⊤ẑ. Then, we compute the sparsity pattern imposed by the
consistency equivalence (Def. 7), denoted by SC . Then, for every i, we predict the ground-truth zi given only the factors
allowed, i.e. (SC)i,· ⊙ ẑperm, and compute the associated coefficient of multiple correlations Rcon,i and report the mean, i.e.
Rcon := 1

dz

∑dz

i=1 Rcon,i. It is easy to see that we must have Rcon ≤ R, since Rcon was computed with less features than R.
Moreover, MCC ≤ Rcon, because MCC can be thought of as computing exactly the same thing as for Rcon, but by predicting
zi only from ẑperm,i, i.e. with less features than Rcon.

This means we always have 0 ≤ MCC ≤ Rcon ≤ R ≤ 1. This is a nice property which allows to compare all three metrics
together.
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