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Abstract

In strategic classification, agents modify their features, at a cost, to obtain a positive
classification outcome from the learner’s classifier, typically assuming agents
have full knowledge of the deployed classifier. In contrast, we consider a Bayesian
setting where agents have a common distributional prior on the classifier being used
and agents manipulate their features to maximize their expected utility according to
this prior. The learner can reveal truthful, yet not necessarily complete, information
about the classifier to the agents, aiming to release just enough information to
shape the agents’ behavior and thus maximize accuracy. We show that partial
information release can counter-intuitively benefit the learner’s accuracy, allowing
qualified agents to pass the classifier while preventing unqualified agents from
doing so. Despite the intractability of computing the best response of an agent in
the general case, we provide oracle-efficient algorithms for scenarios where the
learner’s hypothesis class consists of low-dimensional linear classifiers or when the
agents’ cost function satisfies a sub-modularity condition. Additionally, we address
the learner’s optimization problem, offering both positive and negative results
on determining the optimal information release to maximize expected accuracy,
particularly in settings where an agent’s qualification can be represented by a
real-valued number.

1 Introduction

Machine Learning critically relies on the assumption that the training data is representative of the
unseen instances a learner faces at test time. Yet, in many real-life situations, this assumption
fails when individuals (agents) manipulate decision-making algorithms for personal advantage, by
modifying their features at a cost. A typical example of such manipulations or strategic behavior
is seen in loan applications or credit scoring: for example, an individual may open new credit card
accounts to lower their credit utilization and increase their credit score artificially. In the context of
job interviews, a candidate can spend time and effort to memorize solutions to common interview
questions and potentially look more qualified than they are at the time of an interview. A student
might cram to pass an exam this way without actually understanding or improving their knowledge
of the subject.

The prevalence of such behaviors has led to the rise of an area of research known as strategic
classification. Strategic classification, introduced by Hardt et al. [2016], aims to understand how a
learner can optimally modify decision making algorithms to be robust to such strategic manipulations
of agents, if and when possible.

Most of the strategic classification literature makes the assumption that the model deployed by the
learner is fully observable by the agents, granting them the ability to optimally best respond to the
learner using resources such as effort, time, and money. Yet, this full information assumption can
be unrealistic in practice. There are several reasons for this: some machine learning models are
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proprietary and hide the details of the model to avoid leaking “trade secrets”: e.g., this is the case for
the credit scoring algorithms used by FICO, Experian, and Equifax.1 Some classifiers are simply too
complex in the first place to be understood and interpreted completely by a human being with limited
computational power, such as deep learning models. Other classifiers and models may be obfuscated
for data privacy reasons, which are becoming an increasingly major concern with new European
consumer protection laws such as GDPR [Regulation, 2018] and with the October 2023 Executive
Order on responsible AI [Biden, 2023]. In turn, there is a need to study strategic classification when
agents only have partial knowledge of the learner’s model.

There has been a relatively short line of work trying to understand the impact of incomplete informa-
tion on strategic classification. Jagadeesan et al. [2021] and Bechavod et al. [2021] study the optimal
classifiers in settings where agents can only gain partial or noisy information about the deployed
model. Haghtalab et al. [2023] study calibrated Stackelberg games, a more general form of strategic
classification; in their framework, the learner engages in repeated interactions with agents who base
their actions on calibrated forecasts about the learner’s classifier. They characterize the optimal utility
of the learner for such games under some regularity assumptions. While we also model agents with
prior knowledge of the learner’s actions, Haghtalab et al. [2023] focus on an online learning setting
and the selection of a strategy for the learner without incorporating any form of voluntary information
release by the learner.

In contrast, we focus on this additional critical aspect of voluntary information release by the learner
that these works do not study. Namely, we ask:

How to release partial and truthful information about the classifier to maximize accuracy?

This should give the reader pause: why should a learner release information about their deployed
classifier since presumably such information only makes it easier for agents to manipulate their
features and “trick” the learner. In fact, Ghalme et al. [2021] showed that information revelation can
help—a learner may prefer to fully reveal their classifier as opposed to hiding it. While they consider
either fully revealing the classifier or completely hiding it, our model considers a wider spectrum of
information revelation that includes both “full-information-release” and “no-information-release”.
We show that there exist instances where it is optimal to reveal only partial information about the
classifier, in a model where a learner is allowed to reveal a subset of the classifiers containing the
true deployed classifier. For example, a tech firm might reveal to candidates that they will ask them
about a new type of data structure during their job interviews. Lenders might reveal to clients that
they do not consider factors like credit score [Lake, 2024]. This selective disclosure can discourage
unfit individuals, ultimately saving time and energy for both sides. In the following, we summarize
our contributions.

Summary of contributions:

• In Section 2, we propose a new model of interactions between strategic agents and a learner,
under partial information. The two novel modeling elements compared to the standard strategic
classification literature are: i) agents have partial knowledge about the learner’s classifier in the
form of a distributional prior over the hypothesis class, and ii) the learner can release partial
information about their deployed classifier.
Specifically, our model allows the learner to release a subset of the hypothesis class to narrow down
the agents’ priors. Given our model, we consider a (Stackelberg) game between agents with partial
knowledge and a learner that can release partial information about its deployed model. On the one
hand, the agents aim to manipulate their features, at a cost, to increase their likelihood of receiving
a positive classification outcome. On the other hand, the learner can release partial information to
maximize the expected accuracy of its model, after agent manipulations.

• In Section 3, we study the agent’s best response in our game. We show that while in general, it
is intractable to compute the best response of the agents in our model, there exist oracle-efficient
algorithms2 that can exactly solve the best response when the hypothesis class is the class of
low-dimensional linear classifiers. We then move away from the linearity assumption and consider

1“The exact algorithm used to condense your credit report into a FICO score is a closely guarded secret, but
we have a general layout of how your credit score is calculated.” Source: Business Insider, October 2023. [Link:
https://www.businessinsider.com/personal-finance/what-is-fico-score].

2An oracle-efficient algorithm is one that calls a given oracle only polynomially many times.
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a natural condition on the agents’ cost function for which we give an oracle-efficient approximation
algorithm for the best response of the agents for any hypothesis class.

• In Section 4, we study the learner’s optimal information release problem. We consider screen-
ing/classification settings where agents are represented to the learner by a real-valued number
that measures their qualification level for a certain task. Prior work has focused on similar one-
dimensional settings in the context of strategic classification; see, e.g., [Beyhaghi et al., 2023,
Braverman and Garg, 2020]. We first show that the learner’s optimal information release problem
is NP-hard when the agents’ prior can be arbitrary. In light of this hardness result, we focus on
uniform prior distributions and provide closed-form solutions for the case of continuous uniform
priors, and an efficient algorithm to compute the optimal information release for discrete uniform
priors.

• We finally consider alternative utility functions that are based on false positive (or negative) rates
for the learner and provide insights as to what optimal information release should look under these
utility functions, without restricting ourselves to uniform priors.

Related Work. Strategic classification was first formalized by Brückner and Scheffer [2011], Hardt
et al. [2016]. Hardt et al. [2016] is perhaps the most seminal work in the area of strategic classification:
they provide the first computationally efficient algorithms (under assumptions on the agents’ cost
function) to efficiently learn a near-optimal classifier in strategic settings. Importantly, this work
makes the assumption that the agents fully know the exact parameters of the classifier due to existing
“information leakage”, even when the firm is obscuring their model. Hardt et al. [2016] also do not
consider a learner that can release partial information about their model.

Closest to our work, Jagadeesan et al. [2021], Ghalme et al. [2021], Bechavod et al. [2022], and Hagh-
talab et al. [2023] relax the full information assumption and characterize the impact of opacity on the
utility of the learner and agents. Jagadeesan et al. [2021] are the first to introduce a model of “biased”
information about the learner’s classifier: instead of observing the learner’s deployed classifier exactly,
agents observe and best respond to a noisy version of this classifier; one that is randomly shifted (by
an additive amount) from the true deployed classifier.

In contrast, Ghalme et al. [2021] and Bechavod et al. [2022] consider models of partial information
on the classifiers, where agents can access samples in the form of historical (feature vector, learner’s
prediction) pairs. More precisely, Ghalme et al. [2021] study what they coin the “price of opacity”
in strategic classification, defined as the difference in prediction error when not releasing vs fully
releasing the classifier. They are the first to show that this price can be positive (in the context of
strategic classification), meaning that a learner can reduce their prediction error by fully releasing their
classifier in strategic settings. Our work considers more general, intermediate forms of information
release, instead of the all-or-nothing, binary approach of Ghalme et al. [2021].

Bechavod et al. [2022] consider a strategic regression setting in which the learner does not release
their regression rule, but agents have access to (feature, score) samples as described above. They
study how disparity in sample access (e.g., agents may only access samples from people similar to
them) about the classifier across different groups induce unfairness in classification outcomes across
these groups. Haghtalab et al. [2023] consider agents with (calibrated) forecasts over the actions of
the learner, but do not consider the learner’s information release which is our focus. Additionally, in
our model, we do not constrain the agent’s prior distribution to be calibrated.

Beyond strategic classification, there are a few related lines of work where such partial information is
considered. One is Bayesian Persuasion [Kamenica and Gentzkow, 2011]: in Bayesian persuasion,
the state of the world is randomly drawn from the prior, and there is a mapping from the state of
the world to signal distributions. This mapping, i.e. the “signaling scheme”, must be revealed to
the agents in addition to the signal. In our setting, there is a fixed state of the world (the learner’s
classifier), and there is no need for the signaling scheme to be known, since the signal itself (the
subset) reveals all the information needed for the agents. The agents only need to know that the
learner is truthful, which is an assumption made in Bayesian persuasion too.

Relatedly, algorithmic recourse studies an “intermediate” information release problem where the
learner publishes a recommended action or recourse for each agent to take, rather than a set of
potential classifiers used by the learner; e.g., Harris et al. [2022]. In our model, we release the same
signal or information to all agents based on the underlying distribution over these agents’ features.
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2 Model

Our model consists of a population of agents and a learner. Each agent in our model is represented
by a pair (x, y) where x ∈ X is a feature vector, and y ∈ {0, 1} is a binary label. Throughout, we
call an agent with y = 0 a “negative”, and an agent with y = 1 a “positive”. We assume there exists a
mapping f : X → {0, 1} that governs the relationship between x and y; i.e., y = f(x) for every agent
(x, y). We will therefore use x to denote agents from now on. We denote by D the distribution over
the space of agents X . Agent manipulations are characterized by a cost function c : X ×X → [0,∞)
where c(x, x′) denotes the cost that an agent incurs when changing their features from x to x′. We
assume, similar to standard strategic classification settings, that manipulation does not change one’s
true label: manipulation is seen purely as “gaming”; it does not change the qualification of an agent.
Let H ⊆ {0, 1}X denote our hypothesis class, and let h ∈ H be the fixed classifier that the learner is
using for classification.

A Partial Knowledge Model for the Agents. We move away from the standard assumption that
agents fully know h and model agents as having a common (shared by all agents) prior distribution
π over H. This distribution captures their initial belief about which classifier is deployed by the
learner. Formally, for every h′ ∈ H, π(h′) is the probability that the learner is going to deploy h′ for
classification from the agents’ perspective. We emphasize that the learner is committed to using a
fixed classifier h. The prior π captures the agents’ belief about the deployed classifier and is known
to the learner.

For example, job seekers may use Glassdoor to prepare for interviews. They may not know the exact
hiring algorithm (h) of a specific company but can observe patterns from other companies for similar
roles. This forms their initial belief, represented by π, about the classifier a company might use. Thus,
π captures the agents’ probabilistic beliefs rather than assuming full knowledge of h.3

A Partial Information Release Model for the Learner. The learner has the ability to influence
the agents’ prior belief π about the deployed classifier h by releasing partial information about h. We
model information release by releasing a subset H ⊆ H such that h ∈ H . We note that we reveal
information truthfully, meaning that the deployed classifier is required to be in H .

Note that this is a general form of information release because it allows the learner to release any
subset of the hypothesis class, so long as it includes the deployed classifier h. Below, we provide
natural examples of information release that can be captured by our model.
Example 2.1 (Examples of Information Release via Subsets). Consider the class of linear halfspaces
in d dimensions: H = {hw,b : w = [w1, w2, . . . , wd]⊤ ∈ Rd

+, b ∈ R} where hw,b(x) ≜ 1[w⊤x +

b ≥ 0] and x ∈ X = Rd is the feature vector. Let h = hw0,b0 be the classifier deployed by the learner
for some w0, b0. Under this setting, revealing the corresponding parameter of a feature, say xj , in h

corresponds to releasing H1 = {hw,b ∈ H : wj = wj
0} (e.g., ‘minimal GPA of 3.8 for grad school’).

Revealing the top k features of h (e.g., the most significant class grades are algorithms and calculus)
corresponds to releasing H2 = {hw,b ∈ H : wi1 , wi2 . . . , wik are the k largest coordinates of w}.
Let I0 be such that wi

0 ̸= 0 iff i ∈ I0. Revealing the relevant features of h, i.e. features with nonzero
coefficients (e.g., sensitive attributes like race or gender will not be used in the decision) corresponds
to releasing H3 = {hw,b ∈ H : wi ̸= 0, ∀i ∈ I0}. This is a common form of information release in
the real world4.

The Strategic Game with Partial Information Release. Once the partial information H is released
by the learner, agents best respond as follows: each agent first computes their posterior belief about
the deployed classifier by projecting their prior π onto H , which we denote by π|H , and is formally
defined by: ∀h′ ∈ H, π|H(h′) ≜ π(h′)

π(H)1[h
′ ∈ H]. Given this posterior distribution, the agent then

moves to a new point that maximizes their utility. The utility is quasi-linear and measured by the

3Agent priors may also arise from observing previous decisions made by this classifier, for example as is
studied in Bechavod et al. [2022]: the learner (e.g., a hiring company) has been using a classifier h (the hiring
algorithm) to screen agents (applicants) for some time. Agents going up for a decision today may observe some
of the previous decisions made by the current classifier h and use this information to form their prior.

4For example, recently, many U.S. universities have announced that they will not use race and ethnicity
anymore in admissions, in line with a recent Supreme Court ruling.
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h1(= f) h2 h3

x1 1 0 0
x2 0 1 0

Table 1: Hypothesis class H in Example 2.3

probability (according to π|H ) of receiving a positive outcome minus the manipulation cost. Formally,
the utility of agent x that manipulates to x′, under the partial information H released by the learner is
given by

ux(x
′, H) ≜ Pr

h′∼π|H
[h′(x′) = 1]− c(x, x′). (1)

We let BR(x,H) denote the best response of agent x, i.e. a point x′ that maximizes ux(x
′, H). 5 The

goal of the learner is to release H that includes its deployed classifier h so as to maximize its utility
which is measured by its expected strategic accuracy.

U(H) ≜ Pr
x∼D

[h(BR(x,H)) = f(x)] . (2)

Definition 2.2 (Strategic Game with Partial Information Release). The game, between the learner
who is using h ∈ H for classification, and the agents who have a prior π over H, proceeds as follows:

1. The learner (knowing f , D, c, π) publishes a subset of hypotheses H ⊆ H such that h ∈ H .

2. Every agent x best responds by moving to a point BR(x,H) that maximizes their utility:
BR(x,H) ∈ argmaxx′∈X ux(x

′, H).

The learner’s goal is to find a subset H⋆ ⊆ H with h ∈ H⋆, that maximizes its utility6: H⋆ ∈
argmaxH⊆H, h∈H U(H)

We note that similar to standard strategic classification, the game defined in Definition 2.2 can be
seen as a Stackelberg game in which the learner, as the “leader”, commits to her strategy first and
then the agents, as the “followers”, respond. The optimal strategy of the learner, H⋆, corresponds to
the Stackelberg equilibrium of the game, assuming best response of the agents.

Contrasting with the Standard Setting of Strategic Classification. The game defined in Defini-
tion 2.2 not only captures both the partial knowledge of the agents and the leaner’s partial information
release, but can also be viewed as a generalization of the standard strategic classification game where
the agents fully observe the classifier h, which we refer to as the full information release game (e.g.,
see [Hardt et al., 2016]). This is because the learner can always choose H = {h}. Next, we ask:

Can partial information release increase the learner’s utility compared to full information release?

Observe that by definition, U(H⋆) ≥ U({h}), i.e., the learner can only gain utility when they
optimally release partial information instead of fully revealing the classifier. In the following
examples, we show that there exist instantiations of the problem where U(H⋆) > U({h}), even
when h is picked to be the optimal classifier in the full information release game, i.e., one that
maximizes U({h}). In other words, we show that the learner can gain nonzero utility by releasing a
subset that is not {h}, even if the choice of h is optimized for the full information release game.
Example 2.3 (Partial vs. Full Information Release). Suppose X = {x1, x2}, and that their probability
weights under the distribution7 are given by D(x1) = 2/3, D(x2) = 1/3, and their true labels are
given by f(x1) = 1, f(x2) = 0. Suppose the cost function is given as follows: c(x1, x2) =
2, c(x2, x1) = 3/4. Let H = {h1, h2, h3} be given by table 1. One can show that under this setting,
h = h1 is the optimal classifier under full information release, i.e., it optimizes U({h}), and that for
such h, U({h}) = 2/3. However, suppose the prior distribution over H is uniform. One can show
that under this setting, and when h = h1 is the deployed classifier, releasing H⋆ = {h1, h2} implies
U(H⋆) = 1 > U({h}) = 2/3. In other words, the learner can exploit the agent’s prior by releasing
information in a way that increases its own utility by a significant amount.

5Ties are broken in favor of an arbitrarily lowest cost solution.
6We emphasize that here h is fixed – namely, H is the only variable in the optimization problem of the learner

which is constrained to include h.
7The claim holds for any distribution D in which both x1 and x2 are in the support.
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Algorithm 1: Oracle(c,H)

Input: agent x, region R = R+ ∩R− specified as, R+ = ∩ i∈I+ {z : hi(z) = 1} and
R− = ∩ i∈I− {z : hi(z) = 0} for some I+ and I−.

Output: argminz∈R c(x, z)

In the next example, we consider the more natural setting of single-sided threshold functions in
one dimension and show that the same phenomenon occurs: the optimal utility achieved by partial
information release is strictly larger than the utility achieved by the full information release of h, even
after the choice of h is optimized for full information release.
Example 2.4 (Partial vs. Full Information Release). Suppose X = [0, 2], D is the uniform distribution
over [0, 2], f(x) = 1 [x ≥ 1.9], H = {ht : t ∈ [0, 2]} where ht(x) ≜ 1 [x ≥ t]. Suppose the
cost function is given by the distance c(x, x′) = |x − x′|. We have that under this setting, the
optimal classifier in H under full information release is h = h2, and that its corresponding utility
is U({h}) = 1− Prx∼Unif [0,2] [1 ≤ x < 1.9] = 0.55. Now suppose the agents have the following
prior over H: π(h′) = 0.1 · 1[h′ = h2] + 0.9 · 1[h′ = h1.8]. Under this setting, and when h = h2 is
deployed for classification, one can see that releasing H⋆ = {h2, h1.8} leads to perfect utility for the
learner. We therefore have U(H⋆) = 1 > U({h}) = 0.55.

3 The Agents’ Best Response Problem

In this section we focus on the best response problem faced by the agents in our model, as described
in Definition 2.2. We consider a natural optimization oracle for the cost function of the agents that
can solve simple projections. We will formally define this oracle later on. Given access to such an
oracle, we then study the oracle complexity8 of the agent’s best response problem. First, we show
that the best response problem is computationally hard even for a common family of ℓp-norm cost
functions. Next, we provide an oracle-efficient algorithm9 for solving the best response problem when
the hypothesis class is the class of low-dimensional linear classifiers. In Appendix B, we consider
submodular cost functions and show that for any hypothesis class, there exists an oracle-efficient
algorithm that approximately solves the best response problem in this setting.

Recall that the agents’ best response problem can be cast as the following: given an agent x ∈ X , and
a distribution P (e.g., P = π|H where π is the prior and H is the released information) over a set
{h1, . . . , hn} ⊆ H, we want to solve argmaxz∈X {Prh′∼P [h′(z) = 1]− c(x, z)}. We consider an
oracle that given any region R ⊆ X , specified by the intersection of positive (or negative) regions of
hi’s, returns the projection of the agent x onto R according to the cost function c: argminz∈R c(x, z).
For example, when H is the class of linear classifiers and c(x, z) = ∥x − z∥2, the oracle can
compute the ℓ2-projection of the agent x onto the intersection of any subset of the linear halfspaces
in {h1, . . . , hn}. We denote this oracle by Oracle(c,H) and formally define it in Algorithm 1.

Having access to such an oracle, and without further assumptions, the best response problem can be
solved by exhaustively searching over all subsets of {h1, . . . , hn} because:

max
z∈X

{
Pr

h′∼P
[h′(z) = 1]− c(x, z)

}
= max

S⊆{h1,...,hn}

{∑
h′∈S

P (h′)− min
z:h′(z)=1, ∀h′∈S

c(x, z)

}
(3)

This algorithm is inefficient because it makes exponentially many oracle calls. In what follows, we
consider natural instantiations of our model and examine if we can get algorithms that make only
poly(n) oracle calls. All missing proof of this sections are provided in Appendix C.

p-Norm Cost Functions. First, we consider Euclidean spaces and the common family of p-norm
functions for p ≥ 1 and show that even under the assumption that the cost function of the agent
belongs to this family, the problem of finding the best response is computationally hard. Formally, a
p-norm cost function is defined by: for every x, x′ ∈ Rd, cp(x, x′) = ∥x− x′∥p where p ≥ 1.
Theorem 3.1. Ω(2n/

√
n) calls to the oracle (Algorithm 1) are required to compute the best response

of an agent with 2/3 probability of success, even when X = R2 and the cost function is cp for p ≥ 1.
8The number of times the oracle is called by an algorithm.
9An algorithm that calls the oracle only polynomially many times.
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Algorithm 2: Best Response of Agents in the Linear Case
Input: agent x, cost function c, arbitrary distribution P over linear classifiers {h1, . . . , hn}
Step 1. Compute the partitioning (Rn) of the space given by {h1, . . . , hn};
Initialize R1 ← {{z : h1(z) = 1}, {z : h1(z) = 0}};
for i = 2, . . . , n do

Ri ← Ri−1;
for R ∈ Ri−1 do

if {z : hi(z) = 0} ∩R ̸= ∅ then
Ri ← Ri \R ; // Remove R
Ri ← Ri ∪ {{z : hi(z) = 1} ∩R, {z : hi(z) = 0} ∩R} ; // Split R

Step 2. Given Rn, compute the best response;
for R ∈ Rn do

Let R = R+ ∩R− where R+ = ∩ i∈I+ {z : hi(z) = 1} and R− = ∩ i∈I− {z : hi(z) = 0};
Call the oracle (Algorithm 1) to solve zR ∈ argminz∈R c(x, z);
Compute the utility of zR: utility(zR) =

∑
i∈I+ P (hi)− c(x, zR);

Output: argmaxz∈Z utility(z) where Z = {zR : R ∈ Rn}

Low-Dimensional Linear Classifiers. Next, we show that when X = Rd for some d, and when
H contains only linear classifiers, i.e., every h ∈ H can be written as h(x) = 1

[
w⊤x+ b ≥ 0

]
for

some w ∈ Rd and b ∈ R, then the best response of the agents can be computed with O(nd) oracle
calls when d ≪ n.

The algorithm, which is described in Algorithm 2, first computes the partitioning (Rn) of the space
X given by the n linear classifiers. For any element of the partition in Rn, it then solves the best
response when we restrict the agent to select its best response from that particular element. This
gives us a set of points, one for each element of the partition. The algorithm finally outputs the point
that has maximum utility for the agent. This point, by construction, is the best response of the agent.
The oracle-efficiency of the algorithm follows from the observation that n linear halfspaces in d
dimensions partition the space into at most O(nd) elements when d ≪ n. Formally,

Theorem 3.2. Suppose X = Rd for some d ≪ n, and H contains only linear classifiers. Then for
any agent x, any cost function c, and any distribution P over {h1, . . . , hn} ⊆ H, Algorithm 2 returns
the best response of the agent in time O(nd+1), while making O(nd) calls to the oracle (Algorithm 1).

3.1 Generalizing to Arbitrary P

In Theorem 3.2 we require the distribution P be over {h1, . . . hn} ⊆ H, e.g. to have finite support.

When this does not hold, ie. P has infinite support size, we can ignore classifiers with sufficiently
small probabilities (i.e., poly(ϵ)), as they do not affect the manipulation strategy when searching for
an (1 + ϵ)-approximate solution. The number of classifiers in the support with probability at poly(ϵ)
for a fixed ϵ > 0 is at most 1/poly(ϵ) which is a finite number. Therefore, to obtain a nearly optimal
solution, it suffices to only consider probability distributions with finite support size.

4 The Learner’s Optimal Information Release Problem

In this section we focus on the learner’s optimization problem as described in Definition 2.2. The
learner is facing a population of agents with prior π and wants to release partial information H ⊆ H
so as to maximize its utility U(H). We note that the learner’s strategy space can be restricted to the
support of the agents’ prior π because including anything in H that is outside of π’s support does
not impact U(H). Therefore, one naive algorithm to compute the utility maximizing solution for the
learner is to evaluate the utility on all subsets H ⊆ support(π) and output the one that maximizes
the utility. However, this solution is inefficient; instead, can we have computationally efficient
algorithms? We provide both positive and negative results for a natural instantiation of our model
which is introduced below.

The Setup: Classification Based on Test Scores. We adopt the following setup for the learner’s
information release problem. We are motivated by screening problems such as school admissions and
hiring where an individual’s qualification level can be captured via a real-valued number, say, a test
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score. We therefore consider agents that live in the one dimensional Euclidean space: X = [0, B] ⊆ R
for some B. One can think of each x as the corresponding qualification level or test score of an agent
where larger values of x correspond to higher qualification levels or higher test scores. As we are in a
strategic setting, agents can modify their true feature x and “game” the learner by appearing more
qualified than they actually are.

We let f(x) = 1 [x ≥ t] for some t: there exists some threshold t that separates qualified and
unqualified agents. We take the hypothesis class H to be the class of all single-sided threshold
classifiers: every h′ ∈ H can be written as h′(x) ≜ 1 [x ≥ t′] for some t′. We further take the cost
function of the agents to be the standard distance metric in R: c(x, x′) = |x′ − x|.10

Remark 4.1. We emphasize that considering agents in the one-dimensional Euclidean space is only
for simplicity of exposition. We basically assume, for an arbitrary space of agents X , there exists
a function g : X → [0, B] such that f(x) = 1[g(x) ≥ t] for some t, and that the cost function is
given by c(x, z) = |g(z) − g(x)|. Here, g(x) captures the qualification level or test score of an
agent x. Now observe that we can reduce this setting to the introduced setup of this section: take
X ′ = {g(x) : x ∈ X} ⊆ [0, B], f : X ′ → {0, 1} is given by f(x′) = 1[x′ ≥ t], and that the cost
function c : X ′ ×X ′ → [0,∞) is given by c(x′, z′) = |z′ − x′|.
Remark 4.2. Note that because every classifier h′ ∈ H is uniquely specified by a real-valued
threshold, for simplicity of our notations, we abuse notation and use h′ interchangeably as both a
mapping (the classifier) and a real-valued number (the corresponding threshold) throughout this
section. The same abuse of notation applies to f as well.

The classifier deployed by the learner is some h ≥ f . We note that it is natural to assume h ≥ f
because in our setup, higher values of x are considered “better”. So given the strategic behavior of
the agents, the learner only wants to make the classification task “harder” compared to the ground
truth f — choosing h < f will only hurt the learner’s utility. Because we will extensively make use
of the fact that h ≥ f , we state it as a remark below.
Remark 4.3. The learner’s adopted classifier is some h ∈ H such that h ≥ f .

First, we show that under the introduced setup, the learner’s optimization problem is NP-hard if the
prior can be chosen arbitrarily. This is shown by a reduction from the NP-hard subset sum problem.
The formal NP-hardness statement and its proof, as well as further useful facts about the agents’ best
response under this setup are in Appendix D.

4.1 An Efficient Algorithm for Discrete Uniform Priors

Given the hardness of the learner’s problem for arbitrary prior distributions, we focus on a specific
family of priors, namely, uniform priors over a given set, and examine the existence of efficient
algorithms for such priors. In Appendix D.2, we consider continuous uniform priors and provide
closed form solutions for the learner’s optimal partial information release problem.

In this section, we provide an efficient algorithm for computing the learner’s optimal information
release when the prior π is a discrete uniform distribution over a set {h1, h2, . . . , hn} ⊆ H that
includes the adopted classifier h. Here, the objective of the learner is to release a subset H ⊆
{h1, h2, . . . , hn} such that h ∈ H . Throughout, we take h = hk where 1 ≤ k ≤ n, and assume
h1 ≤ h2 ≤ . . . ≤ hn. The complete exposition of this section, including all details, proofs, necessary
lemmas, and the description of the proposed algorithm, can be found in Appendix E.

We first characterize the utility of any subset H released by the learner using a real-valued function
of H . Define, for any H ⊆ {h1, . . . , hn} such that h ∈ H ,

RH ≜ inf {x : BR(x,H) ≥ h} (4)
Note that BR(x = h,H) ≥ h for any H such that h ∈ H . Therefore, {x : BR(x,H) ≥ h} is
nonempty, and that RH ≤ h for any H such that h ∈ H . In the following lemma, we show that RH

characterizes the utility of H for the learner, for any prior π over {h1, . . . , hn}.
Lemma 4.4. Fix any prior π over {h1, . . . , hn}. We have that for any H ⊆ {h1, . . . , hn} such that
h ∈ H , the utility of the learner, given by Equation 2, can be written as

U(H) =

{
1− Prx∼D [RH < x < f ] RH < f

1− Prx∼D [f ≤ x ≤ RH ] RH ≥ f
(5)

10Our results can be extended to the case where c(x, x′) = k|x′ − x| for some constant k.
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Given such characterization of the learner’s utility by RH , we show that when the agents’ prior is
uniform over {h1, . . . , hn}, there are only polynomially many possible values that RH can take, even
though there are exponentially many H’s. We characterize the set of possible values for RH as well.
For any possible value R of RH , our algorithm efficiently finds a subset H such that RH = R, if
such H exists, and finally outputs the one with maximal utility.

More formally, we consider the following partitioning of the space of subsets of {h1, . . . , hn}. For
any ℓ ∈ {1, 2, . . . , n}, and for any i ∈ {k, k + 1, . . . , n}, define

Si,ℓ ≜ {H ⊆ {h1, . . . , hn} : h ∈ H, |H| = ℓ, BR(h,H) = hi}

Note that BR(h ≡ hk, H) ∈ {hi : i ≥ k} for any H . Therefore, {Si,ℓ}i,ℓ gives us a proper
partitioning of the space of subsets, which implies

max
H⊆{h1,...,hn},h∈H

U(H) = max
i,ℓ

max
H∈Si,ℓ

U(H)

Given this partitioning of the space, we show that RH can be characterized as follows.
Lemma 4.5. If the prior π is uniform over {h1, . . . , hn}, then for any H ∈ Si,l, RH = hi − j/ℓ
where j = |{h′ ∈ H : h′ ∈ (RH , hi]}|.

Given such characterization, our proposed algorithm (Algorithm 3), for any i, ℓ, enumerates over all
possible j ∈ {1, . . . , ℓ} and returns a H such that H ∈ Si,ℓ and RH = hi − j/ℓ, if such H exists.
The algorithm then outputs the subset H with maximal utility according to Equation 5.
Theorem 4.6. There exists an algorithm (Algorithm 3) that for any n, any uniform prior over
{h1, . . . , hn} that includes h, and any data distribution D, returns H⋆ ⊆ {h1, . . . , hn} in time
O(n3) such that h ∈ H⋆, and that U(H⋆) = maxH⊆{h1,...,hn},h∈H U(H).

4.2 Minimizing False Positive (Negative) Rates for Arbitrary Priors

While so far we worked with accuracy as the utility function of the learner, in this section, we consider
other natural performance metrics and provide insights on the optimal information release for the
proposed utility functions, without restricting ourselves to uniform priors. In particular, we consider
utility functions that are based on False Negative Rate (FNR) and False Positive Rate (FPR) which
are formally defined below. For any H ⊆ H such that h ∈ H ,

UFPR(H) ≜ 1− FPR(H) ≜ 1− Pr
x∼D

[h(BR(x,H)) = 1|f(x) = 0] (6)

UFNR(H) ≜ 1− FNR(H) ≜ 1− Pr
x∼D

[h(BR(x,H)) = 0|f(x) = 1] (7)

In the following theorem, we establish that for any given prior π over a set {h1, h2, . . . , hn} ⊆ H,
if the learner aims to minimize the FPR, no-information-release is preferable to full-information-
release.11 Additionally, we show that for minimizing the FNR, an optimal strategy for the learner
is full-information-release. By “no-information-release”, we mean releasing any subset H such
that H includes the support of the prior π: H ⊇ {h1, . . . , hn} which results in π|H = π.By
“full-information-release”, we mean revealing the classifier: H = {h}.
Theorem 4.7. Fix any h ≥ f . For any prior π over {h1, . . . , hn} that includes h, we have 1)
FPR(H) ≤ FPR({h}). 2) FNR({h}) ≤ FNR(H) for every H ⊆ H such that h ∈ H .

The proof is provided in Appendix F. In Appendix G, we show that minimizing FPR, unlike mini-
mizing FNR, does not always have a clear optimal solution. We provide three instances such that
full-information-release is optimal for the first, no-information-release is optimal for the second, and
neither is optimal for the third.

5 Conclusion

We introduce Bayesian Strategic Classification, meaning strategic classification with partial knowl-
edge (of the agents) and partial information release (of the learner). Our model relaxes the often

11We note that in this section, while we work with discrete priors over some {h1, . . . , hn} ⊆ H, our results
can be easily extended to any prior.
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unrealistic assumption that agents fully know the learner’s deployed classifier. Instead, we model
agents as having a distributional prior on which classifier the learner is using. Our results show the
existence of previously unknown intriguing informational middle grounds; we also demonstrate the
necessity of revisiting the fundamental modeling assumptions of strategic classification in order to
provide effective recommendations to practitioners in high-stakes, real-world prediction tasks.
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A Limitations, and Broader Impacts, and Future Work

Limitations Potential limitations of our model are the following:

• We assume the agents’ prior is realizable, in the sense that the classifier deployed by the
learner is in the support of the prior. This is a standard assumption in machine learning
works, and it will be interesting to relax it in future works.

• The learner, in order to decide on the optimal level of information release, must know the
agents’ prior. This assumption, while common in related settings like Bayesian persuasion,
may be unrealistic in practice; although, in real-life, the learner may have an imperfect
idea of or be able to partially recover the agents’ priors from previous interactions with
them. Beyond this, we note that in practice, different agents may also have different beliefs
and priors about the learner’s model; this can affect the way the learner should release
information, given that this information release may affect different users differently.

• A limitation of this model is that it assumes the learner must commit to a fixed classifier
in advance. In real-life, classifiers are dynamically updated over time, using the additional
information obtained from each decision. However, we note that changing the screening
algorithm requires significant resources, and the rate at which the classifier is updated is
generally slower than the rate at which decisions are made. In practice, this means that
strategic agents effectively face a fixed model in each “batch” between updates.

• If agents know the prior distribution D and the mapping f from feature vectors to labels,
they might infer information regarding h∗ when |H| > 1. We show an example of such a
case in Appendix H.

Broader Impacts On the plus side, our approach provides a deeper understanding of strategic
behavior in machine learning settings, when strategic agents may not fully understand the deployed
model. By doing so, we are taking the understanding of strategic classification one step closer to real
life, providing useful insights on how much information a learner should provide about their model
to prevent model manipulation and gaming.

One potential negative impact is that our approach takes the point of view of the learner who is solely
interested in maximizing his own accuracy (or utility). It is well-known that this focus on accuracy
can lead to unfairness and disparate harms across different populations; further, prior work studying
fairness in the standard strategic classification setting [Hu et al., 2019, Milli et al., 2019] and in a
related partial information setting [Bechavod et al., 2022] have shown that strategic classification can
amplify these disparities.

Future Work [Hu et al., 2019, Milli et al., 2019] consider disparities across different groups due
to differing cost functions. In our model of strategic classification, different population groups may
not only have differing cost functions but also differing prior distributions: network homophily,
social disparities, and stratification can cause population groups to have distinct priors, leading to
further disparities across groups. In turn, it will be critical in future work to design fairness-aware
information release strategies by a learner faced with strategic behavior.

B Oracle-Efficient Approximate Best Response for V -Submodular Costs

In this section we give a sufficient condition on the cost function under which we can give an
approximation algorithm for the best response of the agents. In particular, for a given collection
of classifiers V ⊆ H, we introduce the notion of V -submodular cost functions which is a natural
condition that can arise in many applications. Borrowing results from the literature on submodular
optimization, we then show that for any distribution P over a set V = {h1, . . . , hn}, if the cost
function is V -submodular, there exists an oracle-efficient approximation algorithm for the best
response problem. Recall, from Equation (3), that the best response problem faced by agent x can be
written as maxS⊆{h1,...,hn} gx(S) ≜

∑
h′∈S P (h′)− c(x, S) where, with slight abuse of notation,

we define
c(x, S) ≜ min

z:h′(z)=1, ∀h′∈S
c(x, z) (8)

12



For any S ⊆ {h1, . . . , hn}, c(x, S) is simply the minimum cost that the agent x has to incur in order
to pass all classifiers in S, and can be computed via the oracle (Algorithm 1). We now state our main
assumption on the cost function:
Definition B.1 (V -Submodularity). Let V = {h1, . . . , hn} be any collection of classifiers. We say a
cost function c is V -submodular, if for all x, the set function c(x, ·) : 2V → R defined in Equation 8
is submodular: for every S, S′ ⊆ V such that S ⊆ S′ and every h′ /∈ S′,

c (x, S ∪ {h′})− c (x, S) ≥ c (x, S′ ∪ {h′})− c (x, S′)

This condition asks that the marginal cost of passing the new classifier h′ is smaller when the new
classifier is added to S′ versus S, for any such h′, S, S′. Fix a collection of classifiers V . Informally
speaking, a cost function is V -submodular if the agent’s manipulation to pass a classifier only helps
her (i.e., reduces her cost) to pass other classifiers: the more classifiers the agent passes, it becomes
only easier for her to pass an additional classifier. This can happen in settings where some of the
knowledge to pass a certain number of tests is transferable across tests. Some real-life examples
include: 1) a student that is preparing for a series of math tests on topics like probability, statistics,
and combinatorics. 2) a job applicant who is applying for multiple jobs within the same field and
preparing for their interviews.

We give a formal example of a V -submodular cost function below. In particular, we show that when
X = R, the cost function c(x, x′) = |x−x′| is V -submodular where V can be any set of single-sided
threshold classifiers.
Claim B.2. Let X = R, and V = {h1, . . . , hn} where every hi can be written as hi(x) = 1[x ≥ ti]
for some ti ∈ R. We have that the cost function c(x, x′) = |x− x′| is V -submodular.

Proof of Claim B.2. We will abuse notation and use hi for the threshold ti (hi ≡ ti ∈ R).

Fix any x. Consider S ⊆ S′ ⊆ {h1, . . . , hn} and h′ ∈ R such that h′ /∈ S′. Note that

c(x, S) = max (max(S)− x, 0) , c (x, S ∪ {h′}) = max (max(S ∪ {h′})− x, 0)

c(x, S′) = max (max(S′)− x, 0) , c (x, S′ ∪ {h′}) = max (max(S′ ∪ {h′})− x, 0)

where max(F ) is simply the largest threshold in F , for any set F . Note that max(S) ≤ max(S′)
because S ⊆ S′. Suppose x ≤ max(S). We have three cases

1. If h′ ≥ max(S′), then

c (x, S ∪ {h′})− c (x, S) = h′ −max(S) ≥ h′ −max(S′) = c (x, S′ ∪ {h′})− c (x, S′)

2. If max(S) ≤ h′ ≤ max(S′), then

c (x, S ∪ {h′})− c (x, S) = h′ −max(S) ≥ 0 = c (x, S′ ∪ {h′})− c (x, S′)

3. If h′ ≤ max(S), then

c (x, S ∪ {h′})− c (x, S) = c (x, S′ ∪ {h′})− c (x, S′) = 0

So we have shown that the cost function is submodular if x ≤ max(S). We can similarly, using a
case analysis, show that the cost function is submodular when x > max(S).

We now state the main result of this section.
Theorem B.3. Fix any H and any distribution P over some V = {h1, . . . , hn} ⊆ H. If the
cost function c is V -submodular, then there exists an algorithm that for every agent x and every
ϵ > 0, makes Õ(n/ϵ2) calls to the oracle (Algorithm 1) and outputs a set Ŝ ⊆ V such that
gx(Ŝ) ≥ maxS⊆V gx(S)− ϵ.

Proof of Theorem B.3. Note that when the cost function is V -submodular, the objective function gx
can be written as the difference of a monotone non-negative modular function12 and a monotone
non-negative submodular function: gx : 2V → R, gx(S) =

∑
h′∈S P (h′) − c(x, S). The result

then follows from [El Halabi and Jegelka, 2020] where they provide an efficient algorithm for
approximately maximizing set functions with such structure.

12A set function r is modular if r(S) =
∑

s∈S r(s) for any S.
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C Missing Proofs of Section 3

Theorem 3.1. Ω(2n/
√
n) calls to the oracle (Algorithm 1) are required to compute the best response

of an agent with 2/3 probability of success, even when X = R2 and the cost function is cp for p ≥ 1.

Proof of Theorem 3.1. To prove the claim, we reduce the following hidden-set detection problem with
EQUALTO(·) oracle to our best response problem. In hidden-set detection problem, given two players,
Alice and Bob, with Bob possessing a ‘hidden’ subset S⋆ ⊆ [n] of size n/2, Alice aims to identify
Bob’s set S⋆ using the minimum number of queries to Bob. She has query access to EQUALTO(T )
oracle that checks whether her set T ⊂ [n] matches Bob’s set (S⋆). It is trivial that any randomized
algorithm for the hidden-set detection problem with success probability of at least 1−O(1) requires(

n
n/2

)
queries in the worst-case scenario. This is via a straightforward application of Yao’s Min-Max

principle Yao [1977]: consider a uniform distribution over all subsets of size n/2 from [n], as the Bob’s
set. Then, after querying half of the subsets of size n/2, the failure probability of Alice in detecting
Bob’s set is at least (1−1/n)(1−1/(n−1)) · · · (1−1/(n/2)) > (1−2/n)n/2 > e−1(1−2/n) > 1/3
for sufficiently large values of n.

Next, corresponding to an instance of the hidden-set detection problem with S⋆, we create an instance
of the agents’ best response problem and show that any algorithm that computes the best response
with success probability at least 2/3 using N oracle calls (Algorithm 1), detects the hidden set of
the given instance of the hidden-set detection problem using at most N calls of EQUALTO(·) with
probability at least 2/3. Hence, computing the best response problem with success probability at
least 2/3 requires

(
n

n/2

)
= Ω(2n/

√
n) oracle calls.

Let n = 2k and ϵ < 1/n. Corresponding to every subset S ⊂ [n] of size n/2− 1, there is a distinct
point xS at distance 1/2− ϵ from the origin, i.e., ∥xS∥p = 1/2− ϵ. Corresponding to every subset
S ⊂ [n] of size n/2, there are two distinct points xS,n and xS,f at distances respectively 1/2 − ϵ
(near) and 1/2 + ϵ (far) from the origin, i.e., ∥xS,n∥p = 1/2− ϵ and ∥xS,f∥p = 1/2 + ϵ.

Now, we are ready to describe the instance IS⋆ of our best response problem corresponding to the
given hidden-set detection problem with S⋆. We define H = {h1, · · · , hn} and distribution P over
H such that,

• P is a uniform distribution over all classifiers H, i.e., P (hi) = 1/n for every i ∈ [n].

• For every subset T ⊂ [n] of size n/2− 1, we define hi(xT ) = 1[i ∈ T ].

• For every subset T ⊂ [n] of size n/2, we define hi(xT,f ) = 1[i ∈ T ]. Moreover, if T ̸= S⋆, then
hi(xT,n) = 0 for all i ∈ [n]. Otherwise, if T = S⋆, we define hi(xT,n) = 1[i ∈ T ].

• Finally, for the remaining points in X , i.e., x′ ∈ R2 \ ({xT : T ⊂ [n] and |T | = n/2 − 1} ∪
{xT,n, xT,f : T ⊂ [n] and |T | = n/2}), we define hi(x

′) = 0 for all i ∈ [n]. In other words,
points that do not correspond to subsets of size n/2− 1 or n/2 are classified as negative examples
by every classifier in H.

In the constructed instance IS⋆ , no point is classified as positive by more than n/2 classifiers in H,
and the p-norm distance from the origin for all points classified as positive by a subset of classifiers is
at least 1/2− ϵ. Therefore, the best response for an agent located at the origin of the space is xS⋆,n,
yielding a utility of 1/2− (1/2− ϵ) = ϵ > 0. Hence, the computational task in computing the best
response involves identifying the (hidden) subset S⋆. Refer to Figure 1 for a description of IS∗ .

Although we described the construction of IS⋆ , what we need to show to get the exponential lower
bound on the oracle complexity of the best response problem is constructing an oracle (i.e., an
implementation of Algorithm 1), using the EQUALTO(·) oracle, consistent with IS⋆ . To do so, given
a subset of classifiers specified by T ⊂ [n], the oracle returns as follows:

• if |T | > n/2: It returns an empty set.

• if |T | < n/2: It returns xT ′ for an arbitrary set T ′ ⊇ T of size n/2−1. Note that ∥xT ′∥p = 1/2−ϵ.

• if |T | = n/2 and EQUALTO(T ) = FALSE: It returns xT,f . Note that ∥xT,f∥p = 1/2 + ϵ.
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S∗

Figure 1: In this example, we consider p = 2, i.e., c(x, x′) = ∥x, x′∥2. The agent is located at the
origin. Blue nodes correspond to a point in the intersection of the positive regions of subsets of
classifiers of size n

2 − 1, each located at a Euclidean distance of 1/2 − ϵ from the origin, where
ϵ is a small positive value. Moreover, points in the intersection of the positive regions of subsets
classifiers of size n

2 are indicated by red points, all except the one corresponding to S⋆ are located
at a Euclidean distance of 1/2 + ϵ from the origin. The red point corresponding to S⋆ is uniquely
placed at a distance of 1/2 − ϵ from the origin, similar to the blue nodes. Furthermore, all points,
corresponding to different subsets, are located at distinct locations in the space.

• if |T | = n/2 and EQUALTO(T ) = TRUE: It returns xT,n. Note that ∥xT,n∥p = 1/2− ϵ.

Remark C.1. As in each instance IS⋆ the only point with strictly positive utility is xS∗,n, our proof
for Theorem 3.1 essentially rules out the existence of any approximation algorithm for the best
response problem with success probability at least 2/3 using o(2n/

√
n).

Theorem 3.2. Suppose X = Rd for some d ≪ n, and H contains only linear classifiers. Then for
any agent x, any cost function c, and any distribution P over {h1, . . . , hn} ⊆ H, Algorithm 2 returns
the best response of the agent in time O(nd+1), while making O(nd) calls to the oracle (Algorithm 1).

Proof of Theorem 3.2. The fact that Algorithm 2 returns the best response follows from the con-
struction of the algorithm. We first prove the oracle and the runtime complexity for d = 2 and
then generalize it to any d. The oracle complexity of Algorithm 2 is |Rn|. Note that |R1| = 2, and
for any n ≥ 2, |Rn| ≤ |Rn−1| + n. This is because the line {z : hn(z) = 0} intersects the lines
formed by {h1, . . . , hn−1} in at most n− 1 points, which will then partition {z : hn(z) = 0} into
at most n segments. Each segment of the new line then splits a region in Rn−1 into two regions.
So, there are at most n new regions when hn is introduced. The recursive relationship implies
that |Rn| ≤ 1 + n(n+1)

2 = O(n2). The runtime complexity of the algorithm is then given by
O (

∑n
i=1 |Ri|) = O(n3).

Now consider any dimension d and let R(n, d) denote the number of partitions induced by the
classifiers {h1, . . . , hn}. Note that in this case we have R(n, d) ≤ R(n− 1, d) +R(n− 1, d− 1).
The first term on the right hand side is the number of regions induced by {h1, . . . , hn−1} and the
second term is the number of splits (dividing a region into two) when hn is introduced. Note that
{z : hn(z) = 0} is a d− 1-dimensional hyperplane and the number of splits induced by hn is simply
the number of regions induced by {h1, . . . , hn−1} on {z : hn(z) = 0}, which is R(n − 1, d − 1).
The recursive relationship implies that |Rn| = R(n, d) ≤

∑d
j=0

(
n
j

)
= O(nd).

D Missing Details of Section 4

We first state a remark about the tie-breaking of agents’ best response problem:

Remark D.1. As mentioned in the model section, when there are several utility-maximizing solutions
for the agents, we always break ties in favor of the lowest cost solution. Furthermore, each agent x in
our setup manipulate only to larger values of x (x′ ≥ x); this is formally stated in the first part of
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Lemma D.2. Therefore, the tie-breaking of agents is in favor of smaller values of x′ in our setup. In
other words, given some released information H , an agent x chooses

BR(x,H) = min

{
argmax

x′≥x
ux(x

′, H)

}
(9)

In the rest of this section, when we write argmaxx′≥x ux(x
′, H), we implicitly are taking the smallest

x′ ≥ x that maximizes the utility of the agent x.

Next, we state some useful facts about the agents’ best response in our setup.
Lemma D.2. Fix any prior π and any points x2 ≥ x1. We have that, for any H ⊆ H,

1. BR(x1, H) ≥ x1.

2. BR(x2, H) ≥ BR(x1, H).

3. If BR(x1, H) ≥ x2, then BR(x1, H) = BR(x2, H).

Proof of Lemma D.2. Fix any x, and any H . We have

BR(x,H) = argmax
x′

{
Pr

h′∼π|H
[x′ ≥ h′]− |x′ − x|

}
= argmax

x′≥x

{
Pr

h′∼π|H
[x′ ≥ h′]− (x′ − x)

}
= argmax

x′≥x

{
Pr

h′∼π|H
[x′ ≥ h′]− x′

}
= argmax

x′≥x
gH(x′)

where we take gH(x′) ≜ Prh′∼P |H [x′ ≥ h′]− x′. The first equality follows because agents do not
gain any utility by moving to a point x′ < x, and that tie-breaking is in favor of lowest cost solution.

The first and the second part of the lemma follows from this derivation. For the third part, we have

BR(x1, H) = argmax
x′≥x1

gH(x′) = argmax
x′≥x2

gH(x′) = BR(x2, H)

where the second equality follows because BR(x1, H) ≥ x2.

D.1 NP-Hardness of Learner’s Optimization Problem with Arbitrary Prior Distributions

In this section, we formally state the NP-hardness of the learner’s optimization problem in the general
setting.
Theorem D.3. Consider an arbitrary prior π over a set of threshold classifiers {h1, h2, . . . , hn} ⊆ H
that includes h. The problem of finding H ⊆ {h1, h2, . . . , hn} so that h ∈ H and the learner’s utility
U(H) is maximized is NP-hard.

Proof of Theorem D.3. The proof is via a reduction from the subset sum problem. In particular,
we consider a variant of the subset sum problem in which we are given a set of n positive num-
bers a1, · · · , an, and the goal is to decide whether a subset S ⊂ [n] such that

∑
i∈S ai = T :=

(1/2)
∑

i∈[n] ai exists.

Given an instance of the subset sum problem with input ({a1, · · · , an}, T := (1/2)
∑

i∈[n] ai), we
construct the following instance of our problem with one-dimensional threshold classifiers. Define
f(x) = 1 [x ≥ 0], h(x) = 1 [x ≥ 2/3], and hi(x) = 1 [x ≥ 100 + i] for every i ∈ [n]. Moreover,
suppose that the prior distribution of the agents π is given by: π(h) = 1/2 and for every i ∈ [n],
π(hi) = ai/(4T ). Note that π(h) +

∑
i π(hi) = 1. Let the data distribution D be the uniform

distribution over [−1000, 1000].

Intuitively speaking, the inclusion of hi’s in H have no direct effect on the accuracy of the released
subset H , as they can only lead to a subset of the agents located at x ≥ 100 to manipulate. However,
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their presence in H will impact the probability mass of h under the posterior π|H , which is given by
π|H(h) = π(h)/π(H) ≜ ρH . We will show that the learner can achieve perfect accuracy if and only
if in the given instance subset sum problem there exists a subset which sums up to T . To see this
consider the following cases for the released information H .

• Case 1: ρH > 2/3. For any such H , all agents at distance ρH from 2/3 gain positive utility
by manipulating to x′ = 2/3. Hence, the utility of such solutions for the learner is given by
1− Prx∼D[x ∈ [ 23 − ρH , 0)] < 1.

• Case 2: ρH < 2/3. For any such H , as all classifiers in H \ {h} are located at t > 100, no agent
belonging to [0, 2/3− ρH) gain positive utility by manipulating to x′ = 2/3. Hence, these points
will be misclassified by h, and consequently, the utility of such solutions for the learner is given by
1− Prx∼D[x ∈ [0, 2

3 − ρH)] < 1.

• Case 3: ρH = 2/3. By similar arguments to the previous cases, all agents belonging to [0, 2/3)
manipulate to x′ = 2/3 and all points with negative labels (x < 0) stay at their location. Therefore,
no one will be misclassified, and therefore, the utility of such solutions is 1.

Note that because ρH = π(h)
π(H) = 1/2

1/2+π(H∩{h1,··· ,hn}) , we have that ρH = 2/3 if and only if
π(H ∩ {h1, · · · , hn}) = 1/4. But π(H ∩ {h1, · · · , hn}) = 1/(4T )

∑
hi∈H ai. We therefore have

that ρH = 2/3 if and only if
∑

hi∈H ai = T . Hence, deciding whether the learner’s optimization
problem has a solution with perfect utility is equivalent to deciding whether in the given subset sum
problem there exists a subset S ⊂ [n] such that

∑
i∈S ai = T := (1/2)

∑
i∈[n] ai.

D.2 A Closed-form Solution for Continuous Uniform Priors

In this section, we provide closed-form solutions for continuous uniform priors. More concretely, we
assume in this section that π is the uniform distribution over an interval [a, b] ⊂ R that includes h.
The information release of the learner will then be releasing an interval H = [c, d] ⊆ [a, b] such that
h ∈ [c, d].

For example, a student may know that a GPA of 3.5 or higher will guarantee admission to a certain
college, but not the exact threshold. Similarly, a loan applicant might know that a credit score
above 650 will likely suffice for securing a loan, but not the precise cutoff. These uncertainties
are sometimes due to factors unknown to the agents, such as the financial situation of the lender.
Therefore, agents treat the threshold as uniformly distributed within a known and reasonable range.
Theorem D.4. Fix any data distribution D over X . Suppose the prior π is uniform over an interval
[a, b] for some a, b such that h ∈ [a, b]. Define Hc ≜ [c, d] where d ≜ min (b,max (h, f + 1)).

If b− a < 1, we have that H⋆ = Hc is optimal for any c ∈ [a, h], with corresponding utility

U(Hc) =

{
1− Prx∼D [d− 1 < x < f ] d− 1 < f

1− Prx∼D [f ≤ x ≤ d− 1] d− 1 ≥ f

If b− a ≥ 1, we have that for any c ∈ (b− 1, h], the optimal solution H⋆ is given by

H⋆ =

{
Hc U(Hc) > U([a, b])

[a, b] U(Hc) ≤ U([a, b])

where U(Hc) is given above and U([a, b]) = 1−Prx∼D [f ≤ x < h] is the utility of releasing [a, b].

Proof of Theorem D.4. Suppose H = [c, d] ⊆ [a, b] is the released information by the learner. The
agents then project their uniform prior π over [a, b] onto H , which leads to the uniform distribution
over [c, d] for π|H , and then best respond according to π|H . Therefore, for any agent x,

BR(x,H) = argmax
x′≥x

{
Pr

h′∼Unif [c,d]
[x′ ≥ h′]− (x′ − x)

}
One can then show that if d− c ≥ 1, BR(x,H) = x for all x because for any manipulation (x′ > x),
the marginal gain in the probability of receiving a positive classification is less than the marginal cost.
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Furthermore, if d− c < 1, then we have

BR(x,H) =

{
d d− 1 < x < d

x Otherwise

Therefore, for any H = [c, d] ⊆ [a, b], if d− c ≥ 1, we have U(H) = 1− Prx∼D [f ≤ x < h], and
if d− c < 1, we have

U(H) =

{
1− Prx∼D [d− 1 < x < f ] d− 1 < f

1− Prx∼D [f ≤ x ≤ d− 1] d− 1 ≥ f

This is because under d−c ≥ 1, no one manipulates, and thus, the error corresponds to the probability
mass between f and h: the positives who cannot manipulate to pass h. Under d− c < 1, because
every agent x > d− 1 can receive positive classification by manipulating, the error of H corresponds
to the probability mass between d− 1 and f : if d− 1 < f , this corresponds to the negatives who can
manipulate and receive positive classification, and if d− 1 ≥ f , this corresponds to the positives who
cannot manipulate to receive positive classification.

Now assume b− a < 1, which implies that d− c < 1. At a high level, to maximize U(H) in this
case, we want to pick d such that d− 1 is as close as possible to f . More formally, our goal is to pick
[c, d] ⊆ [a, b] such that h ∈ [c, d] and that the probability mass between d− 1 and f is minimized. In
this case, one can see, via a case analysis, that d = min (b,max (h, f + 1)) is the optimal value, and
that c can be any point in [a, h].

If b − a ≥ 1, then both d − c < 1 and d − c ≥ 1 are possible. If d − c < 1, then the optimality
of [c, d] where c is any point in (b − 1, h], and d = min (b,max (h, f + 1)) can be established as
above. Note that the choice of c ∈ (b− 1, h] guarantees that d− c < 1. If d− c ≥ 1, then the utility
of the learner doesn’t change if [c, d] = [a, b] simply because the agents do not manipulate for any
[c, d] such that d− c ≥ 1. Finally, the optimal interval is chosen based on which case (d− c < 1 vs.
d− c ≥ 1) leads to higher utility.

E The Complete Exposition of Section 4.1

In this section we will provide an efficient algorithm for computing the learner’s optimal information
release when the prior π is a discrete uniform distribution over a set {h1, h2, . . . , hn} ⊆ H that
includes the adopted classifier h. The objective of the learner is to release a H ⊆ {h1, h2, . . . , hn}
such that h ∈ H . Throughout, we take h = hk where 1 ≤ k ≤ n, and assume h1 ≤ h2 ≤ . . . ≤ hn.

We first state some facts about the agents’ best response for any prior π over {h1, h2, . . . , hn} ⊆ H.
To start, we first show that the best response of any agent can be characterized as follows:

Lemma E.1. For any agent x, and any prior π over {h1, h2, . . . , hn} ⊆ H, we have BR(x,H) ∈
{x} ∪ {hi ∈ H : hi > x}.

Proof of Lemma E.1. Recall from Lemma D.2 that BR(x,H) ≥ x. Note that the utility of the agent
x ∈ X from manipulating to a point x′ ≥ x can be expressed as

ux(x
′, H) =

∑
i:hi≤x′

π|H(hi)− (x′ − x)

For any x′ ≥ x such x′ /∈ {x} ∪ {hi ∈ H : hi > x}, it is easy to see that the agent can increase her
utility by moving to a point in {x} ∪ {hi ∈ H : hi > x}, which proves the lemma.

This lemma basically tells us that the best response of any agent x is either to stay at its location, or
to manipulate to hi ∈ H such that hi > x. Given such characterization of the agents’ best response
in our setup, we now characterize, for any classifier hi in the support of π, the set of agents that will
manipulate to hi.

Lemma E.2. Fix any prior π over {h1, . . . , hn} and any H . If for any i, {x : BR(x,H) = hi} ≠ ∅,
then for some α, {x : BR(x,H) = hi} = (α, hi], where α satisfies uα(α,H) = uα(hi, H).
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Proof of Lemma E.2. Let α = inf {x : BR(x,H) = hi}. Take any x ∈ (α, hi]. We have, by
the definition of α, that there exists x′ ∈ (α, x) such that x′ ∈ {x : BR(x,H) = hi}, imply-
ing BR(x′, H) = hi. Therefore, BR(x′, H) ≥ x. The third part of Lemma D.2 implies that
hi = BR(x′, H) = BR(x,H). This proves that

(α, hi] ⊆ {x : BR(x,H) = hi}

If x > hi, then BR(x,H) > hi by the first part of Lemma D.2. Therefore x /∈ {x : BR(x,H) = hi}.

If x < α, then BR(x,H) < hi by the definition of α, implying x /∈ {x : BR(x,H) = hi}.

If x = α, we will show that BR(x,H) = α. Note that α ≤ BR(α,H) ≤ hi by Lemma D.2. But
if BR(α,H) > α, then by the third part of Lemma D.2, BR(α,H) = hi. So BR(α,H) ∈ {α, hi}.
Suppose BR(α,H) = hi. Therefore, there exists ϵ > 0 such that uα(α,H) + ϵ < uα(hi, H), by
the definition of agents’ best response and the fact that tie-breaking is in favor of smaller values
(Remark D.1). Let ϵ′ ∈ (0, ϵ/2] be such that {h′ ∈ H : α− ϵ′ ≤ h′ < α} = ∅. Consider x′ = α− ϵ′.
We have, by Lemma D.2 and E.1, that BR(x′, H) ∈ {x′} ∪ [α, hi]. But because BR(α,H) = hi,
Lemma D.2 implies that BR(x′, H) ∈ {x′, hi}. Note that

ux′(x′, H) ≤ uα(α,H) < uα(hi, H)− ϵ = ux′(hi, H)− (ϵ− ϵ′)

implying that BR(x′, H) = hi. But x′ = α − ϵ′ and this contradicts with the definition of α.
Therefore BR(α,H) = α, and this completes the proof of the first part of the lemma.

We now focus on the second part of the lemma. Note that uα(α,H) ≥ uα(hi, H), because if
uα(α,H) < uα(hi, H), then α < BR(α,H) ≤ hi. Together with the first part of this lemma, and
Lemma D.2, this implies that BR(α,H) = hi which is a contradiction with the first part of the lemma.
Next, we show that uα(α,H) ≤ uα(hi, H). Suppose uα(α,H) > uα(hi, H) + ϵ for some ϵ > 0.
Consider x = α+ ϵ/2. We have that

ux(x,H) ≥ uα(α,H) > uα(hi, H) + ϵ = ux(hi, H) + ϵ/2

implying that BR(x,H) ̸= hi. This is in contradiction with the first part of the lemma. Therefore,
uα(α,H) = uα(hi, H).

Next, we characterize the utility of any subset H released by the learner using a real-valued function
of H . Define, for any H ⊆ {h1, . . . , hn} such that h ∈ H ,

RH ≜ inf {x : BR(x,H) ≥ h} (10)

Note that BR(x = h,H) ≥ h for any H such that h ∈ H . Therefore, {x : BR(x,H) ≥ h}
is nonempty, and that RH ≤ h for any H such that h ∈ H . Our next lemma shows that RH

characterizes the utility of H for the learner, for any prior π over {h1, . . . , hn}.
Lemma 4.4. Fix any prior π over {h1, . . . , hn}. We have that for any H ⊆ {h1, . . . , hn} such that
h ∈ H , the utility of the learner, given by Equation 2, can be written as

U(H) =

{
1− Prx∼D [RH < x < f ] RH < f

1− Prx∼D [f ≤ x ≤ RH ] RH ≥ f
(5)

Proof of Lemma 4.4. Recall that U(H) = Prx∼D [h(BR(x,H)) = f(x)]. The claim follows from
the fact that h(BR(x,H)) = 1 if and only if x > RH . Note that if x > RH , then BR(x,H) ≥ h
(equivalently, h(BR(x,H)) = 1) by the definition of RH and Lemma D.2. Further, if BR(x,H) ≥ h
then x > RH by the definition of RH .

Given such characterization of the learner’s utility, we will show that when the agents’ prior is
uniform over {h1, . . . , hn}, there are only polynomially many possible values that RH can take, even
though there are exponentially many H’s. Our algorithm then for any possible value R of RH , finds
a subset H such that RH = R, if such H exists. The algorithm then outputs the H with maximal
utility according to Equation 5. More formally, we consider the following partitioning of the space of
subsets of {h1, . . . , hn}. For any ℓ ∈ {1, 2, . . . , n}, and for any i ∈ {k, k + 1, . . . , n}13, define

Si,ℓ = {H ⊆ {h1, . . . , hn} : h ∈ H, |H| = ℓ, BR(h,H) = hi}
13Recall k is the index of h in {h1, . . . , hn}, i.e., h = hk.
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Note that by Lemma E.1, BR(h ≡ hk, H) ∈ {hi : i ≥ k} for any H . Therefore, {Si,ℓ}i,ℓ gives us a
proper partitioning of the space of subsets, which implies

max
H⊆{h1,...,hn},h∈H

U(H) = max
i,ℓ

max
H∈Si,ℓ

U(H)

We will show that when the prior is uniform, solving maxH∈Si,ℓ
U(H) can be done efficiently, by

showing a construction of the optimal H ∈ Si,ℓ in our algorithm. To do so, we first show that RH

(defined in Equation 10) can be characterized by hi, when we restrict ourselves to H ∈ Si,ℓ.
Lemma E.3. Fix any prior π over {h1, . . . , hn}. If H ∈ Si,ℓ, then {x : BR(x,H) = hi} =
(RH , hi].

Proof of Lemma E.3. We first show that RH = inf {x : BR(x,H) = hi}. Fix any H ∈ Si,ℓ. Let
QH = inf {x : BR(x,H) = hi}. First note that because H ∈ Si,ℓ, we have BR(h,H) = hi, and
therefore {x : BR(x,H) = hi} ≠ ∅, and that QH ≤ h. Additionally, because

{x : BR(x,H) = hi} ⊆ {x : BR(x,H) ≥ h}
we have that QH ≥ RH . So we have RH ≤ QH ≤ h. If QH ̸= RH , then there exists RH < x <
QH , such that h ≤ BR(x,H) < hi. But, for x′ = BR(x,H), we have BR(x′, H) = hi > x′ =
BR(x,H). This is in contradiction with the third part of Lemma D.2 (taking x1 = x, and x2 = x′).
Therefore, QH = RH , and this proves the first part of the lemma. The second part of the lemma is
followed from part one and Lemma E.2.

In particular, this Lemma implies that for H ∈ Si,ℓ, we have RH = inf {x : BR(x,H) = hi}. Next,
we demonstrate the possible values that RH can take for uniform priors. In particular, the following
lemma establishes that RH can take only polynomially many values.
Lemma E.4. If the prior π is uniform over {h1, . . . , hn}, then for any H ∈ Si,l, RH = hi − j/ℓ
where j = |{h′ ∈ H : h′ ∈ (RH , hi]}|.

Proof of Lemma E.4. Fix any H ∈ Si,ℓ. Note that Lemma E.3 and Lemma E.2 together imply that
uRH

(RH , H) = uRH
(hi, H). This implies

Pr
h′∼π|H

[RH ≥ h′] = Pr
h′∼π|H

[hi ≥ h′] + (hi −RH)

But Prh′∼π|H [RH ≥ h′] = j1/ℓ and Prh′∼π|H [RH ≥ h′] = j2/ℓ where j1 and j2 are the number
of hypotheses in H that are smaller (or equal to) RH , and smaller (or equal to) hi, respectively. In
other words,

j1 = |{h′ ∈ H : h′ ≤ RH}| , j2 = |{h′ ∈ H : h′ ≤ hi}|
Therefore,

RH = hi −
j2 − j1

ℓ
which completes the proof.

Given such characterization, Algorithm 3, for any i, ℓ, enumerates over all possible j ∈ {1, . . . , ℓ}
and returns a H such that H ∈ Si,ℓ and RH = hi− j/ℓ, if such H exists. To elaborate, for any i, ℓ, j,
such H ≡ Hi,ℓ

j is constructed by first picking the j largest classifiers that are between hi − j/ℓ and
hi (including both hi and h). If there are not at least j classifiers between hi − j/ℓ and hi, then no
such H exists for i, ℓ, j because of Lemma E.4. After picking the first j elements as described, the
remaining ℓ− j classifiers are first chosen from all classifiers that are less than (or equal to) hi − j/ℓ,
and once these classifiers are exhausted, the rest are taken from the classifiers that are larger than hi,
starting from the largest possible classifier, and going down until ℓ classifiers are picked.

Note that this construction of H ≡ Hi,ℓ
j guarantees that BR(hi, H

′) is minimized among all H ′’s
with corresponding values of (i, ℓ, j). Therefore, if BR(hi, H) > hi, it is guaranteed that no H

exists for (i, ℓ, j). If BR(hi, H) = hi, then the construction of H ≡ Hi,ℓ
j guarantees that RH =

inf {x : BR(x,H) = hi} is as small as possible. Therefore, if inf {x : BR(x,H) = hi} > hi − j/ℓ,
then it is guaranteed that no such H exists for (i, ℓ, j) (note that inf {x : BR(x,H) = hi} ≥ hi− j/ℓ
by construction). The algorithm finally outputs, among all H’s found, the subset H with maximum
utility according to Equation 5.

This proves the following theorem.
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Algorithm 3: The Learner’s Optimization Problem: Discrete Uniform Prior
Input: ground truth classifier f , adopted classifier h ≥ f , prior’s support {h1, . . . , hn} where

h1 ≤ . . . ≤ hn and hk = h, data distribution D
for i = k, k + 1, . . . , n do

for ℓ = 1, 2, . . . , n do
for j = 1, 2, . . . , ℓ do

R← hi − j/ℓ ; // candidate value R for RH.
S1 ← {h′ ∈ {h1, . . . , hn} : R < h′ ≤ hi} ; // all classifiers between R and
hi.

S2 ← {h′ ∈ {h1, . . . , hn} : h′ ≤ R} ; // all classifiers smaller than R.
S3 ← {h′ ∈ {h1, . . . , hn} : h′ > hi} ; // all classifiers larger than hi.
if R ≥ h or |S1| < j then

Hi,ℓ
j ←⊥ ; // no H exists for (i, ℓ, j).

else
Hi,ℓ

j ← {h, hi};
Hi,ℓ

j ← Hi,ℓ
j ∪MAX

j−|Hi,ℓ
j |

(
S1 \Hi,ℓ

j

)
; // MAXm(·) ≜ m largest elements

if |S2| ≥ ℓ− j then
T ← any subset of size ℓ− j from S2

else
T ← S2 ∪MAXℓ−j−|S2| (S3) ; // MAXm(·) ≜ m largest elements

Hi,ℓ
j ← Hi,ℓ

j ∪ T ;
if BR(hi, H

i,ℓ
j ) > hi then

Hi,ℓ
j ←⊥ ; // no H exists for (i, ℓ, j).

else
if inf

{
x : BR(x,Hi,ℓ

j ) = hi

}
> R then

Hi,ℓ
j ←⊥ ; // no H exists for (i, ℓ, j).

if Hi,ℓ
j =⊥ then
U i,ℓ

j ← −∞;
else

if R < f then
U i,ℓ

j ← 1− Prx∼D [R < x < f ] ; // utility according to Equation 5.
if R ≥ f then

U i,ℓ
j ← 1− Prx∼D [f ≤ x ≤ R] ; // utility according to Equation 5.

Output: H⋆ = Hi⋆,ℓ⋆

j⋆ where (i⋆, ℓ⋆, j⋆) ∈ argmax(i,ℓ,j) U
i,ℓ
j .

Theorem 4.6. There exists an algorithm (Algorithm 3) that for any n, any uniform prior over
{h1, . . . , hn} that includes h, and any data distribution D, returns H⋆ ⊆ {h1, . . . , hn} in time
O(n3) such that h ∈ H⋆, and that U(H⋆) = maxH⊆{h1,...,hn},h∈H U(H).

F Missing Proof of Section 4.2

Theorem 4.7. Fix any h ≥ f . For any prior π over {h1, . . . , hn} that includes h, we have 1)
FPR(H) ≤ FPR({h}). 2) FNR({h}) ≤ FNR(H) for every H ⊆ H such that h ∈ H .

Proof of Theorem 4.7. We begin by showing that FPR(H) ≤ FPR({h}). Let x ∈ X be such that
f(x) = 0 and h(BR(x,H)) = 1. We will show that h(BR(x, {h})) = 1.

Lemma E.1 together with h ≥ f imply the existence of hj such that BR(x,H) = hj > x (as
f(x) ̸= h(BR(x,H))). This further indicates that when H is released, the utility of the agent is
strictly higher when it manipulates to hj , compared to not moving:

ux(hj ,H) =

j∑
i=1

π(hi)− (hj − x) >
∑

i:hi≤x

π(hi) = ux(x,H)

21



Note that h(BR(x,H)) = 1 and BR(x,H) = hj implies that hj ≥ h, and therefore:

ux(h, {h}) = 1− (h− x) ≥
j∑

i=1

π(hi)− (hj − x) >
∑

i:hi≤x

π(hk) = ux(x, {h})

Since Lemma E.1 implies that BR(x, {h}) ∈ {x, h}, we derive from the above inequality that
h(BR(x, {h})) = 1. This proves the first part of the theorem.

Next, we show that FNR({h}) ≤ FNR(H) for every H ⊆ H. Let x ∈ X be such that f(x) = 1
and h(BR(x, {h})) = 0, and let H be any subset of H. We will show that h(BR(x,H)) = 0.

Lemma E.1 implies that BR(x, {h}) ∈ {x, h}. Together with h(BR(x, {h})) = 0, we derive that
BR(x, {h}) = x, and thus:

ux(h, {h}) = 1− (h− x) ≤ ux(x, {h}) = 0

Now, for every hj such that hj ≥ h, we have:

ux(hj , H) =

j∑
i=1

π|H(hi)− (hj − x) ≤ 1− (h− x) ≤ 0 ≤
∑

i:hi≤x

π|H(hi) = ux(x,H).

As a result, when the learner releases H , the utility of agent x from remaining at x is greater than (or
equal to) any manipulation hj such that hj ≥ h. This implies that h(BR(x,H)) = 0.

G Optimal Information Release for Minimizing FPR

We show that minimizing FPR, unlike minimizing FNR, does not always have a clear optimal solution
for the learner, by providing three examples with very different optimal solutions.
Example G.1 (Full-information-release is optimal for FPR). Fix any B > 1 and any 0 ≤ t < B − 1.
Let D be the uniform distribution over X = [0, B], and f(x) = 1 [x ≥ t]. Let H be the class of
single-sided threshold classifiers and suppose the adopted classifier h(x) = 1 [x ≥ t+ 1]. Under any
prior over H, one can show that the full information release of H = {h} achieves perfect FPR for
this setting: FPR({h}) = 0.
Example G.2 (No-information-release is optimal for FPR). Under the same setup as in Example 2.4,
one can show that releasing the support of the prior H = {h1.8, h2} achieves FPR(H) = 0, whereas
full information release of the adopted classifier h = h2 achieves FPR({h}) = 0.9/1.9 ≈ 0.47.
Note that H = {h1.8, h2} is the support of the prior, so it constitutes as no-information-release. In
other words, we have FPR(H ′) = FPR(H) = 0 for every H ′ such that H ⊆ H ′ ⊆ H.
Claim G.3. There exists an instance in which neither full-information-release nor no-information-
release are optimal when the utility function of the learner is UFPR.14

Proof of Claim G.3. We construct such an instance as follows. Suppose the domain is X = {x1, x2}
with x1 = 0, x2 = 0.4 and the distribution D is given by D(x1) = D(x2) = 0.5. In addition,
consider f = 0.3, and hypothesis class H = {h1, h2, h3} where h1 = 0.1, h2 = 0.5, h3 = 0.7, and
a prior distribution π such that π(h1) = 0.2, π(h2) = 0.1, π(h3) = 0.7.

Observe that under full-information-release, FPR({h}) = 1 for every h ∈ H. Now suppose
h = h2 is the adopted classifier. We have that BR(x1, {h}) = 0.5 implying h(BR(x1, {h})) = 1 ̸=
f(x1) = 0 implying x1 is a false positive under {h} release. Additionally, BR(x1,H) = 0.7 implies
that h(BR(x1,H)) = 1 ̸= f(x1) = 0 implying x1 is a false positive under H release. Further, it
holds that BR(x1, {h1, h2}) = 0.1 and so h(BR(x1, {h1, h2})) = 0 = f(x1). Moreover, in this
particular instance, releasing {h1, h2} achieves perfect utility as BR(x2, {h1, h2}) = 0.5 which
implies h(BR(x2, {h1, h2})) = 1 = f(x2).

H Possible Information Leakage Through Firm’s Choice of H

One limitation of our model is that if the agents have knowledge of the mapping f from feature
vectors to labels, they might gain information on h∗ in cases when |H| > 1. More specifically,

14We remark that the claim holds when the utility function is U (as defined in Equation 2) as well.
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knowing the mapping D, the mapping f , and that the firm is optimizing the choice of H for accuracy,
agents could deduce h∗. In this case, the choice of H leaks more information than intended.

We proceed by showing an example with threshold classifiers for such a case.
Example H.1. Suppose a distribution D over agents x ∈ X = [0, 1] is uniform, c(x, x′) = |x− x′|,
and f(x) = 1 [x ≥ 0.15]. The set of classifiers available to the firm is H = {h1, h2} where
α1 = 0.1, α2 = 0.9 is each classifier’s respective threshold.

Following our Bayesian model, the firm chooses to release a subset H ⊆ H over which the agents
have a uniform prior π|H . The agents know that the firm is choosing H to optimize accuracy, i.e. the
function U(H) = Prx∼D[h∗(∆H(x)) = y] (where y = 1[x ≥ T ]). We will show that the firm can
release a subset H which is in argmaxH⊆H[U(H)|h∗ = h1] but not in argmaxH⊆H[U(H)|h∗ =
h2], allowing the agent to reason that h∗ must be h1.
Proposition H.2. Consider Example H.1. If the agents know agents know that f(x) = 1 [x ≥ 0.15]
and the prior D, they can infer that h∗ = h1.

Proof. We first solve for argmaxH⊆H[U(H)|h∗ = h1]. Suppose H = {h1}. Then all agents know
h∗ = h1. If x ≤ α1, the agent will manipulate to α1 to get a positive outcome if 1− c(x, α1) > 0,
which is always true. If x ≥ α1, agents will stay the same to get a positive outcome. So the set
of misclassified agents is those with x ∈ [0, T ] and U({h1}) = 1 − T = 0.85. Now suppose
H = {h1, h2}. Agents believe each classifier is h∗ with probability 0.5. If x ≥ α2, agents are
guaranteed a positive outcome and stay the same. If α1 ≤ x ≤ α2, agents will manipulate to
α2 to get a positive outcome if 1 − c(x, α2) > 0.5, so all agents with x ∈ (0.4, 0.9] will be
classified correctly. The rest of the agents with x ∈ [α1, 0.4] will stay the same to get a positive
outcome with probability 0.5, and those with x ∈ [α1, T ] will be misclassified. Lastly, if x < α1,
agents will manipulate to α2 to get a guaranteed positive outcome if 1− c(x, α2) > 0.5− c(x, α1)
(a.k.a. 1 − 0.9 − x > 0.5 − 0.1 − x), which is never true, and otherwise manipulate to α1 to
get a positive outcome with probability 0.5 if 0.5 − c(x, α1) > 0, which is always true. So the
set of misclassified agents is those with x ∈ [0, T ] and U({h1, h2}) = 1 − T = 0.85. Therefore
argmaxH⊆H[U(H)|h∗ = h1] = {{h1}, {h1, h2}}.

Now we consider argmaxH⊆H[U(H)|h∗ = h2]. Suppose H = {h2}. As before, all agents know
h∗ = h2. If x ≤ α2, the agent will manipulate to α2 to get a positive outcome if 1− c(x, α2) > 0,
which is always true. If x ≥ α2, agents will stay the same to get a positive outcome. So the set
of misclassified agents is those with x ∈ [0, T ] and U({h2}) = 1 − T = 0.85. Now suppose
H = {h1, h2}. As before, agents believe each classifier is h∗ with probability 0.5. If x ≥ α2, agents
are guaranteed a positive outcome and stay the same. If α1 ≤ x ≤ α2, agents will manipulate to α2

to get a positive outcome if 1 − c(x, α2) > 0.5, so all agents with x ∈ (0.4, 0.9] will be classified
correctly. The rest of the agents with x ∈ [α1, 0.4] will stay the same to get a positive outcome with
probability 0.5, and will be misclassified. Lastly, if x < α1, agents will manipulate to α1 to get a
positive outcome with probability 0.5, and will be classified correctly. So the set of misclassified
agents is those with x ∈ (0.4, 0.9] and U({h1, h2}) = 1− |0.9− 0.4| = 0.5, which is less than for
U({h2}). Therefore argmaxH⊆H[U(H)|h∗ = h2] = {{h2}}.

We have shown that if the firm chooses H∗ = {h1, h2}, the agent can reason that H∗ ∈
argmaxH⊆H[U(H)|h∗ = h1] but H∗ /∈ argmaxH⊆H[U(H)|h∗ = h2], so h∗ must be h1.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
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• We recognize that the procedures for this may vary significantly between institutions
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