Proceedings of the 7th Symposium on Advances in Approximate Bayesian Inference, 2025 1-21

Are Your Continuous Approximations Really Continuous?
Reimagining VI with Bitstring Representations

Aleksanteri Sladek ALEKSANTERI.SLADEK@AALTO.FI
Martin Trapp MARTIN.TRAPP@QAALTO.FI
Arno Solin ARNO.SOLIN@QAALTO.FI

Aalto University

Abstract

Efficiently performing probabilistic inference in large models is a significant challenge due
to the high computational demands and continuous nature of the model parameters. At
the same time, the ML community has put effort into quantifying parameters of large-scale
models to increase their computational efficiency. We extend this work by proposing a
method for learning the probability distributions of quantized parameters via variational
inference (VI). This enables effective learning of continuous distributions in a discrete
space. We consider both 2D densities and quantized neural networks, where we introduce
a tractable learning approach using probabilistic circuits. This method offers a scalable
solution to manage complex distributions and provides clear insights into model behavior.
We validate our approach in various settings, demonstrating its effectiveness.

1. Introduction

Probabilistic inference is central to modern machine learning, providing a principled frame-
work for reasoning under uncertainty. In Bayesian inference, uncertainty is captured through
posterior probability distributions over parameters, however, exact Bayesian inference is often
intractable and has to be approximated. Variational inference (VI, Blei et al., 2017; Jordan
et al., 1999; Wainwright and Jordan, 2008) is typically employed for this task as a scalable
solution. A limitation of VI is that it relies on continuous parameterizations and often
restrictive Gaussian assumptions, which can introduce representational and computational
inefficiencies, particularly in large-scale settings.

To address computational constraints, the machine learning community has increasingly
embraced quantization techniques for model parameters. These methods reduce numerical

4-bit 6-bit 8-bit 16-bit

-2 0 2 -2 0 2 -2 0 2 -2 0 2

Figure 1: Capturing a 1D Gaussian mixture with BitVI with different numbers of bits
in the bitstring. Even the 4-bit result serves a practical purpose, while the model saturates
around 8 bits when compared to its 16-bit version.

© A. Sladek, M. Trapp & A. Solin.

SLADEK TRAPP SOLIN

Gaussian Neal’s Funnel Two-modal Ring Banana
Mixture Gaussian

Figure 2: BitVI (4-bit) on non-Gaussian 2D density functions. We capture the overall and
cross-densities well despite the low bit precision. We include comparisons to the ground-truth
distributions and full-covariance VI in Fig. 8.

precision to improve efficiency, leveraging low-bit representations for storage and computation.
Recent works utilizing large-scale mixed-precision FP8 (e.g., Liu et al., 2024), FP4 (Wang
et al., 2025), or even 1-bit neural architectures (Ma et al., 2024) show surprisingly good
performance with low-precision parameters. An interesting question arises: Could we also
perform probabilistic inference directly in this discrete representation space of quantized
parameters?

As a preliminary thought experiment, consider Fig. 1, which illustrates how a Gaussian
mixture model, typically represented in high-precision floating point, can be equivalently
expressed using a low-precision bitstring representation.

This work introduces Bit VI, a novel approach for approximate probabilistic inference
in bitstring models. BitVI exploits the inherent discrete nature of number representations
to approximate continuous distributions directly in the space of bitstrings. By leveraging
probabilistic circuits (PCs, Choi et al., 2020), our method provides a tractable way to
learn and perform inference over complex distributions without requiring high-precision
representations. Fig. 2 demonstrates how BitVI can model complex distribution with only
4-bit precision. We validate BitVI across (i) standard benchmark densities, demonstrating
its ability to approximate known distributions; and (i) Bayesian deep learning in neural
network models in Bayesian Benchmarks, where BitVI enables scalable and direct uncertainty
quantification. Our results highlight the efficiency and accuracy of BitVI, making it a
compelling alternative to traditional inference methods.

2. Methods

When performing computations on a computer, parameters of interest will inevitably be
represented in a discretized form. Every real-valued number is represented by a series of
bitstrings within the computer’s hardware and then mapped to the real line by a mapping
function ¢: {0,1}# — R given by the chosen number system (e.g. fixed-point, see Fig. 5).
Consequently, any ’continuous’ distribution p or ¢ represented on a computer can be
expressed in terms of a discrete distribution over bitstrings. In the following, we outline how
continuous distributions can be represented as a distribution over bitstrings with a tractable
and flexible variational family.

BirVI

110 111 0,1)
010/ 011/ ﬁb‘}/ w
[0,%) $:1)
~ induces _ —b —b.
i, bo.b) = | 2 = os| S L S
[0, %) 1) 1 [1)
/ ~ ~bs/ \bs ~bs/ \bs =b3/ \bs =bs/ \bs
b 0. DL DIE DL HE L DIE DHIED
000 001
Distribution over bitstrings b Distribution over fixed-point numbers x

Figure 3: Illustration of our method: The bitstring can be visualized as a hypercube,
and the PC induces a distribution over the fixed-point numbers represented by the bitstring.
The corresponding PC structure is shown in Fig. 6.

2.1. BitVI: Variational Distributions over Bitstring Representations

Let ¢ be a distribution over binary strings with probability measure Q defined on the
measurable space of binary strings (), A) with corresponding o-algebra A. Further, let
(R, B) be the measurable space of real numbers with Borel o-algebra B. Then, define a
measurable mapping ¢: Y — R that assigns to each binary string a real number according
to a specified number system, for example, the fixed point representation (see Fig. 5). The
induced probability measure @ on (R, B) is defined as the pushforward measure of Q through
¢. Specifically, for any Borel set B € B we have Q(B) = Q(¢'(B)) where ¢~ '(B) is the
pre-image of B under ¢. Finally, we represent the density ¢ of @) using a (deterministic)
probabilistic circuit (PC) (see App. C). The resulting construction is illustrated in Fig. 3
for the case of fixed-point numbers. Note that for fixed-point representations with infinite
precision, this construction is equivalent to probability measures generated by Pdlya trees
(Ferguson, 1974; Trapp and Solin, 2022).

Consequently, by specifying a ¢ over bitstrings and a respective number system, we
obtain an induced variational distribution ¢ on the real line. Next, our goal is to find a
parameterization @ of our variational distribution that minimizes its KL-divergence (see
Eq. (5)) from some true distribution being approximated. When representing ¢ using a
deterministic PC, the parameters @ correspond to the collection of weights {w;}; of the
circuit. Note that by construction, the leaf nodes of our circuit model are continuous
uniform distributions and, therefore, do not have any additional parameters. The resulting
deterministic PC is a tree with depth proportional to the number of bits used in the bitstring
representation. Each sum node in the PC represents the decision of a bit, and its weight
corresponds to the conditional probability of the respective decision. For example, the
probability of 0.5 in a 3-bit fixed-point number system with one integer bit and no sign-
bit, which corresponds to the bitstring 010, is computed by obtaining the bit decisions,
1.e., bp = 0, by = 1, and by = 0, and evaluating the circuit along the respective path,
i.e., p(x = 0.5) = wowprwor0s5— Where Bpa. = 2 is the number of fraction bits. Fig. 6

ZBfrac
illustrates the decision process reflected by the circuit.

Computation of the ELBO A convenient property of deterministic PCs is that their
entropy can be computed in linear time w.r.t. the number of edges of the circuit (Vergari
et al., 2021), see App. D for details. Consequently, for computing the ELBO, we only need to

SLADEK TRAPP SOLIN

approximate the expected log probability in Eq. (6) using Monte Carlo (MC) integration. To
do so, we first use a reparameterization via the inverse CDF transform, which is also available
analytically for deterministic PCs. In particular, we use the following reparameterization of
the ELBO,

L(q0,p) = Eyunif(0.1) [log p(Fy,' (w)] + H (g0) , (1)
where Fqgl(-) is the inverse CDF transform of gg. We then generate T' samples from a
uniform distribution u! ~ Unif(0,1) and compute a MC estimate of Eq. (1), i.e.,

T
Cla0.) ~ 7 D" logp(Fy, () +H (as) @)
t=1

Note that Eq. (2) can be computed efficiently.

Remark 1 The inverse CDF transform of qg can be computed in time linear in the depth
of the circuit.

For a given input y, we can compute the inverse CDF transform of y under gg using a
series of linear transformations. In particular, for sum nodes S we compute

F! m) if y > weo
Flw)=4 S0 E

y e
FCE0 " otherwise

(3)
where C denotes a child node of S, i.e. a sum or leaf node, and € € UfZO{O, 1}/ is a binary
string. If C is a leaf node, we compute the inverse CDF according to the respective leaf
distribution, i.e., FJl(y) = y(b—a)+a in case of a continuous uniform distribution Unif(a, b).

Note that the resulting value still requires discretization and, in the case of fixed-point
numbers, needs to be rounded to the nearest fixed-point value. Fortunately, the bitstring e
generated by traversing the circuit in order to compute its inverse CDF already encodes the
nearest fixed-point value for y. However, as the discretization operation does not have a
well-defined gradient, we resort to the application of the straight-through estimator (STE)
(Bengio et al., 2013). In particular, we compute:

z = ($(e) + Fop' () — Fpp' (), (4)

where ¢(€) is the mapping function defined by the number system and the bitstring € is a
function of ! and indicates the decision taken in Eq. (7).

3. Experiments

We begin with a 2D density estimation task in Sec. 3.1 to demonstrate the effectiveness
of our method in capturing complex non-Gaussian distributions. Next, Sec. 3.2 explores
learning higher-dimensional posterior densities in the Bayesian deep learning setting by
applying BitVI to Bayesian neural networks (NNs), showcasing its ability to perform effective
uncertainty quantification in predictive modeling. We also conduct a series of ablation studies
(See App. F.1) to assess the trade-offs between numerical precision and model expressiveness,
investigating the effect of bitstring depth on performance and the role of hierarchical structure
in NNs.

BirVI

Deterministic MFVI BitVI (2 bits) BitVI (4 bits) BitVI (8 bits)

Figure 4: Uncertainty quantification in neural networks: We consider the two moons
binary % classification problem with a Bayesian neural network (two hidden layers). The
predictive density (B) shows that BitVI provides both uncertainties in the decision
boundary (white regions) and good decision boundaries compared to the deterministic and
MFVT baselines.

3.1. 2D Densities

First, we demonstrate the flexibility of our proposed approach in 2D non-Gaussian target
distributions. In Fig. 2, we include results of typical benchmark target densities (mixture,
Neal’s funnel, two-modal Gaussian, ring, and banana) that we approximate with 4-bit and
8-bit BitVI. Moreover, Fig. 8 illustrates a comparison for two densities, indicating that
BitVI captures the overall density and cross-dependencies well, with approximation quality
increasing with the number of bits. For reference, we also include the exact target densities
and the approximation by full-covariance Gaussian VI (FCGVI) in Fig. 8.

3.2. Higher-dimensional densities: Bayesian Neural Networks

Next, we experiment with approximating the posterior density of the parameters of a
Bayesian NN model using BitVI. For simplicity, we use similar NN architectures in all the
NN experiments. We use two hidden layers in all experiments and only vary the number of
units. Additionally, we use the layer norm (Ba et al., 2016) to limit weight scaling.

Fig. 4 shows an uncertainty quantification example. We consider the two moons binary
classification problem with an NN ([8,8] hidden units). The predictive density shows that
BitVI provides both representative uncertainties and good decision boundaries compared to
the deterministic and mean-field Gaussian VI baselines.

To give a more quantitative treatment to the NN modeling task, we use the Bayesian
Benchmarks' community suite meant for benchmarking Bayesian methods in machine
learning. Bayesian benchmarks include common evaluation data sets (typically from UCI
(Kelly et al., 2025)) and make it possible to run many comparisons under a fixed evaluation
setup. We evaluate our approach in binary classification, and for an interesting probabilistic
treatment, we include small-data binary classification tasks with 100 < n < 1000 data
samples (25 data sets). We follow the standard setup of input point normalization and splits
in the evaluation suite. Additional details on the NN architectures and evaluation setup can
be found in App. E.2.

1. github.com/secondmind-labs/bayesian_benchmarks; originally by Salimbeni et al.

github.com/secondmind-labs/bayesian_benchmarks

SLADEK TRAPP SOLIN

Table 1: Bayesian benchmarks: Negative log predictive density (NLPD-<std, smaller
better) results on the Bayesian Benchmarks UCI tasks (5-fold CV). We comapre BitVI to
Gaussian MFVI and Full-covariance Gaussian VI (FCGVI). The best-performing method
for each task is bolded, and multiple methods bolded based on a paired t-test (p = 5%).

Dataset (n,d) MFVI FCGVI 2-BitVI 4-BitVI 8-BitVI

FERTILITY (100,10) 0.379.:0.107 0.406-+0.111 0.728+0.139 0.407-0.109 0.406-:0.112
PITTSBURG-BRIDGES-T-OR-D (102,8) 0.345-+0.168 0.34710.078 0.301+0.064 0.352+0.082 0.391+0.068
ACUTE-INFLAMMATION (120,7) 0.004-:0.001 0.021:£0.009 0.006::0.002 0.006:0.002 0.684-+0.031
ACUTE-NEPHRITIS (120,7) 0.003::0.001 0.014-£0.003 0.002::0.000 0.002:0.002 0.051£0.016
ECHOCARDIOGRAM (131,11) 0.446-:0.167 0.515:0.151 0.524:0.200 0.435:0.095 0.660-+0.132
HEPATITIS (155,20) 0.438:0.051 0.447:0.116 0.620:0.216 0.694:0.279 0.427:0.085
PARKINSONS (195,23) 0.322:0.151 0.284:0.109 0.253::0.008 0.261+0.061 0.289:0.06
BREAST-CANCER-WISC-PROG (198,34) 0.540--0.106 0.522:0.128 0.699-+0.087 0.584-0.073 0.548-0.087
SPECT (265,23) 0.614-0.067 0.624-:0.053 0.801+0.108 0.807+0.148 0.670-:0.125
STATLOG-HEART (270,14) 0.478:0.133 0.488:0.156 0.550.:0.207 0.606-0.270 0.478:0.147
HABERMAN-SURVIVAL (306,4) 0.535+0.062 0.523:0.054 0.531+0.042 0.5250.044 0.530-+0.036
IONOSPHERE (351,34) 0.288--0.091 0.276-0.092 0.335+0.126 0.459-+0.217 0.323-+0.127
HORSE-COLIC (368,26) 0.611-+0.159 0.595+0.163 0.618+0.119 0.690-+0.143 0.576-+0.103
CONGRESSIONAL-VOTING (435,17) 0.670-:0.093 0.700-0.126 0.699-0.105 0.704-0.108 0.644:0.018
CYLINDER-BANDS (512,36) 0.602:0.107 0.633-:0.050 0.835-:0.222 0.955-0.361 0.678:0.019
BREAST-CANCER-WISC-DIAG (569,31) 0.078+0.050 0.108-0.029 0.148-+0.050 0.172+0.152 0.155-+0.097
ILPD-INDIAN-LIVER (583,10) 0.547-0.059 0.547-+0.033 0.535-0.053 0.518-0.032 0.567-0.025
MONKS-2 (601,7) 0.083-+0.121 0.607+0.082 0.563+0.060 0.656+0.073 0.666+0.030
CREDIT-APPROVAL (690,16) 0.357-0.025 0.417-0.096 0.405+0.041 0.358-0.026 0.343+0.009
STATLOG-AUSTRALIAN-CREDIT (690,15) 0.662-0.035 0.650-+0.020 0.764+0.075 0.629-0.019 0.626-0.019
BREAST-CANCER-WISC (699,10) 0.091-0.042 0.105-0.041 0.171+0.113 0.168-+0.055 0.122+0.059
BLOOD (748,5) 0.483+0.058 0.483+0.036 0.486-+0.057 0.478:0.013 0.486-+0.039
PIMA (768,9) 0.516+0.045 0.507+0.012 0.512+0.039 0.492-0.031 0.492+0.042
MAMMOGRAPHIC (961,6) 0.428+0.039 0.468+0.044 0.430+0.053 0.417+0.039 0.423+0.019
STATLOG-GERMAN-CREDIT (1000,25) 0.547-0.066 0.557-:0.056 0.651-:0.002 0.646-0.101 0.894-:0.219

Table 1 shows the results for BitVI (with 2, 4, and 8 bits), mean-field Gaussian VI
(MFVI), and full-covariance Gaussian VI (FCGVI). Our approach performs competitively
with the standard VI baselines, even in the low-bit regime. BitVI with 4-bit and 8-bit
representations achieves comparable performance to MFVI and FCGVI, demonstrating that
probabilistic inference can be effectively conducted over bitstring representations without
significant loss in predictive power. Even 2-bit precision remains viable in several cases.

4. Conclusion

This work introduced BitVI, a novel approach for approximate Bayesian inference that
operates directly in the space of discrete bitstring representations. We demonstrated that
inference can be performed directly on bitstring representations of number systems while still
enabling effective approximate inference and uncertainty quantification. Our experiments
showcased the flexibility of BitVI across different settings: In Sec. 3.1, we illustrated its
ability to approximate complex non-Gaussian 2D densities; and in Sec. 3.2, we demonstrated
its effectiveness in a higher-dimensional Bayesian deep learning posterior inference setting,
providing robust uncertainty estimates while maintaining computational efficiency.

While BitVI provides a promising direction for flexible variational inference, several
limitations remain. Since the circuit models the bitstring of each parameter, our approach
introduces many new parameters to be optimized, which can result in further challenges for
high-dimensional settings. In order to scale to high-dimensional settings, our approach also
employed a mean-field approximation to the posterior, meaning dependencies between model
parameters were not modeled. In practical applications, however, modeling all dependencies
is likely unnecessary. Therefore, a promising future direction is to leverage more compact
circuit representations such as (Peharz et al., 2020).

BirVI

Acknowledgments

Arno Solin acknowledges funding from the Research Council of Finland (grant number
339730). Martin Trapp acknowledges funding from the Research Council of Finland (grant
number 347279). Aleksanteri Sladek acknowledges funding from the Finnish Doctoral
Program Network in Artificial Intelligence, AI-DOC (decision number VN/3137/2024-OKM-
6). We acknowledge the computational resources provided by the Aalto Science-IT project.
We thank the reviewers for their valuable feedback and suggestions.

References

Naoki Awaya and Li Ma. Unsupervised tree boosting for learning probability distributions.
Journal of Machine Learning Research, 25(198):1-52, 2024.

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv
preprint arXiv:1607.06450, abs/1607.06450, 2016.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432,
2013.

David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational inference: A review for
statisticians. Journal of the American Statistical Association, 112(518):859-877, 2017.

Oliver Broadrick, Honghua Zhang, and Guy Van den Broeck. Polynomial semantics of
tractable probabilistic circuits. In 40th Conference on Uncertainty in Artificial Intelligence
(UAI), Proceedings of Machine Learning Research, pages 418-429. PMLR, 2024.

Ismagl Castillo. Pélya tree posterior distributions on densities. Annales de ’Institut Henri
Poincaré, Probabilités et Statistiques, 53(4):2074 — 2102, 2017.

YooJung Choi, Antonio Vergari, and Guy Van den Broeck. Probabilistic circuits: A unifying
framework for tractable probabilistic models. Technical report, University of California,
Los Angeles (UCLA), 2020.

Thomas S. Ferguson. Prior Distributions on Spaces of Probability Measures. The Annals of
Statistics, 2(4):615 — 629, 1974.

Poorva Garg, Steven Holtzen, Guy Van den Broeck, and Todd Millstein. Bit blasting
probabilistic programs. Proc. ACM Program. Lang., 8, 2024.

Michael 1. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul. An
introduction to variational methods for graphical models. Machine Learning, 37:183-233,
1999.

Markelle Kelly, Rachel Longjohn, and Kolby Nottingham. The UCI machine learning
repository. https://archive.ics.uci.edu, 2025.

Donald E. Knuth. The Art of Computer Programming: Seminumerical Algorithms, volume 2.
Addison-Wesley Professional, 1997.

https://archive.ics.uci.edu

SLADEK TRAPP SOLIN

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv
preprint arXiv:2412.19487, 2024.

Daniel Lowd and Pedro Domingos. Approximate inference by compilation to arithmetic
circuits. pages 1477-1485, 2010.

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang,
Li Dong, Ruiping Wang, Jilong Xue, and Furu Wei. The era of 1-bit LLMs: All large
language models are in 1.58 bits. arXiv preprint arXiv:2402.17764, 2024.

Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp,
Guy Van den Broeck, Kristian Kersting, and Zoubin Ghahramani. Einsum networks: Fast
and scalable learning of tractable probabilistic circuits. In 37th International Conference
on Machine Learning (ICML), pages 7563-7574. PMLR, 2020.

Feras A. Saad, Martin C. Rinard, and Vikash K. Mansinghka. Sppl: probabilistic program-
ming with fast exact symbolic inference. In 42nd International Conference on Programming
Language Design and Implementation (ACM/SIGPLAN), pages 804-819, 2021.

Andy Shih and Stefano Ermon. Probabilistic circuits for variational inference in discrete
graphical models. In Advances in Neural Information Processing Systems 33 (NeurIPS).
Curran Associates, 2020.

Pat H. Sterbenz. Floating-point Computation. Prentice-Hall Series in Automatic Computa-
tion, 1974.

Martin Trapp and Arno Solin. On priors in Bayesian probabilistic circuits and multivariate
polya trees. In The 5th Workshop on Tractable Probabilistic Modeling, 2022.

Martin Trapp, Robert Peharz, Hong Ge, Franz Pernkopf, and Zoubin Ghahramani. Bayesian
learning of sum-product networks. In Advances in Neural Information Processing Systems
32 (NeurIPS), pages 6344-6355. Curran Associates, 2019.

Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso, and Guy Van den Broeck. A
compositional atlas of tractable circuit operations for probabilistic inference. In Advances
in Neural Information Processing Systems 34 (NeurIPS), pages 13189-13201. Curran
Associates, 2021.

Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential families, and
variational inference. Foundations and Trends®) in Machine Learning, 1(1-2):1-305, 2008.

Benjie Wang, Denis Deratani Maud, Guy Van den Broeck, and YooJung Choi. A composi-
tional atlas for algebraic circuits. In Advances in Neural Information Processing Systems
38 (NeurIPS). Curran Associates, 2024.

Ruizhe Wang, Yeyun Gong, Xiao Liu, Guoshuai Zhao, Ziyue Yang, Baining Guo, Zhengjun
Zha, and Peng Cheng. Optimizing large language model training using FP4 quantization.
arXiv preprint arXiv:2501.17116, 2025.

BirVI

Zhongjie Yu, Martin Trapp, and Kristian Kersting. Characteristic circuits. In Advances in
Neural Information Processing Systems 36 (NeurIPS). Curran Associates, 2023.

Appendix A. Background and Related Work

The relationship between continuous and discrete representations is fundamental to computa-
tional science. At its core, digital computation relies on discrete structures, with real-valued
quantities encoded as finite-length bitstrings (Ch. 4 Knuth, 1997). Floating-point arithmetic
provides an approximation to continuous values within this discrete framework, ensuring ef-
ficient numerical operations while introducing inherent precision limitations (Ch. 1 Sterbenz,
1974). In recent years, this foundational connection has gained renewed attention in machine
learning, particularly due to advances in quantization and low-precision arithmetic. While
these techniques are primarily motivated by hardware constraints, they also present an
opportunity: if inference can be formulated directly over discrete bitstring representations,
it may unlock new efficiencies in probabilistic modelling.

Bayesian inference provides a principled framework for reasoning under uncertainty,
yet exact inference remains intractable in most real-world scenarios. This has led to the
development of approximate inference techniques, such as variational inference (VI) (Blei
et al., 2017; Jordan et al., 1999; Wainwright and Jordan, 2008). VI formulates inference
as an optimization problem, where a parametric distribution is fitted to approximate the
posterior while minimizing the reverse KL divergence. Despite its scalability, VI is often
constrained by its reliance on continuous parameterizations, which can introduce numerical
instabilities and bias due to restrictive approximations such as mean-field or unimodality
assumptions. These limitations are apparent when operating under low-precision, raising
the question: Can we perform inference directly in a discrete representation space?

Probabilistic circuits (PCs) are a recent framework to study tractable representations of
complex probability distribution Choi et al. (2020). Depending on the structural properties
of the PC, certain inference scenarios can be rendered tractable (polynomial in the model
complexity) under the circuit while maintaining a high expressivity. While PCs are typically
employed for exact probabilistic inference, they have found successful application in approxi-
mate Bayesian inference, for example, as surrogate through compilation Lowd and Domingos
(2010), as variational distribution for structured discrete models (Shih and Ermon, 2020),
or in discrete probabilistic programs (Saad et al., 2021). Most related to our work, Garg
et al. (2024) utilized PCs over bitstring representation for efficient approximate inference
in probabilistic programs. This works highlight that PCs are a natural and promising
representational framework for approximate Bayesian and uncertainty quantification.

Appendix B. Motivation

Given a target density p, we aim to find a variational approximation ¢ that minimises the
divergence of p from g. As commonly done, we will focus on the reverse Kullback—Leibler
(KL) divergence of ¢ from p, instead of the forward KL. Moreover, we assume that g takes a
parametric form with parameters 0, i.e., qg. Therefore, the goal is find @ such that

KL(ao|7) = | aols)log (""“)) dr, 5)

TeEX p(:):)

SLADEK TRAPP SOLIN

is minimized, assuming that X C RY for some d > 1.

In general, computing Eq. (5) is intractable for two reasons: (i) p is often only known up
to an unknown normalisation constant Z,, and () p and ¢ do not exhibit sufficient structure
to render the integration tractable (Wang et al., 2024). Henceforth, one typically optimises
the evidence lower bound (ELBO), which can be written as

L(qo,p) = Eange [logp(z)] + H (g6) » (6)

where H(qg) = —Ez~q, [l0g go(x)] denotes the entropy of the variational distribution gg. In
case gg admits a tractable computation of the entropy, only the first term in Eq. (6) requires
numerical approximation.

Crucially, when computing either Eq. (5) or Eq. (6) on a computer each x will inevitably
be represented in a discretised form. In fact, every real-valued number is represented by
a series of bitstrings and mapped to the real line by a mapping function ¢: {0,1}? — R
given by the choosen number system. Consequently, any distribution p or ¢ represented on
a computer can be expressed in terms of a distribution over bitstrings. Fig. 5 illustrates the
representation of a real-valued number using an 8-bit fixed point representation.

Appendix C. Technical Details
C.1. The Fixed-point Number Representation System

The fixed-point number representation system represents one possible way to convert a
bitstring to a real valued number. Here we briefly review the sign-magnitude form of this
number representation system, in which the most significant bit is used to represent the sign of
a number (1 for negative, 0 for positive). The remaining bits are referred to as magnitude bits,
which are further divided into integer bits and fractional bits. As suggested by their names,
integer bits encode the integer part of the real value being represented and the fractional bits
the fractional part. In this case, integer bits encode which non-negative powers of two are
present in the integer being encoded and the fractional bits encode which negative powers of
two are present in the fractional number being encoded. For example in Fig. 5, the bit-string
illustrated encodes the computation 0% 22+ 1% 2! +0%20 + 04271 415272 415273 +1%274
(not including the sign-bit).

—-2375=[1]0[1]0]0][1[1][1] (8-bit fixed-point)
s?gﬂn integer fraction

Figure 5: Representation of ‘—2.375 using an 8-bit fixed-point number system with sign,
integer, and fraction bits.

C.2. Probabilistic Circuits

We will briefly review the main concepts related to probabilistic circuits (PC), relevant for
this work. For a more extensive discussion, we refer the reader to (Choi et al., 2020). Put
briefly, PCs are directed acyclic graphs that represent a probability distribution. Nodes in a
PC consist of sum nodes S, product nodes P and leaf nodes L. PCs are computational graphs,

10

BirVI

where sum nodes compute weighted sum of their child nodes and product nodes compute a
product of their children. Leaf nodes represent univariate or multivariate functions, such as
Gaussians. Given certain constraints on the structure of a PC graph, inference tasks such as
marginalisation can be performed efficiently. Below, a few of these properties are reviewed.

Definition 2 (Scope of a node) The scope of a node is the set of variables it depends on.
See (Trapp et al., 2019) for details.

Definition 3 (Smooth & decomposable circuit) A sum node is smooth if its children
have the same scope. A product node is decomposable if its children have pairwise disjoint
scopes. A circuit is smooth (resp. decomposable) if all its sum nodes are smooth (resp.
product nodes are decomposable).

Definition 4 (Deterministic probabilistic circuit) A probabilistic circuit f(x) is multi-
linear function represented by a computational graph consisting of sum nodes S(x) =
@iw; fi(x), product nodes P(x) = ®; fi(x), and leaf nodes consisting of tractable (univariate)
functions ¥;(x). The circuit f characterises a multivariate probability distribution over
random variables X1, ..., Xq by, for example, representing its mass, density or characteristic
function (Yu et al., 2023; Broadrick et al., 2024). Note that we assume that the circuit is
smooth and decomposable (Choi et al., 2020) and refer to App. C for details.

We call a sum node S deterministic if for each instantiation x only one summand is
positive. Consequently f is deterministic if all sum nodes are deterministic (Choi et al.,
2020).

In this work, we only consider circuits that fullfil both smoothness and decomposability
conditions as they both are required to render common inference tasks, such as density
evaluation and marginalisation, tractable.

C.3. Multivariate Bitstring Representations

So far, our induced variational distribution is only defined on the real line (univariate case).
To extend the approach to the multivariate case, we considered two approaches: (i) a
mean-field variational family, and (7i) a variational family model dependencies between
dimensions. To represent dependencies between the dimensions, we construct a deterministic
PC over the states of the bits of all the dimension jointly. In case of the fixed-point number
systems, the resulting circuit model recursively splits the domain into hyper-rectangles by
performing axis-aligend splits, alternate between dimensions in the construction. Note that
this construction results in a binary tree consisting of 28*P many leaves, where B is the
number of bits and D the number of dimensions. Thus, making it useful in low-dimensional
or low-precision settings. However, including conditional independencies in the model can
results in substantially more compact representations (Peharz et al., 2020; Garg et al., 2024).
We provide further details on the construction in App. C.

Applying the inverse CDF reparameterization for multivariate densities modelled with
BitVI requires further considerations. In case of a mean-field approximation, we apply the
inverse CDF reparameterization as described above independently for each dimension. If
BitVI represents a variational distribution that models dependencies between dimensions,

11

SLADEK TRAPP SOLIN

So
Wo w1
So S1
woo wo1 w10 w11
SOO 501 SlO S11
W00 wpp1 Wo10 wWp11 W100 w11 W110 w111
0n D EH By nh LD BDH G2

Figure 6: The decision process reflected the by the circuit.

we emply the inverse of the tree-CDF transformation (Awaya and Ma, 2024) which is a
map RP — [0,1]P where D is the number of dimensions. In particular, for a given input
y € [0,1]P, we compute the inverse tree-CDF transform of y by applying the following
axis-aligned linear transformations at each sum node, where Sy, denotes the sum node for
dimension d < D under bitstring ¢;. The axis-aligned transformations are given as:

ol yd—wd,sdo) if 4y > w
- C B d d,eq0
Fol =1 2 s , (7)

c Yd otherwise
0 wd,st

where with some abuse of notation Cy denotes the left child of S;.,, which corresponds
to a bit value of zero, and C; denotes the right child (bit value of one). As we alternate
dimensions at each level in the tree, decision are made only based on the ‘selected’ dimension
at each step. Computing the inverse of the tree-CDF transformation can still be perfomed
efficiently, i.e., in O(B * D) for B bits. To encourage that ¢ has a smooth density in the
limit of infinite precision, we leverage a depth regularisation scheme when optimizing the
circuit weights (see App. C.4 for further details).

As outlined in the main text, for multivariate distributions we generate a circuit model
that represents a distribution over hyper-rectangles. Let 2 denote the domain of the
distribution, we recursively construct a dyadic partition of the domain into measurable
subsets. This process is done by selecting a splitting dimension at each level of the tree
and spliting the hyper-rectange according to the number system representation, i.e., in the
middle for fixed-point numbers. At the next level, we select a splitting dimension our of
the remaining dimension (those that have not been split yet) and split the hyper-rectange
accordingly. We make sure each dimension has been split in the process, before restarting
the splitting. The construction ends if each dimension has been split B many times, where
B is the number of bits used in the number system. Fig. 7 illustrates the recursive splitting
of the input domain €2 into sub-domains (hyper-rectangles).

12

BirVI

level = 0 level = 1 level = 2
Aot | A

Q | A | A | — .
Ao | Ao

Figure 7: Hlustration of the iterative axis-aligned splitting of the domain into hyper-rectangles
(sub-domains) by the circuit.

C.4. Depth Regularization

To encourage that g has a smooth density in the limit of infinite precision, we leverage a
depth regularisation. The depth regularisation is based on Pdlya tree prior constructions for
priors over continuous probability distributions. Specifically, Ferguson (1974) proposed to
use a Beta prior one each weight of a Pdlya tree with symmetric a-parameter that has a
quadratic increase in depth j of the tree, i.e., a(j) = j2. An alternative parameterization is
was given by Castillo (2017), and is given as a(j) = 2/. In essence, both approaches ensure
that with increasing depth the prior probability of uniform distributed weight increases fast
enough. We adopt this approach and use Laplace smoothing of the circuit weights with a
depth depending smoothing factor. In particular, for bit b; (depth j) with j > 0 we define
each weight for b; = 0 as

Ve + ()
Veo + Vel + 200‘(]) ’

(8)

Weo =

where € denotes a j — 1 long binary string, vy > 0 is an unnormalised weight, and ¢ > 0 is a
hyper-parameter. The weight for €0 is given analogously.

Appendix D. Derivations

D.1. Entropy calculation example for a deterministic PC

Let C be a deterministic PC with a sum node Sy as its root and two children Pgy and Pg;.
Product nodes have two children, one of which is a leaf node and the other a sum node. For
example, P has a leaf node Lg0 and a sum node Sg0 as it’s children. Leaf nodes are indicator
functions Loo(x) = 1{zp = 0}, where 1{-} is the indicator function. All sum nodes in the

13

SLADEK TRAPP SOLIN

circuit have two children. Hence, Sg has weights wpg and 1 — wqg, where 0 < wgg < 1.

H[C(x)] = — /GXC(X) log C(x) ©)
—— [soxt0g (So))
xeX
- /EX [w00Po1 (%) + (1 — woo)Poo(x)] log { [wooPor (%) + (1 = woo)Poo(x)]} (11)
= _ /GX [wooLo1(xo) * Seo(X) + (1 — woo)Lo1 (o) * Soo(X)] * (12)
log {[UJ070L01 ($0) * SO,O()A() + (1 — woo)Lgo(x())Soyl(f()]} (13)
- _ /eX [wool {zo = 1}S01(%) + (1 — wee)1{zg = 0}Sgo(X)] * (14)
log {[wooL{zo = 1}Sp1 (k) + (1 — woo)L{zo = 0}Soo(%)]} - (15)

Where x denotes the vector x without variable xg.

Next partition the integral into two integrals leveraging the fact that,

/:EGX f(z)dx = /EGXA f(x)der/ f(z)dx, X = XAUXB,XAHXB = (. (16)

reXp

Here, the integral splits into subsets X, representing the set of all bit vectors & with z¢ = 1,
and respectively X-;, with all bit vectors & with o = 0. Hence,

/H[C(:B)] = — /EX [’wo()]l{xo = 1}501(X) + (1 — woo)]l{xo = O}SOO(X)] * (17)
log {[woo]l{zcg = 1}501 (X) + (1 — wog)]l{xo = O}Soo(x)]} (18)
_ / Twwl{a = 1500 + (1= woo) o = 0}Sw()] « (19

log {[woo]l{.ro = 1}501 (X) + (1 — woo)]l{$0 = O}Soo(X)}} . (20)

Now, each integral can be simplified since the indicator functions will always evaluate to
0 or 1 in the respective subsets of X, i.e.,

HC ()] = (21)

- /GX [(1 — wo0)Soo(x)] * log { (1 — w00)Soo(x)} - (22)

14

BirVI

As the two integrals have the same form, for notational simplicity we will only consider
the first integral (in orange). The second integral can be computed in the same way.

(23)
= / U}00501 (X) [log woo + 10g (501 (X))] (24)

XEXy,
= — / woo 1Og(w00)501(x) + ’IU()(]S(H(X) * log (501 (X)) (25)

xeXzo
= —Woo log(woo) / 501 (X) — Woo / 501 (X) * log (501 (X)) . (26)

XEX(EO XGXzO
Notice, that the second integral is the entropy of the sum node Sg;. Hence,
= —wWoo log(woo) / 501 ()A() + wO0H(501 (i‘)) (27)
XGX’L‘O
Furthermore, if Sg; is normalized, then fxEX Soi1(x)dx = 1, leading to the further
o
simplification,

= —woo log(woo) + wooH (So1(Z))- (28)

D.2. Reverse KL Divergence Calculation

Let us define a density ¢ and a density p. The reverse KL divergence of ¢ from p is denoted
as KL(¢|| p), and defined as:

= x)lo p() T
KL(g|| P) = [a(w)log 2 50a (29)
= —/q(a:) logq(x)dac+/q(x) log p(x) d. (30)

Note that — [g(x) log ¢(x) dz is the entropy of distribution ¢, and will be denoted as —H(q):

KL(q|p) = - [al@)logp(a)dz — (o). (1)
Note also that [g(x)logp(z)d is the expected value of the log-likelihood of p w.r.t. ¢:

KL(q|lp) = —Ez~q [logp(z)] — H (q) - (32)

Appendix E. Experimental Details
E.1. 2D Densities

We present results for 2D non-Gaussian target distributions. In Fig. 8, we include additional
results for typical benchmark target densities (mixture, Neal’s funnel, two-modal Gaussian,
ring, and banana) that we approximate with 4-bit/8-bit BitVI, which captures the overall
density and cross-dependencies well.

15

E.2.

SLADEK TRAPP SOLIN

MLP Neural Network Models

The experiments with the Bayesian-benchmarks data sets used the following hyperparameters
and setup:

E.3.

Adam optimizer with a learning rate of 0.001

Hidden layer size 16x16 for D < 500 and 32x32 for D > 500

Batch size of 32 for D < 500 and 128 for D > 500

64 samples for computing the Monte Carlo approximation of the posterior log-joint

Weight representations used 2 integer bits, except for the 2-bit model which used 0
integer bits

LayerNorm (Ba et al., 2016) applied to hidden layers (pre-activation)
Depth-based regularization for circuit parameters e d? with € = 0.1
Early stopping based on the validation set ELBO loss after 2000 epochs

Circuit weights were initialized from a beta distribution based on the height of the
sum node in the circuit. The beta distribution a and 3 were set as 2" where h is the
height of the sum node in the circuit.

5-fold cross-validation into train and test sets

Validation set split from the train set with 20% of the train set data

Ablation Studies

Banana Chopping

Training set of 2048 points

Validation set of 512 points

Adam optimizer with a learning rate of 0.01

Batch size of 256

LayerNorm (Ba et al., 2016) applied to hidden layers (pre-activation)

Weight representations used 10 bits with no integer bits. A sign bit and 9 fractional
bits.

Depth-based regularization for circuit parameters e d? with e = 0.001.

Circuit weights were initialized from a beta distribution based on the height of the
sum node in the circuit. The beta distribution a and 3 were set as 2" where h is the
height of the sum node in the circuit.

16

BirVI

Appendix F. Additional Results

The following section contains additional results.

F.1. Ablation Studies

Increasing Complexity of Target Distribution We consider an ablation study where
we control the target distribution complexity. For this, we constructed a mixture of
equidistant Gaussians and assessed the entropy of BitVI under varying number of bits under
three different amounts of variance for each Gaussian. Fig. 9 shows the fitted results of BitVI
(black) with 16 bits for target distributions with increasing complexity (gray) alongside the
entropy of BitVI under varying number of bits. The entropy (lower figures) shows the cut-off
for number of bits needed to represent each target, indicating that BitVI naturally exhibits
a parsimonious behaviour.

F.2. Trade-off Between Model Complexity and Bitstring Depth

In relation to NN applications, an interesting question is whether we actually need fine-grained
numerical accuracy for representing the model weights in the first place. Recent advances
in large-scale model training an inference suggest that rather than numerical accuracy, the
models benefit from more parameters which enable further flexibility. In relation to this
question, we study whether the models benefit from higher numerical granularity w.r.t.
probabilistic treatment.

In Table 2, we vary both the neural network complexity (units in the two hidden layers)
and the bitstring depth. We considser 2-12 bit models (with only fractional bits). The
negative log predictive density (NLPD, smaller better) on the two moons data suggests
that even low bit depth models perform well and the dominating factor in expressivity is
the number of units in the NN. In App. F, we include similar tables for both accuracy and
expected calibration error (ECE).

Do Bitstrings Capture Hierarchies in NNs? Finally, we use a neural network model
to study the hierarchies captured by BitVI. We start from a 10-bit NN BitVI results on the
Banana binary classification data set and gradually decrease the fractional precision of the
trained model, chopping off more granular levels of the model. Fig. 10 shows the results for
10, 8, 6, 4, and 2 bit models (2 integer bits each, except for the 2-bit model). Even the 4-bit
model (2 integer bits and 1 fractional bits) captures the overall structure well, whereas the
2-bit model (with no integer bits; only a sign bit and a fraction bit) struggles.

17

SLADEK TRAPP SOLIN

Target toy 2D density functions

Full-Covariance Gaussian VI

BitVI (8-bit) result

%0

BitVI (4-bit) result

Gaussian Neal’s Funnel Two-modal Banana
Mixture Gaussian

Figure 8: 2D non-Gaussian target distributions. We include results for typical benchmark
target densities (mixture, Neal’s funnel, two-modal Gaussian, ring, and banana) that we
approximate with 4-bit/8-bit BitVI, which captures the overall density and cross-dependencies
well.

18

BirVI

oc=0.1 o =0.075 o =0.05

il

T T
-2 0 2 -2 0 2 —2 0 2
5 8.
(=) o (=)
8 |
g | = ©
o o <
<© |
<
8 | 0 B
S © | S
T T T S T T T T T T
5 10 15 5 10 15 5 10 15

bits # bits # bits
Figure 9: Ablation result of BitVI (black) for target distributions with increasing complexity
(gray) and the precision used by the variational distribution to represent the target. The
entropy (lower figures) shows the cut-off for bit-string depth needed to represent each target.

2-bit

Figure 10: Chopping the banana: We start from a 10-bit NN BitVI results on the Banana
binary classification data set and gradually decrease the fractional precision of the trained
model. The low-bit models up to 4 bits capture the overall structure well. This is further
confirmed by the results in Table 2.

Table 2: Trade-off between NN model complexity (units in hidden layers) and bitstring
depth (2-12 bits). The negative log predictive density (NLPD, smaller better) on the two
moons data suggests that even low bit depth models perform well and the dominating factor
in expressivity is the number of units in the NN. See App. F for ACC/ECE.

Increasing NN complexity —
[4,4] [6,6] [8,8 [10,10] [12,12] [14, 14] [16, 16]

2 036 035 035 032 0.33 0.3 0.29

3 037 036 026 034 0.27 0.24 0.25
g 4 038 032 031 03 0.27 0.28 0.24
g 5 035 032 036 029 0.27 0.25 0.25
w 6 034 034 037 03 0.28 0.25 0.24
£ 7 031 03 03 026 0.28 0.25 0.24
Z 8 033 031 025 0.3 0.29 0.26 0.26
D 9 036 032 032 033 0.26 0.23 0.25

10 033 035 0.3 0.3 0.25 0.26 0.24

12 037 029 035 035 0.26 0.27 0.24

19

SLADEK TRAPP SOLIN

Table 3: Trade-off between NN model complexity (units in hidden layers) and bitstring depth
(2-12 bits). Accuracy and expected calibration error (ECE) on the two moons data suggests
that even low bit depth models perform well and the dominating factor in expressivity is
the number of units in the NN. See Table 2 in the main paper for the NLPD.

Table 4: Accuracy

[, 4] 6, 6] 8, 8] [10, 10] [12, 12] [14, 14] [16, 16]
2 0.856 0.85 0.852 0.87 0.868 0.888 0.89
3 0.854 0.857 0.903 0.865 0.897 0.909 0.906
4 0.852 0.879 0.88 0.884 0.904 0.898 0.909
5 0.86 0.877 0.854 0.895 0.901 0.909 0.913
6 0.863 0.861 0.853 0.887 0.895 0.91 0.906
7 0.882 0.883 0.888 0.899 0.896 0.909 0.905
8 0.874 0.877 0.909 0.884 0.886 0.909 0.904
9 0.864 0.873 0.873 0.877 0.897 0.914 0.909
10 0.87 0.862 0.886 0.884 0.912 0.899 0.909
12 0.852 0.888 0.863 0.863 0.898 0.895 0.908

Table 5: ECE

[4, 4 6, 6] 8, 8] [10, 10] [12, 12] [14, 14] [16, 16]
2 0.059 0.053 0.061 0.064 0.065 0.055 0.06
3 0.06 0.071 0.051 0.053 0.046 0.042 0.049
4 0.064 0.064 0.055 0.045 0.042 0.045 0.038
5 0.061 0.057 0.058 0.053 0.042 0.043 0.044
6 0.06 0.067 0.057 0.048 0.044 0.039 0.046
7 0.063 0.053 0.048 0.046 0.041 0.042 0.046
8 0.061 0.051 0.038 0.047 0.048 0.045 0.042
9 0.055 0.056 0.053 0.053 0.045 0.04 0.042
10 0.057 0.058 0.056 0.05 0.037 0.047 0.046
12 0.064 0.05 0.055 0.053 0.041 0.05 0.045

20

BirVI

21

	Introduction
	Methods
	BitVI: Variational Distributions over Bitstring Representations

	Experiments
	2D Densities
	Higher-dimensional densities: Bayesian Neural Networks

	Conclusion
	Background and Related Work
	Motivation
	Technical Details
	The Fixed-point Number Representation System
	Probabilistic Circuits
	Multivariate Bitstring Representations
	Depth Regularization

	Derivations
	Entropy calculation example for a deterministic PC
	Reverse KL Divergence Calculation

	Experimental Details
	2D Densities
	MLP Neural Network Models
	Ablation Studies

	Additional Results
	Ablation Studies
	Trade-off Between Model Complexity and Bitstring Depth

