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ABSTRACT

Human-Object Interaction (HOI) detection is crucial for robot-human assistance,
enabling context-aware support. However, models trained on clean datasets de-
grade in real-world conditions due to unforeseen corruptions, leading to inaccu-
rate prediction. To address this, we introduce the first robustness benchmark for
HOI detection, evaluating model resilience under diverse challenges. Despite ad-
vances, current models struggle with environmental variability, occlusions, and
noise. Our benchmark, RoHOI, includes 20 corruption types based on the HICO-
DET and V-COCO datasets and a new robustness-focused metric. We systemati-
cally analyze existing models in the HOI field, revealing significant performance
drops under corruptions. To improve robustness, we propose a Semantic-Aware
Masking-based Progressive Learning (SAMPL) strategy to guide the model to
be optimized based on holistic and partial cues, thus dynamically adjusting the
model’s optimization to enhance robust feature learning. Extensive experiments
show that our approach outperforms state-of-the-art methods, setting a new stan-
dard for robust HOI detection. Benchmarks, datasets, and code will be made
publicly available.

1 INTRODUCTION

Human-Object Interaction (HOI) detection aims to identify and interpret interactions between hu-
mans and objects Kim et al. (2021); Hou et al. (2021a); Zhang et al. (2022b); Tamura et al. (2021);
Kim et al. (2022); Hou et al. (2021b). It serves many critical applications, including autonomous
driving Martin et al. (2019); Peng et al. (2022), robotics Xu et al. (2020), video surveillance Dogariu
et al. (2020); Prest et al. (2013), and augmented reality Zhang et al. (2025), where a fine-grained
understanding of human behavior and object handling is paramount Gupta & Malik (2015).

In recent years, transformer-based models Zhang et al. (2022b); Tu et al. (2023); Zou et al. (2021)
and Vision-Language Models (VLMs) Cao et al. (2023); Gao et al. (2024); Chen et al. (2024b),
have achieved impressive success in the HOI detection field. These models excel at capturing in-
tricate relationships between human-object pairs by leveraging large-scale datasets and contextual
information.

Despite these advancements, existing models remain sensitive to real-life corruptions, particularly
semantic distortions like occlusions and perspective shifts, as well as environmental variations. Even
minor disturbances may pose significant risks in critical applications like autonomous driving and
robotics. Enhancing robustness under these conditions remains a crucial but unresolved challenge.
Existing HOI detection methods Zhang et al. (2022b); Tu et al. (2023); Cao et al. (2023) had their
performance evaluated predominantly under ideal conditions. Thus, a dedicated robustness bench-
mark tailored explicitly to HOI detection, covering both pixel-level and semantic-level corruptions,
is urgently required to put their resilience to the test.

In this paper, we introduce the Robustness benchmark for HOI detection (RoHOI), systematically
assessing HOI detection models under 20 diverse forms of data corruption. These were designed to
simulate real-world conditions. The HICO-DET Chao et al. (2018) and V-COCO Gupta & Malik
(2015) datasets served as starting point. We include robustness-focused metrics, such as the Mean
Robustness Index (MRI) Hendrycks & Dietterich (2019) and our novel Composite Robustness Index
(CRI). Through our evaluations of existing HOI detection methods on the newly proposed robustness
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Figure 1: Our RoHOI dataset comprises 20 types of algorithmically generated corruptions, system-
atically categorized into four groups. Each corruption type has five levels of severity, leading to a
total of 100 distinct corruptions. These corruptions simulate realistic semantic and structural distur-
bances specifically encountered in practical application.

test set, we observe that their performance is less than optimal. This finding underscores the need to
develop more robust HOI detection models.

To mitigate the issue of performance degradation, we propose our Semantic-Aware Masking-based
Progressive Learning (SAMPL) method. Specifically, we utilize SAM Kirillov et al. (2023) to iden-
tify HOI-relevant regions and subsequently apply a dynamic masking strategy with varying size
ratios. This approach enables the model to focus on both holistic and partial information, thereby
enhancing its robustness throughout the optimization process.

Our proposed learning strategy delivers superior HOI detection, retaining state-of-the-art (SOTA)
performance on a clean test set while delivering substantial improvements under corruptions. This
highlights the model’s enhanced resilience and reliability in challenging real-world conditions.

The main contributions of this paper are summarized as follows:

• We for the first time introduce a robustness benchmark specifically tailored to HOI detec-
tion. Our benchmark incorporates 20 distinct corruptions that closely mirror real-world
challenges and a set of robustness-focused metrics.

• We propose a novel semantic-aware masking curriculum learning approach that adaptively
guides the model to optimize learning on both holistic and partial information.

• SAMPL yields SOTA in terms of robustness, surpassing prior HOI models under both clean
and corrupted conditions.

2 RELATED WORK

Human-Object Interaction Detection. Human-object interaction (HOI) detection Yao & Fei-Fei
(2010); Fang et al. (2018); Gupta et al. (2019); Li et al. (2019); Wan et al. (2019); Park et al. (2018);
Xu et al. (2020); Yu et al. (2018); Zhang et al. (2015); Zhou et al. (2020) aims to automatically iden-
tify and interpret relationships between humans and objects, typically divided into two categories:
two-stage and one-stage approaches.

Two-stage HOI detection methods Qi et al. (2018); Xu et al. (2019); Liang et al. (2021); Zhou & Chi
(2019) first detect humans and objects independently before classifying interactions. Early CNN-
based approaches Xu et al. (2019); Zhou & Chi (2019); Qi et al. (2018) mainly utilized spatial
contexts for interaction modeling. Later graph-based methods Zhou & Chi (2019); Xu et al. (2019);
Ulutan et al. (2020); Wang et al. (2021); Zhang et al. (2021b) improved relational reasoning ex-
plicitly. Subsequent methods further enhanced precision via pose-aware representations Wan et al.
(2019), transformer-based unpaired modeling Zhang et al. (2022a), and integration-decomposition
strategies Li et al. (2020).

One-stage HOI detection methods Yuan et al. (2023); Zhang et al. (2023) predict human–object
interactions in a single forward pass, improving efficiency. Early approaches rely on point-level
matching (e.g. PPDM Liao et al. (2020)) or union-level ROI features (e.g. UnionDet Kim et al.
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(2020)). Later methods refine localization via glance-and-gaze attention (e.g. Zhong et al. (2021)).
Transformer-based pipelines further enrich relational context, and methods like RLIPv2 Yuan et al.
(2023) combine vision and language modalities for enhanced semantic generalization.

Recent trends explore generative priors and robust-aware training. DIFFUSIONHOI Li et al. (2024)
integrates a text-to-image diffusion model to derive relation-aware prompts, while HOI-IDiff Hui
et al. (2025) recasts each human–object prediction as an “HOI image” and generates it with a cus-
tomized diffusion process. UAHOI Chen et al. (2024a) explicitly models prediction uncertainty and
incorporates it into the objective, yielding more stable interaction predictions. Although promising,
these approaches are still evaluated on clean benchmarks. In contrast, our work introduces RoHOI,
a dedicated benchmark of 20 corruption types, and proposes SAMPL to strengthen robustness under
perturbation.

Visual Robustness Benchmarks. Robustness benchmarks have been widely established to assess
visual model resilience across various tasks Chattopadhyay et al. (2021); Wang et al. (2024); Sarkar
et al. (2024); Schiappa et al. (2024); An et al. (2024); Liu et al. (2024b); Yi et al. (2024); Kamann
& Rother (2020); Ma et al. (2024b); Hao et al. (2024); Xie et al. (2025); Hao et al. (2025); Liu et al.
(2024c); Michaelis et al. (2019); Zeng et al. (2024), including image classification (ARES-Bench Liu
et al. (2024a)), visual question answering Ishmam et al. (2024), common corruption evaluation
(ImageNet-C Hendrycks & Dietterich (2019)), attribute editing robustness (ImageNet-E Li et al.
(2023)), one-shot skeleton-based action recognition under occlusion Peng et al. (2023), and robust
document layout analysis (RoDLA Chen et al. (2024c)). However, robustness benchmarks explicitly
designed for HOI detection have not been explored. In this work, we address the uncharted robust
HOI detection area by constructing the new RoHOI benchmark and by putting forward the SAMPL
method to achieve more reliable HOI detection performance.

3 BENCHMARK

Corruptions. To rigorously assess the robustness of HOI detection, we introduce our dedicated
RoHOI benchmark, designed to evaluate model performance under real-world corruptions. Existing
benchmarks such as ImageNet-C Hendrycks & Dietterich (2019) primarily cover low-level pixel dis-
turbances like brightness or blur. In contrast, RoHOI explicitly includes semantic-level corruptions
specifically tailored to challenge spatial and relational reasoning critical for HOI detection. RoHOI
explicitly introduces 20 corruptions derived from HICO-DET and V-COCO images, categorized
into four groups: optical system artifacts such as motion blur and glass blur; sensor, compression,
and transmission distortions such as packet loss and JPEG artifacts; environmental effects including
exposure imbalance and occlusion; and geometric or structural disruptions such as screen cracks,
elastic deformation, and perspective distortion. The corruptions range from pixel-level noise to
semantic-level challenges that affect spatial alignment and interaction reasoning. Each corruption is
implemented with five severity levels to support detailed analysis under progressively more difficult
conditions.

Optical System-induced (OS) Artifacts degrade spatial clarity and obscure interaction details by dis-
torting object boundaries. Our benchmark includes motion blur (MB), defocus blur (DB), and Gaus-
sian blur (GauB), which simulate degradation caused by camera movement, defocus, and signal
processing. We refine glass blur (GB) to better replicate distortions caused by imaging through
uneven or scratched glass surfaces.

Sensor, Compression and Transmission (SCT) Artifacts stem from hardware limitations, lossy en-
coding, and data transmission errors. Alongside standard corruptions like Gaussian noise (GauN),
shot noise (ShN), salt-and-pepper noise (S&P), JPEG artifacts (JPEG), and speckle noise (SN), we
introduce packet loss (PL), which simulates data degradation due to incomplete transmissions.

Environmentally Induced (EI) Artifacts alter image quality due to external conditions. Extreme
lighting variations cause exposure (EXP) distortion. The rainbow effect (RE) misaligns color chan-
nels, distorting object hues. Occlusion (OCC) removes critical visual information when foreign
objects block key scene elements, while the vignette effect (VE) creates uneven brightness, reducing
visibility at image borders.

Geometric and Scene (G&S) Distortions alter spatial relationships and object proportions. Moire
patterns (MP) create artificial wave-like distortions in high-frequency textures. Screen crack (SC)
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introduce irregular fractures and glare artifacts, while elastic transformation (ET) warp object struc-
tures. Perspective distortion (PD) skews object shapes when captured at extreme angles. Pixelation
(PIX) replaces fine details with block-like artifacts due to low-resolution rendering, and zoom blur
(ZB) degrades object sharpness through rapid motion along the optical axis.

Datasets. To evaluate robustness under real-world corruptions, we use two widely adopted HOI de-
tection datasets: HICO-DET and V-COCO. HICO-DET Wang et al. (2020) contains 47, 776 images
with 600 interaction classes derived from 117 action classes and 80 object categories. Each image
is annotated with human-object pairs and their corresponding interactions, making it a benchmark
for evaluating diverse HOI scenarios. V-COCO Gupta & Malik (2015) is a subset of MS-COCO Lin
et al. (2014) with 10, 346 images, 16, 199 human instances, 81 object categories and 29 verb classes.
Unlike HICO-DET, which provides a fine-grained benchmark, V-COCO evaluates model perfor-
mance on common human-object interactions. Evaluating these datasets under corruption provides
a systematic robustness assessment beyond clean-image performance.

Baselines. To systematically assess robustness, we benchmark representative two-stage and one-
stage HOI detectors spanning transformer pipelines and vision–language training paradigms. For the
two-stage family, we include UPT Zhang et al. (2022a), which detects humans and objects before
interaction classification using a unary–pairwise transformer, and GEN-VLKT Liao et al. (2022),
which adopts a guided-embedding association design and a visual–linguistic knowledge transfer
(VLKT) strategy that transfers CLIP text embeddings via initialization and a mimic loss rather than
performing generic VLM pretraining. For the one-stage family, we evaluate QPIC Tamura et al.
(2021) as a query-based pairwise transformer detector, CDN Zhang et al. (2021a) as an end-to-end
cascade disentangling network, and DiffHOI Yang et al. (2023) which injects text-to-image diffu-
sion priors to enrich relational cues. We further include FGAHOI Ma et al. (2024a) with fine-grained
anchors, QAHOI Chen & Yanai (2023) with query-based anchors, MUREN Kim et al. (2023) with
multiplex relational context learning, and SOV-STG Chen et al. (2023) with subject–object–verb
decoding guided by specific-target denoising. Finally, we consider RLIPv2 Yuan et al. (2023),which
incorporates region-language alignment for fine-grained interaction reasoning. Additionally, we
develop SAMPL, which is built upon RLIPv2 and incorporates semantic-aware masking-based pro-
gressive learning. Our benchmark systematically evaluates these models across diverse corruption
types and severity levels, providing a comprehensive assessment of HOI detection robustness.

Evaluation Metrics. We evaluate the clean test set of HICO-DET Wang et al. (2020) using mAP at
Intersection over Union (IoU) 0.5 for all (Full), rare (<10 instances), and non-rare (≥10 instances)
categories Yuan et al. (2023). For the clean test set of V-COCO Gupta & Malik (2015), we use AProle
for interaction detection, with AP#1

role for action recognition and AP#2
role requiring object localization

at IoU 0.5. To evaluate HOI detection performance on our robustness benchmark, we introduce
two robustness-focused metrics: Mean Robustness Index (MRI) and Composite Robustness Index
(CRI). MRI, following the definition in prior work Hendrycks & Dietterich (2019), measures average
performance under corruptions but overlooks stability across severity levels. To address this, we
propose CRI, which penalizes performance variance while normalizing against clean-set accuracy,
ensuring models with consistent robustness are appropriately rewarded.

Mean Robustness Index (MRI) serves as a baseline measure of a model’s average performance across
corruption types and severities:

MRI =
1

C

C∑
c=1

(
1

Lc

Lc∑
l=1

Mc,l

)
. (1)

While MRI provides an overall robustness estimate, it does not capture variability across severities.

Composite Robustness Index (CRI) counterbalances this by penalizing instability and normalizing
to clean-set performance:

CRI =
1

C

C∑
c=1

(
M c

Mclean
· 1

log
(
1 + σc

)
+ 1

)
. (2)

Conventions for MRI/CRI. C is the number of corruption types; Lc is the number of severity levels
for corruption c. Mc,l denotes the task metric evaluated at level l of corruption c; M c and σc are,
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Table 1: Comparison of HOI detection methods on HICO-DET and V-COCO under clean and cor-
rupted settings. Results on HICO-DET are reported on Full, Rare and Non-Rare splits; V-COCO
results use AP#1

role and AP#2
role. Columns Backb., Det., VLM indicate whether a model uses a pre-

trained backbone, a detection-model pretraining, or vision–language pretraining. MRI and CRI
quantify robustness under corruptions (higher is better).

Method Backbone Pretraining HICO-DET (mAP) V-COCO (AProle)
Backb. Det. VLM Full Rare Non-Rare MRI↑ CRI↑ AP#1 AP#2 MRI↑ CRI↑

Two-Stage methods
UPT Zhang et al. (2022a) R50 ✓ ✓ ✗ 31.66 25.94 33.36 17.77 0.23 58.96 64.47 35.92 0.15
GEN-VLKT-S Liao et al. (2022) R50 ✓ ✓ ✗ 33.75 29.25 35.10 17.01 0.22 62.41 64.46 34.69 0.19
UPT Zhang et al. (2022a) R101 ✓ ✓ ✗ 32.31 28.55 33.44 17.44 0.24 60.70 66.20 33.80 0.14
GEN-VLKT-L Liao et al. (2022) R101 ✓ ✓ ✗ 34.95 31.18 36.08 18.93 0.23 63.58 65.93 37.45 0.20

One-Stage methods
QPIC Tamura et al. (2021) R50 ✓ ✗ ✗ 29.07 21.85 31.23 13.13 0.21 58.80 60.98 30.04 0.19
CDN-B Zhang et al. (2021a) R50 ✓ ✗ ✗ 31.78 27.55 33.05 15.41 0.22 62.29 64.42 34.30 0.19
DiffHOI Yang et al. (2023) R50 ✓ ✗ ✗ 34.41 31.07 35.40 21.09 0.23 – – – –
SOV-STG-S Chen et al. (2023) R50 ✓ ✗ ✗ 33.80 29.28 35.15 16.94 0.22 62.88 64.47 34.40 0.20
MUREN Kim et al. (2023) R50 ✓ ✗ ✗ 32.88 28.70 34.13 16.32 0.23 68.10 69.88 37.10 0.18
QPIC Tamura et al. (2021) R101 ✓ ✗ ✗ 29.90 23.92 31.69 14.45 0.22 58.27 60.74 32.05 0.19
CDN-L Zhang et al. (2021a) R101 ✓ ✗ ✗ 32.07 27.19 33.53 17.05 0.24 63.91 65.89 37.65 0.20
FGAHOI Ma et al. (2024a) Swin-T ✓ ✗ ✗ 29.81 22.17 32.09 16.05 0.22 – – – –
QAHOI Chen & Yanai (2023) Swin-T ✓ ✗ ✗ 28.47 22.44 30.27 15.07 0.25 58.23 58.70 29.33 0.20
RLIPv2 Yuan et al. (2023) Swin-T ✓ ✗ ✓ 38.60 33.66 40.07 24.58 0.28 68.83 70.76 45.05 0.24
SAMPL (ours) Swin-T ✓ ✗ ✓ 39.16 33.89 40.73 24.25 0.29 69.04 71.13 48.83 0.27

respectively, the mean and standard deviation of {Mc,l}Lc

l=1; Mclean is the clean-set score. Unless
otherwise specified, we instantiate M as mAP (Full) on HICO-DET and AP#2

role on V-COCO.

By combining absolute accuracy with stability across severities, CRI favors models that retain con-
sistent performance under progressively challenging corruptions, complementing the mean-focused
view provided by MRI.

4 METHOD

In this section, we present our novel Semantic-Aware Masking-based Progressive Learning
(SAMPL), aiming to enhance model robustness by progressively guiding models from holistic fea-
ture reliance towards robust contextual inference. Unlike standard augmentation methods, SAMPL
employs adaptive semantic masking guided by SAM Kirillov et al. (2023), dynamically adjusting
masking severity based on validation performance. This structured semantic-level masking strat-
egy explicitly promotes robust contextual reasoning by training models to infer interactions from
progressively restricted semantic regions, thus effectively improving general robustness against a
variety of realistic disturbances. Moreover, SAMPL’s structured progressive curriculum inherently
regularizes feature representation, effectively reducing overfitting to dataset biases, thereby further
improving generalization under unforeseen corruptions.

SAM Guided HOI-Aware Semantic Masking (SAMSM). To fully leverage clean training data,
we generate instance-aware masks based on ground-truth bounding boxes and SAM-derived fine-
grained masks (Mb). Random edge expansions are applied to prevent strict reliance on instance
contours, selectively masking semantic regions while preserving contextual cues. During training,
masked pixels are set to zero, compelling the model to infer interactions from partial visual infor-
mation.

We define various severity levels for the mask, represented by Ω = {ω1, ω2, ω3, ω4}, corresponding
to clean, low, middle, and high levels. Clean level ω1 employs unmasked data for holistic feature
learning, while other levels apply increasing occlusion severity via controlled cover ratios

[
rwω , r

h
ω

]
.

Each semantic mask Mb
ω is computed as:

Mb
ω = Φ(ConvHull(Dilation(Mb)),

[
rwω , r

h
ω

]
), (3)

where dilation and convex hull operations refine the mask shape, and Φ denotes resizing. This
structured masking approach not only simulates realistic semantic occlusions but also inherently
promotes context-aware reasoning, significantly enhancing robustness against various semantic and
structural corruptions.
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Algorithm 1 SAMPL
Input: Severity levels of semantic aware masking: Ω = {ω1, ω2, ω3, ω4}, initial threshold: τinit,
maximum epochs: T , HOI detection model: Hθ.
Initialize: N(Ω)← 14×1, ∆Qmax ← −∞, p← 2.

1: for t = 1 to T do
2: Compute Qω(t) for ω ∈ {ω1, ωp} usingHθ.
3: Get Sωp

(t) =
∑

i N(ωi) ·Qωp
(t). Get Sω1

(t) = N(ω1) ·Qω1
(t).

4: Select severity level ω∗ = argminω∈{ω1,ωp} Sω(t).
5: if ω∗ ̸= ω1 then
6: Compute ∆Q(t) =

Qωp (t)−Qωp (t−1)

Qωp (t−1) .
7: Update ∆Qmax = max(∆Qmax, |∆Q(t)|).
8: Compute τ(t) = τinit · ∆Qmax

|∆Q(t)|+ϵ .
9: if |∆Q(t)| < τ(t) and p < 4 then

10: p := p+ 1. Train model on ωp.
11: N(ωp) := N(ωp) + 1. ∆Qmax ← −∞
12: else Train model on ω∗. N(ω∗) := N(ω∗) + 1.
13: end if
14: else Train model on ω1. N(ω1) := N(ω1) + 1.
15: end if
16: end for

Score Guided Progressive Feature Learning. To effectively utilize SAM-guided masks, we design
a novel score-guided progressive learning framework that incorporates a frequency memory bank
across severity levels.

Initially, training begins with the lowest severity level, while a memory bank is designed to track
the utilization frequency of different severity levels. The perturbation level is then progressively in-
creased based on the relative change in the evaluation metric between consecutive epochs. Notably,
the severity level is only upgraded when the selected level differs from ω1. Let ∆Q(t) represent the
relative change in the evaluation score on the validation set at epoch t:

∆Q(t) =
Qω(t)−Qω(t− 1)

Qω(t− 1)
, (4)

where Qω(t−1) is the evaluation metric for the current masking severity level in the previous epoch.
To ensure stability, the perturbation level is upgraded when the magnitude of ∆Q(t) falls below a
dynamically adjusted threshold τ(t):

τ(t) = τinit ·
∆Qmax

|∆Q(t)|+ ϵ
, (5)

where τinit is the initial threshold, ∆Qmax = maxk≤t |∆Q(k)| is the maximum observed relative
change in Q up to epoch t, and ϵ is a small constant to avoid division by zero.

The severity level l is updated as:

p :=

{
p+ 1 if |∆Q(t)| < τ(t) and p < 4,

p otherwise.
(6)

At epoch t, let N(ω) represent the number of times one severity level ω has been selected up to
epoch t to serve as the aforementioned frequency memory bank. Let Qω(t) denote the validation
performance for severity level ω at epoch t. The severity level score Sω(t) is thereby defined as:

Sωp
(t) =

∑
i

N(ωi) ·Qωp
(t), ωi ∈ Ω/{ω1}. (7)

Then we obtain Sω1 = N(ω1) · Qω1(t). At each epoch, the next training severity level is chosen
between the original data ω1 (i.e., lowest severity level to achieve holistic feature learning) and ωp.
The selected severity level ω∗ is determined as:

ω∗ = arg min
ω∈{ω1,ωp}

Sω(t). (8)

The whole procedure is summarized in Alg. 1.
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(a) (b)

Figure 2: (a) Performance degradation of RLIPv2 Yuan et al. (2023) on HICO-DET and V-COCO
under RoHOI. The left radar chart shows the relative mAP (Full) drop on HICO-DET, while the
right shows the decline in AP#2

role on V-COCO. Clean dataset performance serves as a reference,
with shaded areas indicating corruption impact. (b) Comparison of SAMPL with strong two-stage
and one-stage baselines trained on V-COCO under RoHOI benchmarks. The left bar chart groups
performance by corruption categories, while the right radar chart compares models across five sever-
ity levels for three corruptions. Corruptions are denoted as Abbreviation, i.e., Lγ, where γ represents
the severity level. Details are shown in Sec. 3 and Appendix.

5 EXPERIMENTAL RESULTS

Implementation Details. Our SAMPL method is built upon RLIPv2 Yuan et al. (2023) with a Swin-
Tiny Liu et al. (2021) backbone and has 214M trainable parameters. The backbone is pretrained on
Visual Genome Krishna et al. (2017), MS-COCO Lin et al. (2014) and Object365 Shao et al. (2019),
and fine-tuned on the HICO-DET or V-COCO datasets. We use the AdamW optimizer Loshchilov
& Hutter (2019) with an initial learning rate of 1e-4 (backbone and text encoder at 1e-5), linear
warmup followed by cosine decay, weight decay of 1e-4, and batch size 2 per GPU with gradient
accumulation over 2 steps. Models are trained for 80 epochs using cross-entropy loss for object clas-
sification, focal loss for verb classification, and L1 + GIoU loss for bounding, with KL divergence
for latent space regularization. The encoder and decoder consist of 6 and 3 layers, respectively.
For the dynamic severity adjustment mechanism, we set the initial threshold as τinit = 0.15 and
ϵ = 10−6.

Analysis of the Benchmark. Tab. 1 presents the performance comparison between SAMPL and
existing one-stage and two-stage HOI detection methods on HICO-DET Wang et al. (2020) and
V-COCO Gupta & Malik (2015) datasets. SAMPL surpasses RLIPv2 Yuan et al. (2023), improv-
ing MRI by 3.78 and CRI by 12.5% on V-COCO, demonstrating superior robustness against visual
degradations. On HICO-DET, SAMPL achieves a 3.6% higher CRI while maintaining comparable
MRI, ensuring strong generalization without compromising clean-set accuracy. These results are
further supported by Fig. 2 (b), where SAMPL consistently outperforms two-stage and one-stage
baselines across all 4 corruption categories in the RoHOI benchmark, achieving the highest MRI in
each group and demonstrating improvements over the current SOTA model at every severity level
(detailed in the Appendix). While extreme noise levels still pose challenges, SAMPL significantly
improves robustness compared to prior methods by progressively training the model with semantic-
aware occlusions, enabling it to learn context-driven features that are resilient to diverse and severe
corruptions. These results highlight SAMPL’s effectiveness in enhancing HOI detection under cor-
rupted conditions through our proposed semantic-aware masking and progressive learning. Through
a comprehensive analysis of representative HOI models, we derive the following key findings.

Observation 1: Vision–language relational pretraining is associated with higher corruption-
robustness. Within each dataset (Tab. 1), HOI detectors trained with relational vision–language
objectives occupy the top tier of MRI/CRI, while transformer-based counterparts without such cross-
modal relational supervision lag behind. A plausible mechanism is that relational fusion during pre-
training aligns verb–object evidence and regularizes interaction features against distribution shift;
We interpret this pattern as associative rather than causal; backbone capacity remains a potential
confounder.

Observation 2: Backbone scaling yields architecture-dependent effects; association/decoding de-
sign mediates robustness. Table 1 shows a divergence: enlarging the backbone reduces MRI/CRI
for a query-based two-stage pipeline (UPT, R50→R101), whereas scaling a guided-association two-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: Qualitative comparison of HOI detection under corruption between SAMPL (ours) and
RLIPv2 Yuan et al. (2023). The first row shows uncorrupted images, while the second and third
rows present SAMPL and RLIPv2 results on corrupted images. Missed predictions are in dashed
red, false interactions in red, and correct ones in blue.

Table 2: Ablation studies on V-COCO. (a) Ablation on various perturbation strategies during train-
ing: SAM-guided HOI-aware Semantic Masking (SAMSM), Adaptive Gaussian Noise Perturbation
(AGNP), and Randomized Pixelation Perturbation (RPP). (b) Ablation on training with different
severity level combinations for SAMSM: each instance is masked based on 40%–80% of its bound-
ing box height and width, using three candidate levels during training.

(a) Training perturbation strategies

Perturbation Type V-COCO MRI⇑ CRI⇑AP#1 role AP#2 role
RLIPv2+SAMSM 68.27 70.24 48.20 0.27
RLIPv2+AGNP 68.33 70.51 44.74 0.24
RLIPv2+RPP 67.69 69.64 47.59 0.25

(b) SAMSM cover ratio combinations
Cover Ratios V-COCO MRI⇑ CRI⇑AP#1 role AP#2 role
40%/50%/60% 69.04 71.13 48.83 0.27
40%/60%/70% 68.51 70.53 48.44 0.27
50%/60%/80% 68.21 70.29 48.26 0.27
50%/70%/80% 68.52 70.45 45.72 0.22

stage framework (GEN-VLKT, S→L) improves both metrics. Robustness under corruptions there-
fore depends more on how human–object evidence is formed and decoded. Representative mecha-
nisms include guided embeddings and decoupled instance/interaction decoding, which outweigh the
effect of model size alone.

Observation 3: Clean-set accuracy and robustness are partially decoupled; stability is a distinct
axis captured by CRI. Multiple entries in Tab. 1 attain strong clean AProle yet only mid-range
CRI, whereas others with comparable clean scores exhibit higher CRI. This mirrors corruption-
benchmarking results emphasizing that mean accuracy and stability under corruptions probe differ-
ent properties of the representation; CRI operationalizes the latter by rewarding low inter-severity
variance and complements MRI’s mean view.

Observation 4: Progressive semantic masking primarily improves stability (CRI) and smooths sever-
ity–performance curves. Relative to a strong vision–language pretrained baseline in Tab. 1, SAMPL
consistently increases CRI within each dataset, while MRI gains are moderate or dataset-dependent.
This pattern aligns with evidence that self-attentive encoders are sensitive to patch-level corruptions:
structure-aware, progressive masking encourages attention to retain relational evidence under partial
visibility, yielding smoother severity–performance profiles without sacrificing clean accuracy.

Analysis of the Ablation Study. To investigate the impact of perturbation-based training on model
robustness, we conduct a series of ablation experiments on the V-COCO dataset. The results, pre-
sented in Tab. 2, analyze the effects of different perturbation types and perturbation level settings on
model performance.

Ablation of the Semantic-Aware Masking: Tab. 2 (a) evaluates three perturbation strategies applied
independently during training, excluding our progressive learning method to isolate their direct im-
pact. SAM guided HOI-aware Semantic Masking (SAMSM) is applied in 50% of training epochs,
occluding instance’s regions while preserving contextual cues. Adaptive Gaussian Noise Perturba-
tion (AGNP) introduces feature-level noise with a 50% probability, while Randomized Pixelation
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Perturbation (RPP) pixelates input images with the same probability as data augmentation. SAMSM
achieves the highest MRI and CRI scores, suggesting that structured occlusions enhance robustness
by enforcing relational reasoning under missing object regions. Unlike AGNP, which perturbs latent
features without spatial structure, SAMSM provides localized challenges that align with real-world
occlusions. Despite expectations that RPP would improve robustness—given that pixelation causes
the most significant performance drop in baseline corruption tests (as shown in Fig. 2 (a))—its
randomized nature indiscriminately distorts both essential and redundant information, making adap-
tation less effective. These results suggest that robustness in HOI detection benefits more from
structured perturbations that challenge object-awareness rather than indiscriminate degradations that
introduce confounding artifacts.

Effect of Perturbation Levels: Tab. 2 (b) analyzes the impact of masking severity on robustness.
SAMSM occludes 40%–80% of each instance’s bounding box, with the 40%/50%/60% setting
achieving the best trade-off, maximizing MRI and CRI while maintaining competitive AP scores.
Moderate occlusions enhance feature learning via contextual cues, while excessive masking (>
70%) disrupts spatial structures, reducing discriminative capacity. These findings emphasize the
need for controlled occlusions that challenge models without excessive information loss.

Overall, perturbation-based training enhances HOI detection robustness, with SAMSM proving
most effective by balancing global context preservation and local feature resilience. Moderate per-
turbation achieves optimal robustness without sacrificing clean-data accuracy.

Analysis of the Qualitative Results. Fig. 3 compares SAMPL with RLIPv2 under various corrup-
tions, demonstrating SAMPL’s superior robustness in the first four cases while highlighting shared
failure patterns in the last two. Under Screen Crack corruption (Col. 1), SAMPL accurately detects
occluded background persons and their “ride” interactions, whereas RLIPv2 misses smaller subjects,
indicating SAMPL’s stronger resilience to fragmented textures, as SAMPL uses semantic-aware
masking that selectively occludes HOI-relevant regions, training the model to recognize interactions
from partial and degraded visual cues. In Pixelation noise (Col. 2), our method correctly recog-
nizes “work on computer”, while RLIPv2 misclassifies it as “cut”, suggesting greater robustness
against structured perturbations. Under Salt-and-Pepper Noise (Col. 3), RLIPv2 confuses “sit” with
“ride”, likely due to the presence of an adjacent animal, whereas SAMPL maintains stable interac-
tion recognition, reducing reliance on object-centric biases. In Moire Pattern (Col. 4) corruption,
RLIPv2 incorrectly detects “talk on phone”, possibly due to moire-induced distortions interfering
with high-frequency texture recognition. However, under high-severity Glass Blur (Col. 5) and
Moire Pattern corruption (Col. 6), both models misclassify actions as “surf” or “talk on phone”, po-
tentially because V-COCO’s limited action categories encourage overfitting to common interactions
under extreme degradation rather than a traditional long-tail distribution issue. These results high-
light SAMPL’s advantages in structured occlusions and texture-based corruptions. However, both
models remain vulnerable under severe degradations, where dataset priors dominate predictions.

6 CONCLUSION

In this work, we introduced RoHOI, the first benchmark dedicated to evaluating the robustness of
Human-Object Interaction (HOI) detection models under 20 diverse real-world corruptions. Our
analysis revealed that even state-of-the-art approaches degrade substantially under perturbations,
underscoring the need for robustness-focused evaluation. To address this challenge, we proposed
SAMPL (Semantic-Aware Masking-based Progressive Learning), which leverages SAM-generated
region-aware masks and a dynamic progressive masking strategy to strengthen resilience. Extensive
experiments on HICO-DET and V-COCO showed that SAMPL consistently outperforms strong
baselines under corruption while preserving state-of-the-art performance on clean benchmarks. Be-
yond performance gains, our results highlight that clean accuracy and robustness are only partially
coupled, that structured perturbations provide more effective robustness cues than random noise,
and that architecture design plays a crucial role in stability. While RoHOI captures a broad range of
corruptions, it still focuses on synthetic perturbations; future work should explore robustness under
real-world domain shifts, extreme degradations, and fairness-aware evaluation. We envision Ro-
HOI as a catalyst for advancing robustness research in HOI detection, and SAMPL as an initial step
toward building reliable and deployable models for safety-critical applications.
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This work introduces both a methodological contribution and a new benchmark for robust HOI.
All experiments are performed exclusively on publicly available datasets from the HOI research
community, whose ethical standards have been validated through publication in leading venues. The
research poses no concerns related to privacy, security, fairness, bias, or harmful applications, and
fully adheres to established principles of research integrity and ethical practice.
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A APPENDIX

A.1 SOCIAL IMPACT AND LIMITATIONS

Social Impact: We introduce RoHOI, the first benchmark for assessing HOI detection robustness
under real-world corruptions, incorporating 20 degradation types to bridge the gap between theoret-
ical advancements and deployment. Robust HOI detection is crucial for safety-critical applications,
yet existing models struggle with occlusions and noise. To address this, we propose SAMPL, a
semantic-aware masking and progressive learning approach that enhances resilience to distortions,
outperforming SOTA models in both clean and corrupted settings. However, challenges remain,
including biased predictions and disparities across interaction categories, underscoring the need for
further research in bias mitigation, domain adaptation, and fairness-aware robustness.

Limitations: RoHOI focuses on synthetic corruptions but may not fully capture real-world domain
shifts like scene-specific occlusions and adversarial attacks, highlighting the need for real-world
corrupted data. While SAMPL improves robustness, it still struggles with severe distortions (e.g.,
moire patterns, glass blur), indicating the need for further architectural advancements.

A.2 STANDARD HOI EVALUATION METRICS

This section provides a detailed explanation of the evaluation metrics used for HICO-DET Xu et al.
(2019) and V-COCO Gupta & Malik (2015) in our main paper. These include the standard mAP
metrics for HICO-DET and AProle variations for V-COCO.

A.2.1 mAP: FULL, RARE, NON–RARE

We evaluate models on HICO-DET using the standard mAP under an IoU threshold of 0.5. The
reported metrics include mAP (Full), which evaluates all 600 HOI categories; mAP (Rare), assess-
ing performance on low-frequency categories with fewer than 10 instances; and mAP (Non-Rare),
focusing on categories with at least 10 instances.

A.2.2 AP#1
ROLE AND AP#2

ROLE

We evaluate V-COCO using AProle, which measures interaction detection accuracy. AP#1
role assesses

action recognition without strict role object localization. AP#2
role requires both action and object

localization, with an IoU threshold of 0.5.

A.3 CORRUPTION TYPES IN THE DATASET

Building upon the general introduction in the main text, this section provides a more detailed break-
down of the 20 corruption types used in our RoHOI benchmark.

A.3.1 OPTICAL SYSTEM-INDUCED (OS) ARTIFACTS

Motion Blur (MB): Blur caused by the relative motion between the camera and the scene during
exposure. This artifact is included as it commonly occurs in dynamic scenes or when handheld
cameras are used. Severity levels are generated by increasing the kernel size of a linear motion blur
filter. (Details shown in Figure 4, row 1.)

Defocus Blur (DB): Blur resulting from the lens being improperly focused on the subject. This noise
reflects the limitations of camera focus systems, particularly in low-light or high-speed scenarios.
Severity levels are controlled by varying the radius of a circular point spread function (PSF). (Details
shown in Figure 4, row 2.)

Gaussian Blur (GauB): Blur due to scattering or inherent optical limitations of the lens. This
artifact simulates the diffusion of light caused by imperfect optical surfaces or aperture settings.
Severity levels are adjusted by increasing the standard deviation of the Gaussian kernel. (Details
shown in Figure 4, row 3.)
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Level 1 Level 2 Level 3 Level 4 Level 5

Motion Blur
(MB)

Defocus Blur
(DB)

Gaussian Blur
(GauB)

Glass Blur
(GB)

Figure 4: Visual examples of Optical System (OS)-Induced artifacts across severity levels.

Level 1 Level 2 Level 3 Level 4 Level 5

Salt-and-Pepper
Noise
(S&P)

JPEG
Artifact
(JPEG)

Speckle Noise
(SN)

Gaussian
Noise

(GauN)

Shot Noise
(ShN)

Packet Loss
(PL)

Figure 5: Visual examples of Sensor, Compression and Transmission (SCT) artifacts across severity
levels.

Glass Blur (GB): Blur introduced when imaging through imperfect or contaminated transparent ma-
terials (e.g., glass or plastic). This type is included to represent common real-world challenges such
as photographing through windows or protective covers. Severity levels are generated by applying
iterative small displacements and local blurring. (Details shown in Figure 4, row 4.)

A.3.2 SENSOR, COMPRESSION AND TRANSMISSION (SCT) ARTIFACTS

Salt-and-Pepper Noise (S&P): Discrete black-and-white pixel noise caused by sensor malfunction
or transmission errors. This represents rare but impactful noise patterns in hardware-limited imaging
systems. Severity levels are generated by increasing the probability of random pixel corruption.
(Details shown in Figure 5, row 1.)

JPEG Artifacts (JPEG): Blocky or blurry artifacts resulting from lossy image compression, which
are used to evaluate model robustness to low-quality image formats frequently encountered in data
storage and transmission. Severity levels are controlled by progressively reducing the JPEG quality
factor. (Details shown in Figure 5, row 2.)
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Level 1 Level 2 Level 3 Level 4 Level 5

Exposure
(EXP)

Rainbow
Effect
(RE)

Occlusion
(OCC)

Vignette
Effect
(VE)

Figure 6: Visual examples of Environmentally Induced (EI) artifacts across severity levels.

Speckle Noise (SN): Speckle noise resembles the grainy texture seen on old printed photos or low-
quality digital images taken in dim lighting. At lower severity levels, it appears as faint specks of
dust on a camera lens, barely noticeable unless viewed closely. As severity increases, the noise
becomes more pronounced, resembling the rough texture of sandpaper or the graininess of a poorly
printed newspaper. At the highest severity levels, the effect is akin to heavy rain blurring a car
windshield, significantly degrading image clarity. (Details shown in Figure 5, row 3.)

Gaussian Noise (GauN): Additive noise caused by sensor imperfections such as thermal noise
or quantization errors. This is a ubiquitous noise model, reflecting baseline sensor limitations in
most imaging devices. Severity levels are determined by progressively increasing the noise standard
deviation. (Details shown in Figure 5, row 4.)

Shot Noise (ShN): Random variations in pixel intensity caused by photon-counting statistics during
exposure. This noise type represents the fundamental physical limits of image sensors in low-light
conditions. Severity levels are controlled by adjusting the scale of the Poisson-distributed noise.
(Details shown in Figure 5, row 5.)

Packet Loss (PL): Missing or distorted image regions caused by data corruption during transmis-
sion. This noise simulates real-world challenges in wireless or network-based imaging systems.
Severity levels are generated by increasing the number and size of corrupted or duplicated regions.
(Details shown in Figure 5, row 6.)

A.3.3 ENVIRONMENTALLY INDUCED (EI) ARTIFACTS

Exposure Artifacts (EXP): Loss of image details caused by underexposure or overexposure due
to extreme lighting conditions. Higher severity levels increase the intensity of overexposure (bright
regions saturate) or underexposure (dark regions lose details), leading to stronger visual degradation.
This type is included to represent real-world challenges in scenes with poor or uncontrolled lighting.
(Details shown in Figure 6, row 1.)

Rainbow Effect (RE): Typically caused by the interaction between the projection system’s optical
components (e.g., color wheels in DLP projectors) and the camera sensor. As severity increases, the
color distortion becomes more pronounced, with broader and more intense rainbow bands appearing
across the image, significantly altering local color distribution. This noise enables the evaluation of
model robustness against chromatic distortions, particularly in scenes involving projected displays
and reflective surfaces. (Details shown in Figure 6, row 2.)

Occlusion (OCC): Partial obstruction of the field of view by external objects. Increasing severity
levels introduce randomly placed black rectangular occlusions of varying sizes, progressively re-
moving more contextual information from the image. This is a critical inclusion as occlusions are
prevalent in crowded or dynamic environments. (Details shown in Figure 6, row 3.)
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Level 1 Level 2 Level 3 Level 4 Level 5

Moire Pattern
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Screen Crack
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Elastic
Transform
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Perspective
Distortion

(PD)

Pixelation
(PIX)

Zoom Blur
(ZB)

Figure 7: Visual examples of Geometric and Scene (G&S) Distortions across severity levels.

Vignette Effect (VE): Gradual darkening at the edges of an image caused by lens design or aperture
settings. With higher severity, the vignette effect has darker and wider peripheral regions, increas-
ingly suppressing details in the outer parts of the image. This type represents a common optical
limitation that affects peripheral details in wide-field imaging. (Details shown in Figure 6, row 4.)

A.3.4 GEOMETRIC AND SCENE (G&S) DISTORTIONS

Moire Pattern (MP): Interference patterns resulting from fine texture overlap with the camera’s
pixel grid (e.g., fabric or screens). This artifact captures the challenges posed by imaging repetitive
textures or high-frequency patterns. Severity levels adjust the density and contrast of the interference
patterns. (Details shown in Figure 7, row 1.)

Screen Crack Artifacts (SC): Visual obstructions or patterns caused by photographing through
cracked or damaged surfaces. This type is included to reflect realistic scenarios where images are
captured through broken screens or fractured glass. Higher severity levels introduce progressively
denser and larger crack patterns, further obscuring the image. (Details shown in Figure 7, row 2.)

Elastic Transform (ET): Non-linear distortions caused by perspective changes, material deforma-
tions, or uneven air density. This artifact represents challenges encountered in scenes with flexible
or moving objects. Higher severity levels correspond to greater displacement magnitudes, leading
to noticeable warping. (Details shown in Figure 7, row 3.)

Perspective Distortion (PD): This artifact simulates geometric distortions from lens imperfections,
such as barrel and pincushion distortion. Severity is increased by applying progressively stronger
transformation matrices, exaggerating the curvature and altering the perceived structure of objects.
(Details shown in Figure 7, row 4.)

Pixelation (PIX): Blocky appearance due to low resolution or excessive digital zoom. This rep-
resents a key limitation in devices with constrained sensor capabilities or in images subjected to
aggressive downscaling. Higher severity levels result in coarser pixel blocks, significantly reducing
image detail. (Details shown in Figure 7, row 5.)

Zoom Blur (ZB): Radial blur caused by rapid changes in focal length during image capture. Zoom
blur is simulated by iteratively applying slight scaling transformations and averaging the results to
create a progressive radial blur effect. Higher severity levels increase both the scaling intensity and
the number of blended layers, leading to a stronger blur radiating outward from the center. This
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Table 3: Comparison of MRI scores between our SAMPL method and the best-performing one-stage
and two-stage HOI detection models on the RoHOI benchmark. The table presents results across 20
corruption types, evaluating model robustness under diverse corruptions. Corruption abbreviations
follow the definitions provided in the main paper.

Model MB DB GauB GB GauN ShN S&P JPEG SN PL EXP RE OCC VE MP SC ET PD PIX ZB

CDN-L Zhang et al. (2021a) 15.38 10.12 48.73 7.56 41.67 60.92 28.78 56.89 24.24 28.18 64.67 41.06 49.75 67.07 30.67 44.30 37.33 50.79 22.39 22.45
GEN-VLKT-L Liao et al. (2022) 14.64 9.90 48.27 7.74 40.50 60.63 28.37 56.31 20.40 28.52 64.94 40.48 50.48 67.48 32.42 44.21 38.27 51.15 21.11 23.24
MUREN Kim et al. (2023) 15.71 12.10 51.08 6.77 41.65 62.59 26.08 56.32 20.46 23.89 66.65 38.55 51.78 69.12 25.63 44.36 38.79 52.34 15.97 22.22
RLIPv2-ParSeDA Yuan et al. (2023) 25.31 17.84 57.82 12.99 50.91 66.72 50.58 64.68 40.11 38.34 68.39 55.99 54.61 69.82 45.93 59.14 48.14 53.01 26.12 29.73
SAMPL (Ours) 26.63 19.03 58.56 13.87 52.46 68.06 52.66 65.81 42.24 46.69 69.22 57.31 62.04 70.77 47.89 60.72 48.99 53.21 29.90 30.49

method ensures a smooth and natural-looking zoom effect without abrupt artifacts. (Details shown
in Figure 7, row 6.)

A.4 PURPOSE OF INCLUSION

These noise types are selected to comprehensively represent real-world scenarios that affect image
quality, ranging from optical and sensor limitations to environmental and dynamic scene factors.
Their inclusion ensures the dataset’s relevance for evaluating model robustness in diverse and real-
istic conditions.

A.5 BENCHMARK RESULTS ON CORRUPTION TYPES

Table 3 presents the MRI scores of our SAMPL method compared to the strongest one-stage and
two-stage HOI detection baselines on the RoHOI benchmark. SAMPL consistently outperforms
prior methods across all 20 corruption types, achieving the highest scores in every category. Notably,
our approach shows significant improvements in handling severe degradations such as pixelation
and packet loss, demonstrating enhanced robustness. These results validate the effectiveness of our
SAMPL strategy in improving model resilience against real-world corruptions.

A.6 LLM USAGE STATEMENT

In this work, large language models (LLMs) were used as general-purpose assistant tools to improve
writing clarity and grammar. Specifically, LLMs helped draft some introductory text and proofread
the paper to enhance readability. All scientific content and research ideas were developed by the
authors without direct generation or invention by LLMs. The authors take full responsibility for the
integrity and originality of the work.
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