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Foundation Models for Hemodynamic Time Series: A
New Paradigm in Cardiovascular Data Modeling
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Abstract

Hemodynamic waveforms encode rich physiological signals essential for cardiovas-
cular assessment, but scalable interpretation has been constrained by the need for
labeled data and expensive imaging. Leveraging ~34,000 hours of finger-cuff and
arterial blood pressure waveforms from ~12,000 subjects—collected with Edwards
Lifesciences ClearSight and FloTrac devices—we develop a transformer-based
foundation model that learns robust representations of cardiovascular dynamics.
Trained with self-supervised learning, the model delivers sample-efficient perfor-
mance, matching state-of-the-art benchmarks using only 30% of labeled data, in
detecting aortic stenosis and reduced left ventricular ejection fraction. To our
knowledge, this is the first foundation model trained solely on blood pressure
waveforms for screening cardiovascular diseases.

1 Introduction

The modeling of hemodynamic waveforms represents a fundamental pillar in cardiovascular assess-
ment, as these continuous pressure traces contain rich physiological information that extends far
beyond simple systolic and diastolic values. Blood pressure waveforms encode critical details about
cardiac contractility, vascular compliance, wave reflection patterns, and arterial stiffness — parameters
that are essential for understanding the underlying pathophysiology of cardiovascular disease and
guiding optimal therapeutic interventions [[1,[2]. In recent years, foundation models have triggered a
paradigm shift in healthcare [3| 4], moving beyond task-specific algorithms to versatile, adaptable
systems trained on massive and diverse datasets. These models leverage self-supervised learning to
develop rich representations that can be rapidly adapted to new clinical tasks with minimal additional
training. This capability is particularly valuable in healthcare, where labeled data is often scarce,
expensive to obtain, and subject to privacy constraints.

In the context of hemodynamic monitoring, foundation models can transform raw physiological
signals into complex temporal and morphological biomarkers, facilitating early detection of car-
diovascular deterioration, personalized risk stratification, and precise hemodynamic optimization
strategies. In this work, we introduce a novel hemodynamic foundation model that leverages the
latest advances in transformer-based time-series modeling [5, |6} (7} |8] to address two of the most
challenging cardiovascular conditions: aortic stenosis [9]] and reduced left ventricular ejection fraction
[LO]. Uniquely, our approach relies solely on continuous, noninvasive arterial pressure waveforms
obtained via the Edwards Lifesciences Clearsight finger-cuff, eliminating the need for costly, operator-
dependent modalities such as echocardiography or cardiac MRI. By enabling automated, real-time
waveform analysis at the point of care, this approach promises rapid, cost-effective screening and
early intervention to mitigate the progression of cardiovascular dysfunction.

Submitted to Learning from Time Series for Health Workshop, 39th Conference on Neural Information Process-
ing Systems (NeurIPS 2025).
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2 Methodology

As shown in Figure [I] our goal is to train a foundational model for blood pressure waveforms by
designing an encoder F' : RT — R that converts a fixed-length univariate time series x € R’
into a latent vector of dimension (). During the pre-training phase, we utilize a large unlabeled
dataset X to learn task-agnostic representations. Then, in the downstream phase, given a labeled
dataset (X,Y), we generate embeddings Z = {F(x) | x € X}, which are used to train a classifier
h:R® — {1,..., K} for task-specific predictions.
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Figure 1: Hemodynamic foundation modeling.

2.1 Numerically Scale-Aware Tokenization

Following the principle of NuTime [8], we normalize each window to stabilize gradient propagation,
while separately embedding the mean and standard deviation to preserve physiologically meaningful
pressure values. Given a univariate pressure waveform x = (x1,xa, ..., z), we divide it into N
non-overlapping windows. For each window x(M i=1,...,N, we compute its normalized shape
% = % The normalized shape vector %) the scalar mean 1;, and the scalar standard
deviation Jizare embedded independently with a linear layer followed by layer normalization:

ezhape _ LayerNorm(Wshape)A((i) + bshape)’

e!' = LayerNorm(W*"u; + b"), e = LayerNorm(W?%g; + b7).

These embeddings are concatenated to form the initial token t\”) = [e5"; e/; €7]. An additional
linear layer with layer normalization is then applied: ; = LayerNorm(Wnal(®)  pfinal) Finally,
positional encoding p; is added to each token to incorporate temporal order, yielding the final token

sequence T = [t1 + p1;t2 + P2;-..;tn + PN].

2.2 Masked Waveform Pre-Training with Transformers

We feed the token sequence into a Flan-T5 transformer encoder, which has been successfully applied
to time-series data in models such as MOMENT [[7]. The Flan-T5 encoder, composed of stacked
self-attention layers and feed-forward networks, captures both local and global temporal dependencies
by learning contextual representations over the entire sequence.

The core of the transformer encoder is the multi-head self-attention mechanism. For an input token
sequence T € RV*4  the queries Q, keys K, and values V are computed as linear projections:
Q = TW? K = TWE, V = TWV, where W@, WK WV € R¥* are learned parameter
matrices. The scaled dot-product attention is then computed as:

Attention(Q K V) = softmax < > V
i )
\/dk

Multi-head attention concatenates the outputs of h separate attention heads: MultiHead(T) =
Concat(head,, ..., head,)W© where each head is head; = Attention(Q;, K;, V;), and W ¢
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RMdx >4 ig a learned projection matrix. Following the multi-head attention, position-wise multilayer
perceptron (MLP) are applied independently to each token:

MLP(z) = GELU(#W + by )W3 + by

where W, € R4Xdmi» "W, € Rémi»*d Layer normalization and residual connections are employed
around both attention and feed-forward sublayers to stabilize training Z() = LayerNorm(Z(l -4

MultiHead(Z(~1)), and Z") = LayerNorm(Z") + MLP(Z")) where Z(®) = T.

To train the model in a self-supervised manner, a fraction of input tokens are masked, and the model
predicts the masked values from the surrounding context. After passing through L such Transformer
layers, the contextual embeddings Z(%) corresponding to masked positions are passed through a

position-wise linear decoder. Let T,qx denote the masked tokens, T,s the corresponding model
predictions, and M the set of masked indices. The masked modeling loss is defined as:

1 . s 2
Em « = —— HT(l) _ T(l) ‘
ask ‘Ml lezj\/l mask mask

2.3 Downstream Model Training with Stochatic Weight Averaging

During downstream model training, the pretrained embeddings Z are fed into a MLP. We do not use
a linear model because the pretrained features are strong but inherently nonlinear [11]]. To improve
generalization and stability, we apply Stochastic Weight Averaging (SWA) [[12], which averages
model weights over multiple points along the gradient descent trajectory. This approach also enables
robust downstream architectures that can be flexibly applied across different tasks. The running
average weight w at step m is updated as:

_ m—1_ 1

Wm=——"—"Wpn_1+ —Wp

m m

Weight averaging is performed in the later phase of training by traveling in small steps along connected
paths of low loss between different models, enabling effective ensembling of diverse solutions. Using
w as final weights leads to flatter minima with better generalization.

We use focal loss to handle class imbalance and focus learning on hard examples. For binary
classification, the focal loss is:

Liocal(pr) = —ow(1 — py) 7 log(pe)

where p; is the predicted probability for the true class, a; balances class weights, and v controls
down-weighting of easy samples. Focal loss not only improves accuracy but also helps reduce model
overconfidence, resulting in better calibrated predictions [13].

3 Experimental Results

3.1 Datasets

Pre-Training Dataset: We curated a large-scale dataset of arterial blood pressure waveforms collected
over the course of more than a decade using Edwards Lifesciences ClearSight (non-invasive finger-
cuff) and FloTrac (invasive arterial line) monitoring systems. The dataset comprises 12,267,124
waveform segments, each 10 seconds long, from 11,967 unique subjects, spanning a total of 34,075
recording hours. Each waveform was sampled at 100 Hz and and underwent mean removal. To reduce
high-frequency noise while preserving physiologically relevant dynamics, signals were low-pass
filtered at 10 Hz prior to segmentation. The dataset’s diversity across patient demographics, clinical
conditions, and hemodynamic states provides a strong basis for developing foundation models.

Task-specific Dataset: We used two downstream datasets focused on detecting moderate to severe
aortic stenosis (AS) and reduced left ventricular ejection fraction (LowEF, defined as LVEF < 40%).
Labels were derived from transthoracic echocardiography (TTE), the clinical gold standard. This
retrospective study, conducted at the Cleveland Clinic from December 2020 to March 2022, included
patients referred nationwide, ensuring broad geographic diversity. Data from December 2020 to
October 2021 were used for model training, and data from October 2021 to March 2022 formed an
independent test set. The AS dataset included 1,444 subjects (183 positive), and the LowEF dataset
included 3,956 subjects (336 positive).
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3.2 Implementation Details

The Flan-T5-Large encoder serves as our foundation model backbone, consisting 24 transformer
blocks with hidden size 1024, 16 attention heads, and feed-forward size 2816, using absolute
positional embeddings. We pretrain with 50% token masking (patch size §), Adam optimizer, batch
size 250, and learning rate 1 x 10~ for 10 epochs on a Tesla V100. For downstream tasks, frozen
embeddings are pooled to 1024 features and passed to a two-layer MLP with hidden size 512.

3.3 Results and Discussion

Table 1: Test performance on aortic stenosis (AS) and low ejection fraction (LowEF) detection tasks.

AS detection

AUROC (wr.r.t training subject percentage)

Model 57 0% 30% 0% T00% Sensitivity ~ Specificity
Task-specific  0.724 £0.065 0.788 +£0.041 0.832+0.029 0.857+0.025 0.881 0.802 0.77
Ours 0.760 £ 0.060 0.821 +0.032 0.878 +0.018 0.896 + 0.008 0.918 0.802 0.836
MOMENT [7] 0.740£0.049 0.780+0.017 0.780+0.024 0.786 +0.016 0.802 0.802 0.654
bioFAME [14] 0.742+0.043 0.769 £0.024 0.803 +£0.022 0.814+0.016 0.828 0.802 0.685

LowEF detection

Model - AUROlC(f) éow.r.t training ;gtzect percentdgse(g% 0% Sensitivity ~Specificity
Task-specific  0.747£0.004 0.810+0.010 0.875+0.004 0.884+0.006 0.895 0.806 0.818
Ours 0.812 +0.018 0.860 +0.012 0.900 + 0.006 0.903 + 0.003 0.908 0.806 0.851
MOMENT [7] 0.705+0.033 0.774+£0.009 0.840+0.008 0.851+0.009 0.865 0.806 0.726
bioFAME [14] 0.761 £0.067 0.825+0.011 0.866+0.011 0.872+0.003 0.880 0.806 0.801

Table [I] shows that our model consistently outperforms both the task-specific CNN base-
lines—supervised models separately optimized for each clinical task—and state-of-the-art time-
series foundation models, including MOMENT (pretrained on large-scale public data) and bioFAME
(pretrained in the frequency domain on our dataset). This performance advantage holds across all
training data regimes for both cardiovascular conditions. The benefit is most pronounced in low-data
settings: even with only 5% or 10% of the training data, our model sustains higher AUROC scores,
highlighting its strong data efficiency and generalizability under limited supervision. Notably, with
just 30% of the training data, our model matches the performance of the task-specific CNN trained on
the full 100%, underscoring significant improvements in training efficiency. At full data availability,
our model achieves AUROC scores of 0.918 for AS and 0.908 for LowEF detection—exceeding the
CNN baseline (0.881 and 0.895), MOMENT (0.802 and 0.865), and bioFAME (0.828 and 0.880). For
fair comparison, all models are evaluated at the same high sensitivity level, prioritizing the detection
of positive cases; under this setting, our approach achieves substantially higher specificity, reflecting
improved discrimination of true negatives.

The strong performance of our model is driven by three key components. First, scale-aware tokeniza-
tion preserves physiologically meaningful features such as pulse pressure dynamics—particularly
critical for AS detection—that are often lost in other foundation models relying on instance nor-
malization [15]. Second, large-scale masked waveform pretraining equips the model to learn rich
cardiovascular representations, enabling strong generalization even in low-data regimes. Finally,
weight averaging during downstream training enhances robustness and supports hyperparameter
transferability across diverse clinical tasks, resulting in consistent performance gains.

4 Conclusion

This work introduces a foundation model for hemodynamic waveforms, demonstrating that large-scale
self-supervised learning on cardiovascular signals enables accurate and data-efficient screening for
critical conditions. By moving beyond task-specific modeling, we show how waveform foundation
models can unlock scalable, noninvasive, and cost-effective cardiovascular assessment at the point of
care. Looking forward, this paradigm opens new opportunities for real-time monitoring, longitudinal
risk stratification, and integration into broader multimodal healthcare systems, paving the way toward
more accessible and proactive cardiovascular medicine.
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