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Abstract

Hemodynamic waveforms encode rich physiological signals essential for cardio-
vascular assessment, but scalable interpretation has been limited by the need
for labeled data and costly imaging. Leveraging approximately 34,000 hours of
finger-cuff and arterial blood pressure waveforms from about 12,000 subjects,
collected using Edwards Lifesciences ClearSight and FloTrac devices, we develop
a transformer-based foundation model that learns robust representations of car-
diovascular dynamics. Trained with self-supervised learning, the model achieves
sample-efficient performance, matching state-of-the-art benchmarks while using
only 30% of labeled data for detecting aortic stenosis and reduced left ventricular
ejection fraction. To our knowledge, this is the first foundation model trained solely
on blood pressure waveforms for cardiovascular disease screening.

1 Introduction

The modeling of hemodynamic waveforms represents a fundamental pillar in cardiovascular assess-
ment, as these continuous pressure traces contain rich physiological information that extends far
beyond simple systolic and diastolic values. Blood pressure waveforms encode critical details about
cardiac contractility, vascular compliance, wave reflection patterns, and arterial stiffness — parameters
that are essential for understanding the underlying pathophysiology of cardiovascular disease and
guiding optimal therapeutic interventions [1} 2]]. In recent years, foundation models have triggered a
paradigm shift in healthcare [3} 4], moving beyond task-specific algorithms to versatile, adaptable
systems trained on massive and diverse datasets. These models leverage self-supervised learning to
develop rich representations that can be rapidly adapted to new clinical tasks with minimal additional
training. This capability is particularly valuable in healthcare, where labeled data is often scarce,
expensive to obtain, and subject to privacy constraints.

In the context of hemodynamic monitoring, foundation models can transform raw physiological
signals into complex temporal and morphological biomarkers, facilitating early detection of car-
diovascular deterioration, personalized risk stratification, and precise hemodynamic optimization
strategies. In this work, we introduce a novel hemodynamic foundation model (Figure [T)) inspired by
recent advances in large-scale time-series modeling [5, 6} [7, 8] to address two of the most challenging
cardiovascular conditions: aortic stenosis [9] and reduced left ventricular ejection fraction [10].
Uniquely, our approach performs disease detection using only continuous, noninvasive arterial pres-
sure waveforms obtained via the Edwards Lifesciences Clearsight finger-cuff, eliminating the need
for costly, operator-dependent modalities such as echocardiography or cardiac MRI. By enabling au-
tomated, real-time waveform analysis at the point of care, this approach promises rapid, cost-effective
screening and early intervention to mitigate the progression of cardiovascular dysfunction.
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2 Methodology

Our goal is to train a foundational model for blood pressure waveforms by designing an encoder
F : RT — R that converts a fixed-length univariate time series x € R’ into a latent vector of
dimension (). During the pre-training phase, we utilize a large unlabeled dataset Xg to learn task-
agnostic representations. Then, in the downstream phase, given a labeled dataset (X,Y'), we generate
embeddings Z = {F(x) | x € X}, which are used to train a classifier h : R® — {1,..., K}.
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Figure 1: Hemodynamic foundation modeling.

2.1 Pressure-Aware Tokenization

Following the principle of NuTime [8], we normalize each window to stabilize gradient propagation,
while separately embedding the mean and standard deviation to preserve physiologically meaningful
pressure values. Given a univariate pressure waveform x = (1, 22, ..., z7), we divide it into N
non-overlapping windows. For each window x(?), i = 1,..., N, we compute its normalized shape

% = x(li‘i—u The normalized shape vector %) the scalar mean 1, and the scalar standard
deviation o; are embedded independently with a linear layer followed by layer normalization:
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These embeddings are concatenated to form the initial token ¢, = [e e!';e7]. An additional

2.2 Masked Waveform Pre-Training with Transformers

We feed the token sequence into a Flan-T5 transformer encoder, which has been successfully applied
to time-series data in models such as MOMENT [[7]. The Flan-T5 encoder, composed of stacked
self-attention layers and feed-forward networks, captures both local and global temporal dependencies
by learning contextual representations over the entire sequence.

The core of the transformer encoder is the multi-head self-attention mechanism. For an input token
sequence T € RV*4  the queries Q, keys K, and values V are computed as linear projections:
Q = TW? K = TWE, V = TWV, where W@, WK WV € R¥* are learned parameter
matrices. The scaled dot-product attention is then computed as:

. QK™
Attention(Q, K, V) = softmax A%
Vdy

Multi-head attention concatenates the outputs of h separate attention heads: MultiHead(T) =
Concat(heady, . .., head,)W? where each head is head; = Attention(Q;,K;, V;), and W €
RPdxxd ig g learned projection matrix. Following the multi-head attention, position-wise multilayer



perceptron (MLP) are applied independently to each token:

MLP(%) = GELU(l’Wl + bl)Wg + bo
where W, € R¥dmir W, € R¥mirXd Layer normalization and residual connections are employed
around both attention and feed-forward sublayers to stabilize training Z() = LayerNorm(Z(l_l) +
MultiHead(Z~Y)), and Z() = LayerNorm(Z(® + MLP(Z(")) where Z(») = T.
To train the model in a self-supervised manner, a fraction of input tokens are masked, and the model
predicts the masked values from the surrounding context. After passing through L such Transformer

layers, the contextual embeddings Z(*) corresponding to masked positions are passed through a

position-wise linear decoder. Let T,k denote the masked tokens, Ty the corresponding model
predictions, and M the set of masked indices. The masked modeling loss is defined as:
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2.3 Downstream Model Training with Stochatic Weight Averaging

During downstream model training, the pretrained embeddings Z are fed into a MLP. We do not use
a linear model because the pretrained features are strong but inherently nonlinear [[11]. However,
the induced loss landscape over these fixed embeddings can be relatively sharp and multimodal:
foundation-model features may cluster in high-curvature regions that create multiple narrow local
optima, especially when labeled data are limited. To address this, we apply Stochastic Weight
Averaging (SWA) [12], which averages model weights sampled from different points along the
optimization trajectory. This procedure can smooth over the rugged loss surface defined by the
frozen features, pulling the solution toward flatter, wider basins that generalize better and avoid
overfitting to spurious local minima. As a result, SWA provides a more stable and robust downstream
classifier, enabling a single lightweight architecture to transfer reliably across diverse clinical tasks.
The running average weight w at step m is updated as:

_ m—1_ 1
W = Wim—1+ —Wn
m m

Weight averaging is performed in the later phase of training by traveling in small steps along connected
paths of low loss between different models, enabling effective ensembling of diverse solutions. Using
w as final weights leads to flatter minima with better generalization.

We use focal loss to handle class imbalance and focus learning on hard examples. For binary
classification, the focal loss is:

Acfocal<pt> = _at(l - Pt)v log(pt)

where p; is the predicted probability for the true class, a; balances class weights, and v controls
down-weighting of easy samples. Focal loss not only improves accuracy but also helps reduce model
overconfidence, resulting in better calibrated predictions [13].

3 Experimental Results

3.1 Datasets

Pre-Training Dataset: We curated a large-scale dataset of arterial blood pressure waveforms collected
over the course of more than a decade using Edwards Lifesciences ClearSight (non-invasive finger-
cuff) and FloTrac (invasive arterial line) monitoring systems. The dataset comprises 12,267,124
waveform segments, each 10 seconds long, from 11,967 unique subjects, spanning a total of 34,075
recording hours. Each waveform was sampled at 100 Hz and and underwent mean removal. To reduce
high-frequency noise while preserving physiologically relevant dynamics, signals were low-pass
filtered at 10 Hz prior to segmentation. The dataset’s diversity across patient demographics, clinical
conditions, and hemodynamic states provides a strong basis for developing foundation models. Figure
[2 presents the demographic distributions for the pretraining cohort.

Task-specific Dataset: We used two downstream datasets focused on detecting moderate to severe
aortic stenosis (AS) and reduced left ventricular ejection fraction (LowEF, defined as LVEF < 40%).



Labels were derived from transthoracic echocardiography (TTE), the clinical gold standard. This
retrospective study, conducted at the Cleveland Clinic from December 2020 to March 2022, included
patients referred nationwide, ensuring broad geographic diversity. Data from December 2020 to
October 2021 were used for model training, and data from October 2021 to March 2022 formed an
independent test set. The AS dataset included 1,444 subjects (183 positive), and the LowEF dataset
included 3,956 subjects (336 positive).
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Figure 2: Demographic distributions of the pre-training dataset.

Table 1: Performance on age and biological sex prediction on the Cleveland Clinic dataset.

Model Age (MAE) Biological Sex (AUROC)
Task-specific CNN 8.049 0.866
Ours 7.257 0.873
MOMENT [7] 8.244 0.829
bioFAME [14] 8.060 0.855

3.2 Implementation Details

The Flan-T5-Large encoder serves as our foundation backbone, consisting of 24 transformer blocks
with hidden size 1024, 16 attention heads, and feed-forward size 2816, using absolute sinusoidal
positional embeddings. We pretrain with 50% token masking (patch size 8), Adam optimizer, batch
size 250, and learning rate 1 x 10~ for 10 epochs. For downstream tasks, frozen embeddings are
pooled to 1024 features and passed to a two-layer MLP with hidden size 512, with the learning rate
increasing from 3 x 107° to 1 x 1073 in the first 10% of epochs and decaying over the final 30%.

3.3 Results and Discussion

We compare our model to task-specific CNN baselines—supervised models separately optimized
for each clinical task—and state-of-the-art time-series foundation models, including MOMENT
(pretrained on large-scale public data) and bioFAME (pretrained in the frequency domain on our
dataset). To assess the general utility of the learned embeddings beyond disease classification, we
first evaluate representation quality on two auxiliary tasks that reflect fundamental physiological
attributes: age, biological sex, and cardiac output (CO) estimation. These tasks probe whether the
foundation model encodes meaningful cardiovascular structure independent of specific diseases.

Tables[T]and [2] show that our model learns broadly meaningful cardiovascular representations across
demographic and functional tasks. For age and sex prediction, the model achieves an age MAE of
7.257 and a biological sex AUROC of 0.873, indicating that the embeddings capture physiological
aging signals and sex-associated hemodynamic patterns—attributes that strongly influence waveform
morphology and are essential for unbiased downstream modeling. For continuous cardiac output
estimation, the model achieves a correlation of 0.801 and a percent precision error of 26.6%, out-
performing the supervised baseline and prior foundation models and approaching agreement levels
typical of arterial-line estimators versus intermittent cardiac output using thermodilution. Importantly,
this performance is obtained in a cohort of cardiac surgery and liver transplant patients, groups with
highly abnormal and variable hemodynamics, yet the error profile remains comparable to reports on
healthy or mildly ill populations, highlighting the robustness of the learned representations under
challenging clinical conditions. This reflects the advantages of large-scale pretraining in capturing
subtle cycle-level biomarkers tied to stroke volume, contractility, and arterial compliance. Together,
these results confirm that the proposed foundation model internalizes general hemodynamic princi-



Table 2: Performance on cardiac output (CO) estimation from arterial-line waveforms in cardiac
surgery and liver-transplant patients. CO values had a mean of 6.1 L/min (SD 3.4), median 4.9 L/min
(IQR 4.0-6.8), and ranged from 2.0 to 19.5 L/min.

Model Bias % Bias Precision % Precision Correlation
Task-specific CNN  -0.031  -5.593 2.197 28.992 0.769
Ours -0.274  -8.202 2.047 26.607 0.801
MOMENT [/] 1.600  17.920 3.296 40.657 0.288
bioFAME [14] -0.120  -6.334 2.140 28.265 0.780

Table 3: Performance on aortic stenosis (AS) and low ejection fraction (LowEF) detection from
finger-cuff waveforms.

AS detection

Model - AUROS) Sy\gvr.r.t traln1ng3s(1)1‘l;ject percentag;c))% - Sensitivity Specificity
Task-specific  0.724 £0.065 0.788 +0.041 0.832+0.029 0.857+0.025 0.881 0.802 0.77
Ours 0.760 + 0.060 0.821 +0.032 0.878 £ 0.018 0.896 + 0.008 0.918 0.802 0.836
MOMENT [7] 0.740+£0.049 0.780+0.017 0.780+0.024 0.786 +0.016 0.802 0.802 0.654
bioFAME [14] 0.742+0.043 0.769 +£0.024 0.803+0.022 0.814 +0.016 0.828 0.802 0.685

LowEF detection

AUROC (w.r.t training subject percentage)

Model 57 0% 30% 0% T00% Sensitivity ~ Specificity
Task-specific ~ 0.747 £0.004 0.810+0.010 0.875+0.004 0.884 £0.006 0.895 0.806 0.818
Ours 0.812+0.018 0.860 = 0.012 0.900 = 0.006 0.903 + 0.003 0.908 0.806 0.851
MOMENT [7] 0.705+0.033 0.774+0.009 0.840+0.008 0.851+0.009 0.865 0.806 0.726
bioFAME [14] 0.761 £0.067 0.825+0.011 0.866+0.011 0.872+0.003 0.880 0.806 0.801

ples rather than relying on task-specific cues, providing the basis for its strong downstream disease
detection performance.

Table [3] shows that our model consistently outperforms both the task-specific CNN baselines and
previous foundation models across all data regimes for both cardiovascular conditions using only
noninvasive ClearSight finger-cuff waveforms. The benefit is most pronounced in low-data settings:
even with only 5% or 10% of the training data, our model sustains higher AUROC scores, highlighting
its strong data efficiency and generalizability under limited supervision. Notably, with just 30% of
the training data, our model matches the performance of the task-specific CNN trained on the full
100%, underscoring significant improvements in training efficiency. At full data availability, our
model achieves AUROC scores of 0.918 for AS and 0.908 for LowEF detection—exceeding the CNN
baseline (0.881 and 0.895), MOMENT (0.802 and 0.865), and bioFAME (0.828 and 0.880). For fair
comparison, all models are evaluated at the same high sensitivity level, prioritizing the detection of
positive cases; under this setting, our approach achieves substantially higher specificity, reflecting
improved discrimination of true negatives.

The strong performance of our model is driven by three key components. First, pressure-
aware tokenization preserves physiologically meaningful features such as pulse pressure dynam-
ics—particularly critical for AS detection—that are often lost in other foundation models relying on
instance normalization [[15]. Second, large-scale masked waveform pretraining equips the model to
learn rich cardiovascular representations, enabling strong generalization even in low-data regimes. Fi-
nally, weight averaging during downstream training enhances robustness and supports hyperparameter
transferability across diverse clinical tasks, resulting in consistent performance gains.

4 Conclusion

This work introduces a foundation model for hemodynamic waveforms, demonstrating that large-scale
self-supervised learning on cardiovascular signals enables accurate and data-efficient screening for
critical conditions. By moving beyond task-specific modeling, we show how waveform foundation
models can unlock scalable, noninvasive, and cost-effective cardiovascular assessment at the point of
care. Looking forward, this paradigm opens new opportunities for real-time monitoring, longitudinal
risk stratification, and integration into broader multimodal healthcare systems, paving the way toward
more accessible and proactive cardiovascular medicine.
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