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Abstract

Hemodynamic waveforms encode rich physiological signals essential for cardiovas-1

cular assessment, but scalable interpretation has been constrained by the need for2

labeled data and expensive imaging. Leveraging ∼34,000 hours of finger-cuff and3

arterial blood pressure waveforms from ∼12,000 subjects—collected with Edwards4

Lifesciences ClearSight and FloTrac devices—we develop a transformer-based5

foundation model that learns robust representations of cardiovascular dynamics.6

Trained with self-supervised learning, the model delivers sample-efficient perfor-7

mance, matching state-of-the-art benchmarks using only 30% of labeled data, in8

detecting aortic stenosis and reduced left ventricular ejection fraction. To our9

knowledge, this is the first foundation model trained solely on blood pressure10

waveforms for screening cardiovascular diseases.11

1 Introduction12

The modeling of hemodynamic waveforms represents a fundamental pillar in cardiovascular assess-13

ment, as these continuous pressure traces contain rich physiological information that extends far14

beyond simple systolic and diastolic values. Blood pressure waveforms encode critical details about15

cardiac contractility, vascular compliance, wave reflection patterns, and arterial stiffness – parameters16

that are essential for understanding the underlying pathophysiology of cardiovascular disease and17

guiding optimal therapeutic interventions [1, 2]. In recent years, foundation models have triggered a18

paradigm shift in healthcare [3, 4], moving beyond task-specific algorithms to versatile, adaptable19

systems trained on massive and diverse datasets. These models leverage self-supervised learning to20

develop rich representations that can be rapidly adapted to new clinical tasks with minimal additional21

training. This capability is particularly valuable in healthcare, where labeled data is often scarce,22

expensive to obtain, and subject to privacy constraints.23

In the context of hemodynamic monitoring, foundation models can transform raw physiological24

signals into complex temporal and morphological biomarkers, facilitating early detection of car-25

diovascular deterioration, personalized risk stratification, and precise hemodynamic optimization26

strategies. In this work, we introduce a novel hemodynamic foundation model that leverages the27

latest advances in transformer-based time-series modeling [5, 6, 7, 8] to address two of the most28

challenging cardiovascular conditions: aortic stenosis [9] and reduced left ventricular ejection fraction29

[10]. Uniquely, our approach relies solely on continuous, noninvasive arterial pressure waveforms30

obtained via the Edwards Lifesciences Clearsight finger-cuff, eliminating the need for costly, operator-31

dependent modalities such as echocardiography or cardiac MRI. By enabling automated, real-time32

waveform analysis at the point of care, this approach promises rapid, cost-effective screening and33

early intervention to mitigate the progression of cardiovascular dysfunction.34
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2 Methodology35

As shown in Figure 1, our goal is to train a foundational model for blood pressure waveforms by36

designing an encoder F : RT → RQ that converts a fixed-length univariate time series x ∈ RT37

into a latent vector of dimension Q. During the pre-training phase, we utilize a large unlabeled38

dataset X0 to learn task-agnostic representations. Then, in the downstream phase, given a labeled39

dataset (X,Y), we generate embeddings Z = {F (x) | x ∈ X}, which are used to train a classifier40

h : RQ → {1, . . . ,K} for task-specific predictions.41

Figure 1: Hemodynamic foundation modeling.

2.1 Numerically Scale-Aware Tokenization42

Following the principle of NuTime [8], we normalize each window to stabilize gradient propagation,43

while separately embedding the mean and standard deviation to preserve physiologically meaningful44

pressure values. Given a univariate pressure waveform x = (x1, x2, . . . , xT ), we divide it into N45

non-overlapping windows. For each window x(i), i = 1, . . . , N , we compute its normalized shape46

x̂(i) = x(i)−µi

σi
. The normalized shape vector x̂(i), the scalar mean µi, and the scalar standard47

deviation σi are embedded independently with a linear layer followed by layer normalization:48

eshape
i = LayerNorm(Wshapex̂(i) + bshape),

eµi = LayerNorm(Wµµi + bµ), eσi = LayerNorm(Wσσi + bσ).

These embeddings are concatenated to form the initial token t
(0)
i = [eshape

i ; eµi ; e
σ
i ]. An additional49

linear layer with layer normalization is then applied: ti = LayerNorm(Wfinalt
(0)
i + bfinal). Finally,50

positional encoding pi is added to each token to incorporate temporal order, yielding the final token51

sequence T = [t1 + p1; t2 + p2; . . . ; tN + pN ].52

2.2 Masked Waveform Pre-Training with Transformers53

We feed the token sequence into a Flan-T5 transformer encoder, which has been successfully applied54

to time-series data in models such as MOMENT [7]. The Flan-T5 encoder, composed of stacked55

self-attention layers and feed-forward networks, captures both local and global temporal dependencies56

by learning contextual representations over the entire sequence.57

The core of the transformer encoder is the multi-head self-attention mechanism. For an input token58

sequence T ∈ RN×d, the queries Q, keys K, and values V are computed as linear projections:59

Q = TWQ,K = TWK ,V = TWV , where WQ,WK ,WV ∈ Rd×dk are learned parameter60

matrices. The scaled dot-product attention is then computed as:61

Attention(Q,K,V) = softmax

(
QK⊤
√
dk

)
V

Multi-head attention concatenates the outputs of h separate attention heads: MultiHead(T) =62

Concat(head1, . . . , headh)WO where each head is headi = Attention(Qi,Ki,Vi), and WO ∈63
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Rhdk×d is a learned projection matrix. Following the multi-head attention, position-wise multilayer64

perceptron (MLP) are applied independently to each token:65

MLP(x) = GELU(xW1 + b1)W2 + b2

where W1 ∈ Rd×dmlp ,W2 ∈ Rdmlp×d. Layer normalization and residual connections are employed66

around both attention and feed-forward sublayers to stabilize training Z(l) = LayerNorm
(
Z(l−1) +67

MultiHead(Z(l−1))
)
, and Z(l) = LayerNorm

(
Z(l) +MLP(Z(l))

)
where Z(0) = T.68

To train the model in a self-supervised manner, a fraction of input tokens are masked, and the model69

predicts the masked values from the surrounding context. After passing through L such Transformer70

layers, the contextual embeddings Z(L) corresponding to masked positions are passed through a71

position-wise linear decoder. Let Tmask denote the masked tokens, T̂mask the corresponding model72

predictions, and M the set of masked indices. The masked modeling loss is defined as:73

Lmask =
1

|M|
∑
i∈M

∥∥∥T(i)
mask − T̂

(i)
mask

∥∥∥2
2.3 Downstream Model Training with Stochatic Weight Averaging74

During downstream model training, the pretrained embeddings Z are fed into a MLP. We do not use75

a linear model because the pretrained features are strong but inherently nonlinear [11]. To improve76

generalization and stability, we apply Stochastic Weight Averaging (SWA) [12], which averages77

model weights over multiple points along the gradient descent trajectory. This approach also enables78

robust downstream architectures that can be flexibly applied across different tasks. The running79

average weight w̄ at step m is updated as:80

w̄m =
m− 1

m
w̄m−1 +

1

m
wm

Weight averaging is performed in the later phase of training by traveling in small steps along connected81

paths of low loss between different models, enabling effective ensembling of diverse solutions. Using82

w̄ as final weights leads to flatter minima with better generalization.83

We use focal loss to handle class imbalance and focus learning on hard examples. For binary84

classification, the focal loss is:85

Lfocal(pt) = −αt(1− pt)
γ log(pt)

where pt is the predicted probability for the true class, αt balances class weights, and γ controls86

down-weighting of easy samples. Focal loss not only improves accuracy but also helps reduce model87

overconfidence, resulting in better calibrated predictions [13].88

3 Experimental Results89

3.1 Datasets90

Pre-Training Dataset: We curated a large-scale dataset of arterial blood pressure waveforms collected91

over the course of more than a decade using Edwards Lifesciences ClearSight (non-invasive finger-92

cuff) and FloTrac (invasive arterial line) monitoring systems. The dataset comprises 12,267,12493

waveform segments, each 10 seconds long, from 11,967 unique subjects, spanning a total of 34,07594

recording hours. Each waveform was sampled at 100 Hz and and underwent mean removal. To reduce95

high-frequency noise while preserving physiologically relevant dynamics, signals were low-pass96

filtered at 10 Hz prior to segmentation. The dataset’s diversity across patient demographics, clinical97

conditions, and hemodynamic states provides a strong basis for developing foundation models.98

Task-specific Dataset: We used two downstream datasets focused on detecting moderate to severe99

aortic stenosis (AS) and reduced left ventricular ejection fraction (LowEF, defined as LVEF < 40%).100

Labels were derived from transthoracic echocardiography (TTE), the clinical gold standard. This101

retrospective study, conducted at the Cleveland Clinic from December 2020 to March 2022, included102

patients referred nationwide, ensuring broad geographic diversity. Data from December 2020 to103

October 2021 were used for model training, and data from October 2021 to March 2022 formed an104

independent test set. The AS dataset included 1,444 subjects (183 positive), and the LowEF dataset105

included 3,956 subjects (336 positive).106
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3.2 Implementation Details107

The Flan-T5-Large encoder serves as our foundation model backbone, consisting 24 transformer108

blocks with hidden size 1024, 16 attention heads, and feed-forward size 2816, using absolute109

positional embeddings. We pretrain with 50% token masking (patch size 8), Adam optimizer, batch110

size 250, and learning rate 1× 10−4 for 10 epochs on a Tesla V100. For downstream tasks, frozen111

embeddings are pooled to 1024 features and passed to a two-layer MLP with hidden size 512.112

3.3 Results and Discussion113

Table 1: Test performance on aortic stenosis (AS) and low ejection fraction (LowEF) detection tasks.

AS detection

Model AUROC (wr.r.t training subject percentage) Sensitivity Specificity5% 10% 30% 50% 100%
Task-specific 0.724 ± 0.065 0.788 ± 0.041 0.832 ± 0.029 0.857 ± 0.025 0.881 0.802 0.77

Ours 0.760 ± 0.060 0.821 ± 0.032 0.878 ± 0.018 0.896 ± 0.008 0.918 0.802 0.836
MOMENT [7] 0.740 ± 0.049 0.780 ± 0.017 0.780 ± 0.024 0.786 ± 0.016 0.802 0.802 0.654
bioFAME [14] 0.742 ± 0.043 0.769 ± 0.024 0.803 ± 0.022 0.814 ± 0.016 0.828 0.802 0.685

LowEF detection

Model AUROC (w.r.t training subject percentage) Sensitivity Specificity5% 10% 30% 50% 100%
Task-specific 0.747 ± 0.004 0.810 ± 0.010 0.875 ± 0.004 0.884 ± 0.006 0.895 0.806 0.818

Ours 0.812 ± 0.018 0.860 ± 0.012 0.900 ± 0.006 0.903 ± 0.003 0.908 0.806 0.851
MOMENT [7] 0.705 ± 0.033 0.774 ± 0.009 0.840 ± 0.008 0.851 ± 0.009 0.865 0.806 0.726
bioFAME [14] 0.761 ± 0.067 0.825 ± 0.011 0.866 ± 0.011 0.872 ± 0.003 0.880 0.806 0.801

Table 1 shows that our model consistently outperforms both the task-specific CNN base-114

lines—supervised models separately optimized for each clinical task—and state-of-the-art time-115

series foundation models, including MOMENT (pretrained on large-scale public data) and bioFAME116

(pretrained in the frequency domain on our dataset). This performance advantage holds across all117

training data regimes for both cardiovascular conditions. The benefit is most pronounced in low-data118

settings: even with only 5% or 10% of the training data, our model sustains higher AUROC scores,119

highlighting its strong data efficiency and generalizability under limited supervision. Notably, with120

just 30% of the training data, our model matches the performance of the task-specific CNN trained on121

the full 100%, underscoring significant improvements in training efficiency. At full data availability,122

our model achieves AUROC scores of 0.918 for AS and 0.908 for LowEF detection—exceeding the123

CNN baseline (0.881 and 0.895), MOMENT (0.802 and 0.865), and bioFAME (0.828 and 0.880). For124

fair comparison, all models are evaluated at the same high sensitivity level, prioritizing the detection125

of positive cases; under this setting, our approach achieves substantially higher specificity, reflecting126

improved discrimination of true negatives.127

The strong performance of our model is driven by three key components. First, scale-aware tokeniza-128

tion preserves physiologically meaningful features such as pulse pressure dynamics—particularly129

critical for AS detection—that are often lost in other foundation models relying on instance nor-130

malization [15]. Second, large-scale masked waveform pretraining equips the model to learn rich131

cardiovascular representations, enabling strong generalization even in low-data regimes. Finally,132

weight averaging during downstream training enhances robustness and supports hyperparameter133

transferability across diverse clinical tasks, resulting in consistent performance gains.134

4 Conclusion135

This work introduces a foundation model for hemodynamic waveforms, demonstrating that large-scale136

self-supervised learning on cardiovascular signals enables accurate and data-efficient screening for137

critical conditions. By moving beyond task-specific modeling, we show how waveform foundation138

models can unlock scalable, noninvasive, and cost-effective cardiovascular assessment at the point of139

care. Looking forward, this paradigm opens new opportunities for real-time monitoring, longitudinal140

risk stratification, and integration into broader multimodal healthcare systems, paving the way toward141

more accessible and proactive cardiovascular medicine.142
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