
GITA: Graph to Visual and Textual Integration
for Vision-Language Graph Reasoning

Yanbin Wei1,2∗, Shuai Fu1,3∗, Weisen Jiang1,2†, Zejian Zhang4, Zhixiong Zeng4,
Qi Wu3, James T. Kwok2, Yu Zhang1†

1Department of Computer Science and Engineering, Southern University of Science and Technology
2Department of Computer Science and Engineering, Hong Kong University of Science and Technology

3Australia Institute for Machine Learning, University of Adelaide 4Tencent
{yanbin.ust, fus.jayce, zejianzhang33, yu.zhang.ust, waysonkong}@gmail.com

barretzeng@tencent.com, qi.wu01@adelaide.edu.au, jamesk@cse.ust.hk

Abstract

Large Language Models (LLMs) are increasingly used for various tasks with
graph structures. Though LLMs can process graph information in the textual
format, they overlook the rich vision modality, which is an intuitive way for
humans to comprehend structural information and conduct general graph reasoning.
The potential benefits and capabilities of representing graph structures as visual
images (i.e., visual graph) are still unexplored. To fill the gap, we innovatively
propose an end-to-end framework, called Graph to vIsual and Textual IntegrAtion
(GITA), which incorporates visual graphs into general graph reasoning. Besides,
we construct the Graph-based Vision-Language Question Answering (GVLQA)
dataset from existing graph data, which is the first vision-language dataset for
general graph reasoning. Extensive experiments on the GVLQA dataset and five
real-world datasets show that GITA outperforms mainstream LLMs on general
graph reasoning. Moreover, experimental results demonstrate the effectiveness of
the layout augmentation on visual graphs and pretraining on the GVLQA dataset.

1 Introduction

Graph reasoning tasks are pivotal in domains such as recommendation systems [25, 60], social
network analysis [7, 29], and knowledge graph reasoning [72, 46, 62]. Various architectures have
been developed, from shallow embedding methods [6, 53] to advanced Graph Neural Networks
(GNNs) [37, 64] and graph Transformers [71, 40, 8]. While these models excel in graph reasoning
tasks, they often lack generalizability, flexibility, and user-friendliness. Achieving good performance
with these models typically requires domain-specific tuning, which limits their abilities to generalize
across different domains. Additionally, these models struggle to handle diverse tasks with the same
architecture. Each task often requires a specialized design, including task-specific data processing
and decoder, leading to limited flexibility. Lastly, unlike the Large Language Models (LLMs) that
can engage in conversations with users, these models are less explainable and user-friendly.

In contrast, LLMs have shown great generalization capabilities across a wide variety of reasoning
tasks [61, 67, 74, 32, 33] by encapsulating task-specific demands within a cohesive and interpretable
mechanism - text prompts, under a unified architecture with minimal domain-specific adjustments.
These advantages have sparked investigations into the potential of LLMs for graph reasoning. Recent
developments lend credence to the notion that LLMs can indeed interpret and manipulate graph-

∗Equal contribution.
†Corresponding authors.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

structured data through textual representations. For example, InstructGLM [66], GPT4Graph [21],
and LLMtoGraph [44] convert graphs into textual descriptions and then use these descriptions paired
with queries to enable LLMs to generate accurate responses for graph reasoning tasks. Furthermore,
the introduction of benchmarks such as GraphQA [14] and NLGraph [59] is a testament to the
growing interest in evaluating LLMs’ effectiveness on graph reasoning tasks framed in natural
languages.

Despite the development of numerous methods and benchmarks for graph reasoning on LLMs, they
often overlook the valuable vision modality, which is a natural means for humans to comprehend
structural information and has demonstrated its success in various visual reasoning scenarios [30, 68,
69, 34, 3, 54]. Consequently, the following questions arise: (1) Can incorporating visual information
be beneficial for general graph reasoning scenarios? (2) If so, how can we effectively integrate
the vision modality into graph reasoning? To the best of our knowledge, these questions remain
unexplored.

To answer them, we first propose an end-to-end framework called Graph to vIsual and Textual
IntegrAtion (GITA)34 that systematically integrates visual information into instruction-based graph
reasoning, by rendering graph structures to customized visual images which are called visual graph.
Specifically, the GITA framework has four components: a graph visualizer for generating visual
graphs, a graph describer for producing textual descriptions of the graph structure, a task-based
questioner that organizes the description and requirements of the current task into prompt instruction,
and a Vision-Language Model (VLM) to perform vision-language graph reasoning. In the proposed
GITA framework, visual information can be incorporated into many tasks with explicit or implicit
graph structures, without sacrificing its versatility, flexibility, or user-friendliness. Besides, since
there is no dataset for vision-supported general graph reasoning capabilities, we construct the first
vision-language dataset for general graph reasoning purposes called Graph-based Vision-Language
Question Answering (GVLQA)5 based on the proposed GITA framework. The GVLQA dataset
consists of 526K instances covering seven representative graph reasoning tasks, aiming to thoroughly
evaluate the structure-based graph reasoning abilities of VLMs and LLMs. Extensive experiments on
the GVLQA dataset and five real-world datasets demonstrate the effectiveness of the proposed GITA
model. Furthermore, we delve into the effects of visual graph augmentation strategies and find that
layout augmentation can dramatically boost vision-based graph reasoning performance.

Our main contributions are summarized as follows.

• We introduce an end-to-end GITA framework, innovatively integrating vision modality to
boost the graph reasoning abilities of language models.

• We establish GVLQA, the first vision-language question-answering dataset for general
graph reasoning purposes. It can be used to thoroughly evaluate the structure-based graph
reasoning abilities of LLMs/VLMs and can also be used as pretraining data to boost the
performance of downstream tasks.

• Extensive experiments on benchmark datasets across various graph reasoning tasks demon-
strate the effectiveness of the proposed GITA framework and the benefits of layout augmen-
tation on visual graphs.

2 Related Work

Graph Reasoning. Graph reasoning [5, 63] aims to answer questions based on graphs, which involves
utilizing graph structures to guide the reasoning process to generate answers. Graph reasoning has a
wide variety of applications in social network analysis [47, 41], bioinformatics [31, 18], chemistry
[19], physics [4], knowledge graph reasoning [6], and recommendation systems [39, 26]. Many graph
reasoning methods have been proposed. Early attempts [6, 53] learn node and edge representations
through shallow modules, which may have only limited expressive power. Graph Neural Networks
(GNNs) such as GCN [37], GAT [58], GraphSAGE [23], MPNN [19], and GIN [64] use message-
passing paradigm [19] to model graph dependencies and update node features. Transformer-based

3Project Homepage: v-graph.github.io.
4Code Repository: https://github.com/WEIYanbin1999/GITA/.
5Dataset: https://huggingface.co/collections/Yanbin99/.

2

v-graph.github.io
https://github.com/WEIYanbin1999/GITA/
https://huggingface.co/collections/Yanbin99/

graph models [71, 40, 8] further propose to use self-attention to increase the expressiveness and long-
range dependency. However, as discussed in Sec 1, these models may exhibit limited generalizability,
flexibility, and user-friendliness.

LLMs on Graph Reasoning. There have been many attempts to use LLMs in graph reasoning.
Depending on how they align the input spaces of graphs and LLMs, we categorize them into two
types: Graph-to-text and Graph-to-token. Graph-to-text methods transform a graph into textual
descriptions, which are concatenated with the instructions and fed to the LLM for querying. For
example, InstructGLM [66] uses natural language to describe the graph and proposes instruction
prompts to fine-tune the LLM. He et.al [27] applies LLMs to explain graphs for training GNNs,
while Chen et.al [10] treat LLMs as enhancers to exploit text attributes or as predictors for node
classification on text-attributed graphs. GPT4Graph [21] and LLMtoGraph [44] convert graphs
into specific code or natural language formats by the powerful ChatGPT [48, 49]. On the other
hand, Graph-to-token methods include GraphGPT [55], GraphToken [50] and LLaGA [9]. For these
methods, the graph is represented as a specially designed token sequence, which is projected or
merged into the LLM’s token space for text-based reasoning. However, none of the aforementioned
methods represent the graph structure information as images, highlighting the uniqueness of the
proposed GITA framework and GVLQA dataset.

Large Vision-Language Models. Large VLMs have significantly expanded the cognitive abilities
of LLMs by integrating the vision modality to address vision-language tasks. Many methods have
been proposed. Some early explorations like Flamingo [2], CLIP [51], and BLIP-2 [43] use a visual
encoder for processing images and align the visual and textual embeddings. Subsequent models like
LLaVA [45] and MiniGPT-4 [75] combine visual and textual inputs in a single LLM for solving
multimodal tasks. InstructBlip [11] proposes an instruction-aware query transformer and trains a
vision-language model by instruction tuning. However, despite progress in a wide range of vision-
language tasks [70, 16], using visual information in graph reasoning remains overlooked. We take
the first step in this field, pushing the boundaries of VLMs in graph reasoning.

3 GITA: Graph to Visual and Textual Integration

3.1 Preliminary

Graph Reasoning. In traditional graph reasoning settings, models typically rely on two main inputs:
(i) the graph structure G = {C,E}, where C and E are the set of vertices and edges, respectively;
(ii) the task requirement T , encompassing specific operations or questions pertaining to the graph.
Based on the information provided in G and a specific task requirement T , models are expected to
output a reasonable answer A. On the other hand, in the context of instruction-based graph reasoning
methods, it is necessary to convert these inputs into textual form. This transformation facilities
graph reasoning within natural language, allowing for improved interpretation and harnessing the
formidable reasoning capabilities of large language models.

3.2 Architecture

Overview. Different from the above graph reasoning methods, we propose a Graph to Image-Txt
Assistant (GITA), which is the first attempt to perform graph reasoning in a vision-text-based manner.
GITA comprises four pivotal components: a task-agnostic graph visualizer V , a graph describer D,
a task-specific questioner Q, and a VLM reasoner Rϕ, as illustrated in Figure 1. Firstly, V and G
are designed to produce visual depictions (i.e., visual graphs) and textual descriptions of the graph
structure inputs, respectively. Then, given the task requirement T and the textual description produced
by D, Q is designed to form a task-specific query. Finally, Rϕ receives the visual input IG from
V based on the visual graph and the textual input QT

G from Q, then generates answers A in natural
language. In the following, we introduce the four components in detail.

Graph Visualizer. The role of the graph visualizer is to generate visual graphs from structural
graphs. The image representation of a structural graph is not unique, as there can be variations in
many aspects, such as backdrop colors, layouts, and node shapes. These variations may enhance the
robustness of models through effective training but simultaneously increase the learning difficulty
for models. Therefore, balancing consistency and variety is necessary during the graph visualization
process. This trade-off is reflected in our design of graph visualizer, by maintaining consistency in

3

GITA Framewrok

Graph
Data

Graph Visualizer

Configurations

Base Image Styles Graph-related
Image Styles

Textual Description
In a directed graph,
(i,j) means that node i and
node j are connected with
an undirected edge.
The nodes are numbered
from 0 to 6, and the edges
are:
(0,2) (2,6) ...

Graph Describer

Task-agnostic Graph
Describing
Templates

Visual Graph

2 6

1
3

5
4

0
OR OR ...

(w/ diff
structure-

aware configs)

2 6

1
3

5
4

0

Input tokens

Graph Descriptions
...
The nodes are
numbered from
0 to 6, and the
edges are:
(0,2)
(2,6)
(1,4)
...

Traditional LLM Solutions

Graph
Data

Large Language Model

Instructions

Q: Is there a cycle
in this graph?

Q: Is there a path
between
node 0 and node 4?
...

Response: Yes.

Task
 Info

...

Task-based
Questioner

Task
 Info

Task-specific Query
In a directed graph with 7 nodes numbered from 0 to 6:
node 0 should be visited before node 2,
...
This task is to find a valid topological sorting for this
directed graph.
Please provide a possible topological ordering path, for
example: 0 -> 1 -> 2 -> 3 -> 4. Q: The topological order
of the directed graph is:

V
L

M
 R

easoner

 Task-agnostic descriptions

R
esponse: 0 -> 2 -> 6 -> 3 -> 1 -> 4 -> 5.

Frozen Image Styles Customizable Image Styles

 Task Responsibility

 Output Specification
 Refined descriptions
(w/ the meanings of nodes/edges)

Figure 1: The architecture of the GITA framework with comparison to existing LLM solution.

basic image styles common to general images (i.e., size, resolution, backdrop) and only introducing
customizable variations in four graph-related image styles unique to visual graphs (i.e., layout, node
shapes, node outline styles, and edge thickness). Graph visualization in V can be formulated by the
following equation:

IG = V (G,Γ,∆), (1)
where IG denotes the visual graph derived from graph G, while Γ and ∆ are the fixed basic image
styles and customizable graph-related image styles, respectively.

Visualizing the entire graph can be challenging when the number of nodes or edges is very large,
affecting the clarity of the images. To address this, our graph visualizer adopts the standard strategy of
k-hop subgraph sampling. Specifically, k-hop subgraph sampling for a node u in the set of vertices C
involves selecting a subgraph Gu = {Cu ⊆ Nk(u), Eu ⊆ E}, where Nk(u) includes nodes within
k steps from u and each edge (i, j) in Eu connects nodes within Cu. To generate the visual graph
of the k-hop subgraph Gu centered on u, the nodes within Gu are relabeled from 0 to |Cu| − 1 to
facilitate the generalization of visual graphs. Subsequently, this relabeled subgraph Gu is fed to the
graph visualizer to generate its visual graph IGu by Eq. (1).

In practice, the graph visualizer can be implemented by a variety of graphic visualization tools, such as
Graphviz [17], Matplotlib [56], and NetworkX [22]. Among them, Graphviz can automatically design
the layouts of visual graphs, and is especially suitable for building large-scale datasets. Matplotlib is
excellent for customizable plots with fine-grained control, and NetworkX excels in complex network
analysis. We have implemented various graph visualizers using modular, plug-in architecture in
GITA. Specific examples of the visual graphs generated with these tools can be found in Appendix D.

Graph Describer. The graph describer D is tasked with generating task-agnostic textual descriptions
of a given graph G. To ensure clarity and fidelity of these descriptions, we meticulously craft a
curated set of graph-describing templates. The graph description templates outlined in Appendix E
are designed to cover a broad spectrum of scenarios, accommodating various graph configurations
including directed or undirected graphs and those with or without node or edge weights. To generate
the description for a given graph, the graph describer initially selects an appropriate template based
on the graph’s characteristics, such as its directionality and whether it includes node attributes or edge
weights. Subsequently, this template is used by replacing placeholders with actual data, such as the
number of nodes, the number of edges, and the endpoints of each edge, to craft detailed descriptions
tailored to the specific graph in question. The process for D to generate textual descriptions can be
formulated as follows:

DG = D(G,P), (2)
where DG denotes the textual description generated by graph describer, and P is the graph-describing
template of the graph G.

By introducing these unified and structured graph-describing templates, the graph describer is
empowered to generate coherent and informative descriptions that focus on the inherent characteristics
of the graph itself, independent of specific task requirements.

Questioner. The questioner Q is tailored to capture the intricate requirements of specific tasks
and reflect them in its output task-specific query. In detail, Q receives the task-agnostic textual

4

descriptions from the graph describer and refines them to align with the task context by elucidating
the concrete meanings of nodes and edges. These refined descriptions are then enriched with task
responsibilities and input/output specifications to form task-specific queries. The formulation of the
questioner to generate the task-specific queries can be represented as follows:

QT
G = Q(T,DG), (3)

where QT
G represents the task-specific query generated by the questioner with given the task require-

ment T and the textual description DG. The construction of task-specific queries can be approached
in two main ways: manual template-based construction and bootstrapping LLM agents. Manual
template-based construction enriches DG with task-specific manual templates, which is preferred for
tasks with precise requirements, such as the Traveling Salesman Problem (TSP) [12], where accuracy
is critical and the task definitions are well-understood. This is because it can ensure clarity and reduce
the risk of errors due to its meticulous attention to details. On the other hand, bootstrapping LLM
agents for automated synthesis is more economical and suitable for dynamic or bespoke tasks, such as
robotic planning or complex gaming scenarios, as it can take advantage of the speed and adaptability
of LLM agents to interpret context and generate appropriate queries, minimizing manual effort and
enhancing responsiveness to changing conditions. Both methods are illustrated with examples in
Appendix F, showcasing their applications and benefits in different scenarios.

VLM Reasoner. The VLM reasoner Rϕ performs final graph reasoning with visual inputs IG from
V and textual inputs QT

G from Q, and outputs responses in natural language. This reasoning process
can be represented as the following:

A = R(IG, Q
T
G), (4)

where A is the answer generated by the vision-language model R. In this work, we adopt GPT-4V
and LLaVA-7B/13B as VLM reasoners. These models are regarded as representatives in the realm of
closed-source and open-source VLMs, respectively.

In summary, GITA systematically incorporates the vision modality into instruction-based graph
reasoning. In Appendix B, we discuss the characteristics of GITA, in aspects of generalizability,
flexibility and user-friendliness.

3.3 Visual Graph Augmentation

Visual graphs generated for the same graph G can be considered as an unique data augmentation
technique. Building on the four graph-related image styles introduced in the graph visualizer part
of Sec 3.2, we propose the following augmentation strategies: layout augmentation, node shape
augmentation, node outline style augmentation, and edge thickness augmentation. Specifically,
layout augmentation involves altering the layout styles while keeping all the other settings constant.
Similarly, by changing only the respective attributes, we can implement node shape augmentation,
node outline style augmentation, and edge thickness augmentation. These four proposed augmentation
strategies facilitate studies on the importance of each in enhancing the graph reasoning abilities of
VLM reasoners.

3.4 Training

Given a visual graph IG and a text-specific query QT
G, along with the target answer At, the VLM

reasoner of GITA is trained to generate answers A. Specifically, IG is input into the vision encoder of
the VLM reasoner, resulting in a set of visual features F . If there is a dimension difference between
Fv and the pretrained word embeddings, these F will be aligned with the pretrained word embedding
space of the text decoder by a vision-to-text projector. Finally, the aligned visual features Faligned

and QT
G are concatenated as input sequences of the text decoder.

Formally, given IG, QT
G, and At, the VLM reasoner is trained by minimizing the following negative

log-likelihood:

Lϕ = −
|A|∑
i=1

log pϕ(Ai | Faligned, Q
T
G, A<i), (5)

where ϕ is the trainable parameter and Ai denotes the prediction token at the i-th position. Besides,
A<i represents the first i − 1 predicted tokens. During the inference process, GITA is capable of
accepting structure graphs as inputs and performing graph reasoning in an end-to-end manner.

5

4 GVLQA Dataset

In this section, we introduce the GVLQA dataset to fill the absence of a vision-language-based
general graph reasoning dataset. It is designed to: 1) evaluate the graph reasoning capabilities of
VLMs or LLMs; 2) help models acquire fundamental graph comprehension and reasoning abilities as
a pretraining dataset.

4.1 Construction

The GVLQA dataset is created by utilizing the graph visualizerthe graph describer, and questioner in
GITA to generate vision-language-based question-answer pairs for graph reasoning on an open-source
graph dataset. Specifically, we first extract both the original graph structures and the ground-truth
outputs from the NLGraph-full dataset [59]. Then the graph visualizer (detailed in Sec 3.2) and
the graph describer (outlined in Sec 3.2) are used to generate visual graphs and textual descriptions
for these original graph structures, respectively. Afterwards, the questioner (described in Sec 3.2)
further improves and enriches the textual descriptions by converting them into textual queries. At the
same time, it transforms the ground-truth output into text-based answers, following specific output
requirements. By combining these visual graphs, textual queries, and text-based answers, we obtain
the Graph-based Vision-Language Question Answering (GVLQA) dataset.

In the process of establishing GVLQA, we employed graphviz [17] to instantiate the graph visualizer.
This choice is made due to its multitude of pre-defined layout algorithms, which enable convenient
adjustment of visual graph layouts. Additionally, manual template-based constructed queries are
utilized as the questioner because these tasks are famous with well-defined requirements.

4.2 Structure

The GVLQA dataset comprises 526K samples, each consisting of a visual graph, a textual query,
and its corresponding answer. It is divided into five subsets: GVLQA-BASE, and four augmentation
subsets GVLQA-AUGLY, GVLQA-AUGNS, GVLQA-AUGNO, and GVLQA-AUGET. In GVLQA-
BASE, the visual graphs are uniformly styled. The remaining four augmentation subsets are derived
from GVLQA-BASE through the four visual graph augmentations (Sec 3.3), varying in six different
layouts, three node shapes, four node outline styles, and four degrees of edge thickness, respectively.
Detailed statistics of the four subsets are shown in Table 6 of Appendix C.

Each GVLQA subset undergoes evaluation across seven graph reasoning tasks, outlined as follows.

• Connectivity [52] (denoted Connect): Determine whether two randomly selected nodes u
and v in an undirected graph are connected.

• Cycle [52]: Identify whether a cycle exists in an undirected graph.

• Topological Sort [35] (denoted TS): Find a valid topological sort for a directed acyclic
graph. Here, topological sort outputs a linear ordering of the nodes such that for every
directed edge u← v, node u comes before v in the ordering.

• Shortest Path [13] (denoted SP): Find the shortest path between two nodes in a weighted
undirected graph. The shortest path between two nodes is the path connecting the two nodes
with the minimum sum of edge weights along the path.

• Maximum Flow [15] (denoted MaxFlow): Calculate the maximum flow from a source node
to a sink node in a network graph.

• Bipartite Graph Matching [36] (denoted BGM): Find a matching set in a bipartite graph
with the largest number of edges. A matching set is a collection of edges in which no two
edges share any common node.

• Hamilton Path [20] (denoted HP): Find a valid Hamilton path in an undirected graph. A
Hamiltonian path is a path that traverses each node in a graph exactly once.

Figure 6 offers illustrations for these tasks in the GVLQA-BASE dataset. Illustrations of all the
GVLQA subsets are provided in Appendix H.

6

5 Experiments

In this section, we extensively evaluate the performance of LLM baselines and the proposed GITA
on the GVLQA-BASE and five real-world datasets. To better clarify the reasoning capabilities of
solely visual graphs, we also test GITA without the textual descriptions of graphs, which can be
considered as a variant of GITA and denoted as vision-only (VO). In this case, the visual graph is the
only information source for graph reasoning. Additionally, we investigate the importance of visual
graph augmentation (Sec 3.3) strategies, by comparison GITA-7B trained on GVLQA-BASE and on
the other augmentation subsets of GVLQA (Sec 4.2). Lastly, we investigate the effectiveness of using
GVLQA as the pretrained dataset on real-world datasets. The evaluation metrics for all experiments
are accuracy by exact matching. For the fine-tuning setting, we fine-tune the LoRA adapters [28] for
all weight matrices in the text decoder of the VLM reasoner, while keeping the vision encoder in the
VLM reasoner frozen. More detailed experimental settings are in Appendix G.

5.1 Evaluation on the GVLQA-BASE Dataset

In this subsection, we perform experiments on the GVLQA-BASE dataset to compare GITA with
popular LLMs including GPT-4 Turbo [49], LLaMA2-7B/13B [57], and Vicuna-7B/13B [73], under
both zero-shot and fine-tuning settings. The experimental results are shown in Table 1. Based on
these results, we can obtain the following observations.

Observation 1: GITA Outperforms LLM Baselines. As can be seen in Table 1, GITA consistently
outperforms the LLM baselines under the same setting. This underscores its SOTA effectiveness in
instruction-based graph reasoning tasks, showing robust capabilities across different parameter scales
under both fine-tuning and zero-shot settings. Moreover, under the fine-tuning setting, incorporating
the vision modality consistently benefits 7B models. But for the 13B models, the performance of
some tasks may degrade. This could be attributed to the greater challenge of aligning representations
of the visual and textual modalities in the larger 13B models compared to the 7B models, in the
case of only fine-tuning LoRA adapters in the text decoder. We speculate that full training could
potentially address this issue. However, we leave this as future work due to resource constraints.

Observation 2: Mainstream Open-source VLM/LLMs Lack Fundamental Graph Reasoning
Abilities. The zero-shot results illustrate that prominent open-source LLMs or VLMs, including
LLaMA2, Vicuna, and LLaVA, exhibit minimal graph reasoning capabilities on the GVLQA-BASE
dataset. Specifically, these models produce random answers, i.e., randomly responding with either
"Yes." or "No." for tasks involving Connect and Cycle, resulting in a performance close to 50%. Cur-

Table 1: Accuracy (%) comparisons on GVLQA-BASE under zero-shot and fine-tuning settings,
where “VO” denotes a variant of GITA using only the vision modality.

Models Connect Cycle TS SP MaxFlow BGM HP Avg
Zero-shot

LLaMA2-7B 50.06 49.43 0.00 0.00 0.00 0.00 0.00 14.21
Vicuna-7B 50.06 49.43 0.00 0.00 0.00 0.00 0.00 14.21
GITA-7B (VO) 50.06 50.33 0.00 0.00 0.00 0.00 0.00 14.34
GITA-7B 50.06 49.43 0.00 0.00 0.00 0.00 0.00 14.21

GPT-4 Turbo 76.70 49.51 19.59 35.35 6.89 42.11 47.04 39.60
GITA-ZS (VO) 57.76 63.34 5.34 4.88 1.59 46.60 10.74 27.18
GITA-ZS 82.58 51.46 19.71 37.69 6.00 52.21 50.00 42.81

Fine-tuning

LLaMA2-7B 97.33 94.63 33.26 26.01 9.56 90.86 23.95 53.66
Vicuna-7B 97.58 95.04 34.46 25.98 9.33 91.04 25.55 54.15
GITA-7B (VO) 59.97 96.34 13.30 5.72 2.89 93.01 1.11 38.91
GITA-7B 98.95 96.67 41.12 32.15 20.00 93.19 29.26 58.76
LLaMA2-13B 98.79 93.36 33.83 27.93 12.22 91.34 33.46 55.85
Vicuna-13B 99.35 94.39 36.73 28.53 11.34 92.65 34.81 56.83
GITA-13B (VO) 58.00 96.91 14.45 5.72 4.89 93.19 1.85 39.29
GITA-13B 99.14 95.60 38.69 40.47 20.66 92.12 33.33 60.00

7

Table 2: Accuracy (%) comparisons across GVLQA subsets using GITA-7B (VO). ↑ denotes dramatic
performance improvement.

Connect Cycle TS SP MaxFlow BGM HP Avg
GVLQA-BASE 59.97 96.34 13.30 5.72 2.89 93.01 1.11 38.91
GVLQA-AUGNS 59.85 96.75 14.17 6.61 3.78 91.58 1.48 39.17
GVLQA-AUGNO 54.87 96.50 14.29 5.54 3.94 92.83 1.11 38.44
GVLQA-AUGET 57.98 96.91 13.37 5.97 3.11 91.76 0.74 38.55
GVLQA-AUGLY 87.18 ↑ 97.07 14.86 76.55 ↑ 3.94 93.19 70.74 ↑ 63.36 ↑

Table 3: Accuracy (%) comparisons on real-world datasets under zero-shot and fine-tuning settings,
where ‡ indicates the usage of a checkpoint pretrained in the Cycle task of GVLQA-BASE.

Models ca-GrQc ca-HepTh PolBlogs Cora CiteSeer Avg
Zero-shot

LLaMA2-7B 40.59 48.89 10.74 24.35 30.33 30.98
Vicuna-7B 41.35 50.00 8.72 26.94 29.13 31.22
GITA-7B 71.95 86.06 46.98 31.37 30.63 53.40
GITA-7B‡ 72.02 86.08 48.32 32.10 31.83 54.07

Fine-tuning

LLaMA2-7B 76.57 89.06 80.54 83.76 73.27 80.64
Vicuna-7B 78.95 89.85 80.54 84.87 74.17 81.68
GITA-7B 79.70 91.13 84.56 85.24 75.07 83.14
GITA-7B (w/ AUGLY) 79.77 91.21 85.23 85.24 75.68 83.43
GITA-7B‡ 80.46 91.68 85.23 86.35 76.57 84.06

rent SOTA closed-source LLMs or VLMs, including GPT-4 Turbo and GPT-4V, demonstrate superior
zero-shot performance compared with the aforementioned open-source models. This observation
implies that current open-source LLMs and VLMs lack basic graph reasoning ability, which may be
attributed to the insufficient availability of relevant training data. Such observation also enhances our
motivation to propose the GVLQA dataset, with the aim of improving the graph reasoning capabilities
of VLMs/LLMs.

Observation 3: Increasing Model Size Leads to Better Graph Reasoning Capabilities. The
comparison of VLMs/LLMs with different parameter sizes, specifically 7B and 13B models, verify
the benefits of increasing the model size for graph reasoning capabilities. In this regard, GITA-13B
outperforms its counterpart with 7B parameters (GITA-7B) both on average and across four of the
seven tasks. However, it is worth noting that GITA-13B does not outperform GITA-7B on the other
three tasks. We hypothesize that this discrepancy may be attributed to insufficient modality alignment
due to LoRA fine-tuning.

Observation 4: Vision and Text Modalities Proficient in Different Types of Graph Reasoning
Tasks. We explore the individual capabilities of the visual and textual modalities within the GITA
framework. The results indicate that the text and vision modalities can complement each other
and contribute to better performance than individual ones, as removing either modality leads to
performance drops in most cases (Vicuna & GITA (VO) and GPT-4 Turbo & GITA (VO) in Table 1).
While the graph reasoning capability provided by the vision modality may not be as strong as that of
the text modality in most cases, relying solely on vision still enables the model to possess basic graph
reasoning abilities. Specifically, the model outperforms text-based LLMs in 2 of the 7 tasks (Cycle
and BGM) when relying solely on vision. This consistent improvement across all comparison groups
demonstrates the potential of the vision modality to excel in certain graph reasoning tasks, leveraging
its ability to capture visual patterns like cycles and graph properties such as bipartition. In contrast,
text exhibits a higher proficiency than vision modality in sequence-related graph reasoning problems,
particularly on tasks such as TS, SP, and HP, which require constructing ordered node sequences.

5.2 Evaluation for the Visual Graph Augmentations

To assess the impact of the proposed visual graph augmentation strategies (including layout, node
shape, node outline style, and edge thickness augmentations), we compare the performance of vision-
only GITA-7B models trained on the four augmented subsets of GVLQA and on GVLQA-BASE

8

(without augmentation). The results are presented in Table 2. To fully utilize the visual information
in visual graphs, we fine-tune the visual encoder of VLMs in addition to the vision-to-text projector
and the LoRA adapters within the text decoder in this experiment.

As can be seen from the results, a significant enhancement in overall performance is observed with
the introduction of layout augmentation (GVLQA-AUGLY). The average performance improves
remarkably from 38.91% to 63.36%. Notably, significant improvements are observed on SP (5.72%
to 76.55%), HP (1.11% to 70.74%), and Connect (59.97% to 87.18%). These findings highlight the
critical role of layout augmentation in generating visual graphs. In other words, this observation
suggests the potential for creating larger-scale datasets for vision-language-based graph reasoning,
which could significantly contribute to advancing this field. Conversely, the other three augmentations
do not yield such substantial performance improvements, further emphasizing the importance of
layout augmentation in vision-language-based reasoning.

5.3 Evaluation on Real-World Datasets

In this section, we study the effectiveness of GITA on the ca-GrQC [42] and ca-HepTh [42] datasets
for the link prediction task, and on the PolBlog [1], Cora [65] and CiteSeer [65] datasets for the node
classification task. Table 8 in the appendix C presents the statistics of these datasets. The graph
can have thousands of nodes/edges, making it infeasible to feed the entire graph into the model.
Consequently, we employ k-hop subgraph sampling (with k = 2) discussed in Sec 3.2 to satisfy the
token length restriction of LLMs and visual graph scope effectively.

The experimental results are presented in Table 3. It is evident that GITA consistently outperforms the
LLM baselines, and its performance progressively improves with the addition of layout augmentation
and the use of the GVLQA checkpoint. Notably, we emphasize the advantages of using GVLQA-
BASE as a pretrained dataset by comparing it with GITA-7b. Performance improvements of 0.67%
and 0.92% are observed in the zero-shot and fine-tuning settings, respectively. This highlights the
potential application value of the proposed GVLQA dataset.

5.4 Comparison of GITA with Dedicated Graph Baselines

Table 4: Accuracy (%) comparisons among dedicated GNNs and GITAs on GVLQA-Base.
Connect Cycle TS SP MaxFlow BGM HP Avg

GCN 79.65 70.89 45.71 44.56 56.44 76.70 32.22 58.02
SAGE 82.72 73.58 44.51 49.25 50.67 81.00 36.67 59.78
GITA-7B 98.95 96.67 41.12 32.15 20.00 93.19 29.26 58.76
GITA-13B 99.14 95.60 38.69 40.47 20.66 92.12 33.33 60.00

Though GITA is designed for language-based general graph reasoning settings, which are much
more user-friendly (by user-readable natural language) and general (unique model architecture for
various scenarios) than the typical application of dedicated GNNs, it remains essential to conduct
a comprehensive comparison with specialized GNNs to elucidate the strengths and limitations of
GITA’s applicability and capabilities. To this end, we assess the graph reasoning abilities of GITA
against dedicated GNNs, including GCN [38] and SAGE [24], using the GVLQA-Base dataset, as
detailed in Table 4. In addition, we explore and compare the effects of k-hop subgraph sampling
on the proposed GITA and GNN baselines. Using the ca-Hepth dataset, we analyze the impact of
increasing the number of hops k on the reasoning time and performance of both GITA and GNNs.
The results are in Table 5.

Overall Graph Reasoning Ability Comparison. As shown in Table 4, compared to the dedicated
GNNs, the fine-tuned GITA-7B models have comparable average graph reasoning performance, with
the larger GATA-13B model performs slightly better. In particular, compared to GNNs, the GITA
model shows a stronger ability in recognizing local structures in the graphs (Connect and Cycle) and
to accomplish tasks with obvious layout heuristics (BGM). We believe that this advantage comes from
GITA’s visual perception. For SP and MaxFlow, GITA’s performance is inferior to GNNs. This may
be because GNNs process edge weight more effectively through the message-passing mechanism.

Scalability and Performance Variation with Different Numbers of Hops k. The inference time
results are shown in Table 5. As can be seen, GITA demonstrates inferior scalability compared
to the GNN baselines. Its scalability remains stable as the sampled graph size (i.e., k) increases.

9

Table 5: Accuracy (%) and Inference Time (in parenthe-
ses) for GNNs and GITA on ca-Hepth Dataset with dif-
ferent subgraph sampling hop number k ∈ {1, 2, 3, 4}.

GCN SAGE GITA-7B
k=1 93.27 (0.02s) 94.40 (0.03s) 90.33 (17.23min)
k=2 94.49 (0.04s) 94.43 (0.04s) 91.13 (17.66min)
k=3 91.10 (0.04s) 90.95 (0.18s) 90.31 (17.22min)
k=4 81.92 (0.05s) 83.60 (0.22s) 86.10 (17.01min)

From the accuracy results in Table 5, GITA,
GCN, and SAGE achieve their peak perfor-
mance at k = 2, suggesting that a small
sampled graph size suffices for optimal per-
formance. Though the dedicated GNNs
attain higher peak performance than GITA,
they exhibit performance declines as k in-
creases (e.g., 3 or 4), while GITA’s perfor-
mance is more stable w.r.t. k.

5.5 Case Study

Textual Query

In an undirected graph,
(i,j) means that node i
and node j are
connected with an
undirected edge.
The nodes are
numbered from 0 to 9,
and the edges are: (9,4)
(1,3) (8,1) (4,0) (4,7)
(2,7) (5,7) (2,8) (6,9)
Is there a cycle in this
undirected graph?

Visual Graph

Ground Truth: No.

Vicuna-7B: Yes.
GITA-7B (VO): No.
GITA-7B: No.

(a)

Textual Query

In an undirected graph,
the nodes are numbered
from 0 to 6, and the
edges are:
an edge between node 0
and node 5 with weight 1,
an edge between node 2
and node 0 with weight 1
...
Q: Give the shortest path
from node 4 to node 0:

Visual Graph

Ground Truth: 4->6->0.

Vicuna-7B: 4->6->0.
GITA-7B (VO): 4->5->0.
GITA-7B: 4->6->0.

(b)

Figure 2: A comparative case study of graph repre-
sentation in vision and text modalities. All meth-
ods are trained on the GVLQA-BASE dataset.

In this section, we present examples of graph
information provided in both visual and textual
formats, which offer some intuitive interpreta-
tions for our experimental results. Figure 2 (a)
shows an example where the GITA-7B (VO)
model outperforms its LLMs-based counterpart,
and Figure 2 (b) shows an opposite scenario.

The task depicted in Figure 2(a) is cycle detec-
tion and the correct answer is ‘No’. This is
predicted successfully by the vision-only GITA-
7B model, while the text-based Vicuna-7B fails.
In this example, recognizing cycle patterns is
much easier in visual graphs, whereas text-based
LLMs struggle with disordered textual descriptions of edges, which could inherently involve greater
complexity and more challenges.

On the other hand, the fixed layout of visual graphs presented in GVLQA-BASE may impede the
visual encoder in identifying the shortest path between two nodes, although we have verified layout
augmentation can greatly improve the graph reasoning abilities of models, as shown in Sec. 5.2. This
limitation might arise from the confusion caused by the visual distance within an image, without
considering the weights between the nodes. For instance, in Figure 2(b), the correct answer is
’4->6->0’, which visually appears as a more convoluted path but numerically has a shorter path
length of 3 = 1 + 2. In contrast, the incorrect answer given by GITA-7B (vision-only) is ’4->2->0’,
which has a higher path length cost of 4 = 1 + 3 but visually seems like a more direct shortcut.
This observation further validates the effectiveness of employing layout augmentation to enhance
performance in this task. Layout variations of visual graphs play a crucial role in mitigating the visual
confusion caused by the spatial arrangement within a visual graph. However, it seems more effective
for text-based LLMs to handle explicitly separated nodes and weights, as illustrated by the text (in
red) in Figure 2(b).

6 Conclusion

In this paper, we propose an end-to-end framework called GITA for vision-language-based graph
reasoning. Extensive experiments validate the superiority of incorporating visual information into
instruction-based graph reasoning. Furthermore, we conduct comparative analysis of the four
proposed visual graph augmentations and identify layout augmentation as the most effective approach
for enhancing visual graphs. This finding offers valuable insights for the development of larger-
scale datasets aimed at facilitating vision-language-based graph reasoning. Lastly, we highlight the
potential application value of the proposed GVLQA dataset as a pretrained dataset.

Acknowledgements

This work was supported by NSFC key grant 62136005 and NSFC general grant 62076118, and
in part by the Research Grants Council of the Hong Kong Special Administrative Region (Grants
16200021 and 16202523).

10

References
[1] Lada A Adamic and Natalie Glance. The political blogosphere and the 2004 us election: divided

they blog. In Proceedings of the 3rd international workshop on Link discovery, pages 36–43,
2005.

[2] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson,
Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual
language model for few-shot learning. Advances in Neural Information Processing Systems,
35:23716–23736, 2022.

[3] Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
39–48, 2016.

[4] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction
networks for learning about objects, relations and physics. Advances in neural information
processing systems, 29, 2016.

[5] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, et al. Relational inductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, 2018.

[6] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. Advances in neural information
processing systems, 26, 2013.

[7] Qi Cao, Huawei Shen, Jinhua Gao, Bingzheng Wei, and Xueqi Cheng. Popularity prediction on
social platforms with coupled graph neural networks. In Proceedings of the 13th International
Conference on Web Search and Data Mining, pages 70–78, 2020.

[8] Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph
representation learning. In International Conference on Machine Learning, pages 3469–3489.
PMLR, 2022.

[9] Runjin Chen, Tong Zhao, Ajay Jaiswal, Neil Shah, and Zhangyang Wang. Llaga: Large
language and graph assistant. arXiv preprint arXiv:2402.08170, 2024.

[10] Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei, Shuaiqiang Wang,
Dawei Yin, Wenqi Fan, Hui Liu, et al. Exploring the potential of large language models (LLMs)
in learning on graphs. arXiv preprint arXiv:2307.03393, 2023.

[11] W Dai, J Li, D Li, AMH Tiong, J Zhao, W Wang, B Li, P Fung, and S Hoi. Instructblip:
Towards general-purpose vision-language models with instruction tuning. Advances in Neural
Information Processing Systems, 2023.

[12] George Dantzig, Ray Fulkerson, and Selmer Johnson. Solution of a large-scale traveling-
salesman problem. Journal of the operations research society of America, 2(4):393–410,
1954.

[13] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1959.

[14] Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for
large language models. In Proceedings of International Conference on Learning Representations,
2024.

[15] Lester Randolph Ford and Delbert R Fulkerson. Maximal flow through a network. Canadian
Journal of Mathematics, 1956.

[16] Shuai Fu, Xiequn Wang, Qiushi Huang, and Yu Zhang. Nemesis: Normalizing the soft-prompt
vectors of vision-language models. In Proceedings of International Conference on Learning
Representations, 2024.

11

[17] Emden R Gansner and Stephen C North. An open graph visualization system and its applications
to software engineering. Software: practice and experience, 30(11):1203–1233, 2000.

[18] Anne-Claude Gavin, Patrick Aloy, Paola Grandi, Roland Krause, Markus Boesche, Martina
Marzioch, Christina Rau, Lars Juhl Jensen, Sonja Bastuck, Birgit Dümpelfeld, et al. Proteome
survey reveals modularity of the yeast cell machinery. Nature, 440(7084):631–636, 2006.

[19] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning,
pages 1263–1272. PMLR, 2017.

[20] Ronald J Gould. Advances on the hamiltonian problem–a survey. Graphs and Combinatorics,
2003.

[21] Jiayan Guo, Lun Du, and Hengyu Liu. GPT4Graph: Can large language models under-
stand graph structured data? an empirical evaluation and benchmarking. arXiv preprint
arXiv:2305.15066, 2023.

[22] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and
function using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos,
NM (United States), 2008.

[23] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

[24] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

[25] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In Proceedings of
the 43rd International ACM SIGIR conference on research and development in Information
Retrieval, pages 639–648, 2020.

[26] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural
collaborative filtering. In Proceedings of the 26th international conference on world wide web,
pages 173–182, 2017.

[27] Xiaoxin He, Xavier Bresson, Thomas Laurent, Adam Perold, Yann LeCun, and Bryan Hooi.
Harnessing explanations: LLM-to-LM interpreter for enhanced text-attributed graph repre-
sentation learning. In Proceedings of International Conference on Learning Representations,
2024.

[28] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
Chen, et al. Lora: Low-rank adaptation of large language models. In International Conference
on Learning Representations, 2021.

[29] Chao Huang, Huance Xu, Yong Xu, Peng Dai, Lianghao Xia, Mengyin Lu, Liefeng Bo, Hao
Xing, Xiaoping Lai, and Yanfang Ye. Knowledge-aware coupled graph neural network for social
recommendation. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pages 4115–4122, 2021.

[30] Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual
reasoning and compositional question answering. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6700–6709, 2019.

[31] Hawoong Jeong, Sean P Mason, A-L Barabási, and Zoltan N Oltvai. Lethality and centrality in
protein networks. Nature, 411(6833):41–42, 2001.

[32] Weisen Jiang, Han Shi, Longhui Yu, Zhengying Liu, Yu Zhang, Zhenguo Li, and James
Kwok. Forward-backward reasoning in large language models for mathematical verification. In
Findings of the Association for Computational Linguistics, 2024.

[33] Weisen Jiang, Yu Zhang, and James Kwok. Effective structured-prompting by meta-learning
and representitive verbalizer. In International Conference on Machine Learning, 2023.

12

[34] Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick,
and Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary
visual reasoning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2901–2910, 2017.

[35] Arthur B Kahn. Topological sorting of large networks. Communications of ACM, 1962.

[36] Richard M Karp, Umesh V Vazirani, and Vijay V Vazirani. An optimal algorithm for on-line
bipartite matching. In Proceedings of the twenty-second annual ACM symposium on Theory of
computing, 1990.

[37] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[38] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[39] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30–37, 2009.

[40] Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information Pro-
cessing Systems, 34:21618–21629, 2021.

[41] Jure Leskovec, Lars Backstrom, Ravi Kumar, and Andrew Tomkins. Microscopic evolution
of social networks. In Proceedings of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 462–470, 2008.

[42] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densification and
shrinking diameters. ACM transactions on Knowledge Discovery from Data (TKDD), 1(1):2–es,
2007.

[43] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. BLIP-2: bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, 2023.

[44] Chang Liu and Bo Wu. Evaluating large language models on graphs: Performance insights and
comparative analysis. arXiv preprint arXiv:2308.11224, 2023.

[45] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in Neural Information Processing Systems, 2023.

[46] Xiao Liu, Shiyu Zhao, Kai Su, Yukuo Cen, Jiezhong Qiu, Mengdi Zhang, Wei Wu, Yuxiao
Dong, and Jie Tang. Mask and reason: Pre-training knowledge graph transformers for complex
logical queries. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 1120–1130, 2022.

[47] Mark EJ Newman. The structure and function of complex networks. SIAM review, 45(2):167–
256, 2003.

[48] OpenAI. GPT-3.5. Technical report, 2022.

[49] OpenAI. GPT-4 Turbo. Technical report, 2023.

[50] Bryan Perozzi, Bahare Fatemi, Dustin Zelle, Anton Tsitsulin, Mehran Kazemi, Rami Al-Rfou,
and Jonathan Halcrow. Let your graph do the talking: Encoding structured data for llms. arXiv
preprint arXiv:2402.05862, 2024.

[51] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021.

[52] Robert Sedgewick. Algorithms in C, part 5: graph algorithms. Pearson Education, 2001.

13

[53] Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. Reasoning with neural
tensor networks for knowledge base completion. Advances in neural information processing
systems, 26, 2013.

[54] Alane Suhr, Stephanie Zhou, Ally Zhang, Iris Zhang, Huajun Bai, and Yoav Artzi. A corpus for
reasoning about natural language grounded in photographs. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pages 6418–6428, 2019.

[55] Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang.
Graphgpt: Graph instruction tuning for large language models. arXiv preprint arXiv:2310.13023,
2023.

[56] Sandro Tosi. Matplotlib for Python developers. Packt Publishing Ltd, 2009.

[57] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[58] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua
Bengio, et al. Graph attention networks. stat, 1050(20):10–48550, 2017.

[59] Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia Tsvetkov.
Can language models solve graph problems in natural language? In NeurIPS, 2023.

[60] Xiang Wang, Tinglin Huang, Dingxian Wang, Yancheng Yuan, Zhenguang Liu, Xiangnan He,
and Tat-Seng Chua. Learning intents behind interactions with knowledge graph for recommen-
dation. In Proceedings of the web conference 2021, pages 878–887, 2021.

[61] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In Proceedings of Neural Information Processing Systems, 2022.

[62] Yanbin Wei, Qiushi Huang, Yu Zhang, and James Kwok. Kicgpt: Large language model with
knowledge in context for knowledge graph completion. In Findings of the Association for
Computational Linguistics: EMNLP 2023, pages 8667–8683, 2023.

[63] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 2020.

[64] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

[65] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning
with graph embeddings. In International conference on machine learning, pages 40–48. PMLR,
2016.

[66] Ruosong Ye, Caiqi Zhang, Runhui Wang, Shuyuan Xu, and Yongfeng Zhang. Natural language
is all a graph needs. arXiv preprint arXiv:2308.07134, 2023.

[67] Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. MetaMath: Bootstrap your own mathematical
questions for large language models. In Proceedings of International Conference on Learning
Representations, 2024.

[68] Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi. From recognition to cognition:
Visual commonsense reasoning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6720–6731, 2019.

[69] Chi Zhang, Feng Gao, Baoxiong Jia, Yixin Zhu, and Song-Chun Zhu. Raven: A dataset for
relational and analogical visual reasoning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 5317–5327, 2019.

14

[70] Duzhen Zhang, Yahan Yu, Chenxing Li, Jiahua Dong, Dan Su, Chenhui Chu, and Dong Yu. Mm-
llms: Recent advances in multimodal large language models. arXiv preprint arXiv:2401.13601,
2024.

[71] Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. Graph-bert: Only attention is needed
for learning graph representations. arXiv preprint arXiv:2001.05140, 2020.

[72] Zhanqiu Zhang, Jie Wang, Jiajun Chen, Shuiwang Ji, and Feng Wu. Cone: Cone embeddings
for multi-hop reasoning over knowledge graphs. Advances in Neural Information Processing
Systems, 34:19172–19183, 2021.

[73] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Sto-
ica. Judging LLM-as-a-judge with MT-bench and chatbot arena. In NeurIPS (Datasets and
Benchmarks Track), 2023.

[74] Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
Schuurmans, Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H. Chi. Least-to-most prompt-
ing enables complex reasoning in large language models. In Proceedings of International
Conference on Learning Representations, 2023.

[75] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023.

15

A Visual Modality Enhances Effectiveness by Uncovering Critical
Substructures

In this section, we present a case study to highlight the complementary role of the visual modality in
graph reasoning tasks. The visual modality excels at recognizing beneficial substructures or local
patterns, which are crucial for effective graph reasoning. For instance, identifying the "hop number"
is essential for shortest path calculations, recognizing "leaf nodes" is vital for topological sorting,
and detecting "cycles" is necessary to avoid in Hamilton path construction. We extracted these
substructures from the GVLQA-Base dataset and manually labeled them. By employing a frozen
Vision Transformer (ViT) in the LLaVA framework with a trainable Multi-Layer Perceptron (MLP)
decoder, we achieved identification accuracies of 89.92%, 95.16%, and 92.39% for hop number
counting, leaf node identification, and cycle detection, respectively. In contrast, using a pre-trained
BERT model with the same trainable MLP decoder resulted in significantly lower accuracies of
55.47%, 26.33%, and 60.32% for the same tasks. Therefore, the enhanced effectiveness of integrating
visual and textual modalities can be attributed to the additional structural information provided by the
visual modality, which facilitates the identification of these critical substructures.

B Advantages of GITA Over Traditional Graph Neural Networks

GITA offers several advantages over traditional Graph Neural Networks (GNNs) in terms of general-
izability, flexibility, and user-friendliness:

Unlike GNNs, which require task-specific feature engineering and architecture adjustments, GITA
employs a unified model architecture for all tasks, demonstrating its generalizability. By separating
task specifications from graph structures, GITA can handle various graph reasoning tasks seamlessly.
Additionally, it exhibits strong zero-shot capabilities, allowing it to perform well on tasks it has not
been explicitly trained on, which is a feature not commonly found in traditional GNNs.

Besides, traditional GNNs often demand specialized knowledge in model architectures and coding to
accommodate diverse tasks, posing a challenge for non-experts. In contrast, GITA overcomes this
barrier by employing language-based templates for task adaptation, enhancing its flexibility. This
flexibility enables GITA to effectively handle a broad spectrum of tasks, offering a framework that
can be customized to specific requirements using daily language, without the necessity of profound
expertise in graph neural networks.

Moreover, by leveraging existing VLMs, GITA can respond in natural language, allowing for intuitive
graph reasoning with simple queries like "Is there a cycle in this graph?" This stands in contrast
to the unreadable vector representations typically used in GNNs, significantly enhancing GITA’s
user-friendliness.

C Datasets Statistics

Table 6: Statistics of the GVLQA dataset.

Subset Connect Cycle TS SP MaxFlow BMG HP Total

BASE 16,410 4,100 2,910 1,560 1,500 1,860 900 29,240
AUGLY 98,460 24,600 17,460 9,360 9,000 11,160 5,400 175,440
AUGNS 49,230 12,300 8,730 4,680 4,500 5,580 2,700 87,720
AUGNO 65,640 16,400 11,640 6,240 6,000 7,440 3,600 116,960
AUGET 65,640 16,400 11,640 6,240 6,000 7,440 3,600 116,960

Total 295,380 73,800 52,380 28,080 27,000 33,480 16,200 526,320

D Illustrations for Visualization Tools in Graph Visualizer

The GITA graph visualizer incorporates a variety of implementations for existing visualization tools
such as Graphviz, Matplotlib with NetworkX, and igraph, each selected for their unique capabilities

16

Table 7: Average numbers of nodes and edges for each task in GVLQA.

Average / Task Connect Cycle TS SP MaxFlow BGM HP

#nodes 25.01 23.42 21.86 13.65 13.90 21.13 13.24
#edges 95.46 23.66 114.10 23.99 49.16 51.03 45.05

Table 8: Statistics of real-world datasets

ca-GrQC ca-HepTh PolBlogs Cora CiteSeer

Nodes 5,242 9,877 1,490 2,708 3,327
Edges 14,496 25,998 19,025 5,278 4,676
domain collaboration collaboration social citation citation

average degree 5.53 5.26 25.54 3.9 2.74

in graph rendering. These tools are implemented in our code as interchangeable modules, enhancing
flexibility based on the requirements of different projects.

Figure 3: Examples of the visual graph generated by various visualization tools.

Figure 3 showcases some visual graphs produced by these different graph visualizer implementations.

E Graph-describing Templates

The graph describer relies on a set of unified structured templates designed to generate coherent and
informative descriptions that emphasize the inherent characteristics of the graph itself, regardless
of specific task requirements. These graph-describing templates cover various scenarios, includ-
ing directed graphs, undirected graphs, graphs with node identities or features, and graphs with
edge weights or capacities. Table 9 provides an illustration of these templates, where [P] denotes
placeholders required to be filled by corresponding graph information.

F Examples of Manual-template-based and LLM-agent-bootstrapped Query
Generation

Manual-template-based Query Generation. The queries QT
G can be generated by task-specific man-

ual templates. These templates are manually crafted by human to supplement descriptions/instructions
about 1) concrete meanings of nodes and edges, 2) task responsibilities and 3) input/output specifica-
tions into the task-agnostic graph description DG. Therefore, the precision and faith of generated
task-specific queries QT

G are guaranteed by human calibrations. An example of manual-template-
based query generation for topological sorting is illustrated in Figure 4. In this example, placeholders
[P] are used to represent information that scripts will automatically fill in.

17

Graph categories Undirected Directed

Prototype In an undirected graph, (i,j) means that node i and node j are
connected with an undirected edge. The nodes are numbered
from [P] to [P], and the edges are:
([P], [P]) , ([P], [P])...

In a directed graph, (i,j) means that node i and node j are
connected with a directed edge from node i to node j. The
nodes are numbered from [P] to [P], and the edges are:
([P], [P]) , ([P], [P])...

W/ Node Attributes In an undirected graph, the nodes are numbered from [P] to
[P], and every node has an attribute. (i,j) means that node i
and node j are connected with an undirected edge.
The attributes of nodes are:
node [P]: [P]
node [P]: [P]
...
The edges are: ([P],[P]) ([P],[P]) ...

In a directed graph, the nodes are numbered from [P] to [P],
and every node has an attribute. (i,j) means that node i and
node j are connected with a directed edge from node i to node
j.
The attributes of nodes are:
node [P]: [P]
node [P]: [P]
...
The edges are: ([P],[P]) ([P],[P]) ...

W/ Edge Weights In an undirected graph, the nodes are numbered from [P] to
[P], and the edges are:
an edge between node [P] and node [P] with weight [P],
an edge between node [P] and node [P] with weight [P],
...

In a directed graph, the nodes are numbered from [P] to [P],
and the edges are:
an edge from node [P] to node [P] with weight [P],
an edge from node [P] to node [P] with weight [P],
...

W/ Both In an undirected graph, the nodes are numbered from [P] to
[P], and every node has an attribute.
The attributes of nodes are:
node [P]: [P]
node [P]: [P]
...
And the edges are:
an edge between node [P] and node [P] with weight [P],
an edge between node [P] and node [P] with weight [P],
...

In a directed graph, the nodes are numbered from [P] to [P],
and every node has an attribute.
The attributes of nodes are:
node [P]: [P]
node [P]: [P]
...
And the edges are:
an edge from node [P] to node [P] with weight [P],
an edge from node [P] to node [P] with weight [P],
...

Table 9: Graph-describing Templates for various categories.

Textual Description

In a directed graph,
(i,j) means that node i and
node j are connected with
an undirected edge.

The nodes are numbered
from 0 to 6, and the
edges are:
(0,2)
(2,6)
...

Task-specific Query

In a directed graph with 7
nodes numbered from 0 to 6:
node 0 should be visited before node
2,
...
This task is to find a valid topological
sorting for this directed graph.
Please provide a possible
topological ordering path, for
example: 0 -> 1 -> 2 -> 3 -> 4. Q:
The topological order of the directed
graph is:

 Task Responsibility

Manual-template-based Questioner

Manual Template:

In a directed graph with [P] nodes numbered from [P] to
[P]:
node [P] should be visited before node [P],
...
This task is to find a valid topological sorting for this
directed graph.
Please provide a possible topological ordering path, for
example: 0 -> 1 -> 2 -> 3 -> 4. Q: The topological order of
the directed graph is:

 meanings of nodes/edges Output Specification Task-agnostic textual description
Figure 4: Examples of the manual-template-based query generation, where [P] denotes the placehold-
ers.

18

LLM-agent-bootstrapped Query Generation. Figure 5 presents an example of employing a
bootstrapped LLM agent, such as ChatGPT[48], for monster-hunting gaming. By incorporating
task-specific information into the prompt, including node/edge meanings and task responsibilities,
the LLM agent automatically generates a response that serves as the desired task-specific query.
Compared to using manual templates, bootstrapping LLM agents for automated synthesis is more
flexible and economic as it can take advantage of LLM agents to automatically interpret context
and generate appropriate queries for various scenarios and minimize manual effort with changing
conditions. Such properties make it suitable for dynamic or bespoke tasks, such as robotic planning
or complex gaming scenarios.

Manual-template-based Questioner

Graph description: In a directed graph, (i,j) means that
node i and node j are connected with an undirected
edge. The nodes are numbered from 0 to 3, and the
edges are:
(0,1) (1,2) (2,3) ...
You are required to help refine the graph description with
1) concrete nodes/edges meaning: Node -> Monsters
Edge-> Two monsters coupled and hunting one of them
will irritate another. 2) task responsibility: hunting
monster each by each without irritating more than 1. 3) A
short sentence to rule input/output specification, for
example, a sentence like "The output should be only a
number" or "The output should be only Yes. or No.".
Directly give me the refined graph description:

Task-specific Query
In a directed graph, each node represents a monster, and an undirected
edge between two nodes signifies that the corresponding monsters are
coupled. If one monster is hunted, it will irritate the other monster it is
coupled with. The nodes are numbered from 0 to 3, and the edges are
defined as follows:
(0,1) - Monster 0 and Monster 1 are coupled.
(1,2) - Monster 1 and Monster 2 are coupled.
(2,3) - Monster 2 and Monster 3 are coupled.
...

The task responsibility is to hunt each monster one by one without
irritating more than one monster at a time.

Input/Output Specification: The output should be a sequence of numbers
representing the order in which monsters can be hunted without irritating
more than one monster at a time.

 Task Responsibility meanings of nodes/edges Output Specification

Prompt

 Task-agnostic textual description

Textual
Description

LLM
 A

gent (C
hatG

PT)

Text-specific
information

Figure 5: Examples of the LLM-agent-bootstrapped query generation.

G Experiment Settings

For all fine-tuning experiments, we use a batch size of 128 and adopt the AdamW optimizer (with a
learning rate of 0.0002 and 0.00002 for the LoRA adapters within the text decoder and vision-to-text
projector, respectively).

Detailed Settings for GVLQA Dataset During the evaluation, the temperature is set to 0 for all
baselines. All fine-tuning experiments are conducted on an NVIDIA DGX station with 8×A100 GPUs.
We split the GVLQA dataset in the ratio of 7:3 for training and testing, respectively. The accuracy
(%) metrics are computed by comparing the prediction and ground truths with exact matching. We
use the next-token-prediction loss to fine-tune the LoRA [28] adapters of LLMs and the vision-to-text
projector. Visual graphs are encoded as visual embeddings by a visual encoder. Visual embeddings
are concatenated with the embeddings of textual descriptions and instructions (i.e., questions), then
fed to the text decoder to generate the answer.

Real-world Datasets Here we provide more details about the five real-world datasets used in Sec
5.3. The datasets ca-GrQC and ca-HepTh represent collaboration networks from the arXiv sections
of General Relativity and Quantum Cosmology, and High Energy Physics - Theory, respectively,
featuring nodes as authors and edges as co-authorships. They can be downloaded from Stanford
Network Analysis Project (SNAP) website 6. PolBlogs is a network of U.S. political blogs from
February 2005, categorized by political alignment and linked by blog references. Cora and CiteSeer
are both citation networks, where nodes correspond to scientific papers and edges to citations, utilized
for tasks such as document classification and citation analysis, with papers categorized into various
research fields. Statistics of the datasets are shown in Table 8. For each dataset, 80%/10%/10% of
the edges are randomly used for training/validation/testing, respectively.

Detailed Settings for Real-world Benchmarks In the conventional semi-supervised node classi-
fication setting, class labels are available for some nodes, which is reflected in the visual graph by
coloring the nodes with a unique random color for each class. To focus on evaluating the model’s
ability to capture structural information, GITA filters out the influence of node features in Cora and
CiteSeer datasets. For link prediction tasks on ca-GrQC and ca-HepTh datasets, GITA treats the
graphs as undirected. In the test split, both the original links and their reverse links do not appear
in the train and valid splits. During training and evaluation, an equal number of negative sampled
links are used alongside the positive links. These negative links are sampled at each training epoch

6https://snap.stanford.edu/index.html

19

but remain fixed during evaluation. For the GVLQA pretrain checkpoint, GITA adopts the 7B cycle
checkpoint finetuned on GVLQA-BASE, where the performance is nearly mature. Hyperparameter
combinations for each model are determined through grid search, and the specific combinations can
be found in the provided code.

H Illustrations of GVLQA subsets

In this section, we present the illustrations of the GVLQA subsets. Figure 6 provides an overview of
GVLQA-BASE. Subsequently, from Figure 7 to Figure 10, we showcase the augmented visual graphs
in GVLQA-AUGLY (augment layouts), GVLQA-AUGNS (augment node styles), GVLQA-AUGNO
(augment node outline styles), and GVLQA-AUGET (augment edge thickness), respectively.

In this undirected graph,
(i,j) means that node i
and node j are connected
with an undirected edge.
The nodes are numbered
from 0 to 5, and the
edges are: (0,5) (0,1)
(0,3) (1,5) (1,3) (2,4)
(3,5).

Q: Is there a path between node 1 and node 5
in this undirected graph?
A: Yes.

Visual graph Textual description

1. Connectivity

In this undirected graph,
(i,j) means that node i
and node j are connected
with an undirected edge.
The nodes are numbered
from 0 to 4, and the
edges are: (1,0) (1,4)
(3,1) (2,0).

Q: Is there a cycle in this undirected graph?
A: No.

Visual graph Textual description

2. Cycle

This diagram depicts
a directed graph, in
which each directed
edge from node A to
node B signifies that,
according to the
topological order,
node A must precede
node B. In this
directed graph with 5
nodes numbered from
0 to 4: node 1 should
be visited before
node 0 ...

Q: The topological order of the directed graph is:
A: 1,4,3,0,2.

Visual graph Textual description

3. Topology Sort

This graphic illustrates
an undirected graph,
with each edge's
distance or length
indicated by a
numerical label in close
proximity. In a
undirected graph, the
nodes are numbered
from 0 to 4, and the
edges are: an edge
between node 1 and
node 0 with weight 1,
an edge ...

Q: Give the shortest path from node 3 to node 1:
A: 3->2->0->1.

Visual graph Textual description

4. Shortest Path

This graphic illustrates a
directed graph, with each
edge's capacity indicated by a
numerical label in close
proximity. In this directed
graph, the nodes are
numbered from 0 to 5, and the
edges are: an edge from node
1 to node 3 with capacity 9, an
edge from node 2 to node 0
with capacity 9, an edge from
node 2 to node 3 with capacity
7, an edge from node 4 to node
3 with capacity 1, an edge from
node 4 to node 2 with ...

Q: What is the maximum flow from node 4 to node 3:
A: 14.

Visual graph Textual description

5. Maximum Flow

There are 4 hosts
numbered from 0 to 3,
and 3 tasks numbered
from 0 to 2. Each host
has a set of tasks that
it is interested in: Host
2 is interested in task
2. Host 2 is interested
in task 1 ... However,
each host is capable of
solving only one
task, and similarly,
each task can be
resolved by just one
host.

Q: What is the maximum number of hosts that can be
assigned a task they are interested in?
A: 2.

Visual graph Textual description

6. Bipartite Graph Matching

In this undirected graph,
(i,j) means that node i and
node j are connected with
an undirected edge. The
nodes are numbered from
0 to 10, and the edges are:
(7,1) (10,3) (0,6) (5,10)
(5,3) (9,8) (7,3) (1,10) (7,4)
(1,5) (4,10) (5,9) (7,5) (6,1)
(5,2) (2,8) (8,5) (4,2) (0,2)
(5,6) (1,4).

Q: Begin with node 0, Is there a path in this graph
that visits every node exactly once? If yes, give the
path. Note that in a path, adjacent nodes must be
connected with edges.
A: 0->6->1->7->3->10->5->9->8->2->4.

Visual graph Textual description

7. Hamilton Path

Figure 6: An overview of the GVLQA-BASE. Each figure depicts the tasks involving graph-based
reasoning, showcasing a visual graph, a textual question, and the corresponding answer.

I Limitation

The GITA framework proposed in the paper, along with its experimental results, exhibits certain
limitations that should be acknowledged. Firstly, when dealing with large-scale graphs, the con-
ventional subgraph sampling strategy employed by GITA may result in imbalanced and insufficient
sampling, leading to the loss of critical graph structural information. This compromise is necessary
to accommodate the limited contextual length of the text-based LLM and the restricted scope of the
visual graph. Secondly, due to computational constraints, the fine-tuning procedures in the paper were
restricted to the LoRA framework. While this approach offers advantages, a more comprehensive
fine-tuning process that considers both visual and text modalities is expected to better align the two
and potentially enhance performance. Addressing these limitations should be considered as a future
research direction in this field.

20

In this undirected
graph, (i,j) means
that node i and
node j are
connected with an
undirected edge.
The nodes are
numbered from 0
to 5, and the edges
are: (0,5) (0,1)
(0,3) (1,5) (1,3)
(2,4) (3,5).

Q: Is there a path between node 1 and node 5
in this undirected graph?
A: Yes.

Visual graph Textual description

1. Connectivity

Q: Is there a cycle in this undirected graph?
A: No.

Visual graph Textual description

2. Cycle

This diagram depicts
a directed graph, in
which each directed
edge from node A to
node B signifies that,
according to the
topological order,
node A must precede
node B. In this
directed graph with 5
nodes numbered from
0 to 4: node 1 should
be visited before
node 0 ...

Q: The topological order of the directed graph is:
A: 1,4,3,0,2.

Visual graph Textual description

3. Topology Sort

This graphic illustrates
an undirected graph,
with each edge's
distance or length
indicated by a
numerical label in close
proximity. In a
undirected graph, the
nodes are numbered
from 0 to 4, and the
edges are: an edge
between node 1 and
node 0 with weight 1,
an edge ...

Q: Give the shortest path from node 3 to node 1:
A: 3->2->0->1.

Visual graph Textual description

4. Shortest Path

This graphic illustrates a
directed graph, with each
edge's capacity indicated by a
numerical label in close
proximity. In this directed
graph, the nodes are
numbered from 0 to 5, and the
edges are: an edge from node
1 to node 3 with capacity 9, an
edge from node 2 to node 0
with capacity 9, an edge from
node 2 to node 3 with capacity
7, an edge from node 4 to node
3 with capacity 1, an edge from
node 4 to node 2 with ...

Q: What is the maximum flow from node 4 to node 3:
A: 14.

Visual graph Textual description

5. Maximum Flow

There are 4 hosts numbered
from 0 to 3, and 3 tasks
numbered from 0 to 2. Each
host has a set of tasks that it
is interested in: Host 2 is
interested in task 2. Host 2
is interested in task 1 ...
However, each host is
capable of solving only one
task, and similarly, each task
can be resolved by just one
host.

Q: What is the maximum number of hosts that can be
assigned a task they are interested in?
A: 2.

Visual graph Textual description

6. Bipartite Graph Matching

In this undirected graph,
(i,j) means that node i and
node j are connected with
an undirected edge. The
nodes are numbered from
0 to 10, and the edges are:
(7,1) (10,3) (0,6) (5,10)
(5,3) (9,8) (7,3) (1,10) (7,4)
(1,5) (4,10) (5,9) (7,5) (6,1)
(5,2) (2,8) (8,5) (4,2) (0,2)
(5,6) (1,4).

Q: Begin with node 0, Is there a path in this graph
that visits every node exactly once? If yes, give the
path. Note that in a path, adjacent nodes must be
connected with edges.
A: 0->6->1->7->3->10->5->9->8->2->4.

Visual graph Textual description

7. Hamilton Path

W

In this undirected graph,
(i,j) means that node i
and node j are connected
with an undirected edge.
The nodes are numbered
from 0 to 4, and the
edges are: (1,0) (1,4)
(3,1) (2,0).

Figure 7: An overview of the GVLQA-AUGLY. Figures are akin to GVLQA-BASE but vary only in
layouts.

In this undirected
graph, (i,j) means
that node i and
node j are
connected with an
undirected edge.
The nodes are
numbered from 0
to 5, and the edges
are: (0,5) (0,1)
(0,3) (1,5) (1,3)
(2,4) (3,5).

Q: Is there a path between node 1 and node 5
in this undirected graph?
A: Yes.

Visual graph Textual description

1. Connectivity

Q: Is there a cycle in this undirected graph?
A: No.

Visual graph Textual description

2. Cycle

This diagram depicts
a directed graph, in
which each directed
edge from node A to
node B signifies that,
according to the
topological order,
node A must precede
node B. In this
directed graph with 5
nodes numbered from
0 to 4: node 1 should
be visited before
node 0 ...

Q: The topological order of the directed graph is:
A: 1,4,3,0,2.

Visual graph Textual description

3. Topology Sort

This graphic illustrates
an undirected graph,
with each edge's
distance or length
indicated by a
numerical label in close
proximity. In a
undirected graph, the
nodes are numbered
from 0 to 4, and the
edges are: an edge
between node 1 and
node 0 with weight 1,
an edge ...

Q: Give the shortest path from node 3 to node 1:
A: 3->2->0->1.

Visual graph Textual description

4. Shortest Path

Q: What is the maximum flow from node 4 to node 3:
A: 14.

Visual graph Textual description

5. Maximum Flow

There are 4 hosts
numbered from 0 to 3,
and 3 tasks numbered
from 0 to 2. Each host
has a set of tasks that
it is interested in: Host
2 is interested in task
2. Host 2 is interested
in task 1 ... However,
each host is capable of
solving only one
task, and similarly,
each task can be
resolved by just one
host.

Q: What is the maximum number of hosts that can be
assigned a task they are interested in?
A: 2.

Visual graph Textual description

6. Bipartite Graph Matching

In this undirected graph,
(i,j) means that node i and
node j are connected with
an undirected edge. The
nodes are numbered from
0 to 10, and the edges are:
(7,1) (10,3) (0,6) (5,10)
(5,3) (9,8) (7,3) (1,10) (7,4)
(1,5) (4,10) (5,9) (7,5) (6,1)
(5,2) (2,8) (8,5) (4,2) (0,2)
(5,6) (1,4).

Q: Begin with node 0, Is there a path in this graph
that visits every node exactly once? If yes, give the
path. Note that in a path, adjacent nodes must be
connected with edges.
A: 0->6->1->7->3->10->5->9->8->2->4.

Visual graph Textual description

7. Hamilton Path

In this undirected graph,
(i,j) means that node i
and node j are connected
with an undirected edge.
The nodes are numbered
from 0 to 4, and the
edges are: (1,0) (1,4)
(3,1) (2,0).

This graphic illustrates a
directed graph, with each
edge's capacity indicated by a
numerical label in close
proximity. In this directed
graph, the nodes are
numbered from 0 to 5, and the
edges are: an edge from node
1 to node 3 with capacity 9, an
edge from node 2 to node 0
with capacity 9, an edge from
node 2 to node 3 with capacity
7, an edge from node 4 to
node 3 with capacity 1, an
edge from node 4 to node 2
with ...

Figure 8: An overview of the GVLQA-AUGNO. Figures are akin to GVLQA-BASE but vary only in
node outline styles.

21

In this undirected
graph, (i,j) means
that node i and
node j are
connected with an
undirected edge.
The nodes are
numbered from 0
to 5, and the edges
are: (0,5) (0,1)
(0,3) (1,5) (1,3)
(2,4) (3,5).

Q: Is there a path between node 1 and node 5
in this undirected graph?
A: Yes.

Visual graph Textual description

1. Connectivity

Q: Is there a cycle in this undirected graph?
A: No.

Visual graph Textual description

2. Cycle

This diagram depicts
a directed graph, in
which each directed
edge from node A to
node B signifies that,
according to the
topological order,
node A must precede
node B. In this
directed graph with 5
nodes numbered from
0 to 4: node 1 should
be visited before
node 0 ...

Q: The topological order of the directed graph is:
A: 1,4,3,0,2.

Visual graph Textual description

3. Topology Sort

This graphic illustrates
an undirected graph,
with each edge's
distance or length
indicated by a
numerical label in close
proximity. In a
undirected graph, the
nodes are numbered
from 0 to 4, and the
edges are: an edge
between node 1 and
node 0 with weight 1,
an edge ...

Q: Give the shortest path from node 3 to node 1:
A: 3->2->0->1.

Visual graph Textual description

4. Shortest Path

Q: What is the maximum flow from node 4 to node 3:
A: 14.

Visual graph Textual description

5. Maximum Flow

There are 4 hosts
numbered from 0 to 3,
and 3 tasks numbered
from 0 to 2. Each host
has a set of tasks that
it is interested in: Host
2 is interested in task
2. Host 2 is interested
in task 1 ... However,
each host is capable of
solving only one
task, and similarly,
each task can be
resolved by just one
host.

Q: What is the maximum number of hosts that can be
assigned a task they are interested in?
A: 2.

Visual graph Textual description

6. Bipartite Graph Matching

In this undirected graph,
(i,j) means that node i and
node j are connected with
an undirected edge. The
nodes are numbered from
0 to 10, and the edges are:
(7,1) (10,3) (0,6) (5,10)
(5,3) (9,8) (7,3) (1,10) (7,4)
(1,5) (4,10) (5,9) (7,5) (6,1)
(5,2) (2,8) (8,5) (4,2) (0,2)
(5,6) (1,4).

Q: Begin with node 0, Is there a path in this graph
that visits every node exactly once? If yes, give the
path. Note that in a path, adjacent nodes must be
connected with edges.
A: 0->6->1->7->3->10->5->9->8->2->4.

Visual graph Textual description

7. Hamilton Path

In this undirected graph,
(i,j) means that node i
and node j are connected
with an undirected edge.
The nodes are numbered
from 0 to 4, and the
edges are: (1,0) (1,4)
(3,1) (2,0).

This graphic illustrates a
directed graph, with each
edge's capacity indicated by a
numerical label in close
proximity. In this directed
graph, the nodes are
numbered from 0 to 5, and the
edges are: an edge from node
1 to node 3 with capacity 9, an
edge from node 2 to node 0
with capacity 9, an edge from
node 2 to node 3 with capacity
7, an edge from node 4 to
node 3 with capacity 1, an
edge from node 4 to node 2
with ...

Figure 9: An overview of the GVLQA-AUGNS. Figures are akin to GVLQA-BASE but vary only in
node shapes.

In this undirected
graph, (i,j) means
that node i and
node j are
connected with an
undirected edge.
The nodes are
numbered from 0
to 5, and the edges
are: (0,5) (0,1)
(0,3) (1,5) (1,3)
(2,4) (3,5).

Q: Is there a path between node 1 and node 5
in this undirected graph?
A: Yes.

Visual graph Textual description

1. Connectivity

Q: Is there a cycle in this undirected graph?
A: No.

Visual graph Textual description

2. Cycle

This diagram depicts
a directed graph, in
which each directed
edge from node A to
node B signifies that,
according to the
topological order,
node A must precede
node B. In this
directed graph with 5
nodes numbered from
0 to 4: node 1 should
be visited before
node 0 ...

Q: The topological order of the directed graph is:
A: 1,4,3,0,2.

Visual graph Textual description

3. Topology Sort

This graphic illustrates
an undirected graph,
with each edge's
distance or length
indicated by a
numerical label in close
proximity. In a
undirected graph, the
nodes are numbered
from 0 to 4, and the
edges are: an edge
between node 1 and
node 0 with weight 1,
an edge ...

Q: Give the shortest path from node 3 to node 1:
A: 3->2->0->1.

Visual graph Textual description

4. Shortest Path

Q: What is the maximum flow from node 4 to node 3:
A: 14.

Visual graph Textual description

5. Maximum Flow

There are 4 hosts
numbered from 0 to 3,
and 3 tasks numbered
from 0 to 2. Each host
has a set of tasks that
it is interested in: Host
2 is interested in task
2. Host 2 is interested
in task 1 ... However,
each host is capable of
solving only one
task, and similarly,
each task can be
resolved by just one
host.

Q: What is the maximum number of hosts that can be
assigned a task they are interested in?
A: 2.

Visual graph Textual description

6. Bipartite Graph Matching

In this undirected graph,
(i,j) means that node i and
node j are connected with
an undirected edge. The
nodes are numbered from
0 to 10, and the edges are:
(7,1) (10,3) (0,6) (5,10)
(5,3) (9,8) (7,3) (1,10) (7,4)
(1,5) (4,10) (5,9) (7,5) (6,1)
(5,2) (2,8) (8,5) (4,2) (0,2)
(5,6) (1,4).

Q: Begin with node 0, Is there a path in this graph
that visits every node exactly once? If yes, give the
path. Note that in a path, adjacent nodes must be
connected with edges.
A: 0->6->1->7->3->10->5->9->8->2->4.

Visual graph Textual description

7. Hamilton Path

In this undirected graph,
(i,j) means that node i
and node j are connected
with an undirected edge.
The nodes are numbered
from 0 to 4, and the
edges are: (1,0) (1,4)
(3,1) (2,0).

This graphic illustrates a
directed graph, with each
edge's capacity indicated by a
numerical label in close
proximity. In this directed
graph, the nodes are
numbered from 0 to 5, and the
edges are: an edge from node
1 to node 3 with capacity 9, an
edge from node 2 to node 0
with capacity 9, an edge from
node 2 to node 3 with capacity
7, an edge from node 4 to
node 3 with capacity 1, an
edge from node 4 to node 2
with ...

Figure 10: An overview of the GVLQA-AUGET. Figures are akin to GVLQA-BASE but vary only in
edge thicknesses.

22

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Please refer to the abstract part and the contribution enumeration at the tail of
the introduction part.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

23

Justification: Please refer to Appendix I
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not involve any theoretical result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We show fundamental experiment settings in Section 5, and more details for ex-
periments settings in Appendix G. Besides, we provide the complete codes as supplementary
materials.
Guidelines:

24

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The complete codes are included, and the proposed GVLQA dataset is released
with common access.

Guidelines:

• The answer NA means that the paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experiment details are given in both Section 5 and Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The paper does not include error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the machine (type and storage) requirements in Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.

26

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We make sure the research conducted in the paper conform, in every respect,
with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The research does not have concerns about societal impacts because it is
designed for general-purpose graph reasoning.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

27

https://neurips.cc/public/EthicsGuidelines

Answer: [Yes]
Justification: The paper includes using an graph visualizer to generate abstract graph images,
however, these images are focus on graph structure, without any sensitive information.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited necessary assets and conduct CC-BY 4.0 for our codes and
datasets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code and other supplementary materials are followed with readme and
instructions.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

28

paperswithcode.com/datasets

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

29

	Introduction
	Related Work
	GITA: Graph to Visual and Textual Integration
	Preliminary
	Architecture
	Visual Graph Augmentation
	Training

	GVLQA Dataset
	Construction
	Structure

	Experiments
	Evaluation on the GVLQA-BASE Dataset
	Evaluation for the Visual Graph Augmentations
	Evaluation on Real-World Datasets
	Comparison of GITA with Dedicated Graph Baselines
	Case Study

	Conclusion
	Visual Modality Enhances Effectiveness by Uncovering Critical Substructures
	Advantages of GITA Over Traditional Graph Neural Networks
	Datasets Statistics
	Illustrations for Visualization Tools in Graph Visualizer
	Graph-describing Templates
	Examples of Manual-template-based and LLM-agent-bootstrapped Query Generation
	Experiment Settings
	Illustrations of GVLQA subsets
	Limitation

