
MP3: Movement Primitive-Based (Re-)Planning
Policy

Fabian Otto ∗ 1,2, Hongyi Zhou∗ 3, Onur Celik4, Ge Li4,
Rudolf Lioutikov3 and Gerhard Neumann4

∗ These authors contributed equally to this work
1 University of Tübingen, Germany

2 Bosch Center for Artificial Intelligence, Germany
3 Intuitive Robots Lab, Karlsruhe Institute of Technology, Germany

4 Autonomous Learning Robots Lab, Karlsruhe Institute of Technology, Germany
fabian.otto@bosch.com, hongyi.zhou@kit.edu

Abstract: We introduce a novel deep reinforcement learning (RL) approach called
Movement Primitive-based Planning Policy (MP3). By integrating movement
primitives (MPs) into the deep RL framework, MP3 enables the generation of
smooth trajectories throughout the whole learning process while effectively learn-
ing from sparse and non-Markovian rewards. Additionally, MP3 maintains the
capability to adapt to changes in the environment during execution. Although
many early successes in robot RL have been achieved by combining RL with
MPs, these approaches are often limited to learning single stroke-based motions,
lacking the ability to adapt to task variations or adjust motions during execution.
Building upon our previous work, which introduced an episode-based RL method
for the non-linear adaptation of MP parameters to different task variations, this
paper extends the approach to incorporating replanning strategies. This allows
adaptation of the MP parameters throughout motion execution, addressing the
lack of online motion adaptation in stochastic domains requiring feedback. The
project website can be accessed at https://intuitive-robots.github.io/
mp3_website/.

Keywords: Movement primitives, reinforcement learning, robot learning

1 Introduction

Traditional deep RL methods use a step-based policy, where at each time step the policy explores
in the atomic action space. During interaction with the environment, the agent collects state, action,
and reward data points at each time step, which are used to update the policy. Although using
every atomic action generates a vast amount of data-points for the policy update, it also complicates
exploration due to the typical random walk behavior and introduces a lot of noise in the policy
evaluation process (see Figure 2). Therefore, these methods often rely on informative reward signals
throughout the interaction sequence, making them less effective in sparse or non-Markovian settings
where feedback from the environment is delayed. Moreover, step-based exploration can result in
slower convergence and jerky, potentially dangerous behavior for robots.

In contrast, RL with MPs (MPRL) is typically based on episode-based RL (ERL) [1, 2, 3, 4]. ERL
methods learn to parameterize a desired trajectory used for a controller based on a task description
known as the context, which remains fixed throughout the entire episode. These methods explore the
trajectory space, meaning that a parameter is sampled given the context only once at the beginning
of the episode and executed without resampling. This exploration strategy results in time-correlated
exploration, smooth behaviors, and improved performance in sparse or non-Markovian reward set-
tings [4]. In our recent work [4], we integrated ERL with MPs into a deep policy gradient algorithm

https://intuitive-robots.github.io/mp3_website/
https://intuitive-robots.github.io/mp3_website/

that is based on trust region projection layer (TRPL) [5]. While this algorithm can non-linearly
adapt the parameters of the MP to the given context and achieve high-quality policies for complex
robotic tasks, it is inherently constrained to generating open-loop trajectories that cannot be adapted
or adjusted during execution.

This paper is an extension of Otto et al. [4], where we add learning non-linear replanning policies
instead of just the initial adaptation of the MP to the context, combining the benefits of ERL with
MPs and step-based RL (SRL) methods. MP3 still explores in the trajectory space, yet the agent
is now able to change the desired trajectory within an episode, enabling it to adapt its behavior
to unpredictable changes in the environment. We demonstrate the effectiveness of our method by
presenting various complex simulated robotic tasks, such as robot table tennis, beer-pong, a complex
box-pushing task, and large-scale manipulation tasks on Meta-World [6]. We compare MP3 to
state-of-the-art SRL and ERL methods and illustrate improved performance in sophisticated, sparse
reward settings and settings that require replanning.

2 Related Works

Episode-based Reinforcement Learning. In the framework of contextual episode-based policy
search [1, 3], RL is usually treated as a black-box optimization problem. The goal is to maximize the
expected return R(w, c) by optimizing a context c dependent searching distribution π(w|c) over the
controller parameters w. The return function R(w, c) is not subject to any structural assumptions,
and it can be any non-Markovian function of the resulting trajectory due to the black-box nature
of the problem. Most ERL algorithms are focused on the non-contextual setting, where different
optimization techniques have been used, such as policy gradients [7], natural gradients [8], stochastic
search strategies [9, 10, 11], or trust-region optimization techniques [2, 3, 12]. Early methods that
incorporate context adaptation [12, 11] only consider a linear mapping from context to parameter
space, which is a major limitation on the performance of these approaches. In contrast, we consider
highly nonlinear context-parameter relationships using neural networks.

Reinforcement Learning with Movement Primitives. While most works of MPRL concentrate
on learning a single MP parameter vector for a single task configuration [2, 13, 14, 15], some meth-
ods allow linear adaptation of the MP’s parameter vector to the context [3, 16, 17]. In addition, a
few RL approaches leverage non-linear policies combined with predefined action primitives, such
as pushing or grasping motions [18, 19]. One approach that directly uses MPs and deep networks
in a SRL setting is neural dynamic policies (NDP) [20]. However, the main exploration of NDP
still takes place at the action level rather than at the trajectory level, similar to standard step-based
approaches, which neglects the main benefit of using MPs in an RL context.

3 Deep Reinforcement Learning with Movement Primitives

In this work, we present a framework to effectively combine MPs with deep RL methods. This
framework consists of three major components (see Figure 1):

• One RL policy which takes the environment observation as input and outputs an MP weight
vector that is used for multiple time steps.

• One MP model which uses the weight vector as input to generate a desired trajectory.

• One low-level controller which converts the desired trajectory into raw actions and interacts
with the environment.

This approach is simple but highly versatile. The planning horizon (length of the generated trajectory
before a new weight vector is chosen) can vary from a single step to the entire episode. Two special
cases correspond to two common RL paradigms: (i) When the planning horizon is equal to one, our
framework is similar to an SRL algorithm (although with a higher dimensional action space). (ii)
When it is equal to the episode length, the framework corresponds to an ERL algorithm.

2

Policy
πθ(w|s)

µw

Σw

Sample
Weights

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
1e 3 MPs

ρ(w, q)

i = 0, 1, . . . , k − 1

Controller
f(qd

t+i+1, qt+i)

Environment

w

at

qt+i+1

qt = [yt, ẏt]

λd = (qd
t+1, q

d
t+2, . . . , q

d
t+k)

st+k

Figure 1: This figure provides an overview of the proposed framework that combines deep RL
with MPs. Instead of generating a raw action directly, the policy generates a set of weights that
parameterizes a MP. The MP predicts a desired trajectory given the weights and initial conditions,
which is then converted to raw actions using a tracking controller.

3.1 Movement Primitives

MPs are a widely used tool for motion representation and generation in robotics. They are used as
building blocks for movements, allowing for the modulation of motion behavior and the creation of
more complex movements through combination or concatenation.

Probabilistic Movement Primitives (ProMPs). probabilistic movement primitive (ProMP) [21]
generate the trajectory y(t) by a linear basis function model

y(t) = Φ⊺(t)w,

where w is the time-independent weight vector, y(t) is the trajectory position at time step t and Φ are
pre-defined time-dependent basis functions. One of the key limitations of ProMPs as a representation
method is their lack of smoothness in trajectory replanning and concatenation, limiting the usage of
ProMPs in situations where the weight vector needs to be updated throughout motion execution due
to unpredictable changes in the environment.

Dynamic Movement Primitives (DMPs). Dynamic movement primitives (DMPs) [22, 23] form
a trajectory by integrating a dynamic system, providing smooth replanning of both position and
velocity [24, 25, 26]. However, this smoothness comes at a computational cost, as DMPs require
online numerical integration to compute a trajectory.

Probabilistic Dynamic Movement Primitives (ProDMPs). To combine the advantages and ad-
dress the limitations of ProMPs and DMPs, Li et al. [27] recently proposed probabilistic dynamic
movement primitives (ProDMPs). ProDMPs formulate trajectory similar to that of ProMPs:

y(t) = c1y1(t) + c2y2(t) +Φ(t)⊺w,

where the added terms c1y1(t)+c2y2(t) are included to ensure accurate trajectory initialization. This
formulation combines the distributional modeling benefits of ProMP with the precision in trajectory
initiation offered by DMP. In this work, we specifically use the ProDMPs model as our trajectory
generator because it ensures smooth replanning with low computational cost.

3.2 Reinforcement Learning Objective with Movement Primitives

While traditional SRL methods rely on single raw actions at ∈ A per time step, we train a pol-
icy to select a weights vector wt ∈ W in MP’s parameter space W . The weights vector is then

3

translated to a desired trajectory of the proprioceptive states λd = (qd
t+1, q

d
t+2, . . . , q

d
t+k), where

qdt = [yd
t , ẏ

d
t] consists of desired position yd

t and desired velocity ẏd
t at time step t, and k denotes

the planning horizon. Given the desired trajectory and the measured proprioceptive state, a tracking
controller f(qdt , qt) decides the action at each step, resulting in a trajectory in the raw action space
(at+1,at+2, . . . ,at+k) ∈ A. In contrast to the step-wise sample (st,at, Rt) used in SRL, we
use temporarily-abstracted samples of the form (st,wt, R

k
t). The reward Rk

t = Rt:t+k−1 of each
trajectory segment is defined as the cumulative reward over all the segment’s time steps t to t+k−1

Rk
t (st,wt) =

k−1∑
i=0

γir(st+i,at+i), (1)

where at and st are the executed actions and observed states following the desired trajectory and
tracked by the controller. While our approach supports different k for each segment, we only con-
sider planning segments with equal length in this work. We can compute the episode return by
taking the cumulative discounted sum of the segment rewards. Using the notation from above, we
can express this as

Gk
t =

⌈T/k−1⌉∑
i=0

γikRk
t+ki(wt+ki, st+ki), (2)

where γ ∈ (0, 1] is the discount factor. It is worth noting that there are two special cases to consider.
In the black-box setting, in other words, when the MP parameters are chosen only at the beginning
of the episode, then k = T and the segment reward equals the episode return

RT−1
0 =

T−1∑
t=0

γtr(at, st). (3)

The second special case is step-based RL. That is, we choose a new parameter vector at every time
step and k = 1. In this case, segment reward is equivalent to step reward

R1
t = r(at, st). (4)

This gives the insight that we can alter between SRL and ERL by choosing different planning hori-
zons k.

3.3 Policy-gradients for MP weight-selection policies

With these rewards, we can now also define matching value and advantage functions

V π(s) = E
[
Gk

t |st = s;πθ

]
Aπ(s,w) = E

[
Gk

t |st = s,wt = w;πθ

]
− V π(s). (5)

Following the step-based policy gradient [28, 29], we optimize the advantage function using the
likelihood ratio gradient and an importance sampling estimator. The resulting objective

Ĵ(πθ, πθold) = E(s,w)∼p(s),πθold

[
πθ(w|s)
πθold(w|s)A

πθold (s,w)

]
, (6)

is maximized w.r.t θ, with πθold being the old behavior policy used for sampling. We can further
make use of a learned state-value function Vϕ(s) ≈ V π(s) for the advantage estimator, which is
approximated by optimizing

argmin
ϕ

E(s,w)∼p(s),πθold

[(
Vϕ(s)−Gk

t

)2]
. (7)

This formulation also enables the use of advantage estimation methods, such as general advan-
tage estimation [30]. During the update of the policy, neither the MP ρ(w, q) nor the controller
f(qd

t+1, qt) are needed, i.e., our approach would work with any form of parametrizable controller.

3.4 Choice of the Planning Horizon

Our method harnesses the merits of two common RL paradigms: step-based RL (SRL) and episode-
based RL (ERL). The agent’s behavior can seamlessly switch between the two paradigms according
to the planning horizon k. There are three cases when selecting the planning horizon.

4

0 20 40 60 80 100

−2.5

−2

−1.5

−1

−0.5

0

R
an

do
m

Po
lic

y

SRL
MP3

(a) Position (rad)

0 20 40 60 80 100

−2

0

2

4

6

8

10

(b) Velocity (rad/s)

0 20 40 60 80 100

−1

−0.5

0

0.5

1

(c) Torque (Nm)

Figure 2: This figure presents a comparison between step-level exploration (red) and the proposed
trajectory-level exploration that is used in MP3 (blue).

Black-Box Setting. The first special case arises when the planning horizon is equal to the episode
length, that is, k = T . In this case, the agent generates only one desired trajectory for the entire
episode, similar to an open-loop motion planner. We refer to this setting as MP3-Black Box (MP3-
BB) in the following discussion, since it treats reinforcement learning as a black-box optimization
problem. The black-box nature facilitates dealing with sparse and non-Markovian rewards, leading
to a more intuitive reward design. However, the black-box nature also limits its applicability in
dynamic environments, where the agent must adapt to environmental changes during execution.

Step-Based Setting. At the opposite end of the planning horizon spectrum is the case where k = 1.
Here, the agent only executes the desired trajectory for one step, after which it generates a new
plan, repeating this loop throughout the episode similar to the SRL setting. However, the use of
MPs guarantees second-order smoothness (position and velocity), resulting in a more consistent and
smooth behavior during exploration (see Figure 2). Nonetheless, we did not observe significant
improvements using this setting over the standard SRL setting, and our discussion only aims to
highlight the flexibility of the proposed method.

Re-planning with MPs. The more general case falls somewhere between the two extremes of SRL
and ERL. In this approach, the agent generates a new desired trajectory after executing the current
trajectory for a predefined number of steps (1 < k < T). This method leverages the strengths of
both SRL and ERL while addressing some of their shortcomings:

1. In SRL, stochastic raw action selection often results in jerky random walk behavior that
does not fully explore the trajectory space of the agent. In contrast, our approach explores
the weight space of MPs, leveraging the MP’s smoothness guarantees for more consistent
and effective exploration (see Figure 2).

2. Trajectory-level exploration encapsulates the temporal abstraction within each trajectory
segment, reducing the number of decisions to make for each episode and improving the
agent’s ability to handle the sparsity in the reward function.

3. The ERL agent only makes decisions at the beginning of each episode and treats each
episode as a black-box, limiting their ability to address observation noises and dynamics
in the environment. Our approach addresses this shortcoming by incorporating periodic
re-planning during online execution.

Many SRL algorithms use a similar design called frame-skipping, which can help with the partial
observability of some Atari games [31]. However, frame-skipping just repeats the same action for
the “skipped” frames, limiting the trajectory’s expressive capacity. In contrast, planning with MP
can “skip” more frames without compromising expressiveness.

5

PPO TRPL NDP ES CMORE SAC MP3-BB-PPO MP3-BB

0 0.5 1 1.5 2 2.5 3

−120

−100

−80

−60

−40

−20

0

Number Environment Interactions (×107)

R
ew

ar
d

(a) 5D Reacher - Dense

0 0.5 1 1.5 2 2.5 3

−120

−100

−80

−60

−40

−20

0

Number Environment Interactions (×107)

R
ew

ar
d

(b) 5D Reacher - Sparse

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

Number Environment Interactions (×107)

Su
cc

es
s

R
at

e

(c) Box Push - Dense

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

Number Environment Interactions (×107)

Su
cc

es
s

R
at

e

(d) Box Push - Sparse

Figure 3: The figures (a) and (b) show the learning curve for the 5D reacher task with dense and
sparse reward signals. The success rate for box pushing with dense and sparse rewards are presented
in figures (c) and (d), respectively.

4 Experimental Results

For our evaluation, we begin by demonstrating the effectiveness of our method in handling sparse
and non-Markovian rewards, improving precision in the black-box setting with k = T . Next, we
conduct a large-scale study on all 50 Meta-World tasks [6] to showcase our competitive perfor-
mance on various robot manipulation tasks that come with highly shaped dense rewards. Finally, we
evaluate our method with replanning for several tasks with dynamics in the environment.

We compare our methods, which will be noted as MP3 and MP3-BB for the replanning and black-
box cases respectively, against several other step-based methods, including proximal policy opti-
mization (PPO) [32], TRPL [5], soft actor critic (SAC) [33], and NDP [20], as well as a deep
evolution strategies (ES) [34], the linear adaption method contextual model-based relative entropy
stochastic search (CMORE) with ProMPs [12] as well as MP3-PPO (MP3-PPO) and MP3-BB-PPO
(MP3-BB-PPO), which are equivalent to MP3 and MP3-BB but trained with PPO instead of TRPL.

We evaluate our method on 20 different seeds and compute ten evaluation runs after each iteration.
To report our results, we use the interquartile mean (IQM) with a 95% stratified bootstrap confidence
interval and performance profiles where feasible Agarwal et al. [35]. For a detailed description of
the hyperparameters used in the evaluation, please refer to Appendix F.

4.1 Black-Box Reinforcement Learning

Dealing with Sparse Rewards As introductory tasks, we use an extended reacher task from Ope-
nAI gym [36] by using five actuated joints and a complex robot box pushing task. For a detailed
environment description, please see Appendix D. While SRL algorithms demonstrate competitive
performance in dense rewards, they all encounter substantial performance degradation in sparse
reward settings. On the other hand, our method maintains good performance in both settings.

Dealing with non-Markovian Rewards To assess the effectiveness of our method in complex
reward settings, we test it with non-Markovian rewards, which are particularly useful for robot
learning tasks that require the agent to use feedback from the full trajectory history. We consider
three environments under non-Markovian reward settings. Firstly, we use a modified version of the
OpenAI Gym hopper [36], which aims to jump as high as possible and land at a target location (see
Appendix D.3). Secondly, we conduct experiments in a Beer pong environment [17]. In this task,
the target is to throw a ball into a cup at various locations on a table (see Appendix D.4). Finally,
we showcase the performance of our method in a robot table tennis task, which targets to return
ball with different initial states to randomized desired landing positions. The results are presented
at Figure 4. While SRL methods are in general struggling with these tasks, MP3-BB provides an
effective solution for handling non-Markovian reward structures, which are often more natural and
easier to define than engineered dense rewards.

6

PPO TRPL ES CMORE SAC MP3-BB-PPO MP3-BB MP3

0 0.2 0.4 0.6 0.8 1

1.5

1.6

1.7

1.8

1.9

2

Number Environment Interactions (×108)

M
ax

im
um

H
ei

gh
ti

n
[m

]

(a) Hopper Jump - Max Height

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Number Environment Interactions (×108)

G
oa

lD
is

ta
nc

e
in

[m
]

(b) Hopper Jump - Dist. Error

0 0.5 1

0

0.2

0.4

0.6

0.8

1

Number Environment Interactions (×108)

Su
cc

es
s

R
at

e

(c) Beer Pong

0 1 2 3

0

0.2

0.4

0.6

0.8

1

Number Environment Interactions (×108)

Su
cc

es
s

R
at

e

(d) Table Tennis

Figure 4: The figures (a) and (b) show the maximum jumping height of the hopper’s center of
mass and the target distance, respectively. With the non-Markovian reward, the hopper can jump
approximately 20cm higher with increased goal precision. Figure (c) shows the beer pong task. The
success rate of the table tennis task is shown in (d).

4.2 Large Scale Robot Manipulation

PPO TRPL NDP ES SAC MP3-BB-PPO MP3-BB MP3-BB sparse MP3

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

Number Environment Interactions (×107)

Su
cc

es
s

R
at

e

(a) Success Rate

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Success Rate τ

R
un

s
w

ith
Su

cc
es

s
R

at
e
>

τ

(b) Performance Profile

Figure 5: Metaworld Evaluation. (a) Overall Success Rate across
all 50 tasks, reported using Interquartile Mean (IQM). (b) Per-
formance profile, illustrating the fraction of runs that exceed the
threshold specified on the x-axis.

We also showcase our ability
to learn high quality policies
on the Meta-World benchmark
suite [6]. We train individ-
ual policies for each environ-
ment but use the same hyper-
parameters. Our results (Fig-
ure 5a) show that PPO and
TRPL achieve the best sample
complexity, but MP3-BB per-
forms competitively in terms
of asymptotic performance and
even outperforms PPO slightly
in terms of asymptotic perfor-
mance. Although the gap be-
tween PPO and MP3-BB in the
aggregated view is relatively small, the corresponding performance profiles (Figure 5b) reveal that
MP3-BB performs better above the 80% threshold. This means that MP3-BB finds more consistent
solutions than PPO with higher precision and solves these tasks without failures. SAC performs
similar to PPO, whereas NDP, ES, and MP3-BB-PPO are not achieving a competitive performance.

4.3 Replanning with Movement Primitives

We evaluate our approach in the online replanning case by decreasing the planning horizon, such
that 1 ≤ k < T , positioning it between SRL (k = 1) and ERL (k = T). This approach, which
we refer to as MP3, offers two significant benefits. Firstly, it leads to a more precise policy due to
the closed-loop nature of the method. Secondly, it enables the handling of environmental dynamics
through online replanning. We conduct a thorough ablation about the impact of planning horizon on
performance, for the results and discussion, please see Appendix A.

Quality of the Learned Policy. We evaluated the performance of MP3 agents by conducting ex-
periments in three challenging environments: the Meta-World benchmark suite [6] for large-scale
robot manipulation (Figure 5), Box Pushing with dense (Figure 3c) and sparse (Figure 3d) rewards,
and Table Tennis with non-Markovian reward (Figure 4d). We observed that the use of replanning
yields better asymptotic performance in all cases while it can harm slightly the sample efficiency
(observed in Meta-World experiments). We attribute this to the higher dimensional state space that
must be considered in the replanning case compared to the black-box case.

7

PPO TRPL MP3-BB MP3

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

Number Environment Interactions (×107)
Su

cc
es

s
R

at
e

(a) Box Push - Switch

0 1 2 3

0

0.2

0.4

0.6

0.8

1

Number Environment Interactions (×108)

Su
cc

es
s

R
at

e

(b) Table Tennis - Switch

0 1 2 3

0

0.2

0.4

0.6

0.8

1

Number Environment Interactions (×108)

Su
cc

es
s

R
at

e

(c) Table Tennis - Wind

Figure 6: This figure displays the success rate of perturbed tasks with and without replanning. The
success rate of box pushing with goal switching is shown at (a), as well as the success rate of
table tennis with goal switching (b) and with wind (c). In the box pushing tasks (a), the solid lines
represent learning curves of dense reward, while the dashed lines are learning curves from temporal-
sparse reward. In table tennis tasks (b) and (c), the solid lines represent the success rates, and the
dashed lines are hit rate.

Dealing with Uncertainties in the Environments. To demonstrate the robustness of MP3 in han-
dling unforeseen events in the environment, we modified the box pushing and the table tennis tasks
to include uncertainties that require incorporating feedback throughout the execution of the episode.

In the box-pushing experiments, we randomly switch to a new target position and orientation during
execution after 20% of the max episode length. We compared the performance of our method
against step-based PPO and TRPL in the dense reward setting. The results in Figure 6a show that
MP3 achieved the best performance under this setting.

For the table tennis environment, we test two kinds of uncertainties. We compare MP3 only with
the MP3-BB as the SRL algorithms have shown to be incapable of solving the table tennis task even
in a static environment. Firstly, we modify the desired landing position of the ball, similar to the
goal change for the box pushing task. Specifically, we initialize the desired landing position at a
random location and randomly switch it during the episode. Our results in Figure 6b suggest that
the MP3 agent is able to adapt its behavior and return the ball to the new target point with high
precision. In contrast, the MP3-BB agent, which only receives the initial observation containing the
initial target position, can only hit the ball but cannot solve this task. Secondly, we add wind to the
environment by applying a random force to the ball, which is unknown to the agent and constant for
an entire episode. However, the agent can still infer the underlying applied force according to the
velocity of the ball, but only after observing the ball for a certain number of time steps. Due to the
wind, the MP3-BB agent is not able to hit the ball consistently, while the MP3 agent slightly drops
in performance but can still achieve reasonably good results (Figure 6c).

5 Conclusion and Limitations

Our work presents a new approach for combining SRL and ERL by integrating recent advance-
ments in trust-region-based policy search [5] and MPs [27]. This approach is a promising way to
handle tasks with sparse and non-Markovian rewards, enabling a more intuitive reward design. Fur-
thermore, our method showed competitive performance against state-of-the-art SRL algorithms in
large-scale robot manipulation tasks, as confirmed by thorough empirical evaluations.

Although our proposed method shows promise, there remain two significant limitations that require
addressing in future work. Firstly, our current approach only considers fixed-length planning hori-
zons and relies solely on time-based replanning triggers. Yet, it is considered more natural only
replanning when a certain event happens. Secondly, our method, and ERL approaches in general,
typically require more interaction time than SRL in dense reward settings. This is mainly due to the
encapsulation of temporal-correlated information in highly abstracted samples.

8

Acknowledgments

If a paper is accepted, the final camera-ready version will (and probably should) include acknowl-
edgments. All acknowledgments go at the end of the paper, including thanks to reviewers who gave
useful comments, to colleagues who contributed to the ideas, and to funding agencies and corporate
sponsors that provided financial support.

References
[1] M. P. Deisenroth, G. Neumann, J. Peters, et al. A survey on policy search for robotics. Foun-

dations and trends in Robotics, 2(1-2):388–403, 2013.

[2] A. Abdolmaleki, R. Lioutikov, J. R. Peters, N. Lau, L. Pualo Reis, and G. Neumann. Model-
based relative entropy stochastic search. Advances in Neural Information Processing Systems,
28, 2015.

[3] C. Daniel, G. Neumann, and J. Peters. Hierarchical relative entropy policy search. In Artificial
Intelligence and Statistics, pages 273–281. PMLR, 2012.

[4] F. Otto, O. Celik, H. Zhou, H. Ziesche, N. A. Vien, and G. Neumann. Deep black-box rein-
forcement learning with movement primitives. arXiv preprint arXiv:2210.09622, 2022.

[5] F. Otto, P. Becker, N. Anh Vien, H. C. Ziesche, and G. Neumann. Differentiable trust region
layers for deep reinforcement learning. In International Conference on Learning Representa-
tions, 2021.

[6] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on
Robot Learning (CoRL), 2019. URL https://arxiv.org/abs/1910.10897.

[7] F. Sehnke, C. Osendorfer, T. Rückstiess, A. Graves, J. Peters, and J. Schmidhuber. Parameter-
exploring policy gradients. Neural Networks, 21(4):551–559, May 2010. doi:10.1016/j.neunet.
2009.12.004.

[8] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and J. Schmidhuber. Natural evolu-
tion strategies. The Journal of Machine Learning Research, 15(1):949–980, 2014.

[9] N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution strate-
gies. Evolutionary computation, 9(2):159–195, 2001.

[10] S. Mannor, R. Y. Rubinstein, and Y. Gat. The cross entropy method for fast policy search.
In Proceedings of the 20th International Conference on Machine Learning (ICML-03), pages
512–519, 2003.

[11] A. Abdolmaleki, D. Simões, N. Lau, L. P. Reis, and G. Neumann. Contextual direct policy
search. Journal of Intelligent & Robotic Systems, 96(2):141–157, 2019.

[12] V. Tangkaratt, H. van Hoof, S. Parisi, G. Neumann, J. Peters, and M. Sugiyama. Policy search
with high-dimensional context variables. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 31, 2017.

[13] J. Kober and J. Peters. Policy search for motor primitives in robotics. In D. Koller, D. Schu-
urmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Sys-
tems, volume 21. Curran Associates, Inc., 2008. URL https://proceedings.neurips.

cc/paper/2008/file/7647966b7343c29048673252e490f736-Paper.pdf.

[14] F. Stulp and O. Sigaud. Path integral policy improvement with covariance matrix adapta-
tion. In Proceedings of the 29th International Coference on International Conference on Ma-
chine Learning, ICML’12, page 1547–1554, Madison, WI, USA, 2012. Omnipress. ISBN
9781450312851.

9

https://arxiv.org/abs/1910.10897
http://dx.doi.org/10.1016/j.neunet.2009.12.004
http://dx.doi.org/10.1016/j.neunet.2009.12.004
https://proceedings.neurips.cc/paper/2008/file/7647966b7343c29048673252e490f736-Paper.pdf
https://proceedings.neurips.cc/paper/2008/file/7647966b7343c29048673252e490f736-Paper.pdf

[15] F. Stulp and O. Sigaud. Policy improvement methods: Between black-box optimization and
episodic reinforcement learning. 2012.

[16] A. Kupcsik, M. P. Deisenroth, J. Peters, L. A. Poha, P. Vadakkepata, and G. Neumann. Model-
based contextual policy search for data-efficient generalization of robot skills. Artificial In-
telligence, 247:415–439, 2017. doi:10.1016/j.artint.2014.11.005. URL http://eprints.

lincoln.ac.uk/25774/1/Kupcsik_AIJ_2015.pdf. Impact Factor: 3.333.

[17] O. Celik, D. Zhou, G. Li, P. Becker, and G. Neumann. Specializing versatile skill libraries
using local mixture of experts. In Conference on Robot Learning, pages 1423–1433. PMLR,
2022.

[18] M. Dalal, D. Pathak, and R. R. Salakhutdinov. Accelerating robotic reinforcement learning
via parameterized action primitives. Advances in Neural Information Processing Systems, 34:
21847–21859, 2021.

[19] O. Zenkri, N. A. Vien, and G. Neumann. Hierarchical policy learning for mechanical search. In
2022 International Conference on Robotics and Automation (ICRA), pages 1954–1960. IEEE,
2022.

[20] S. Bahl, M. Mukadam, A. Gupta, and D. Pathak. Neural dynamic policies for end-to-end
sensorimotor learning. Advances in Neural Information Processing Systems, 12 2020. URL
https://arxiv.org/abs/2012.02788v1.

[21] A. Paraschos, C. Daniel, J. R. Peters, and G. Neumann. Probabilistic movement prim-
itives. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Wein-
berger, editors, Advances in Neural Information Processing Systems, volume 26. Curran
Associates, Inc., 2013. URL https://proceedings.neurips.cc/paper/2013/file/

e53a0a2978c28872a4505bdb51db06dc-Paper.pdf.

[22] S. Schaal. Dynamic Movement Primitives -A Framework for Motor Control in Humans and
Humanoid Robotics, pages 261–280. Springer Tokyo, Tokyo, 2006. ISBN 978-4-431-31381-6.
doi:10.1007/4-431-31381-8 23. URL https://doi.org/10.1007/4-431-31381-8_23.

[23] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal. Dynamical Movement
Primitives: Learning Attractor Models for Motor Behaviors. Neural Computation, 25(2), 2013.

[24] F. Brandherm, J. Peters, G. Neumann, and R. Akrour. Learning replanning policies with direct
policy search. IEEE Robotics and Automation Letters, 4(2):2196–2203, 2019.

[25] M. Ginesi, D. Meli, H. Nakawala, A. Roberti, and P. Fiorini. A knowledge-based framework
for task automation in surgery. In 2019 19th International Conference on Advanced Robotics
(ICAR), pages 37–42. IEEE, 2019.

[26] H. Lee, H. Seo, and H.-G. Kim. Trajectory optimization and replanning framework for a micro
air vehicle in cluttered environments. Ieee Access, 8:135406–135415, 2020.

[27] G. Li, Z. Jin, M. Volpp, F. Otto, R. Lioutikov, and G. Neumann. Prodmps: A unified perspective
on dynamic and probabilistic movement primitives. arXiv preprint arXiv:2210.01531, 2022.

[28] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3):229–256, 1992.

[29] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust Region Policy Opti-
mization. In Proceedings of Machine Learning Research, pages 1889–1897, 2015. URL
http://proceedings.mlr.press/v37/schulman15.html.

[30] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional continuous
control using generalized advantage estimation. In Proceedings of the International Confer-
ence on Learning Representations (ICLR), 2016.

10

http://dx.doi.org/10.1016/j.artint.2014.11.005
http://eprints.lincoln.ac.uk/25774/1/Kupcsik_AIJ_2015.pdf
http://eprints.lincoln.ac.uk/25774/1/Kupcsik_AIJ_2015.pdf
https://arxiv.org/abs/2012.02788v1
https://proceedings.neurips.cc/paper/2013/file/e53a0a2978c28872a4505bdb51db06dc-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/e53a0a2978c28872a4505bdb51db06dc-Paper.pdf
http://dx.doi.org/10.1007/4-431-31381-8_23
https://doi.org/10.1007/4-431-31381-8_23
http://proceedings.mlr.press/v37/schulman15.html

[31] A. Braylan, M. Hollenbeck, E. Meyerson, and R. Miikkulainen. Frame skip is a powerful
parameter for learning to play atari. In Workshops at the Twenty-Ninth AAAI Conference on
Artificial Intelligence, 2015.

[32] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal Policy Optimization
Algorithms. In arXiv preprint, 2017. URL http://arxiv.org/abs/1707.06347.

[33] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pages 1861–1870. PMLR, 2018.

[34] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever. Evolution strategies as a scalable
alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

[35] R. Agarwal, M. Schwarzer, P. S. Castro, A. Courville, and M. G. Bellemare. Deep rein-
forcement learning at the edge of the statistical precipice. Advances in Neural Information
Processing Systems, 2021.

[36] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym, 2016.

11

http://arxiv.org/abs/1707.06347

A Ablation Studies

We conduct ablation studies to evaluate each component’s influence on the proposed method that
aim to answer the following questions:

Q1 What is the impact of varying the number of bases and the length of the replanning horizon
on the performance of MP3?

Q2 How does the performance of the non dynamic-based ProMP with replanning compare to
MP3?

Q3 Can the policy be effectively learned in the parameter space without incorporating proper
trust regions?

Q4 How does the performance of dynamic-based ProDMPs compare to non dynamic-based
ProMPs in MP3-BB setting?

Firstly, we study the correlations between the number of bases of MPs and the length of the planning
horizon (replanning steps) in Figure 7. We train agents in box pushing environments with both dense
and sparse rewards, using different combinations of planning horizons k ∈ {1, 2, 5, 10, 25, 50, 100}
and the number of bases N ∈ {0, 1, 2, 3, 4, 5, 6}. A value of 0 for the number of bases indicates
that the agent only uses the goal basis of the ProDMPs, leading to the same action space dimension
as SRL algorithms. When the planning horizon is equal to 1, the learning objective of replanning
reduces to a SRL objective. In this case, the only difference between replanning and SRL is that
the agent explores the parameters space of the MP, which usually has a higher dimensionality ((N
+ 1) × DoF) compared to the action space that a step-based agent explores. Another special case is
when the replanning horizon equals the episode length (k = 100 = T), which corresponds to the
MP3-BB setting.
Q1 can be answered according to results in Figure 7. First, planning with a longer horizon requires
a greater number of bases to achieve optimal performance. A longer planning horizon means less
chance for the agent to adapt trajectories by adjusting the weights, limiting the ability to generate
complex trajectories. This limitation, in turn, reduces performance in tasks that require fine manipu-
lation, such as box pushing. Second, longer planning horizons contribute to improved performance
in the (temporal) sparse reward setting. This is attributed to the usage of high temporal abstracted
samples in the policy updates. However, it does not necessarily mean MP3-BB will always perform
better in the sparse reward setting, as the black-box setting lacks the ability to correct its behavior
due to the absence of the feedback signals from inter-execution observations.

For Q2, we compare replanning with dynamic-based (ProDMPs) and non dynamic-based MPs
(ProMPs) in Figures 8a and 8b. The results demonstrate that the policy with dynamic-based MPs
yields a policy with a higher success rate and lower control cost. This is largely due to the fact that
non-dynamic MPs can result in abrupt transitions between different planning segments, leading to
discontinuities in the motion.

To address Q3, we evaluate policy search algorithms without trust regions in the replanning setting,
and present the results in Figure 8c. In both dense and sparse reward settings of box pushing, MP3
outperforms MP3-PPO in terms of sample efficiency and success rate. The need for a more stable
optimization and the higher dimensional nature of learning in parameter spaces could account for
this observed improvement.

Finally, to answer Q4, we compare the performance between the black-box agent with ProDMPs
and with ProMPs. The results in Figure 8d show that in dense and sparse reward settings, both
algorithms’ sample efficiency and success rate are similar. In the sparse reward setting, MP3-BB
with ProMPs shows slightly higher asymptotic performance. This difference is due to the different
shapes of bases, and we believe the minor performance gap can be mitigated by selecting MP’s
parameters that minimize the differences in bases. The overall results suggest that the types of MP
make no significant difference in the black-box setting.

12

1 2 5 10 25 50 100
Replanning Horizon

6
5

4
3

2
1

0
N

um
be

ro
fB

as
es

0.52
±0.14

0.56
±0.10

0.56
±0.30

0.56
±0.24

0.85
±0.07

0.84
±0.07

0.78
±0.06

0.53
±0.12

0.56
±0.27

0.73
±0.07

0.71
±0.07

0.85
±0.07

0.85
±0.08

0.78
±0.03

0.64
±0.10

0.68
±0.08

0.73
±0.04

0.77
±0.08

0.81
±0.05

0.80
±0.10

0.77
±0.05

0.74
±0.08

0.71
±0.24

0.82
±0.08

0.77
±0.11

0.84
±0.08

0.73
±0.09

0.84
±0.05

0.76
±0.12

0.83
±0.07

0.76
±0.06

0.69
±0.11

0.66
±0.15

0.50
±0.08

0.40
±0.09

0.73
±0.08

0.75
±0.05

0.71
±0.07

0.59
±0.16

0.56
±0.17

0.28
±0.06

0.13
±0.05

0.74
±0.12

0.71
±0.08

0.74
±0.10

0.55
±0.11

0.40
±0.16

0.21
±0.11

0.00
±0.01

(a) Median Success Rate for Dense Reward

1 2 5 10 25 50 100
Replanning Horizon

6
5

4
3

2
1

0
N

um
be

ro
fB

as
es

0.20
±0.10

0.34
±0.09

0.50
±0.10

0.80
±0.05

0.72
±0.06

0.73
±0.06

0.77
±0.06

0.26
±0.12

0.46
±0.13

0.57
±0.13

0.84
±0.06

0.78
±0.06

0.68
±0.06

0.76
±0.06

0.34
±0.15

0.60
±0.15

0.67
±0.10

0.81
±0.08

0.73
±0.08

0.63
±0.06

0.70
±0.04

0.42
±0.15

0.62
±0.11

0.80
±0.08

0.74
±0.05

0.68
±0.06

0.60
±0.06

0.71
±0.08

0.46
±0.13

0.66
±0.07

0.74
±0.12

0.72
±0.11

0.57
±0.09

0.50
±0.08

0.55
±0.08

0.37
±0.27

0.54
±0.21

0.65
±0.09

0.60
±0.12

0.52
±0.10

0.36
±0.09

0.24
±0.05

0.39
±0.27

0.23
±0.29

0.35
±0.22

0.16
±0.18

0.16
±0.17

0.03
±0.07

0.01
±0.03

(b) Median Success Rate for Sparse Reward

Figure 7: This figure shows the median success rate and standard deviation for different configu-
rations of box pushing environments using dense (a) and sparse reward (b), with varying numbers
of bases N and replanning horizons k. When N = 0, the weight bases are disabled, and only the
goal basis of the ProDMP is used, with the action space dimension equal to that of SRL. k = 1 and
k = 100 = T correspond to SRL with MPs and MP3-BB, respectively. We evaluate each combina-
tion using ten random seeds and 20 contexts per seed. In general, the results suggest that: 1) longer
planning horizons require more bases for optimal performance, 2) long planning horizons can help
improve performance in sparse reward settings.

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

Number Environment Interactions (×107)

Su
cc

es
s

R
at

e

(a) MP3: Success

0 1 2 3 4

0

0.5

1

1.5

2

2.5

·104

Number Environment Interactions (×107)

C
on

tr
ol

C
os

t

(b) MP3: Control Cost

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

Number Environment Interactions (×107)

Su
cc

es
s

R
at

e

(c) MP3: PPO vs TRPL

0 1 2 3 4

·107

0

0.2

0.4

0.6

0.8

1

Environment Interactions

Su
cc

es
s

R
at

e

(d) BB: ProMP vs ProDMP

Dense Reward Temporal Sparse Reward

Figure 8: This figure presents an ablation study for MP3 and MP3-BB with different MPs and
learning algorithms. The figures (a) and (b) show the success rate and episode control cost for the
box-pushing task, respectively. Here, we compare MP3 with ProDMPs (solid) to MP3 with ProMPs
(dashed) to show the need for ProDMPs when replanning. Figure (c) demonstrates the need for
using TRPL in MP3 (solid). MP3-PPO with ProDMPs using replanning (dashed) on box pushing
tasks is not able to achieve the same performance. Lastly, the figure (d) shows that MP3-BB with
ProDMPs (dashed) is performing similarly to the MP3-BB with ProMPs (solid) in dense reward
setting, and slightly better in the sparse reward setting.

B Derivations of probabilistic dynamic movement primitive.

In this section, we will briefly present the main derivations of ProDMPs. We start with the funda-
mental aspects of DMPs and then derive ProDMPs from the analytical solution of the DMPs’ ODE.
Finally, we present the solution to a initial value problem of the ODE, which allows us to perform
smooth replanning during trajectory execution in a computationally efficient manner. For the sake

13

of simplicity, we introduce the approach by means of a 1-DoF dynamical system. For higher DoF
systems, we refer to the original paper by [27].

dynamic movement primitive Schaal [22], Ijspeert et al. [23] model a single movement execution
as a trajectory λ = [yt]t=0:T using a second-order linear dynamical system with a non-linear forcing
function f ,

τ2ÿ = α(β(g − y)− τ ẏ) + f(x), f(x) = x

∑
φi(x)wi∑
φi(x)

= xφ⊺
xw, (8)

where y = y(t), ẏ = dy/dt, ÿ = d2y/dt2 represent the position, velocity, and acceleration of
the system at time step t, respectively. α and β are spring-damper constants, g is a goal attractor,
and τ is a time constant that can be used to adjust the execution speed of the resulting trajectory.
To achieve goal convergence, DMPs define the forcing function based on an exponentially decaying
phase variable x(t) = exp(−αx/τ t), where φi(x) represents the (unnormalized) basis functions.
The shape of the trajectory as it converges to the goal is controlled by the weights wi ∈ w, i = 1...N .
The trajectory of the motion λ is obtained by integrating the system numerically from the starting
time to the target time point. However, this process is often computationally expensive.

Solving the dynamic movement primitives’ underlying ODE. Li et al. recognize that the gov-
erning equation of DMPs, given in Eq.(8), has an analytical solution, as it is a second-order linear
non-homogeneous ODE with constant coefficients. To better convey this method, the ODE and its
homogeneous counterpart can be rewritten in a standard form as:

Non-homo. ODE: ÿ +
α

τ
ẏ +

αβ

τ2
y =

f(x)

τ2
+

αβ

τ2
g ≡ F (x, g), (9)

Homo. ODE: ÿ +
α

τ
ẏ +

αβ

τ2
y = 0. (10)

With appropriate configuration of the spring-damper coefficients, i. e. , β = α/4 ([22, 23]), the
system is critically damped and the motion generated by the DMPs will settle to the target position
smoothly and efficiently. The analytical solution of Eq. (9) in this case takes the form

y = c1y1 + c2y2 − y1

∫
y2F

Y
dt+ y2

∫
y1F

Y
dt, Y = y1ẏ2 − ẏ1y2, (11)

y1 = y1(t) = exp
(
− α

2τ
t
)
, y2 = y2(t) = t exp

(
− α

2τ
t
)
, (12)

where y1 and y2 are the complementary functions of the homogeneous function in Eq. (10) and
ẏ1, ẏ2 their corresponding derivatives w.r.t. time. By utilizing the fundamental of calculus, which
states that

∫
h(t)dt =

∫ t

0
h(t′)dt′ + c, where c ∈ R is a constant, the two indefinite integrals in

Eq. (11) can be transformed into two definite integrals. During this transformation, the learnable
parameters w and g which control the shape of the trajectory, can be extracted from the resulting
definite integrals. Finally, the trajectory position and velocity can be expressed in a compact matrix
form as

y = c1y1 + c2y2 + [y2p2 − y1p1 y2q2 − y1q1]

[
w
g

]
(13)

ẏ = c1ẏ1 + c2ẏ2 + [ẏ2p2 − ẏ1p1 ẏ2q2 − ẏ1q1]

[
w
g

]
, (14)

where p1, p1, q1, q2 represent the elements used to formulate the definite integrals in the matrix
form, as

p1(t) =
1

τ2

∫ t

0

t′ exp
(α

2τ
t′
)
x(t′)φ⊺

xdt
′, p2(t) =

1

τ2

∫ t

0

exp
(α

2τ
t′
)
x(t′)φ⊺

xdt
′, (15)

q1(t) =
(α

2τ
t− 1

)
exp

(α

2τ
t
)
+ 1, q2(t) =

α

2τ

[
exp

(α

2τ
t
)
− 1

]
. (16)

14

It is worth noting that, despite the closed form solution for q1 and q2, p1 and p2 cannot be obtained
analytically because of the complex nature of the φx. As a result, they must be computed numer-
ically. However, the extraction of the learnable parameters w and g from the integrals in Eq. (13)
and (14) enables the sharing of the remaining integrals among all trajectories to be generated. In
other words, these integrals can be pre-computed offline and used as constant functions during on-
line trajectory computation, which significantly simplifies the trajectory generation procedure and
speeds it up. These remaining integrals are referred to as the position basis Φ(t) and velocity basis
Φ̇(t), and the ProDMPs represent the position and velocity in a similar manner of ProMPs as:

y(t) = c1y1(t) + c2y2(t) +Φ(t)⊺wg, ẏ(t) = c1ẏ1(t) + c2ẏ2(t) + Φ̇(t)⊺wg, (3.1)

where wg is a concatenation vector containing w and g.

Solve the initial value problem. To compute the coefficients c1 and c2, a solution to the initial
value problem represented by the Eq.(3.1) must be found. Li et al. suggest using the current robot
state, which consists of the robot’s position and velocity (yb, ẏb) at the replanning time step tb, as
the natural condition for ensuring a smooth transition between the previous and newly generated
trajectory. We denote the values of the complementary functions and their derivatives at time tb as
y1b , y2b , ẏ1b ẏ2b , and the values of the position and velocity basis functions as Φb, Φ̇b. By substitut-
ing these values into Eq.(3.1), c1 and c2 can be calculated as:

[
c1
c2

]
=

 ẏ2b
yb−y2b

ẏb

y1b
ẏ2b

−y2b
ẏ1b

+
y2b

Φ̇⊺
b−ẏ2b

Φ⊺
b

y1b
ẏ2b

−y2b
ẏ1b

wg

y1b
ẏb−ẏ1b

yb

y1b
ẏ2b

−y2b
ẏ1b

+
ẏ1b

Φ⊺
b−y1b

Φ̇⊺
b

y1b
ẏ2b

−y2b
ẏ1b

wg

 . (17)

15

C Trust Region Projection Layers with KL-Divergence

As already mentioned in the main text, TRPLs [5] present a scalable and mathematically sound
approach for enforcing trust regions in step-based deep RL. The layer takes the output of a standard
Gaussian policy as input in terms of mean µ and variance Σ and projects it into the trust region if
the given mean and variance violate their respective bounds. This projection is done for each input
state individually. Subsequently, the projected Gaussian policy distribution with parameters µ̃, Σ̃ is
used for any further steps, e. g. for sampling and/or loss computation. Formally, the layer solves the
following two optimization problems for each state s

argmin
µ̃s

dmean (µ̃s,µ(s)) , s.t. dmean (µ̃s,µold(s)) ≤ ϵµ, and (18)

argmin
Σ̃s

dcov

(
Σ̃s,Σ(s)

)
, s.t. dcov

(
Σ̃s,Σold(s)

)
≤ ϵΣ, ‘ (19)

where µ̃s and Σ̃s are the optimization variables for input state s and ϵµ and ϵΣ are the trust region
bounds for mean and covariance, respectively. Finally, µold and Σold are the reference mean and
covariance for the trust region and dmean as well as dcov are the similarity metrics for the mean
and covariance of a decomposable distance or divergence measure. As we only leverage the KL-
divergence projection, we will provide only details for this particular projection below. For the other
two projections we refer the reader to Otto et al. [5].

Inserting the mean part of the Gaussian KL divergence into Equation 18 yields

argmin
µ̃

(µ− µ̃)
T
Σ−1

old (µ− µ̃) s.t. (µold − µ̃)
T
Σ−1

old (µold − µ̃) ≤ ϵµ.

After differentiating the dual w.r.t. µ̃, we can solve for the projected mean

µ̃ =
µ+ ωµold

1 + ω
with ω =

√
(µold − µ)

T
Σ−1

old (µold − µ)

ϵµ
− 1,

leveraging the optimal Lagrange multiplier ω. Similarly, we can insert the covariance part of the
Gaussian KL divergence into Equation 19, which results in

argmin
Σ̃

tr
(
Σ−1Σ̃

)
+ log

|Σ|
|Σ̃|

, s.t. tr
(
Σ−1

old Σ̃
)
− d+ log

|Σold|
|Σ̃|

≤ ϵΣ,

where d is the number of degrees of freedom (DoF). Once again, differentiating and solving the dual
g(η) for the projected covariance yields

Σ̃ =

(
η∗Σ−1

old +Σ−1

η∗ + 1

)−1

with η∗ = argmin
η

g(η), s.t. η ≥ 0.

Here, the the optimal Lagrange multiplier η∗ cannot be computed in closed form, however, a stan-
dard numerical optimizer, such as BFGS, is able to efficiently find it. This can be made differentiable
by taking the differentials of the KKT conditions of the dual. For more details, we refer to the orig-
inal work [5].

D Environment Details

D.1 Reacher5d

For the Reacher task we modify the original OpenAI gym Reacher-v2 by adding three additional
joints, resulting in a total of five joints. The task goal is still to minimize the distance between
the goal point pgoal and the end-effector p. We, however, only sample the goal point for y ≥ 0,
i. e. in the first two quadrants, to slightly reduce task complexity while maintaining the increased
control complexity. The observation space remains unchanged, unless for the sparse reward where

16

Figure 9: Visualization of the four control tasks box pushing, hopper jumping, beer pong, and table
tennis.

we additionally add the current step value to make learning possible for step-based methods. The
context space only contains the coordinates of the goal position. The action space is the 5d equivalent
to the original version.

For the reward the original setting leverages the goal distance

Rgoal = ∥p− pgoal∥2
and the action cost

τt =

K∑
i

(ait)
2,

Dense Reward. The dense reward in the 5d setting, hence, stays the same and the agent receives in
each time step t

Rtot = −τt −Rgoal

Sparse Reward. The sparse reward only returns the task reward in the last time step T and addition-
ally adds a velocity penalty Rvel =

∑K
i (q̇iT)

2, where q̇ are the joint velocities, to avoid overshooting

Rtot =

{−τt t < T,

−τt − 200Rgoal − 10Rvel t = T.

D.2 Box Pushing

The goal of the box-pushing task is to move a box to a specified goal location and orientation using
the seven DoF Franka Emika Panda. Hence, the context space for this task is the goal position
x ∈ [0.3, 0.6], y ∈ [−0.45, 0.45] and the goal orientation θ ∈ [0, 2π]. In addition to the contexts,
the observation space for the step-based algorithms contains the positions and velocities of the joint
angles, as well as position and orientation quaternions for the actual box and the target. For the
action space we use the torques per joint and additionally add gravity compensation in each time
step, that does not have to be learnt. The task is considered successfully solved if the position
distance ≤ 0.05m and the orientation error ≤ 0.5rad. For the total reward we consider different
sub-rewards. First, the distance to the goal

Rgoal = ∥p− pgoal∥,
where p is the box position and pgoal the goal position itself. Second, the rotation distance

Rrotation =
1

π
arccos |r · rgoal|,

where r and rgoal are the box orientation and goal orientation in quaternion, respectively. Third, an
incentive to keep the rod within the box

Rrod = clip(||p− hpos||, 0.05, 10)

17

where hpos is the position of the rod tip. Fourth, a similar incentive that encourages to maintain the
rod in a desired rotation

Rrod rotation = clip(
2

π
arccos |hrot · h0|, 0.25, 2),

where hrot and h0 = (0.0, 1.0, 0.0, 0.0) are the current and desired rod orientation in quaternion,
respectively. And lastly, we utilize the following error

err(q, q̇) =
∑

i∈{i||qi|>|qbi |}

(|qi| − |qbi |) +
∑

j∈{j||q̇j |>|q̇bj |}

(|q̇j | − |q̇bj |).

Here, q, q̇, qb, and q̇b are the robot joint’s position and velocity as well as their respective bounds.
Additionally, we consider an action cost in each time step t

τt =

K∑
i

(ait)
2,

where K = 7 is the number of DoF. Similar to the aforementioned reacher task, we consider both
dense and sparse reward setups.

Dense Reward. The dense reward provides information about the goal and rotation distance in each
time step t on top of the utility rewards

Rtot = −Rrod −Rrod rotation − 5e−4τt − err(q, q̇)− 3.5Rgoal − 2Rrotation.

Temporal Sparse Reward. The time-dependent sparse reward is similar to the dense reward, but
only returns the goal and rotation distance in the last time step T

Rtot =

{−Rrod −Rrod rotation − 0.02τt − err(q, q̇), t < T,

−Rrod −Rrod rotation − 0.02τt − err(q, q̇)− 350Rgoal − 200Rrotation, t = T.

Goal Switching. To demonstrate the ability of our algorithm to handle the changing goal. We
randomly switch to a new target at 20% of the max episode length. To ensure that the new target is
solvable within the given episode length, we sample its position near to the old target position. The
new target position, denoted as [xnew, ynew], is computed as follows:

[xnew, ynew] = [xold, yold] + [∆x,∆y],

where ∆x,∆y are randomly sampled within the range [−0.25, 0.2]. Additionally, the new target
orientation is determined by uniformly sampling a value from the range of [0, 2π].

D.3 Hopper Jump

In the Hopper jump task the agent has to learn to jump as high as possible and land on a certain goal
position at the same time. We consider five basis functions per joint resulting in an 15 dimensional
weight space. The context is four-dimensional consisting of the initial joint angles θ ∈ [−0.5, 0], γ ∈
[−0.2, 0], ϕ ∈ [0, 0.785] and the goal landing position x ∈ [0.3, 1.35]. The full observation space
extends the original observation space from the OpenAI gym Hopper by adding the x-value of the
goal position and the x-y-z difference between the goal point and the reference point at the Hopper’s
foot. The action space is the same as for the original Hopper task. We consider a non-Markovian
reward function for the episode-based algorithms and a step-based reward for PPO, which we have
extensively designed to obtain the highest possible jump.

Non-Markovian Reward. In each time-step t we provide an action cost

τt = 10−3
K∑
i

(ait)
2,

18

where K = 3 is the number of DoF. In the last time-step T of the episode we provide a reward
which contains information about the whole episode as

Rheight = 10hmax,

Rgdist = ||pfoot,T − pgoal||2,
Rcdist = ||pfoot,contact − pgoal||2,

Rhealthy =

{
2 if zT ∈ [0.5,∞]and θ, γ, ϕ ∈ [−∞,∞]
0 else ,

where hmax is the maximum jump height in z-direction of the center of mass reached during the
whole episode, pfoot,t is the x-y-z position of the foot’s heel at time step t, pfoot,contact is the foot’s
heel position when having a contact with the ground after the first jump, pgoal is the goal landing
position of the heel. Rhealthy is a slightly modified reward of the healthy reward defined in the
original hopper task. The hopper is considered as ’healthy’ if the z position of the center of mass is
within the range [0.5m,∞]. This encourages the hopper to stand at the end of the episode. Note that
all states need to be within the range [−100, 100] for Rhealthy. Since this is defined in the hopper
task from OpenAI already, we haven’t mentioned it here. The total reward at the end of an episode
is given as

Rtot = −
T∑

t=0

τt +Rheight +Rgdist +Rcdist +Rhealthy.

Step-Based Reward. We consider a step-based alternative reward such that PPO is also able to
learn a meaningful behavior on this task. We have tuned the reward such that we can obtain the
best performance. The observation space is the same as in the original hopper task from OpenAI
extended with the goal landing position and the current distance of the foot’s heel and the goal
landing postion. We again consider the action cost in each time-step t

τt = 10−3
K∑
i

(ait)
2,

and additionally consider the rewards

Rheight,t = 3ht

Rgdist,t = 3||pfoot,t − pgoal||2

Rhealthy,t =

{
1 if zt ∈ [0.5,∞]and θ, γ, ϕ ∈ [−∞,∞]
0 else ,

where these rewards are now returned to the agent in each time-step t, resulting in the reward per
time-step

rt(st, at) = −τt +Rheight,t +Rgdist,t +Rhealthy,t.

D.4 Beer Pong

In the Beer Pong task the K = 7 Degrees of Freedom (DoF) robot has to throw a ball into a cup on
a big table. The context is defined by the cup’s two dimensional position on the table which lies in
the range x ∈ [−1.42, 1.42], y ∈ [−4.05,−1.25]. For the step-based algorithms we consider cosine
and sine of the robot’s joint angles, the angle velocities, the ball’s distance to the bottom of the cup,
the ball’s distance to the top of the cup, the cup position and the current time step. The action space
for the step-based algorithms is defined as the torques for each joint, the parameter space for the
episode-based methods is 15 dimensional which consists of the two weights for the basis functions
per joint and the duration of the throwing trajectory, i.e. the ball release time.

We generally consider action penalties

τt =
1

K

K∑
i

(ait)
2,

19

consisting of the sum of squared torques per joint. For t < T we consider the reward

rt(st, at) = −αtτt,

with αt = 10−2. For t = T we consider the non-Markovian reward

Rtask =



−4−min(||pc,top − pb,1:T ||22)− 0.5||pc,bottom − pb,T ||22 · · ·
· · · − 2||pc,bottom − pb,k||22 − αT τ, if cond. 1
−4−min(||pc,top − pb,1:T ||22)− 0.5||pc,bottom − pb,T ||22 − αT τ, if cond. 2
−2−min(||pc,top − pb,1:T ||22)− 0.5||pc,bottom − pb,T ||22 − αT τ, if cond. 3
−||pc,bottom − pb,T ||22 − αT τ, if cond. 4

Rtask =


−4−min(||pc,top − pb,1:T ||22)− 0.5||pc,bottom − pb,T ||22 · · ·
· · · − 2||pc,bottom − pb,k||22 − αT τ, if cond. 1
−4−min(||pc,top − pb,1:T ||22)− 0.5||pc,bottom − pb,T ||22 − αT τ, if cond. 2
−2−min(||pc,top − pb,1:T ||22)− 0.5||pc,bottom − pb,T ||22 − αT τ, if cond. 3
−||pc,bottom − pb,T ||22 − αT τ, if cond. 4

,

where pc,top is the position of the top edge of the cup, pc,bottom is the ground position of the cup,
pb,t is the position of the ball at time point t, and τ is the squared mean torque over all joints during
one rollout and αT = 10−4. The different conditions are:

• cond. 1: The ball had a contact with the ground before having a contact with the table.

• cond. 2: The ball is not in the cup and had no table contact

• cond. 3: The ball is not in the cup and had table contact

• cond. 4: The ball is in the cup.

Note that pb,k is the ball’s and the ground’s contact position and is only given, if the ball had a
contact with the ground first.

At time step t = T we also give information whether the agent’s chosen ball release time B was
reasonable

Rrelease =

{
−30− 10(B −Bmin)

2, if B < Bmin

−30− 10(B −Bmax)
2, if B < Bmax

,

where we define Bmin = 0.1s and Bmax = 1s, such that the agent is encouraged to throw the ball
within the time range [Bmin, Bmax].

The total return over the whole episode is therefore given as

Rtot =

T−1∑
t=1

rt(st, at) +Rtask +Rrelease

A throw is considered as successful if the ball is in the cup at the end of an episode.

D.5 Table Tennis

We consider table tennis for the entire table, i. e. incoming balls are anywhere on the side of the robot
and goal locations anywhere on the opponents side. The goal is to use the 7 degree of freedoms
(DoFs) robotic arm to hit the incoming ball based on its landing position and return it as close
as possible to the specified goal location. As context space we consider the initial ball position
x ∈ [−1,−0.2], y ∈ [−0.65, 0.65] and the goal position x ∈ [−1.2,−0.2], y ∈ [−0.6, 0.6]. The
full observation space again contains the positions and velocities of the joints on top of the above
context information. The torques of the joints make up the action space. For this experiment, we
do not use any gravity compensation and allow in the episode-based setting to learn the start time

20

t0 and the trajectory duration T . The task is considered successful if the returned ball lands on the
opponent’s side of the table and within ≤ 0.2m to the goal location. The max episode length of the
table tennis environment is 350 steps. However, to accelerate the simulation, the episode will end
immediately if any of the following terminated conditions are met:

• terminated cond. 1: A contact between the ball and the floor is detected,

• terminated cond. 2: The agent has hit the ball and then a contact between the ball and the
table is detected.

The reward signal in the table tennis environment is defined as

rtask =



0, if cond. 1
0.2− 0.2 tanh (min ||pr − pb||2), if cond. 2
3− 2 tanh (min ||pr − pb||2)− tanh (||pl − pgoal||2), if cond. 3
6− 2 tanh (min ||pr − pb||2)− 4 tanh (||pl − pgoal||2), if cond. 4
7− 2 tanh (min ||pr − pb||2)− 4 tanh (||pl − pgoal||2), if cond. 5

where pr is the position of racket center, pb is the position of the ball, pl is the ball landing position,
pgoal is the target position. The different conditions are

• cond. 1: the end of episode is not reached,

• cond. 2: the end of episode is reached,

• cond. 3: cond.2 is satisfied and robot did hit the ball,

• cond. 4: cond.3 is satisfied and the returned ball landed on the table,

• cond. 5: cond.4 is satisfied and the landing position is at the opponent’s side.

The episode ends when any of the following conditions are met

• the maximum horizon length is reached

• ball did land on the floor without hitting

• ball did land on the floor or table after hitting

For BBRL-PPO and BBRL-TRPL, the whole desired trajectory is obtained ahead of environment
interaction, making use of this property we can collect some samples without physical simulation.
The reward function based on this desired trajectory is defined as

rtraj = −
∑
(i,j)

|τdij | − |qbj |, (i, j) ∈ {(i, j) | |τdij | > |qbj |}

where τd is the desired trajectory, i is the time index, j is the joint index, qb is the joint position
upperbound. The desired trajectory is considered as invalid if rtraj < 0, an invalid trajectory will
not be executed by robot. The overall reward for BBRL is defined as:

r =

{
rtraj , rtraj < 0

rtask, otherwise

Goal Switching. To evaluate the capability of our approach in handling goal changes in the presence
of non-Markovian reward, we designed a goal-switching task based on the table tennis environment.
Given that the episode lengths are not fixed in this environment, we fixed the target changing time
at the 99-th step after the episode begins. To simplify the task and make it easier to visualize, we
restricted the range of the randomly sampled initial target to the left half of the table, specifically
y ∈ [−0.65, 0], x ∈ [−1.2, 0.2]. At the 99-th step, there is 50% of chance that the goal is switched
to another random position from the right side of the table, namely y ∈ [0, 0.65], x ∈ [−1.2, 0.2].

Wind as External Perturbation. To further investigate the performance of our approach in handling
environmental perturbations, we introduced artificial wind to the environment. At the beginning of

21

(a) Hopper Jump - Height Trajectory

0 50 100 150 200 250

0

0.5

1

1.5

2

Number Environment Step

H
ei

gh
ti

n
[m

]

Hopper Jump - Height Trajectory tick align

PPO
BBRL-TRPL

(b) 5D Reacher - Sparse

0 0.5 1 1.5 2 2.5 3

·107

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0
·104

Number Environment Interactions

R
ew

ar
d

5D Reacher - Sparse

SAC

Figure 10: a The improved performance on the Hopper Jump task is also demonstrated on the
jumping profile for a fixed context. While MP3-BB jumps once as high as possible, PPO constantly
tries to maximize the height at each time step which leads to several jumps throughout the episode
and consequently to a lower maximum height. b Learning curve of SAC for the sparse reward of the
5D Reacher task.

each episode, we randomly sample a value f ∈ [−0.1, 0.1] to represent the constant wind force.
This force was then applied as an external force to the ball at each simulation step. It’s important to
note that, in this specific task, we also augmented the observation space of the agent to include the
velocity of the ball. By incorporating this information, the agent was able to infer the underlying
”wind speed” and adjust its behavior accordingly. Since this information is not directly observable
at the beginning of the episode, episode-based policies, struggled to solve the task.

E Additional Evaluations

22

F Hyperparameters

For all methods, where applicable, we optimized the learning rate, sample size, batch size, number of
layers, and the number of epochs. For all MP based methods, we additionally optimized the number
of basis functions. Moreover, we found that NDP requires tuning of the scale of the predicted DMP
weights, which was hard-coded to 100 in the original code base. However, this value only worked for
the Meta-World tasks, but not for the other tasks, hence we adjusted it to allow for a fair comparison.
The population size of ES is always half the number of samples because two function evaluations
are used per parameter vector.

Table 1: Hyperparameters for the 5D Reacher experiments.
PPO NDP TRPL SAC CMORE ES MP3-BB-PPO MP3-BB

number samples 16000 16000 16000 1000 120 200 64 64
GAE λ 0.95 0.95 0.95 0.95 n.a. n.a. n.a. n.a.
discount factor 0.99 0.99 0.99 0.99 n.a. n.a. n.a. n.a.

ϵµ/ϵ n.a. n.a. 0.005 n.a. 0.1 n.a. n.a. 0.05
ϵΣ n.a. n.a. 0.0005 n.a. n.a. n.a. n.a. 0.0005

optimizer adam adam adam adam n.a. adam adam adam
epochs 10 10 20 1000 n.a. n.a. 100 100
learning rate 3e-4 3e-4 5e-5 3e-4 n.a. 1e-2 3e-4 3e-4
use critic True True True True False False False False
epochs critic 10 10 10 1000 n.a. n.a. n.a. n.a.
learning rate critic (and alpha) 3e-4 3e-4 3e-4 3e-4 n.a. n.a. n.a. n.a.
number minibatches 32 32 64 n.a. n.a. n.a. 1 1
batch size n.a. n.a. n.a. 256 n.a. n.a. n.a. n.a.
buffer size n.a. n.a. n.a. 1e6 n.a. n.a. n.a. n.a.
learning starts 0 0 0 10000 0 0 0 0
polyak weight n.a. n.a. n.a. 5e-3 n.a. n.a. n.a. n.a.
trust region loss weight n.a. n.a. 10 n.a. n.a. n.a. n.a. 10

normalized observations True True True False False False False False
normalized rewards True True False False False False False False
observation clip 10.0 10.0 n.a. n.a. n.a. n.a. n.a. n.a.
reward clip 10.0 10.0 n.a. n.a. n.a. n.a. n.a. n.a.
critic clip 0.2 0.2 n.a. n.a. n.a. n.a. 0.2 n.a.
importance ratio clip 0.2 0.2 n.a. n.a. n.a. n.a. 0.2 n.a.

hidden layers [32, 32] [32, 32] [32, 32] [128,128] n.a. [32, 32] [32, 32] [32, 32]
hidden layers critic [32, 32] [32, 32] [32, 32] [128,128] n.a. n.a. n.a. n.a.
hidden activation tanh tanh tanh relu n.a. tanh tanh tanh
initial std 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

number basis functions n.a. 5 n.a. n.a. 5 n.a. 5 5
number zero basis n.a. n.a. n.a. n.a. 1 n.a. 1 1
weight scale n.a. 20 n.a. n.a. n.a. n.a. n.a. n.a.

23

Table 2: Hyperparameters for the box pushing experiments.
PPO NDP TRPL SAC ES MP3 MP3-BB-PPO MP3-BB

number samples 16000 16000 16000 1000 250 160 160 40
GAE λ 0.95 0.95 0.95 0.95 n.a. n.a. n.a. n.a.
discount factor 1.0 0.99 1.0 0.99 n.a. 1.0 n.a. n.a.

ϵµ n.a. n.a. 0.005 n.a. n.a. 0.05 n.a. 0.05
ϵΣ n.a. n.a. 0.00005 n.a. n.a. 0.0005 n.a. 0.0005

optimizer adam adam adam adam adam adam adam adam
epochs 10 10 20 1000 n.a. 20 100 20
learning rate 1e-4 1e-4 5e-5 1e-4 1e-2 3e-4 1e-4 3e-4
use critic True True True True False True True True
epochs critic 10 10 10 1000 n.a. 10 100 10
learning rate critic (and alpha) 1e-4 1e-4 2e-4 1e-4 n.a. 3e-4 1e-4 3e-4
number minibatches 40 32 40 n.a. n.a. 1 1 1
batch size n.a. n.a. n.a. 256 n.a. n.a. n.a. n.a.
buffer size n.a. n.a. n.a. 1e6 n.a. n.a. n.a. n.a.
learning starts 0 0 0 10000 0 0 0 0
polyak weight n.a. n.a. n.a. 5e-3 n.a. n.a. n.a. n.a.
trust region loss weight n.a. n.a. 10 n.a. n.a. 10 n.a. 10

normalized observations True True True False False False False False
normalized rewards True True False False False False False False
observation clip 10.0 10.0 n.a. n.a. n.a. n.a. n.a. n.a.
reward clip 10.0 10.0 n.a. n.a. n.a. n.a. n.a. n.a.
critic clip 0.2 0.2 n.a. n.a. n.a. n.a. 0.2 n.a.
importance ratio clip 0.2 0.2 n.a. n.a. n.a. n.a. 0.2 n.a.

hidden layers [256, 256] [256, 256] [256, 256] [256, 256] [256, 256] [128, 128] [128, 128] [128, 128]
hidden layers critic [256, 256] [256, 256] [256, 256] [256, 256] n.a. [32, 32] [32, 32] [32, 32]
hidden activation tanh tanh tanh relu tanh relu tanh relu
initial std 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

MP type n.a. DMP n.a. n.a. n.a. ProDMP ProMP ProMP
number basis functions n.a. 5 n.a. n.a. n.a. 4 5 5
number zero basis n.a. n.a. n.a. n.a. n.a. 0 1 1
k n.a. 5 n.a. n.a. n.a. 25 100 100
weight scale n.a. 10 n.a. n.a. n.a. n.a. n.a. n.a.

24

Table 3: Hyperparameters for the Meta-World experiments.
PPO NDP TRPL SAC ES MP3 MP3-BB-PPO MP3-BB

number samples 16000 16000 16000 1000 200 64 16 16
GAE λ 0.95 0.95 0.95 0.95 n.a. 1 n.a. n.a.
discount factor 0.99 0.99 0.99 0.99 n.a. 1 n.a. n.a.

ϵµ n.a. n.a. 0.005 n.a. n.a. 0.075 n.a. 0.005
ϵΣ n.a. n.a. 0.0005 n.a. n.a. 0.0005 n.a. 0.0005

optimizer adam adam adam adam adam adam adam adam
epochs 10 10 20 1000 n.a. 10 100 100
learning rate 3e-4 3e-4 5e-5 3e-4 1e-2 5e-5 3e-4 3e-4
use critic True True True True False True False False
epochs critic 10 10 10 1000 n.a. 10 n.a. n.a.
learning rate critic (and alpha) 3e-4 3e-4 3e-4 3e-4 n.a. 3e-4 n.a. n.a.
number minibatches 32 32 64 n.a. n.a. 32 1 1
batch size n.a. n.a. n.a. 256 n.a. n.a. n.a. n.a.
buffer size n.a. n.a. n.a. 1e6 n.a. n.a. n.a. n.a.
learning starts 0 0 0 10000 0 0 0 0
polyak weight n.a. n.a. n.a. 5e-3 n.a. n.a. n.a. n.a.
trust region loss weight n.a. n.a. 10 n.a. n.a. 10 n.a. 10

normalized observations True True True False False True False False
normalized rewards True True False False False False False False
observation clip 10.0 10.0 n.a. n.a. n.a. n.a. n.a. n.a.
reward clip 10.0 10.0 n.a. n.a. n.a. n.a. n.a. n.a.
critic clip 0.2 0.2 n.a. n.a. n.a. n.a. 0.2 n.a.
importance ratio clip 0.2 0.2 n.a. n.a. n.a. n.a. 0.2 n.a.

hidden layers [128, 128] [128, 128] [128, 128] [256, 256] [128, 128] [256, 256] [32, 32] [32, 32]
hidden layers critic [128, 128] [128, 128] [128, 128] [256, 256] n.a. [256, 256] n.a. n.a.
hidden activation tanh tanh tanh relu tanh tanh tanh relu
initial std 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

MP type n.a. DMP n.a. n.a. n.a. ProDMP ProMP ProMP
number basis functions n.a. 5 n.a. n.a. n.a. 3 5 5
number zero basis n.a. n.a. n.a. n.a. n.a. n.a. 1 1
k n.a. n.a. n.a. n.a. n.a. 100 n.a. n.a.
weight scale n.a. 100 n.a. n.a. n.a. 10 10 10

25

Table 4: Hyperparameters for the Hopper Jump experiments.
PPO TRPL SAC CMORE ES MP3-BB-PPO MP3-BB

number samples 16384 16384 1000 60 200 64 64
GAE λ 0.95 0.95 0.95 n.a. n.a. n.a. n.a.
discount factor 0.99 0.99 0.99 n.a. n.a. n.a. n.a.

ϵµ/ϵ n.a. 0.005 n.a. 0.1 n.a. n.a. 0.005
ϵΣ n.a. 0.00005 n.a. n.a. n.a. n.a. 0.0005

optimizer adam adam adam n.a. adam adam adam
epochs 10 20 1000 n.a. n.a. 100 100
learning rate 3e-4 5e-5 1e-4 n.a. 0.01 1e-4 5e-5
use critic True True True False False False False
epochs critic 10 10 1000 n.a. n.a. n.a. n.a.
learning rate critic (and alpha) 3e-4 3e-4 1e-4 n.a. n.a. n.a. n.a.
number minibatches 32 64 n.a. n.a. n.a. 1 1
batch size n.a. n.a. 256 n.a. n.a. n.a. n.a.
buffer size n.a. n.a. 1e6 n.a. n.a. n.a. n.a.
learning starts 0 0 10000 0 0 0 0
polyak weight n.a. n.a. 5e-3 n.a. n.a. n.a. n.a.
trust region loss weight n.a. 10 n.a. n.a. n.a. n.a. 25

normalized observations True True False False False False False
normalized rewards True False False False False False False
observation clip 10.0 n.a. n.a. n.a. n.a. n.a. n.a.
reward clip 10.0 n.a. n.a. n.a. n.a. n.a. n.a.
critic clip 0.2 n.a. n.a. n.a. n.a. 0.2 n.a.
importance ratio clip 0.2 n.a. n.a. n.a. n.a. 0.2 n.a.

hidden layers [128, 128] [128, 128] [128, 128] n.a [128, 128] [32, 32] [32, 32]
hidden layers critic [128, 128] [128, 128] [128, 128] n.a n.a n.a n.a
hidden activation tanh tanh relu n.a. tanh tanh tanh
initial std 1.0 1.0 1.0 1.0 1.0 1.0 1.0

number basis functions n.a. n.a. n.a. 5 n.a. 5 5
number zero basis n.a. n.a. n.a. 1 n.a. 1 1

26

Table 5: Hyperparameters for the Beer Pong experiments.
PPO CMORE BBRL-PPO BBRL-TRPL

number samples 16384 60 160 160
GAE λ 0.95 n.a. n.a. n.a.
discount factor 0.99 n.a. n.a. n.a.

ϵµ/ϵ n.a. 0.1 n.a. 0.005
ϵΣ n.a. n.a. n.a. 0.0005

optimizer adam n.a. adam adam
epochs 10 n.a. 100 100
learning rate 3e-4 n.a. 1e-4 5e-5
use critic True False False False
epochs critic 10 n.a. n.a. n.a.
learning rate critic (and alpha) 3e-4 n.a. n.a. n.a.
number minibatches 32 n.a. 1 1
trust region loss weight n.a. n.a. n.a. 25

normalized observations True False False False
normalized rewards True False False False
observation clip 10.0 n.a. n.a. n.a.
reward clip 10.0 n.a. n.a. n.a.
critic clip 0.2 n.a. 0.2 n.a.
importance ratio clip 0.2 n.a. 0.2 n.a.

hidden layers [128, 128] n.a. [32, 32] [32, 32]
hidden layers critic [128, 128] n.a. n.a. n.a.
hidden activation tanh n.a. tanh tanh
initial std 1.0 1.0 1.0 1.0

number basis functions n.a. 2 2 2
number zero basis n.a. 2 2 2

27

Table 6: Hyperparameters for the Table Tennis experiments.
PPO TRPL MP3 BBRL-PPO BBRL-TRPL

number samples 16000 16000 360 200 200
GAE λ 0.95 0.95 n.a. n.a. n.a.
discount factor 0.99 0.99 1.0 n.a. n.a.

ϵµ n.a. 0.0005 0.005 n.a. 0.0005
ϵΣ n.a. 0.00005 0.0005 n.a. 0.00005

optimizer adam adam adam adam adam
epochs 10 20 20 100 100
learning rate 1e-4 5e-5 2e-4 1e-4 3e-4
use critic True True True True True
epochs critic 10 10 10 100 100
learning rate critic (and alpha) 1e-4 1e-4 2e-4 1e-4 3e-4
number minibatches 40 40 1 1 1
trust region loss weight n.a. 10.0 10 n.a. 25

normalized observations True True False False False
normalized rewards True False False False False
observation clip 10.0 n.a. n.a. n.a. n.a.
reward clip 10.0 n.a. n.a. n.a. n.a.
critic clip 0.2 n.a. n.a. 0.2 n.a.
importance ratio clip 0.2 n.a. n.a. 0.2 n.a.

hidden layers [256, 256] [256, 256] [256] [256] [256]
hidden layers critic [256, 256] [256, 256] [256] [256] [256]
hidden activation tanh tanh relu tanh relu
initial std 1.0 1.0 1.0 1.0 1.0

MP type n.a. n.a. ProDMP ProMP ProMP
number basis functions n.a. n.a. 3 3 3
number zero basis n.a. n.a. 0 1 1
k n.a. n.a. 50 n.a. n.a.
weight scale n.a. n.a. n.a. n.a. n.a.

28

	Introduction
	Related Works
	Deep Reinforcement Learning with Movement Primitives
	Movement Primitives
	Reinforcement Learning Objective with Movement Primitives
	Policy-gradients for MP weight-selection policies
	Choice of the Planning Horizon

	Experimental Results
	Black-Box Reinforcement Learning
	Large Scale Robot Manipulation
	Replanning with Movement Primitives

	Conclusion and Limitations
	Ablation Studies
	Derivations of pdmp.
	Trust Region Projection Layers with KL-Divergence
	Environment Details
	Reacher5d
	Box Pushing
	Hopper Jump
	Beer Pong
	Table Tennis

	Additional Evaluations
	Hyperparameters

