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Abstract

Globally federated models are trained to be as
generalizable as possible, with user invariance
considered desirable since the models are shared
across multitudes of users. As such, these
models are often unable to produce personalized
responses for individual users, based on their
data. Contrary to widely-used personalization
techniques based on meta and few-shot learning,
we propose UserIdentifier, a novel scheme for
training a single shared model for all users. Our
approach produces personalized responses by
adding fixed, non-trainable user identifiers to the
input data. We empirically demonstrate that this
proposed method outperforms the prefix-tuning
based state-of-the-art approach by up to 13%,
on a suite of sentiment analysis datasets. We
also show that, unlike prior work, this method
needs neither any additional model parameters
nor any extra rounds of few-shot fine-tuning.

1 Introduction
Federated learning is a form of distributed learning
where data never leaves each user’s device (Wang
et al., 2021; Konečnỳ et al., 2018; Mireshghallah
et al., 2020). Instead, the user trains a model on their
device locally, and then shares the gradients (model
updates) with a centralized server, which aggregates
the gradients from different users and sends the up-
dated model back to all of them, for further training.
Personalization arises in applications where differ-
ent clients need models specifically customized to
their environment and profiles (Yang and Eisenstein,
2017; Mazaré et al., 2018; Flek, 2020). For example,
a next-word- prediction task applied on the sentence
“ I live in ... ”, requires prediction of a different
answer, customized for each user (King and Cook,
2020). This need for customization in federated
learning stems from the inherent heterogeneity
existing in the data and the labels of different clients,
especially when the task is classification (Kulkarni
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Figure 1: An overview of the proposed method,
UserIdentifier, compared to its prefix-tuning counterpart.
pu1 denotes the trainable prefix vector for user u, in the
prefix tuning method. UserIdentifier, on the other hand,
does not have trainable user-specific parameters and
uses static text (“<kat>” and “<bee>”) to condition a
globally trained model (green), for each user.

et al., 2020; Wang et al., 2018). Figure 1 shows an
example of the sentence “That is just great!”. This
sentence could carry a positive sentiment, a neutral
apathetic sentiment, or even a completely negative
sentiment. A non-personalized model cannot
correctly predict the label for the different users.

Most techniques for personalization generally
involve two phases: first, a global model is built
between all users, and then, it is personalized for
each client using their data (Kulkarni et al., 2020;
Schneider and Vlachos, 2019; Lee et al., 2021). In
such cases, each user has either an entirely separate
model, or additional personal parameters, causing
significant overheads, both in terms of storage of
the large models, and the computation complexity
of training separate models for each user. User-
Adapter (Zhong et al., 2021), the state-of-the-art
in sentiment analysis personalization, takes a prefix-
tuning based approach (Li and Liang, 2021) to
address this problem, as shown in Fig. 1. In the first



phase, a global model is trained in a user-agnostic
way on the full dataset. In the second phase, each
user u is assigned their own prefix vector, pu1 , which
is trained separately for them, on their data. If there
are N users, there would be N separate rounds
of training, producing N vectors. During this
prefix-tuning phase, the main transformer model
is frozen and shared between users.

To alleviate these training and storage costs and
also improve overall performance, we propose train-
ing a single, shared personalized model, which can
capture user-specific knowledge by conditioning
on a unique, user-specific sequence of tokens from
the classifier’s vocabulary. We name this sequence
“user identifier”, and dub the underlying method
of adding user identifiers to the input UserIdentifier.
This is shown in Fig. 1, where we add the randomly
generated, and non-trainable user identifiers “anka
Sau” and “Beh KY” to each user’s sample, and
then train the transformer classifier model, on these
augmented samples. The user identifiers just use the
underlying model’s vocabulary and embeddings,
and do not add any tokens nor any user embeddings
to the model. They are also static over time, and
unique to each user, which means the user “bee”
in Fig. 1 will have “Beh KY” pre-pended to all
their samples, and no other user has this identifier.
This is similar to the prompting of models like GPT-
3 (Brown et al., 2020), however, here the prompt is
fixed and used as data augmentation during training,
and the model is not generative. As such, we only do
training once, and have one set of shared parameters
for all users. The approach is similar in essence
to that of (Daumé III, 2009), which augments each
individual feature with domain annotations.

We experiment with different types of strings
for user identifiers, such as real usernames from
the dataset, consecutive numbers, random digits,
random non-alphanumeric tokens and random
tokens (all types) and observe that, surprisingly,
random identifiers, sampled from all possible
tokens in the vocabulary perform best, providing
1.5%−13% classification accuracy improvement
on average, over the prefix-tuning based method
UserAdapter (Zhong et al., 2021). We also study
different lengths of identifiers. We report our
results on three different sentiment analysis datasets
(Sentiment 140, IMDB, and Yelp).

2 UserIdentifier
In this section, we first explain how UserIdentifier
operates, then we go over the parameterization and

Table 1: Dataset specifications

Dataset # Users # Samples # Classes

IMDB 1,012 137,710 10
Yelp 4,460 428,369 5
Sent140 1,100 56,557 2
Sent140 (skewed) 473 23,155 2

learning procedure.
UserIdentifier is a data augmentation method

which consists of adding a sequence of user-specific
tokens (user identifier, uid, drawn from the
tokenizer’s vocabulary) to each sample, x, to
provide user-related cues to the model and help
it learn individual behaviour and preferences, all
in one shared model. Figure 1 shows how this
augmentation works. Each utterance is prepended
by the user identifier to create the augmented
sample [uid;x], and then used as input to the model,
for the training stage. There is no restriction on
what the make-up or the length of the user identifier
sequence can be, as long as it is not longer than
the maximum sequence length the model can input.
However, in practice, since the sequence length is
shared with the textual content of the user’s input, it
is better that the identifier sequence is not too long,
so as to not lose the data. We study different types of
identifiers and ablate them in Sections 3.3 and 4.3.

For parameterizations of the user identifiers, we
use parameter tying, where the user identifiers use
the same set of parameters for their embeddings
as the rest of the user’s input text. The entire
transformer model is being trained to minimize the
cross-entropy loss for the classification, with train-
ing input x augmented as [uid;x] with its user id.

3 Experimental Setup
3.1 Tasks, Datasets, and Models
We evaluate the proposed method on the task of
sentiment analysis. Table 1 shows a summary
of the datasets used in our experiments. We use
the IMDB (Diao et al., 2014) and Yelp (Tang
et al., 2015) datasets for comparison with the
UserAdapter method (Zhong et al., 2021) and for
the ablation studies. Each user’s data is split into
train, test, and validation sets, with 0.8, 0.1, 0.1
ratios. For comparison purposes, we are using a
subset of the available users, i.e. those with fewer
than 50 samples, as done by (Zhong et al., 2021)
in support of few-shot learning, for reporting test
accuracy. As such, we report test accuracy on a
test set of 229 users for the IMDB task, and on a



set of 1,213 users for the Yelp task. We use the
RoBERTa-base model for this set of experiments.

In addition to IMDB and Yelp, we also report
the performance of the proposed method on the
Sentiment140 dataset (Go et al.; Caldas et al., 2018),
which is a set of Tweets collected from Twitter and
labeled positive or negative based on the emojis
in each Tweet. For this dataset, unlike with IMDB
and Yelp, we report test accuracies on all users.
We use the methodology provided by (Li et al.,
2019) to preprocess and partition this dataset. We
create a second version of this dataset, and mark it
as “skewed”. For this skewed data, the users have
been selected such that their sentiments are mostly
skewed, i.e. we only include users with 80% or
more positive or negative Tweets. We do this to
create a setup where data is more heterogeneously
distributed. We use BERT-base-uncased for
evaluations on the Sentiment140 dataset.

3.2 Baselines
Conventional Training. Before investigating the
UserIdentifier performance, we establish the baseline
performance. Our first baseline is conventional fine-
tuning of the pre-trained transformer model on the
full dataset, without any user-level personalization.

UserAdapter. The second baseline, which is
the most closely related to our work, is User-
Adapter (Zhong et al., 2021). In UserAdapter, a
per-user embedding is learnt through few-shot
learning. These personal vectors are prepended to
the users’ data to create personal responses. In other
words, this work proposes prefix-tuning (Li and
Liang, 2021) on a user-level. Unlike our method,
UserAdapter consists of two phases, as discussed
in Section 1: the first phase of general model fine-
tuning, where all of the available data is used to fine-
tune the pre-trained model for a given task, and the
second phase where each user’s data is used to train
their own personal vector. This means UserAdapter,
unlike our method, requires adding separate, per-
user trainable parameters to the model, and storing
the trained value of those parameters for each user.

Trainable User Embeddings. UserIdentifier uses
the same set of parameters (BERT embeddings)
for embedding both the sample content, and the
user identifiers. In other words, the text and user
embedding parameters are tied. To untie these
parameters, we introduce a third baseline, with
trainable user embeddings. In this setup, while
the tokens used for the user identifier are still

drawn from the pre-trained model’s tokenizer
vocabulary, we’re creating and training a separate
set of parameters for the user embedding, instead
of using the pre-trained model’s embedding.

3.3 Types of User Identifiers
We investigate five scenarios (types of sequences)
for the user identifiers. The length of the user
identifier sequences can vary in terms of number
of tokens (L) for the last three of these scenarios.
Default (Def.): This scenario uses the real user id
(e.g., username) of that user, when provided by the
dataset and if they are not private. We only have this
option available for the Sentiment140 dataset.
Consecutive Numbers (Num.): We assign each
user a unique number, from 1 to N , representing
each user (up to N users).
Random sequence of digits (Rand. Dig.): In this
scenario, L independent and identically distributed
(i.i.d) samples from the set of digits (0 to 9) are
drawn, creating a sequence of lengthL for each user.
Random sequence of tokens with non-
alphanumeric characters (Rand. Non.): L
i.i.d samples are drawn from a subset of tokens
(with size 400) that contain non-alphanumeric
characters, e.g., the token Ã"". The motivation for
this scenario is that such user identifiers might be
easier for the model to distinguish from the text (if
we make sure the textual content in the sample has
no overlapping tokens with the identifier).
Random sequence of all tokens (Rand. All): This
scenario draws L i.i.d samples from the set of all
available tokens in the tokenizer vocabulary.

4 Results
In this section, we first show the performance gain
of UserIdentifier, over conventional training. Then,
we benchmark the proposed UserIdentifier perfor-
mance against the baselines (since the baseline is
a centralized method, we also apply UserIdentifier in
a centralized way for this particular experiment, to
have a fair comparison). Then, we ablate different
scenarios for the user identifiers with varying
lengths. In our experiments we observed that the
models would converge faster if we add the user
identifier to both the beginning and then end of the
samples, so that is what is reported here.

4.1 Summary of Results
Table 4 shows the performance gain of applying
UserIdentifier, in a federated setup. UserIdentifier
can be readily applied in federated learning, by
assigning identifiers to each user and then asking



Table 2: Comparison of sentiment classification accuracy of UserIdentifier, with the baselines of Section 3.2. Num.,
Def. and Rand. refer to the different types of user identifiers introduced in Section 3.3.

Dataset Conventional UserAdapter
Trainable User Emb. UserIdentifier

Num. Def. Rand. All Num. Def. Rand. All

R
oB

E
R

Ta IMDB 45.1 46.2 45.5 – 48.9 50.1 – 52.5
Yelp 68.3 70.2 68.3 – 70.6 69.5 – 71.3

B
E

R
T Sent140 84.7 – 84.7 86.3 86.5 84.9 87.1 87.1

Sent140 (Skewed) 86.3 – 87.2 89.3 90.0 87.5 90.3 90.4

Table 3: Effect of the length (in terms of #tokens and type
(Section 3.3) of user identifier sequence on classification
accuracy.

Seq. Len. Rand. Dig Rand. Non. Rand. All

IM
D

B

5 48.8 51.3 52.2
10 47.4 51.7 52.5
20 47.1 50.2 51.1
50 46.5 48.7 50.8
200 33.3 32.8 40.1

Y
el

p

5 68.6 69.3 70.8
10 68.7 69.6 71.3
20 68.4 68.6 71.0
50 67.8 69.0 70.6
200 63.2 60.2 65.1

them to append it to all their samples. We have
used the Rand. All type of user identifier for this
experiment, since we observed in previous sections
that it was the most effective. In general, the
baseline performance and the performance gain the
federated setup is slightly lower than centralized
learning, which is due to the distributed nature of FL,
and the fact that only average of multiple gradient
updates are shared with the server for aggregation.

4.2 Comparison with Centralized Baselines
A comparison of UserIdentifier with the state-
of-the-art UserAdapter method, and the other
baselines is presented in Table 2. For the Num.
(consecutive numbers) and Def. (default username)
scenarios, as detailed in Section 4.3, the length of
the user identifier sequences depends solely on the
tokenization process. For the case of Rand. All
(randomly sampled from all vocabulary tokens),
however, it is shown that the sequence length of
10 tokens provides the best performance through
the ablation study, therefore the results are reported
for this length. Since the default usernames for
IMDB and Yelp datasets are not provided, the
corresponding results are not reported here.

It is shown that UserIdentifier with randomly gen-
erated identifiers outperforms all baselines, in all
tasks. Our intuition is that UserIdentifier outperforms

UserAdapter because of the collaborative learning
and personalization which is happening simulta-
neously, unlike the case of UserAdapter where
personalization is performed separately for each
user. The performance of trainable user embeddings
appears inferior to that of UserIdentifier, which could
be attributed to the parameter tying used in UserI-
dentifier. This parameter tying couples the learning
problems for both domains (user identifier and text)
and allows us to jointly learn from the full data, as
in (He et al., 2019). For the Sentiment140 dataset,
we can see that increasing the heterogeneity or skew
in the dataset boosts the benefits brought about by
UserIdentifier. This shows that the proposed method
performs better in setups where personalization is
actually needed (Deng et al., 2020).

4.3 Ablation Studies

Table 3 shows our ablation study into the length and
the type of the user identifier sequence, for IMDB
and Yelp datasets. The most evident trend is that
performance significantly degrades in both datasets
when the length of the user identifier sequence
exceeds 20 tokens, holding for all identifier types.
This is because the length of the input text itself
is essentially decreased (the maximum sequence
length for RoBERTa is 512, and the textual content
of the sample is truncated to fit the user identifier
in), when increasing the length of the identifier.
This decreases the useful information which could
be used to infer sentiment, and in turn it has an
adverse effect on accuracy.

Another observation is that randomly sampling
from the tokenizer’s entire vocabulary outper-
forms sampling only from digits or from the
non-alphanumeric tokens. This can be attributed to
the different sizes of the sampling spaces for these
three types, and the probability of overlap in user
identifier from user to user. For the random digits
(Rand. Dig.) the sample space size for each token
position is 10, the number of possible digits. For
the non-alphanumeric tokens, we have limited them



to 400, and for the token type all (Rand. All), the
possible sample space is 47,400. This means that
the probability of having token overlaps in user
identifiers is much much smaller in the last scheme,
than it is for the other two.

5 Conclusion
In this work, we present a novel approach for
learning global models, producing personalized
classification responses. This method which
doesn’t require model extensions or specialized
training algorithms, consists of appending a fixed,
non-trainable, unique identifier string to each
sample during training and inference.

Ethical Considerations
Our proposed model is intended to be used for ad-
dressing the problem of personalization, by learning
one shared model for all users, and querying it using
a personal identifier. One potential measure that
needs to be taken for deployment of such technology
is to setup proper authentication tools, so that each
user can only query with their own identifier and
prevent users from breaching privacy by querying
other users’ models. However, this could be a
concern in other personalization setups too.
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A Appendix
Table 4: Performance of UserIdentifier for sentiment
classification in a federated learning setup.

Dataset Conventional User Identifier

R
oB

E
R

Ta IMDB 44.30 47.23
Yelp 68.40 70.60

B
E

R
T Sent140 84.40 86.30

Sent140 (Skewed) 86.50 90.00

A.1 Performance on Unseen Users
To measure how robust the proposed method is to
new users that have never been seen before, we
run evaluation on new users, and report the results
in Table 5. For this experiment we have used the
best models from Tables 2, and tested them on
samples from new users, without appending any
user identifiers. It is noteworthy that there is some
distribution shift between these unseen users and
the seen users from Table 2, especially for Yelp, as
we used samples that were not used in the original
training/test/val setup (this test set contains 5000
samples for Yelp and 1357 samples for IMDB).

The UserIdentifier column refers to accuracy
of those datapoints on models trained with user
identifiers, and the conventional column shows the
accuracy but on a conventionally trained model,
which would be the baseline. We can see that both
models behave similarly, which suggests that for
unseen datapoints, the UserIdentifier trained model
falls back to a conventional model, and does not
behave even worse.
A.2 Further User-level Accuracy Studies
Figure 2 shows the change in user accuracy, when
we use UserIdentifier for training, instead of conven-
tional training for each user. In other words, the
horizontal axis shows conventionalacc−UIDacc

for each user, and the vertical axis shows the count
of users.

As the plots show, on average across the two
datasets, 32.1% of the users see improvements in
accuracy, whereas 54.2% don’t see any change.
A.3 Maximally Distant User Identifiers
To better understand the effect of edit distance
between user identifiers, We also experimented
with maximally distanced identifiers (for the Rand.
All setup), where the maximum distance would be
the length of the identifier here, since each token
in the identifier can take substantially large number
of values. For this experiment, we used rejection

Table 5: Evaluation results on unseen users.
UserIdentifierAccuracy (%) Conventional Model Accuracy (%)

IMDB 50.4 50.9
Yelp 50.1 49.8
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Figure 2: Distribution of test accuracy change across
users.

sampling for user ids, as in if a new random sampled
had any token overlaps with existing user ids, we
would reject it and sample a new one. We observed
results very similar to the ones with the random
identifiers, which we hypothesize is because the
random identifiers are already highly distanced
and rarely overlap (less than 10% of the users have
non-maximal distance).


