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Abstract. Here, we propose the Graph Regularizable Assessment Met-
ric (GRAM), a customizable tool for evaluating the quality of generated
brain graphs. Current geometric deep learning methods often lack ro-
bust quantification techniques for assessing the synthetic brain graphs
integrity. GRAM addresses this gap by proportionally combining a set
of existing graph metrics to establish a linear correlation between applied
distortions and ground-truth graphs. To evaluate the performance of our
model, we generated a synthetic dataset of structural brain connectomes
which was derived from an existing dataset and used to simulate a set
of predicted connectomes from a generative model with controlled levels
of distortions. Our results show that GRAM outperforms single met-
rics in quantifying the distortion between generated and original graphs.
This approach is a significant step towards establishing a universal graph
quality index for graph-based predictive studies.

Keywords: Predicted brain graphs · Quality metrics · Customized met-
rics.

1 Introduction

Brain connectomes are crucial for exploring the connectivity patterns underlying
cognitive processes [21]. These connectomes provide a framework for predicting
the progression of neurodegenerative diseases by integrating connectomic anal-
yses with established neuroscientific knowledge [4]. For instance, [10,13] intro-
duced geometric deep learning approaches to forecast Alzheimer’s disease pro-
gression using brain connectome data. Despite their potential, obtaining connec-
tomic data poses significant challenges. One major impediment is the extensive
processing required for neuroimages acquired through modalities such as Mag-
netic Resonance Imaging (MRI). This process is both time-consuming and com-
putationally intensive. Another challenge is the limited availability of sufficient
MRI data, which can hinder comprehensive analyses.

One approach to address the challenge of limited MRI data involves the use
of generative models to produce synthetic neuroimages. Generative Adversarial
Networks (GANs) [7] have shown significant capability in generating realistic
brain scans. For instance, [14] proposed a GAN model based on a fully convo-
lutional network and an Auto-Context Model to enhance the realism and accu-
racy of synthetic images. Similarly, [19] developed a GAN model that produces
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high-quality, realistic images that simulate the ground-truth brain images- to im-
prove the performance of diagnostic models in medical diagnostics. Despite the
potential benefits, using GAN-generated MRI data to study brain connectomes
introduces two key challenges. First, the generated MRI data must be indis-
tinguishable from real data both quantitatively and qualitatively. Second, the
synthetic data requires additional processing to extract connectivity matrices.

To address the above-mentioned issues, [25] proposed predicting brain con-
nectivity matrices using a graph GAN-based approach. The authors created
representative templates from clustered brain graphs to train models that pre-
dict the evolution of connectivities for a given brain disease over time. Their
novel few-shot learning framework uses minimal training data and employs clus-
tering and Connectional Brain Templates (CBTs) to handle the diversity within
brain connectomic data. This ensures robust model training despite limited data.
However, unlike images, brain connectomes are virtually impossible to evaluate
qualitatively. Instead, quantitative metrics (e.g., centrality measures) are, thus
far, a single way to evaluate the quality of the generated graphs.

In this paper, we highlight the limitations of existing metrics for graph quality
assessment and propose a novel universal customizable metric to quantify the
quality of generated graphs with an application to a simulated prediction of brain
connectivities based on an existing dataset. In particular, we propose Graph
Regularizable Assessment Metric (GRAM), a customizable framework designed
to learn to proportionally combine a set of existing graph metrics in order to
evaluate the generated graph’s quality. Drawing inspiration from the universal
image quality index by [23], GRAM could be considered a first step towards a
more universal graph quality index. Our contributions are listed as follows:

1. We propose a new general assumption for quantitatively interpreting the
quality of a generated graph based on the linearity between the amount of
distortion and the value of the reported metric.

2. We propose a novel general metric based on the weighted combination of
existing metrics.

3. Our proposed metric is adjustable depending on the type of graph as well
as the chosen metrics to report.

2 Methods
In this section, we present in detail the proposed metric GRAM for quantifying
the quality of generated graphs.
2.1 Simulation of Generated Brain Graphs

Let G = (V,E) be a directed weighted graph, V denotes the vertices, and E
denotes the weighted edges given by w : e → R. Let Ĝ be the simulation of the
output of a given generative model F aiming to predict a target brain connectome
G such that Ĝ ≈ G. The goal of the simulation is to bypass the problem of finding
the optimal F to train as well as to control the amount of distortion d between
Ĝ and G, where d ∈]0, 1] with s defined as distortion step.

The distortion level between Ĝ and G is measured by the number of edges
|E| with differing weights. Specifically, for an edge e ∈ E with weight w in G
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Fig. 1. Pipeline of the proposed GRAM metric for assessing the quality of directed
weighted graphs. (1) Simulate graph distortion. For an input graph G and for a
distortion level d we alter weights of randomly selected edges by random generated
values in [wmin, wmax] producing m distorted graphs. (2) Compute different corre-
lations. First we apply the single metrics to the ground truth graph and the distorted
one then calculate the Pearson, Spearman and Kendall’s Tau correlations between
them. Second for each graph and each correlation coefficient, we generate a matrix A
of size (p× q) containing the correlation values organized by distortion levels vertically
and single metrics horizontally. (3) Optimize weights by minimizing surface loss.
We train GRAM using an MLP to optimize the metrics’ weights αj forming the vector
B(q) by minimizing the loss between the predicted surface created by the MLP output
A×B and the reference surface created by the vector C(p) across n surfaces.

and ŵ in Ĝ, the distortion is defined as the proportion of edges for which w ̸= ŵ,
regardless of the magnitude of the difference |w − ŵ|.

As shown in Fig. 1, we define a set of m distorted graphs, each characterized
by a distortion level d denoted as Ĝd = {Ĝ1, . . . , Ĝm}. The process of generating
a suite of distorted graphs across all distortion levels is detailed in Algorithm 1,
resulting in the set Ĝ = {Ĝs, . . . , Ĝ1}. Initially, we set a predefined distortion step
(e,g., 0.1). For each increment of the distortion level d, we randomly select |Ê|
edges, where |Ê| = d× (|E| − |V |). Here, |E| is the total number of edges in the
graph, and |V | is the total number of vertices. The term |E|− |V | represents the
total number of non-diagonal edges, as diagonal edges (self-loops) are excluded.
Therefore, by subtracting |V | from |E|, we ensure that we only consider non-
diagonal edges. At each selected edge e, we replace its weight with a randomly
generated value within the range [wmin, wmax], where wmin and wmax are the
minimum and maximum weight values in the graph G, respectively. We repeat
this process m times to ensure that all the edges are distorted at least once.
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Algorithm 1 Generate Distorted Graphs
Require: Directed weighted graph G = (V,E), distortion step s, number of iterations

m
Ensure: Set of distorted graphs Ĝ
1: Initialize Ĝ ← ∅
2: wmin ← min{w(e) | e ∈ E}
3: wmax ← max{w(e) | e ∈ E}
4: for d in D with step s do
5: Initialize Ĝd ← ∅
6: |Ê| ← d× (|E| − |V |)
7: for i from 1 to m do
8: Ĝ← G
9: Select |Ê| random edges from E

10: for each selected edge e do
11: ŵ(e)← random(wmin, wmax)
12: Update edge weight in Ĝ to ŵ(e)
13: end for
14: Add Ĝ to Ĝd
15: end for
16: Add Ĝd to Ĝ
17: end for

return Ĝ

2.2 Graph Reliability Assessment Metric (GRAM)

Assumption 1: Let G = (V,E) represent a brain graph, where V denotes
vertices and E denotes edges, with w : e → R representing the weights of the
edges in E. For a metric M that assesses graph quality, we postulate that the
variation in y such that:

y = ρ(M(G),M(Ĝ)) (1)

is linearly correlated with the distortion d applied to G. Where Ĝ is the
distorted graph, and ρ is the correlation function. We express M as follows:

M(Ĝ) = 1− k × d (2)

Where d is the distortion level expressed as a ratio (e.g., d = 0.1 for 10%
distortion), and k is a constant scaling factor.

We introduce the GRAM : an adjustable and learnable measure for evaluat-
ing the quality of generated graphs. Unlike existing metrics, such as centrality
measurements that separately assess different graph aspects, GRAM provides a
linear approximation of the relationship between distortion evolution and its out-
put value taking into consideration multiple aspects of the graph. For instance,
a GRAM value of 0.8 indicates that the graph is 80% similar to the original
data. The result of our metric is represented by the y value, which indicates the
degree of similarity between the generated and original graphs.

To do so, as seen in Fig. 1 for each graph, we define a matrix A ∈ Rp×q, such
that p is the number of distortion levels, q is the number of existing metrics.
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Within A, each element Ai,j represents the correlation between a given metric’s
output ξ(G) and ξ(Ĝ) applied to G and Ĝ, respectively, at a particular distortion
level d. Here i indexes a distinct distortion level, and j refers to a particular
metric correlation (e.g., At a distortion increment s = 0.1, A1,3 corresponds
to the third metric correlation at a 10% distortion level). We define C as the
reference output of the metric ensuring adherence to Assumption 1. GRAM
aims to find the values αj forming a vector B such that: A×B = C.

We define GRAM(G) as a weighted sum of the metrics’ correlations between
the ground truth and distorted graphs. Specifically, let ξj(G) and ξj(Ĝ) denote
the j-th metric evaluated on G and the distorted graph Ĝ, respectively. Then:

GRAM(G) =

q∑
j=1

αj × ρ(ξj(G), ξj(Ĝ)) (3)

Where ρ is the correlation function and αj are the learnable weights for each
metric’s correlation.

To solve the vector B, we leverage the universal approximation theorem
demonstrated by [8], which establishes that a feedforward neural network fea-
turing a single hidden layer can approximate any continuous function with suf-
ficient neurons and appropriate parameters (weights and biases). Consequently,
our approach involves training a Multi-Layer Perceptron (MLP) to determine
the parameters within B, taking A as input and C as output.

To train the MLP, we minimize the loss between two surfaces: Sr, formed
by the intersection of vector C with the X and Y axes, and Sp, defined by the
curve of predicted weights in B, where the vector A×B intersects the X and Y
axes, Fig. 1 (3). The goal is to optimize the predicted weights in B so that the
vector A×B closely approximates vector C, aligning surfaces Sr and Sp.

To do so, we use least squares regression [11] to fit a polynomial function

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

to the A × B output data. This involves finding a polynomial that minimizes
the sum of the squared differences between the MLP output data points and
the polynomial’s predicted values. This method creates a continuous curve that
closely follows the data pattern formed by A×B, which we then use to approx-
imate the integral within a specified range.

In our study, the loss is minimized by the following process: first, the total
surface created by the MLP values is divided into n distinct parts. Each part is
optimized independently to simplify parameter convergence. Finally, we average
all the results from the optimizations.

Our proposed surface loss can be defined as follows:

Surface Loss =
1

n

n∑
i=1

∫ xmax

xmin

|fC(x)− fMLP(x)| dx (4)

where n represents the number of distinct surface parts, xmin and xmax denote
the minimum and maximum values of the input range, respectively. The function
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fC(x) denotes the line defined by C values, while fMLP(x) corresponds to the
polynomial approximation function of the MLP output.

Training details. We train our model for 250 epochs, using Google Colab.
For optimization, we use Adam optimize [9], with learning rate of 0.01.

3 Results and discussion
In this section, we evaluate 10 selected individual graph metrics as well as our
proposed GRAM . Additionally, we discuss each of the findings.

3.1 Dataset

We used a dataset from [20] that contains 88 subjects (48 females, 40 males
aged between 18 and 48 years). All subjects are right-handed and healthy. The
dataset contains the structural connectomes where each connectome contains 90
brain regions of intrest from the Automated Anatomical Labeling Atlas (AALA)
[22].

3.2 Single Metric Evaluation

For this study, we select a step of s = 0.1 and a set of ten widely utilized graph
metrics in the literature [16]. These metrics are: Betweenness Centrality [6],
Closeness Centrality [17], Weighted Degree Centrality [1], Eigen Centrality [2],
Pagerank Centrality [15], Katz Centrality [3], Hub-Authority [5], Harmony [12],
Average Neighbor Degree [24], Diversity Index [18]. As a baseline for evaluating
our proposed GRAM , Fig. 2, displays the correlation between the ground truth
graphs and the generated ones, for each individual metric across various levels
of distortion.

Fig. 2. Correlations for single metrics. We plot different correlations (Pearson, Spear-
man and Kendall’s Tau correlations) between the ground truth graphs and the distorted
ones, for each individual metric across various levels of distortion.

Fig. 2 shows the evolution of the independent metrics differs across the stud-
ied correlation coefficients. These evolutions are non-linear and could be visually
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categorized into two distinct patterns. The first pattern includes metrics such
as Betweenness, Closeness, Harmony, and Weighted Degree Centralities which
exhibit a moderate progression for values of d < 0.8 followed by a rapid decline
towards a correlation values of 0. Contrarily, the second pattern shows metrics
such as Eigenvector, PageRank, Katz, and Diversity Index. These metrics show
a non-linear evolution, characterized by a rapid correlation decline for distortion
levels lower than d = 0.3. This decline is then followed by a gradual stabiliza-
tion of the correlations for levels where d > 0.3. This observation highlights the
insufficiency of relying on a single set of metrics to comprehensively assess gen-
erated graph quality. All metrics exhibit non-linear correlations compared to the
reference line, thus rendering them unreliable due to their under-estimation or
over-estimation of distortion levels.

Fig. 3. GRAM testing results. The figure illustrates the intersection of A× B (blue)
and refrence vector C (orange) as surfaces intersecting the x and y axes, shown for
Pearson, Spearman, and Kendall’s Tau correlation coefficients.

3.3 GRAM evaluation
We generated distorted graphs using a step value of s = 0.1 and trained GRAM
using the ten previously listed metrics. The training process optimizes two sepa-
rate surfaces. The loss for the first surface is calculated over the range [0.1, 0.5],
while the loss for the second surface is calculated over the range [0.5, 1]. Fig.
3 shows GRAM testing results based on the previously mentioned correlations
(i.e., Pearson correlation coefficient, etc ...). Visually, the correlational outputs
of GRAM seem to closely approximate the target triangular shape created by
the reference line and its intersection with x and y axis.

Table 1 shows the weight of each metric as produced by GRAM across var-
ious correlation coefficients. The average neighbor degree consistently exhibits
high weight values across Pearson, Spearman, and Kendall’s Tau correlation co-
efficients. Yet, almost all the other metrics’ weights are close to (0 ± 0.1). This
disparity in the correlation’s values may be due to the significant overlap in the
information captured by the average neighbor degree and closeness centrality
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with other metrics like betweenness or diversity index. The computation redun-
dancy in some metrics could lead to one of these metrics to be over-represented
compared to similar metrics.

αj ρp ρs ρk Single metrics

α1 0.230 0.250 0.643 Betweenness
α2 0.473 0.159 0.166 Closeness
α3 -0.087 0.223 0.106 Weighted Degree
α4 -0.067 0.056 0.033 Eigenvector
α5 0.133 0.024 0.129 PageRank
α6 0.022 0.069 0.006 Katz
α7 0.001 0.006 -0.059 Hub-Authority
α8 0.022 -0.159 -0.156 Harmony
α9 0.309 0.614 0.578 Average Neighbor Degree
α10 0.260 0.501 0.349 Diversity Index

Table 1. Optimised αj values for Pearson ρp, Spearman ρs, and Kendall’s Tau ρk
correlations

Limitations and Future Directions. This study marks an initial effort to
establish a universal metric for assessing the quality of generated brain graphs.
One notable limitation is the selection of ten metrics that share similar calcu-
lation methods. Another limitation is the evaluation based on a single dataset.
Future research should explore a broader range of metrics and evaluate the model
across various graph datasets for different applications.

Code Availability. All codes used for this study are available in: https:
//shorturl.at/xjSPW

4 Conclusion
This paper introduced the Graph Regularizable Assessment Metric (GRAM)
to evaluate the quality of generated brain graphs that could be used as a uni-
versal method in reporting the quality of generated graphs in future predictive
studies. It combines multiple metrics in a weighted framework, addressing the
limitations of existing graph quality metrics. Our proposed method establishes
a general assumption for graph quality based on the linearity between distortion
and metric values where we used a multi-layer perceptron to optimize metric
weights. We test GRAM using a set of simulated structural connectome data
on which it demonstrated reasonable reliability in quantifying graph quality. In
future work, we aim to extend GRAM to diverse graph types and datasets.

https://shorturl.at/xjSPW
https://shorturl.at/xjSPW
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