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ABSTRACT

Al in dermatology is evolving at a rapid pace but the major limitation to training
trustworthy classifiers is the scarcity of data with ground-truth concept level labels,
which are meta-labels semantically meaningful to humans (Li et al.| |2019). Foun-
dation models like CLIP (Radford et al.| [2021) providing zero-shot capabilities
can help alleviate this challenge by leveraging vast amounts of image-caption pairs
available on the internet. CLIP can be fine-tuned using domain specific image-
caption pairs to improve classification performance. However, CLIP’s pre-training
data is not well-aligned with the medical jargon that clinicians use to perform
diagnoses. The development of large language models (LLMs) in recent years
has led to the possibility of leveraging the expressive nature of these models to
generate rich text. Our goal is to use these models to generate caption text that
aligns well with both the clinical lexicon and with the natural human language used
in CLIP’s pre-training data. Starting with captions used for images in PubMed
articles (Kim et al., |2023)), we extend them by passing the raw captions through
an LLM fine-tuned on the field’s several textbooks. We find that using captions
generated by an expressive fine-tuned LLM like GPT-3.5 improves downstream
zero-shot concept classification performance.

1 INTRODUCTION

In dermatology, for performing a diagnosis, dermatologists often use concepts, which refer to
a clinical lexicon that is used to describe skin disease findings in the dermoscopic images. For
example, Melanoma is often associated with the ABCDE rule including asymmetry, border, color,
diameter and evolving (Duarte et al.;|[2021). Thus, learning these concepts from an image can aid in
providing diagnostic explanations and building classifiers which are explainable. However, obtaining
these concept labels for dermatology is a difficult and time-consuming task since only well-trained
dermatologists can accurately describe skin diseases. There are datasets (Codella et al., 2018} |Groh
et al.| [2021) which have high-quality dermoscopic images, but they are either devoid of manual labels,
not inclusive of all concepts, or have very limited samples for some concepts.

There have been many advances in fully-supervised learning for medical image classification spanning
multiple domains (Yadav & Jadhav, 2019} [Islam et al., 2020; |Li et al.,|2014). However, the same
progress has not been achieved in dermatology image analysis due to limited availability of high-
quality images with expert annotations. Recently introduced methods like CLIP provide avenues to
perform zero-shot classification without the need of labeled datasets. Prior works like MONET (Kim!
et al.| 2023)) leverage image-caption pairs from PubMed articles and medical textbooks to fine-tune
CLIP models for dermatology. However, the captions used in these academic sources contain medical
terms which are not aligned with the pre-training data of CLIP, which includes image-caption pairs
found on the internet. We posit that LLMs like GPT variants can be effectively used to model natural
human language. Our contributions include (i) using LLMs for data generation by extending the
original captions to align them with CLIP’s pre-training data and improve downstream performance
on zero-shot concept classification, (ii) demonstrating that these LLMs can be further fine-tuned on
the field’s textbooks to improve their expressiveness.

*Equal contribuation
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2 DATASETS

Textbooks With the advent of LLMs, many open-source and closed-source LLM models pre-trained
on vast amounts of open internet text data are available. Although, for a specific task like this work, an
improved and more informative text in the dermatology field is required that some of these pre-trained
models cannot provide. Therefore, fine-tuning a LLM on the desired text set is a crucial solution to
this problem. Dermatology textbooks are a good option for fulfilling this requirement. We chose four
books for this purpose: Differential Diagnosis In Dermatology (Ashton & Leppard, |[2021)), General
Dermatology (Englishl [2007)), Top 50 Dermatology Case Studies for Primary Care (Reich et al.|
2017), and Handbook of Dermoscopy (Malvehy et al., 2006). We used the text from these textbooks
to generate prompt and completion pairs for fine-tuning the LLM models as described in section[3.2]

Evaluation Dataset To evaluate the trained CLIP model for zero-shot concept classification, we
used the SKINCON dataset (Daneshjou et al., 2022). SKINCON includes 3230 images from the
Fitzpatrick 17k skin disease dataset (Groh et al.,|2021)), densely annotated with 48 clinical concepts,
22 of which have at least 50 images representing the concept. The concepts used were chosen by
two dermatologists considering the clinical descriptor terms used to describe skin lesions, such as
"plaque"”, "scale", and "erosion" to name a few. The list of concepts was based on the clinical lexicon
used by dermatologists to describe skin lesions and was developed with consultation of the terms

listed in one of the most widely used dermatology textbooks - Dermatology (Bolognia et al.| 2012).

3 METHODS

3.1 EXPLORATORY ANALYSIS

For training CLIP, the captions need to be tokenized using the CLIP tokenizer before the contrastive
learning procedure. All CLIP models use 77 as the maximum tokenized context length, either padding
or truncating the caption if it is below or above that length respectively.

Since we were restricted to 77 as the maximum number of tokens, we first did an exploratory analysis
of the tokenized lengths of the original 44314 captions obtained from the PubMed articles utilizing
the scripts provided in [Kim et al.|(2023). This would give us an intuition of how many tokens were
available for extending the caption for alignment. Table 2] (Appendix [A.2) shows the statistics of the
tokenized captions. The mean length of captions is ~ 35 which shows that most of the captions are
short and do not exceed the maximum token length of 77. 75% of the captions have a token length
of less than 51 which indicates that a majority of captions do have additional tokens available to
be extended and improved. There are ~ 13% captions which have been truncated at the max token
length of 77, still leaving around ~ 38000 captions that can be improved using LLMs.

3.2 DATA PREPROCESSING

Fine-tuning data for an LLM needs to be in the form of prompt-completion pairs. It meant for a
specific prompt, we needed to define the ideal completion that we expect the model to output. Naively,
these would be the sentences that follow a given prompt in the text. However, the whole of the raw
text from the books could have misleading phrases and sentences, so applying some preprocessing
strategies was essential for fine-tuning data preparation.

We knew that each dermatology book had its own structure, types of references, and formatting
method. Preprocessing and extracting a proper text from the books and creating a prompt-completion
dataset for further fine-tuning was divided into manual and automatic steps. The manual extraction
phase was deleting irrelevant pages like glossaries, acknowledgments, and references. Also, not all
text in the preserved pages assisted in creating prompt-completion pairs, such as titles, footnotes,
captions, tables’ text, and citations. Figure [T| shows some examples. We filtered the main text by
picking the lines with the dominant font and size using the PyMuPDF E] python library. We assumed
figures’ captions or other non-informative texts like titles are less frequent in the book and have
different fonts and sizes. This assumption was valid for all books we used. Table [3|(Appendix [A.2)
shows the names of the books and the number of prompt-completion pairs obtained for each.

"https://github.com/pymupdf/PyMuPDF
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As the outside layer of the skin, the function of the epidermis
is to produce keratin and melanin.

Figure 1: a) Irrelevant and confounding parts of textbooks shown in red boxes are removed from
the prompt-completion dataset. b) An example of a prompt sentence in blue with the following four
sentences in pink as its completion.

3.3 FINE-TUNING

We fine-tuned two LLM models, GPT-2 (Radford et al.,[2019)) and GPT-3.5 (Brown et al,[2020),
which have been pre-trained as general purpose learners on a huge amount of text data scraped from

the internet. GPT-3.5 is one of the largest autoregressive language models available, trained with
4096-token-long context. However, the model is close-sourced and fine-tuning comes as part of
an API endpoint. We first decided to use GPT-2, which is GPT-3.5’s predecessor with 1.5 billion
parameters. To fine-tune GPT-2, we started with the extracted prompt and completion pairs from
the preprocessing step. Then, we created the fine-tuning dataset by combining each prompt and
completion into a single sentence separated by the padding token and tokenized the sentence using
the GPT-2 tokenizer. Finally, we passed the data to the trainer with the combined prompt and
completion as the label. We used the huggingface library (Wolf et all [2019) to implement the
GPT-2 model and fine-tuned it for two epochs. GPT-3.5 was easier to fine-tune and only needed
an API key to directly call a fine-tuning endpoint. The gpt -3 . 5-turbo variant of GPT-3.5 was
fine-tuned for four epochs using a similar input data from the mentioned books with the format
{?prompt” : "promptA”,” completion” : ” completionA” }.

For fine-tuning CLIP, we started by extracting the image-caption pairs from PubMed articles using
the scripts provided in (2023). We didn’t use textbooks here since the repository does
not have the list of textbooks used. Then, we passed the captions through the fine-tuned LLM to
generated enriched captions with a max length of 512 tokens. Table[d] (Appendix [A.2) shows some of
the improved captions generated using fine-tuned GPT-2 and GPT-3.5 models. We then fine-tuned the
pre-trained CLIP model openai/clip-vit-base-path32 with a batch size of 64 using the
Adam optimizer (Kingma & Ba, [2014) and a learning rate of le-5 with a cosine annealing scheduler
with warm restarts.

3.4 ZERO-SHOT CLASSIFICATION AND EVALUATION

Once the CLIP model was fine-tuned, we used the 3230 images and corresponding concepts from
the SKINCON dataset to perform zero-shot concept classification. For each concept key in the 48
SKINCON concepts, we created embeddings for the text "This is {concept_key}" and all of the
images in CLIP’s joint embedding space. Then, using the cosine similarity scores, we generated
a Receiver operating characteristic (ROC) curve independently for each of the 48 concepts. The
evaluation metric used was the area under the ROC curve (AUC).

4 RESULTS

We evaluated using five different CLIP models: 1) The vanilla CLIP model without fine-tuning
(Vanilla) and the CLIP model fine tuned using 2) Original PubMed image-caption pairs (Original).
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3) Aligned captions from fine-tuned GPT-2 4) Aligned captions from Vanilla GPT-3.5. 5) Aligned
captions from fine-tuned GPT-3.5.

We decided to include vanilla GPT-3.5 in our results since from qualitative analysis it seemed that
GPT-3.5 by itself had a high enough expressive power to understand even techincal medical context
from the captions and generate customizations. Table[I|shows the mean AUC across all concepts for
the different CLIP models as defined above and Table 5] (Appendix [A.2)) shows the AUC scores for
each of the concepts.

Table 1: Mean AUC across all concepts

Mean
CLIP Model AUC
Vanilla 0.572
Original 0.636
Fine-Tuned GPT-2 0.642
Vanilla GPT-3.5 0.639
Fine-Tuned GPT-3.5 0.648

From Table [] (Appendix [A.2), it can be seen that the fine-tuned GPT-2 model is able to extend
the input caption while keeping the sentence grammatical correct. However, it sometimes strays
away from the context of the input caption and can start constructing sentences by stringing together
medical jargon. This might be a result of setting a high max token length which causes the model
to lose context in longer ranges. GPT-3.5 is able to maintain context for a longer token length and
performs better data alignment.

Fine-tuning the CLIP model improves performance for most of the concepts (41 out of 48), see
Table [5] (Appendix [A.2). The fine-tuned GPT-3.5 model performs the best among all the models
tested, with an AUC of 0.648 and it performs better than the original model in a majority of the
concepts (26 out of 48). This indicates that fine-tuning the LLM using dermatology text helps in
improving the data alignment in the extended captions.

The second best performing model is the GPT-2 fine-tuned model, with an AUC of 0.642 and
performing better than the original model in 25 out of the 48 concepts. This result was unexpected
since the GPT-3.5 model is much more powerful in terms of the model capacity as compared to
GPT-2 and we expected the Vanilla GPT-3.5 model to outperform the fine-tuned GPT-2 model, which
was not the case. This indicates that fine-tuning LLM models does actually improve the predictive
performance even if the model does not have as many trainable parameters.

The Vanilla GPT-3.5 model is also able to outperform the Original model with an AUC of 0.639. This
shows that LLMs can be effectively used to produce customized and well-aligned captions which
improve the language supervision provided to the CLIP training procedure resulting in improved
performance.

5 CONCLUSION

Our study reveals that extending captions through the use of a fine-tuned Large Language Model
(LLM) on dermatology textbooks effectively connects clinical lexicon with CLIP’s pre-training data,
resulting in enhanced downstream zero-shot concept classification performance in dermatology im-
ages. To summarize, our findings underscore the promise of LLMs in enhancing language supervision
for dermatology Al The improved CLIP model can be further used to annotate images with concepts
that can be crucial to developing concept-based disease classifiers like concept bottleneck models
(Koh et al.,|2020) that are interpretable and transparent. However, further investigation is essential to
optimize integration of LLMs with domain-specific models, ensuring more resilient applications in
medical image analysis.
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7 LIMITATIONS

Although the early findings are promising, there are many ways to extend this project. We only
used 4 dermatology textbooks for extracting the prompt-completion pairs to fine-tune the LLMs, but
there are a lot more books available which can also be preprocessed. PubMed articles can be used
to generate the prompt-completion pairs as well. Also, in the extraction pipeline, we made pairs by
getting the following four sentences of a particular sentence without considering the context and
paragraph switch. This could introduce confounders in the fine-tuning process. For instance, the
first completion sentence could be related to melanoma; in contrast, the other three could be from
the next section and discuss another disease. In addition, python pdf parsers occasionally fail and
break some words into meaningless chunks that can doubtlessly mislead the LLM during fine-tuning.
A solution for the extraction issues is adding more manual and automatic steps to remove and filter
meaningless words and checking the context integration. LLMs have also been known to hallucinate
(Lee et al., 2018} Bang et al., [2023)) and proper steps need to be taken to ensure non-existent facts are
not fabricated which is pertinent in a high-stakes domain like dermatology.

Furthermore, we used the gpt—3.5-turbo variant of GPT-3.5, but there are more powerful
variants available like GPT-4 which we did not use due to budget constraints. Another approach to
enhance the performance of the fine-tuned Large Language Model (LLM) and refine the generated
captions is by incorporating Instruction Tuning data (Zhang et al., 2023} |Liu et al., 2023} |Dai et al.,
2023; |Ouyang et al.,[2022)), instruction-output pairs, extracted from dermatology books during the
fine-tuning process. This task needs a careful plan to create a dataset that is useful and gives valuable
insights.

Another change that could be made is the CLIP model used. We used the
openai/clip-vit-base-path32 model for CLIP training but there is a more power-
ful baseline CLIP model openai/clip-vit—-large—-patchl4 available, which we did not use
because of memory constraints and longer training times. We can also employ a non-random batch
sampling strategy, which includes samples with different concepts in one mini-batch for efficient
learning of concepts. Another way to improve language supervision by employing ways to increase
the number of tokens from 77, which is CLIP’s limitations. We anticipate that all of these changes
will improve the zero-shot classification performance of the fine-tuned CLIP model.
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A APPENDIX

A.1 RELATED WORK

The CLIP network (Radford et al.| |2021) learns visual concepts by being trained with image and text
pairs in a self-supervised manner, using text paired with images found across the Internet. CLIP uses
a contrastive learning procedure to generate a multi-model embedding space by jointly training an
image encoder and a text encoders such that the embeddings of a given image-text pair are close
together in the joint representation space. Given a batch of IV (image, text) pairs, CLIP is trained to
predict which of the N x NN possible (image, text) pairings across a batch actually occurred. This is
done by maximizing the cosine similarity of the image and text embeddings of the IV real pairs in the
batch while minimizing the cosine similarity of the embeddings of the N2 — N incorrect pairings.
This optimization is done using a symmetric cross entropy loss over these similarity scores. CLIP is
powerful enough to be used in zero-shot manner on standard images (such as those from ImageNet
(Deng et al., 2009) classes). However, dermatology images are sufficiently different from everyday
images that it would be useful to fine-tune CLIP with them.

There has been prior work done for performing self-supervised constrastice learning tasks in the
medical domain. (Tiu et al.,|2022)) used contrastive learning for training a self-supervised model on
chest x-ray images lacking explicit annotations to perform pathology-classification tasks. However,
the MIMIC-CXR dataset (Johnson et al., 2019) which was used to train the model consists of
expert radiology reports accompanying each image which has rich textual descriptions about the
x-ray and enables the text transformer to better learn visual medical concepts and generalize to
different pathologies. In case of dermatology images, no such dataset exists containing images with
corresponding expert reports.

In the language supervision domain, several prior works have used text-based knowledge of image
categories to improve classification accuracy. |[Elhoseiny et al.|(2017) extracts visual information from
unstructured text descriptions collected from the internet to recognize object parts and perform zero-
shot classification. [Paz-Argaman et al.| (2020) extract visual information from Wikipedia descriptions
to enable bird classification. These works show that text augmentation is useful for self-supervised
models, but they rely on external natural language datasets for generating descriptions. |Pratt et al.
(2022)) uses a large language model (GPT-3.5) to generate customized prompts for a range of zero-shot
image classification benchmarks, however it does not perform any fine-tuning and the datasets don’t
include any images from the medical domain.

Our proposed approach combines the prior works by leveraging the expressive power provided by
LLMs with the availability of dermatology images and contrastive learning approaches to improve
zero-shot concept generation using customized prompts.
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A.2 TABLES

Table 2: Tokenized caption statistics

H Statistic ‘ Value H
Mean 35.394
Standard Deviation 22.801
Minimum 3
Lower Quartile 17
Median 28
Upper Quartile 51
Maximum 77

Table 3: Dataset statistics
H Book Name ‘ Pages ‘ Number of pairs H

Differential Diagnosis In Dermatology 466 616
(Ashton & Leppard, 2021)

| General Dermatology (English,[2007) 147 286
Top 50 Dermatology Case Studies for Pri-

mary Care (Reich et al.L2017) 341 851
Handbook of Dermoscopy (Malvehy et al., 106 53
|| [2006)

Total 1811 H
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Table 4: Examples of improved captions using fine-tuned GPT-2 and GPT-3.5

Caption

| GPT-2 Fine-Tuned

| GPT-3.5 Fine-Tuned

Long-standing
disseminated
granuloma
annulare on
the left leg.

Infection with
streptococci can cause
pustular psoriasis

on the lower legs, a
condition which is
commonly referred to
as “sore throat on

the legs.” Granuloma
annulare is a common,
self-limiting,
skin-tearing condition.
It occurs in about 10

% of immunocompromised
populations and occurs
predominantly at sites
where skin is heavily
covered, such as the
arms and legs.’

This long-standing
disseminated granuloma
annulare (DGA) on the
left leg is likely
caused by an unknown
infection. The DGA
typically presents
with a red, inflamed
lump that is hard to
see. It can cause
significant pain and
difficulty walking.
Treatment typically
involves antibiotics
and/or surgery.

Anakinra-induce
sarcoidosis.
Buttock
erythematous
plaque

eruption

while on
anakinra for

Multiple papillary
lesions scattered
symmetrically over

the lower abdominal
area with or without

a border, sometimes
with or without
scaling. Itching

on palpation.The
clinical appearance and
pathogenesis of sarcoid
vary greatly depending

Anakinra is a
medication used

to treat certain
inflammatory conditions,
including hidradenitis
suppurativa. In rare
cases, anakinra has
been linked to an
increased risk of
developing sarcoidosis,
a condition that causes
abnormal collections

of inflammatory cells
in the body. Signs and

:;g;iiigii;? on the size, locat%on symptoms of sarcoidosis
and age of the patient. can vary but can
In the elderly, it is include skin rashes
typically chronic, and and lesions, such
lasts for many years. as an erythematous
plaque eruption on the
buttocks.
These frequently Atopic eczema tends to
rupture to drain a be poorly defined, but
haemopurulent discharge. | with prominent warty
Individual lesions plaques. 1In peridial
may be often caused eczema the surface is
Interdigital by penetrating foreign dry and erythematous,
furunculosis bodies, but recurrent and is complicated by
with a lesions are more eosinophilia and by
painful, commonly associated chronic, unresponsive
erythematous with atopic dermatitis or nodular form.The

and alopecic
nodule.

and/or conformational
problems.The discharge
is red, erythematous
and itchy. It gets
better spontaneously
after few days to a
week.

differential diagnosis
of peridial eczema
includes solar eczema,
rubella and psoriasis
may turn from pink to
deep purple with the
development of scabs.
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Table 5: Concept Classification AUC. # True shows the number of samples in the SKINCON dataset
labeled with that concept

. . Fine-
Fine- Vanilla Tuned
Concept # True | Vanilla | Original| Tuned | GPT- GPT-
GPT-2 | 3.5 35

Vesicle 46 0.552 0.667 0.715 0.674 | 0.584
Papule 1170 0.448 0.66 0.646 0.668 0.676
Macule 13 0.407 0.395 0.54 0.469 | 0.556
Plaque 1967 0.566 0.646 | 0.582 0.656 | 0.611
Abscess 5 0.929 0.847 0.787 0.875 0.884
Bulla 64 0.508 0.611 0.584 | 0.647 0.654
Patch 149 0.547 0.461 0.546 0.599 | 0.523
Nodule 189 0.719 0.773 | 0.744 | 0.758 0.758
Ulcer 154 0.82 0.883 0.886 | 0.879 | 0.883
Crust 497 0.559 0.666 | 0.635 0.671 0.727
Erosion 200 0.538 0.593 0.626 | 0.603 0.602
Excoriation 46 0.536 0.693 0.6 0.559 0.578
Atrophy 69 0.482 0.606 | 0.613 0.563 0.616
Exudate 144 0.677 0.656 | 0.617 0.629 | 0.626
Purpura/Petechiae 10 0.577 0.592 0.662 0.667 0.646
Fissure 32 0.708 0.548 0.428 0.506 | 0.686
Induration 33 0.594 | 0.559 0.528 0.573 0.553
Xerosis 35 0.41 0.735 0.737 0.744 | 0.547
Telangiectasia 100 0.366 0.484 0.574 0.47 0.564
Scale 686 0.485 0474 | 0434 | 0417 0.521
Scar 123 0.604 0.659 | 0.592 0.568 0.639
Friable 153 0.629 0.576 | 0.628 0.555 0.377
Sclerosis 27 0.661 0.557 0.582 0.595 0.506
Pedunculated 26 0.665 0.855 0.755 0.817 0.773
Exophytic/Fungating 42 0.713 0.629 0.657 0.607 0.7
Warty/Papillomatous 46 0.71 0.591 0.592 0.636 | 0.691
Dome-shaped 146 0.624 0.604 | 0.71 0.658 0.667
Flat topped 18 0.574 0.595 0.609 0.563 0.635
Brown(Hyperpigmentation) 760 0.648 0.768 0.776 0.763 0.738
Translucent 16 0.496 0.523 0.69 0.731 0.547
White(Hypopigmentation) 257 0.596 0.686 0.718 0.715 0.737
Purple 85 0.725 0.843 | 0.813 0.777 0.762
Yellow 245 0.614 0.744 | 0.733 0.706 | 0.721
Black 90 0.685 0.873 0.901 0.882 | 0.896
Erythema 2139 0.609 0.719 | 0.711 0.666 | 0.68
Comedo 24 0.469 0.502 | 0.527 0.561 0.632
Lichenification 25 0.505 0.565 | 0.55 0.545 0.502
Blue 5 0.662 0.749 0.767 0.754 | 0.784
Umbilicated 49 0.57 0.683 0.567 0.663 0.751
Poikiloderma 5 0.324 0.621 0.453 0.4 0.524
Salmon 10 0.463 0.671 0.641 0.667 0.588
Wheal 21 0.507 0.796 | 0.775 0.666 | 0.693
Acuminate 8 0.444 0.279 0.588 0.654 | 0.606
Burrow 5 0.807 0.636 | 0.585 0.68 0.786
Gray 5 0.302 0.45 0.439 0.283 0.303
Pigmented 5 0.459 0.483 0.513 0.581 0.661
Cyst 6 0.521 0.745 0.883 0.79 0.827

Mean AUC ‘ 0.572 ‘ 0.636 ‘ 0.642 ‘ 0.639 ‘ 0.648
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