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Abstract

Conventional machine learning applications typi-
cally assume that data samples are independently
and identically distributed (i.i.d.). However, practi-
cal scenarios often involve a data-generating pro-
cess that produces highly dependent data samples,
which are known to heavily bias the stochastic op-
timization process and slow down the convergence
of learning. In this paper, we conduct a fundamen-
tal study on how different stochastic data sampling
schemes affect the sample complexity of online
stochastic gradient descent (SGD) over highly de-
pendent data. Specifically, with a ϕ-mixing process
of data, we show that online SGD with proper peri-
odic data-subsampling achieves an improved sam-
ple complexity over the standard online SGD in the
full spectrum of the data dependence level. Interest-
ingly, even subsampling a subset of data samples
can accelerate the convergence of online SGD over
highly dependent data. Moreover, we show that
online SGD with mini-batch sampling can further
substantially improve the sample complexity over
online SGD with periodic data-subsampling over
highly dependent data. Numerical experiments val-
idate our theoretical results.

1 INTRODUCTION

Stochastic optimization algorithms have attracted great at-
tention in the past decade due to its successful applications
to a broad research areas, including deep learning [Goodfel-
low et al., 2016], reinforcement learning [Sutton and Barto,
2018], online learning [Bottou, 2010, Hazan, 2017], control
[Marti, 2017], etc. In the conventional analysis of stochastic
optimization algorithms, it is usually assumed that all data
samples are independently and identically distributed (i.i.d.)
and queried. For example, data samples in the traditional

empirical risk minimization framework are assumed to be
queried independently from the underlying data distribution,
while data samples in reinforcement learning are assumed to
be queried from the stationary distribution of the underlying
Markov chain.

Although the i.i.d. data assumption leads to a comprehen-
sive understanding of the statistical limit and computation
complexity of SGD, it violates the nature of many prac-
tical data-generating stochastic processes, which generate
highly correlated samples that depend on the history. In
fact, dependent data can be found almost everywhere, e.g.,
daily stock price [Onalan, 2009, Fort and Roberts, 2005],
weather/climate data, state transitions in Markov chains,
etc. To understand the impact of data dependence on the
convergence and complexity of stochastic algorithms, there
is a growing number of recent works that introduce vari-
ous definitions to quantify data dependence. Specifically, to
analyze the finite-time convergence of various stochastic re-
inforcement learning algorithms, recent studies assume that
the dependent samples queried from the Markov decision
process satisfy a geometric mixing property [Dalal et al.,
2018, Zou et al., 2019, Xu and Gu, 2020, Qu and Wierman,
2020], which requires the underlying Markov chain to be
uniformly ergodic or has a finite mixing time [Even-Dar
et al., 2003]. On the other hand, to analyze the convergence
of stochastic optimization algorithms over dependent data,
Karimi et al. [2019] assumed the existence of a solution to
the Poisson equation associated with the underlying Markov
chain, which is a weaker condition than the uniform ergodic
condition [Glynn and Meyn, 1996]. Moreover, Agarwal and
Duchi [2012] introduced a ϕ-mixing process that quantifies
how fast the distribution of future data samples (conditioned
on a fixed filtration) converges to the underlying stationary
data distribution. In particular, the ϕ-mixing process is more
general than the previous two notions of data dependence
[Douc et al., 2018].

While the aforementioned works leveraged the above no-
tions of data dependence to characterize the sample com-
plexity of various stochastic algorithms over dependent data,
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there still lacks theoretical understanding of how algorithm
structure affects the sample complexity of stochastic algo-
rithms under different levels of data dependence. In particu-
lar, a key algorithm structure is the stochastic data sampling
scheme, which critically affects the bias and variance of
the stochastic learning process. In fact, under i.i.d. data and
convex geometry, it is well known that SGD achieves the
sample complexity lower bound under various stochastic
data sampling schemes [Bottou, 2010], e.g., single-sample
sampling and mini-batch sampling. However, these schemes
may lead to substantially different convergence behaviors
over highly dependent data, as they are no longer unbiased.
Therefore, it is of vital importance to understand the inter-
play among data dependence, stochastic data sampling and
sample complexity of stochastic learning algorithms, and
we want to ask the following fundamental question.

• Q: How does stochastic data sampling affect the
convergence rate and sample complexity of stochastic
learning algorithms over dependent data?

In this paper, we provide comprehensive answers to this fun-
damental question. Specifically, we conduct a comprehen-
sive study of the convergence rate and sample complexity
of the online SGD algorithm over a wide spectrum of data
dependence levels under various stochastic data sampling
schemes, including periodic subsampling and mini-batch
sampling. Our results show that online SGD with both data
sampling schemes achieves a substantially improved sam-
ple complexity over the standard online SGD over highly
dependent data. We summarize our contributions as follows.

1.1 OUR CONTRIBUTIONS

We consider the following stochastic optimization problem.

min
w∈W

f(w) := Eξ∼µ

[
F (w; ξ)

]
, (P)

where the objective function f is convex and Lipschitz con-
tinuous, and the expectation is taken over the stationary
distribution µ of the underlying data-generating process P.
To perform online learning, we query a stream of dependent
data samples from the underlying data-generating process.
Specifically, we adopt the ϕ-mixing process to quantify the
data dependence via a decaying mixing coefficient function
ϕξ(k) (see Definition 2.2) [Agarwal and Duchi, 2012]. We
study the convergence of the online stochastic gradient de-
scent (SGD) algorithm over a ϕ-mixing data stream under
various stochastic data sampling schemes, including peri-
odic subsampling and mini-batch sampling. We summarize
and compare the sample complexities of online SGD with
these data sampling schemes under different ϕ-mixing data
dependence models in Table 1.

We first study the convergence of online SGD over ϕ-mixing
dependent data samples under the data subsampling scheme.

In particular, the data subsampling scheme utilizes only one
data sample per r consecutive data samples by periodically
skipping r− 1 samples. With this data subsampling scheme,
the subsampled data samples are less dependent for a larger
subsampling period r. Also, the improvement is substan-
tial when the data is highly dependent with an algebraic
decaying ϕ-mixing coefficient.

Moreover, we study the sample complexity of online SGD
over ϕ-mixing dependent data samples under the mini-batch
sampling scheme. Compare to the data subsampling scheme,
mini-batch sampling substantially reduces the mini-batch
data dependence without skipping data samples. Conse-
quently, mini-batch update leverages the sample average
over a mini batch of data samples to reduce both the bias
(caused by the data dependence) and the variance (caused by
stochastic sampling). Specifically, we show that online SGD
with mini-batch sampling achieves an orderwise lower sam-
ple complexity than both the standard online SGD and the
online SGD with data subsampling in the full spectrum of
the convergence rate of the ϕ-mixing coefficient. Our study
reveals that the widely used mini-batch sampling scheme
can effectively reduce the bias caused by data dependence
without sacrificing data efficiency.

1.2 RELATED WORK

Stochastic Algorithms over Dependent Data Steinwart
and Christmann [2009] and Modha and Masry [1996] es-
tablished the convergence analysis of online stochastic algo-
rithms for streaming data with geometric ergodicity. Duchi
et al. [2011] proved that the stochastic subgradient method
has strong convergence guarantee if the mixing time is uni-
formly bounded. Agarwal and Duchi [2012] studied the con-
vex/strongly convex stochastic optimization problem and
proved high-probability convergence bounds for general
stochastic algorithms under general stationary mixing pro-
cesses. Godichon-Baggioni et al. [2021] provided the non-
asymptotic analysis of stochastic algorithms with strongly
convex objective function over streaming mini-batch data.
In a more general setting, the stochastic approximation (SA)
problem was studied in [Karimi et al., 2019] by assuming
the existence of solution to a Poisson equation. Recently,
Debavelaere et al. [2021] developed the asymptotic conver-
gence analysis of SA problem for sub-geometric Markov
dynamic noises.

Finite-time convergence of reinforcement learning Re-
cently, a series of work studied the finite-time conver-
gence of many stochastic reinforcement learning algorithms
over Markovian dependent samples, including TD learning
[Dalal et al., 2018, Xu et al., 2019, Kaledin et al., 2020],
Q-learning [Qu and Wierman, 2020, Li et al., 2021, Melo
et al., 2008, Chen et al., 2019, Xu and Gu, 2020], fitted
Q-iteration [Mnih et al., 2013, 2015, Agarwal et al., 2021],



Table 1: Comparison of sample complexities of SGD, SGD with subsampling and mini-batch sampling under different data
dependence models for achieving f(w)−f(w∗)≤ϵ. Note that θ parameterizes convergence rate of the ϕ-mixing coefficient.

Data dependence model ϕξ(k) SGD SGD w/ subsampling Mini-batch SGD

Geometric ϕ-mixing exp(−kθ),
O(ϵ−2(log ϵ−1)

2
θ ) O(ϵ−2(log ϵ−1)

1
θ ) O(ϵ−2)

(Weakly dependent) θ > 0

Fast algebraic ϕ-mixing k−θ,
O(ϵ−2− 2

θ ) O(ϵ−2− 1
θ ) Õ(ϵ−2)(Medium dependent) θ ≥ 1

Slow algebraic ϕ-mixing k−θ,
O(ϵ−2− 2

θ ) O(ϵ−2− 1
θ ) O(ϵ−1− 1

θ )(Highly dependent) 0 < θ < 1

actor-critic algorithms [Wang et al., 2019, Yang et al., 2019,
Kumar et al., 2019, Qiu et al., 2019, Wu et al., 2020, Xu
et al., 2020], etc. In these studies, the dependent Marko-
vian samples are assumed to be generated from a geometric
ϕ-mixing process, which is satisfied when the underlying
Markov chain is uniformly ergodic or time-homogeneous
with finite-states.

Regret of Stochastic Convex Optimization There have
been many known regret bounds for online convex optimiza-
tion problem. Hazan [2017] has built the standard O(

√
T )

regret bound for online SGD algorithm with assuming the
bounded gradient. Xiao [2009] introduces the regret bound
of online dual averaging method. To our best knowledge,
there is no high-probability guaranteed regret bound for
mini-batch SGD with considering the data dependence.

2 FORMULATION AND ASSUMPTIONS

In this section, we introduce the problem formulation and
some basic assumptions. Consider a model with parameters
w. For any data sample ξ, denote F (w; ξ) ∈ R as the sample
loss of this data sample under the model w. In this paper,
we consider the following standard stochastic optimization
problem that has broad applications in machine learning.

min
w∈W

f(w) := Eξ∼µ

[
F (w; ξ)

]
. (P)

Here, the expectation is taken over the randomness of the
data sample ξ, which is drawn from an underlying distribu-
tion µ. We make the following standard assumptions regard-
ing the problem (P) [Agarwal and Duchi, 2012].

Assumption 2.1. The optimization problem (P) satisfies

1. For every ξ, function F (·; ξ) is G-Lipschitz continuous
over the domain W .

2. Function f(·) is convex and bounded below, i.e.,
f(w∗) := infw∈W f(w) > −∞.

3. W is convex and compact with bounded diameter R.

To solve this stochastic optimization problem, one often
needs to query a stream of data samples from the distribu-
tion µ to perform optimization. Unlike traditional stochastic
optimization that usually assumes that the data samples are
i.i.d. we consider a more general and practical dependent
data-generating process as we elaborate below.

Dependent data-generating process: We consider a
stochastic process P that generates a stream of data sam-
ples {ξ1, ξ2, ..., }, which are not necessarily independent.
In particular, the stochastic process P has an underlying
stationary distribution µ. To quantify the dependence of the
data generation process, we introduce the following stan-
dard ϕ-mixing process [Agarwal and Duchi, 2012], where
we denote {Ft}t as the filtration generated by {ξt}t.

Definition 2.2 (ϕ-mixing process). Consider a stochastic
process {ξt}t with a stationary distribution µ. Let P(ξt+k ∈
·|Ft) be the distribution of the (t+k)-th sample conditioned
on Ft, and denote dTV as the total variation distance. Then,
the process {ξt}t is called ϕ-mixing if the following mixing
coefficient ϕξ(·) converges to 0 as k tends to infinity.

ϕξ(k) := sup
t∈N,A∈Ft

2dTV
(
P(ξt+k ∈ ·|A), µ

)
.

Intuitively, the ϕ-mixing coefficient describes how fast the
distribution of sample ξt+k converges to the stationary dis-
tribution µ when conditioned on the filtration Ft, as the
time gap k → ∞. The ϕ-mixing process can be found in
many applications, which involve mixing coefficients that
converge to zero at different convergence rates. Below we
mention some representative examples.

• Geometric ϕ-mixing process. Such a type of process
has a geometrically diminishing mixing coefficient,
i.e., ϕξ(k) ≤ ϕ0 exp(−ckθ) for some ϕ0, c, θ > 0.
Examples include finite-state ergodic Markov chains
and some aperiodic Harris-recurrent Markov processes
[Modha and Masry, 1996, Agarwal and Duchi, 2012,
Meyn and Tweedie, 2012];

• Algebraic ϕ-mixing process. Such a type of process
has a polynomially diminishing mixing coefficient, i.e.,



ϕξ(k) ≤ ϕ0k
−θ for some ϕ0, θ > 0. Examples in-

clude a large class of Metropolis-Hastings samplers
[Jarner and Roberts, 2002] and some queuing systems
[Agarwal and Duchi, 2012].

3 COMPLEXITY OF ONLINE SGD OVER
DEPENDENT DATA

In this section, we recap the convergence results of on-
line SGD over dependent data established in [Agarwal and
Duchi, 2012]. Throughout, we define the sample complexity
as the total number of samples required for the algorithm to
output a model w that achieves an ϵ convergence error with
a certain probability, i.e., f(w) − f(w∗) ≤ ϵ with proba-
bility 1− δ. Also, the standard regret of an online learning
algorithm is defined as

(Regret): Rn :=
n∑

t=1

F (w(t); ξt)− F (w∗; ξt),

where the models {w1, w2, ..., wn} are generated using
the data samples {ξ1, ξ2, ..., ξn}, respectively, and w∗ is
the minimizer of f(w). For this sequence of models
{w1, w2, ..., wn}, we make the following mild assumption,
which is satisfied by many SGD-type algorithms.

Assumption 3.1. There is a non-increasing sequence
{κ(t)}t such that ∥w(t+ 1)− w(t)∥ ≤ κ(t).

Online SGD is a popular and standard algorithm for solving
the problem (P). In every iteration t, online SGD queries a
sample ξt from the data-generating process and performs
the following SGD update.

(SGD): w(t+ 1) = w(t)− ηt∇F (w(t); ξt), (1)

where ηt is the learning rate. In Theorem 2 of [Agarwal
and Duchi, 2012], the authors established a high probability
convergence error bound for a generic class of stochastic
algorithms. Specifically, under the Assumptions 2.1 and 3.1,
they showed that for any τ ∈ N with probability at least
1− δ, the averaged predictor ŵn := 1

n

∑n
t=1 w(t) satisfies

f(ŵn)− f(w∗)

≤ Rn

n
+

(τ−1)G

n

n∑
t=1

κ(t) (2)

+
2(τ−1)GR

n
+ 2GR

√
2τ

n
log

τ

δ
+ ϕξ(τ)GR.

Here, Rn is the regret of the algorithm of interest, G is the
Lipschitz constant of the loss function F (·; ξ), and R is the
diameter of the parameter domain, and τ ∈ N is an auxiliary
parameter that is introduced to decouple the dependence of
the data samples. From the above bound, one can see that the
optimal choice of τ depends on the convergence rate of the

mixing coefficient ϕξ(τ). Specifically, consider the online
SGD algorithm in (1). It can be shown that it achieves the
regret Rn = O(

√
n) and satisfies κ(t) = O(1/

√
t) under a

proper diminishing learning rate. Consequently, the above
high-probability convergence bound for online SGD reduces
to

f(ŵn)− f(w∗)

≤ O
( 1√

n
+ inf

τ∈N

{τ − 1√
n

+

√
τ

n
log

τ

δ
+ ϕξ(τ)

})
.

Such a bound further implies the following sample complex-
ity results of online SGD under different ϕ-mixing models.

Corollary 3.2. The sample complexity of online SGD for
achieving an ϵ convergence error over ϕ-mixing data is

• If the data is geometric ϕ-mixing with parameter θ > 0,
then we set τ = O

(
(log 1

ϵ )
1
θ

)
. The resulting sample

complexity is in the order of n = O
(
ϵ−2(log 1

ϵ )
2
θ

)
.

• If the data is algebraic ϕ-mixing with parameter θ >
0, then we set τ = O(ϵ−

1
θ ). The resulting sample

complexity is in the order of n = O(ϵ−2− 2
θ ).

It can be seen that if the data-generating process has a fast
geometrically diminishing mixing coefficient, i.e., the data
samples are close to being independent from each other,
then the resulting sample complexity is almost the same as
that of SGD with i.i.d. samples. On the other hand, if the
data-generating process mixes slowly with an algebraically
diminishing mixing coefficient, i.e., the data samples are
highly dependent, then the data dependence increases the
sample complexity by a non-negligible factor of ϵ−

2
θ . In

particular, such a factor is substantially large if the mixing
rate parameter θ is close to zero.

4 COMPLEXITY OF ONLINE SGD WITH
DATA SUBSAMPLING

When apply online SGD to solve stochastic optimization
problems over dependent data, the key challenge is that
the data dependence introduces non-negligible bias that
slows down the convergence of the algorithm. Hence, a
straightforward solution is to reduce data dependence before
performing stochastic optimization, and data subsampling is
such a simple and effective approach [Nagaraj et al., 2020,
Kotsalis et al., 2020].

Specifically, consider a stream of ϕ-mixing data samples
{ξ1, ξ2, ξ3, . . . }. Instead of utilizing the entire stream of
data, we subsample a subset of this data stream with period
r ∈ N and obtain the following subsampled data stream

{ξ1, ξr+1, ξ2r+1, . . . }.

In particular, let {Ft}t be the canonical filtration generated
by {ξtr+1}t. Since the consecutive subsampled samples are



r time steps away from each other, it is easy to verify that the
subsampled data stream {ξtr+1}t is also a ϕ-mixing process
with mixing coefficient given by ϕr

ξ(t) = ϕξ(rt), where
ϕr
ξ denotes the mixing coefficient of the subsampled data

stream {ξtr+1}t. Therefore, by periodically subsampling
the data stream, the resulting subsampled process has a
faster-converging mixing coefficient. Then, we can apply
online SGD to such subsampled data, i.e.,

(SGD with subsampling):
w(t+ 1) = w(t)− ηt∇F (w(t); ξtr+1). (3)

In particular, the convergence error bound in eq. (2) still
holds by replacing ϕξ(τ) with ϕξ(rτ), and we obtain the
following bound for online SGD with subsampling.

f(ŵn)− f(w∗) (4)

≤ O
( 1√

n
+ inf

τ∈N

{ (τ − 1)√
n

+

√
τ

n
log

τ

δ
+ ϕξ(rτ)

})
.

Such a bound implies the following sample complexity re-
sults of online SGD with subsampling under different con-
vergence rates of the mixing coefficient ϕξ.

Corollary 4.1. The sample complexity of online SGD with
subsampling for achieving an ϵ convergence error over ϕ-
mixing data process is.

• If the data is geometric ϕ-mixing with parameter θ > 0,
then we choose r = O

(
(log 1

ϵ )
1
θ

)
and τ = O(1). The

resulting sample complexity is rn = O
(
ϵ−2(log 1

ϵ )
1
θ

)
.

• If the data is algebraic ϕ-mixing with parameter θ > 0,
then we choose r = O

(
ϵ−

1
θ

)
and τ = O(1). The

resulting sample complexity is rn = O
(
ϵ−2− 1

θ

)
.

Compare the above sample complexity results with those of
the standard online SGD in Corollary 3.2, we conclude that
data-subsampling can improve the sample complexity by a
factor of (log 1

ϵ )
1
θ and ϵ−

1
θ for geometric ϕ-mixing and alge-

braic ϕ-mixing data process, respectively. Intuitively, this is
because with data subsampling, we can choose a sufficiently
large subsampling period r to decouple the data dependence
in the term ϕξ(rτ), as opposed to choosing a large τ in
Corollary 3.2. In this way, the order of the dominant term√

τ
n log τ

δ is reduced. Therefore, when the data is highly
dependent, it is beneficial to subsample the dependent data
before performing SGD. We also note another advantage of
using data-subsampling, i.e., it only requires computing the
stochastic gradients of the subsampled data, and therefore
can substantially reduce the computation complexity.

5 COMPLEXITY OF ONLINE SGD WITH
MINI-BATCH SAMPLING

Although the data-subsampling scheme studied in the previ-
ous section helps improve the sample complexity of online

SGD, it does not leverage the full information of all the
queried data. In particular, when the data is highly depen-
dent, we need to choose a large period r to reduce data
dependence, and this will throw away a huge amount of
valuable samples. In this section, we study online SGD with
another popular data sampling scheme that leverages the
full information of all the sampled data, i.e., the mini-batch
sampling scheme. We show that this simple and widely
used scheme can effectively reduce data dependence with-
out skipping data samples, and can achieve an improved
sample complexity over online SGD with subsampling.

Specifically, consider a data stream {ξt}t with ϕ-
mixing dependent samples. We rearrange the data
samples into a stream of mini-batches {xt}t, where
each mini-batch xt contains B samples, i.e., xt =
{ξ(t−1)B+1, ξ(t−1)B+2, . . . , ξtB}. Then, we perform mini-
batch SGD update as follows.

(SGD with mini-batch sampling):

w(t+ 1) = w(t)− ηt
B

∑
ξ∈xt

∇F (w(t); ξ). (5)

Performing online learning with mini-batch sampling has
several advantages. First, it substantially reduce the opti-
mization variance and allows to use a large learning rate to
facilitate the convergence of the algorithm. As a comparison,
SGD with subsampling suffers from a large optimization
variance. Second, unlike subsampling, mini-batch sampling
utilizes the information of all the queried data samples to im-
prove the performance of the model. Moreover, as we show
in the following lemma, mini-batch sampling substantially
reduces the stochastic bias caused by the data dependence.
In the sequel, we denote F (w;x) := 1

B

∑
ξ∈x F (w; ξ) as

the average loss on a mini-batch of samples. With a bit abuse
of notation, we also define {Ft}t as the canonical filtration
generated by the mini-batch samples {xt}t.

Lemma 5.1. Let Assumption 2.1 hold and consider the
mini-batch data stream {xt}t. Then, for any w, v ∈ W
measureable with regard to Ft and any τ ∈ N, it holds that

E
[
F (w;xt+τ )− F (v;xt+τ )|Ft

]
−
(
f(w)− f(v)

)
≤ GR

B

B∑
i=1

ϕξ(τB + i). (6)

With dependent data, the above lemma shows that we can
approximate the population risk f(w) by the conditional ex-
pectation E[F (w;xt+τ )|Ft], which involves the mini-batch
xt+τ that is τ steps ahead of the filtration Ft. Intuitively,
by the definition of ϕ-mixing process, as τ gets larger, the
distribution of xt+τ conditional on Ft gets closer to the
stationary distribution µ. In general, the estimation bias
GR
B

∑B
i=1 ϕξ(τB + i) depends on both the batch size and

the accumulated mixing coefficient over the corresponding



batch of samples. To provide a concrete understanding, be-
low we calculate the estimation bias in eq. (6) for various
ϕ-mixing processes.

• Geometric ϕ-mixing: In this case,
∑B

i=1 ϕξ(τB +
i) ≤

∑∞
i=1 ϕξ(i) = O(1). Hence, the estimation bias

is in the order of O(GR
B ).

• Fast algebraic ϕ-mixing (θ ≥ 1): In this case,∑B
i=1 ϕξ(τB + i) ≤

∑∞
i=1 ϕξ(i) = Õ(1). Hence,

the estimation bias is in the order of Õ(GR
B ), where Õ

hides all logarithm factors.

• Slow algebraic ϕ-mixing (0 < θ < 1): In this case,∑B
i=1 ϕξ(τB + i) ≤ O((τB)1−θ). Hence, the estima-

tion bias is in the order of O(GRτ1−θ

Bθ ).

It can be seen that if the mixing coefficient converges fast,
i.e., either geometrically or fast algebraically, then the data
dependence has a negligible impact on the estimation error.
On the other hand, when the mixing coefficient converges
slow algebraically, it substantially increases the estimation
bias, but it is still beneficial to use a large batch size.

We obtain the following convergence error bound for online
SGD with mini-batch sampling over dependent data.

Theorem 5.2. Let Assumption 2.1 and 3.1 hold. Apply SGD
with mini-batch sampling to solve the stochastic optimiza-
tion problem (P) over ϕ-mixing dependent data process and
assume that it achieves regret Rn. Then, for any τ ∈ N
and any minimizer w∗ with probability at least 1 − δ, the
averaged predictor ŵn := 1

n

∑n
t=1 w(t) satisfies

f(ŵn)− f(w∗)

≤ Rn

n
+

G(τ − 1)

n

n−τ+1∑
t=1

κ(t) +
2GR(τ − 1)

n

+O
(

1

nB

B∑
i=1

ϕ(τB + i)

+

√
τ

nB
log

τ

δ
log

n

δ

(
B− 1

4 +
[ B∑

i=1

ϕ(i)
] 1

4
))

. (7)

To further understand the order of the above bound, a stan-
dard regret analysis shows that mini-batch SGD achieves

the regret Rn

n = Õ(

√∑n
j=1 ϕ(j)

nB ) and κ(t) ≡ O(
√

B
n ) (see

Theorem C.3 for the proof). Consequently, the above con-
vergence error bound reduces to the following bound.

f(ŵn)− f(w∗)

≤ Õ
(√∑n

j=1 ϕ(j)

nB
+

GR(τ − 1)

n

+
1

nB

B∑
i=1

ϕ(τB + i) +

√
τ

nB

(
B− 1

4 +
[ B∑

i=1

ϕ(i)
] 1

4
))

.

Such a bound further implies the following sample complex-
ity results of online SGD with mini-batch sampling under
different convergence rates of the mixing coefficient ϕξ.

Corollary 5.3. The sample complexity of online SGD with
mini-batch sampling for achieving an ϵ convergence error
over ϕ-mixing dependent data is

• If the data is geometric ϕ-mixing with parameter θ > 0,
then we choose τ = 1, B = O(ϵ−1), n = O(ϵ−1). The
overall sample complexity is nB = O(ϵ−2).

• If the data is fast algebraic ϕ-mixing with parameter
θ ≥ 1, then we choose τ = 1, B = O(ϵ−1), n =
O(ϵ−1). The overall sample complexity is nB =

Õ(ϵ−2).

• If the data is slow algebraic ϕ-mixing with param-
eter 0 < θ < 1, then we choose τ = 1, B =
O(ϵ−

1
θ ), n = O(ϵ−1). The overall sample complex-

ity is nB = O(ϵ−1− 1
θ ).

Remark. This corollary provides a potential way to set the
optimal batch size B with respect to the mixing rate θ.
Specifically, we can leverage Lemma 5.1 to estimate the
dependence parameter θ. Choosing batch size B = 1, the
upper bound of Lemma 5.1 becomes GRϕξ(τ + 1), which
is proportional to the mixing coefficient ϕξ(τ + 1). There-
fore, the left-hand side E

[
F (w;xt+τ )− F (v;xt+τ )|Ft

]
−(

f(w)− f(v)
)

of Lemma 5.1 serves as an estimator, which
can be estimated by (conditional) sample average queried at
any fixed points ω, v. Once we estimate this quantity with
various values of τ , we can use regression to find out the
type of convergence for ϕξ(τ) and estimate the parameter
θ. With the estimated θ, we then follow this corollary to
choose the batch size.

It can be seen that online SGD with mini-batch sampling
improves the sample complexity of online SGD with sub-
sampling by a factor of O((log 1

ϵ )
1
θ ), Õ(ϵ−

1
θ ) and O(ϵ−1)

for geometric ϕ-mixing, fast algebraic ϕ-mixing and slow al-
gebraic ϕ-mixing data samples, respectively. This shows that
mini-batch sampling can effectively reduce the bias caused
by data dependence and leverage the full information of all
the data samples to improve the learning performance.

To provide an intuitive explanation, this is because with
mini-batch sampling, we can choose a sufficiently large
batch size B to reduce the bias caused by the data depen-
dence and then choose a small auxiliary parameter τ = 1.
As a comparison, to control the bias caused by data depen-
dence, the standard online SGD needs to choose a very large
τ and the online SGD with subsampling needs to choose
a large subsampling period r that skips a huge amount of
valuable data samples, especially when the mixing coeffi-
cient converges slowly. Therefore, our result proves that it
is beneficial to use mini-batch data sampling when the data
samples are highly dependent.



Our proof of the high-probability bound in Theorem 5.2
for SGD with mini-batch sampling involves substantial new
developments compared with the proof of [Agarwal and
Duchi, 2012]. Next, we elaborate on our technical novelty.

• In [Agarwal and Duchi, 2012], they defined the follow-
ing random variable

Xi
t :=f

(
w((t− 1)τ + i)

)
− f(w∗)

+ F
(
w((t− 1)τ + i); ξt+τ−1

)
− F

(
w∗; ξt+τ−1

)
.

As this random variable involves only one sample
ξt+τ−1, they bound the bias term Xi

t −E[Xi
t |F i

t−1] as
a universal constant. As a comparison, the random vari-
able Xi

t would involve a mini-batch of samples xt+τ−1

in our analysis. With the mini-batch structure, the bias
Xi

t − E[Xi
t |F i

t−1] can be written as an average of B
zero-mean dependent random variables, which is close
to zero with high probability due to the concentration
phenomenon. Consequently, we are able to apply a
Bernstein-type inequality developed in [Delyon et al.,
2009] for dependent stochastic process to obtain an
improved bias bound from O(1) to Õ(1/

√
B). This is

critical for obtaining the improved bound.

• Second, with the improved high-probability bias bound
mentioned above, the remaining proof of [Agarwal and
Duchi, 2012] no longer holds. Specifically, we can no
longer apply the Azuma’s inequality to bound the ac-
cumulated bias

∑
t(X

i
t − E[Xi

t |F i
t−1]), as each bias

term is no longer bounded with probability one. To ad-
dress this issue, we developed a generalized Azuma’s
inequality for martingale differences in Lemma B.3
based on Proposition 34 of [Tao et al., 2015] for inde-
pendent zero-mean random variables.

• Third, we develop a high-probability regret bound for
online SGD with mini-batch sampling over depen-
dent data so that it can be integrated with the high-
probability convergence bound in Theorem 5.2. To our
best knowledge, the regret of SGD over dependent data
has not been studied before.

6 EXPERIMENTS

In this section, we examine our SGD theory via two ex-
periments on stochastic quadratic programming and neural
network training with dependent data.

6.1 STOCHASTIC QUADRATIC PROGRAMMING

We consider the following stochastic convex quadratic opti-
mization problem.

min
w∈Rd

f(w) := Eξ∼µ

[
(w − ξ)⊤A(w − ξ)

]
,

where A ⪰ 0 is a fixed positive semi-definite matrix and µ
is the uniform distribution on [0, 1]d. Then, following the
construction in [Jarner and Roberts, 2002], we generate an
algebraic ϕ-mixing Markov chain that has the stationary
distribution µ. In particular, its mixing coefficient ϕξ(k)

converges at a sublinear convergence rate k−
1
r , where r > 0

is a parameter that controls the speed of convergence. Please
refer to Appendix D for more details of the experiment
setup.

We first estimate the following stochastic bias at the fixed
origin point w = 0d.

(Bias):
∣∣∣E[F (w;xτ )|x0 = 0d

]
− f(w)

∣∣∣,
where the expectation is taken over the randomness of the
mini-batch of samples queried at time τ ∈ N. Such a bias
is affected by several factors, including the time gap τ , the
batch size B and the convergence rate parameter r of the
mixing coefficient.

In Figure 1, we investigate the impact of these factors on
the stochastic bias, and we use 10k Monte Carlo samples
to estimate the stochastic bias. The top two figures fix the
batch size, and it can be seen that the bias decreases as
τ increases, which matches the definition of the ϕ-mixing
process. Also, a faster-mixing Markov chain (i.e., smaller r)
leads to a smaller bias. In particular, with batch size B = 1
and a slow-mixing chain r = 2, it takes an unacceptably
large τ to achieve a relatively small bias. This provides an
empirical justification to Corollary 3.2 and explains why
the standard SGD suffers from a high sample complexity
over highly dependent data. Moreover, as the batch size gets
larger, one can achieve a numerically smaller bias, which
matches our Lemma 5.1. The bottom two figures fix the
convergence rate parameter of the mixing coefficient, and
it can be seen that increasing the batch size significantly
reduces the bias. Consequently, instead of choosing a large
τ to reduce the bias, one can simply choose a large batch
size B = 100 and set τ = 1. This observation matches and
justifies our theoretical results in Corollary 5.3.

We further compare the convergence of SGD, SGD with
subsampling and mini-batch SGD. Here, we set r = 2 to
generate highly dependent data samples. We set learning
rate η = 0.01 for both SGD and SGD with subsampling,
and set learning rate η = 0.01 ×

√
B∑B

j=1 ϕξ(j)
= 0.01 ×

1001/4 for mini-batch SGD with batch size B = 100, as
suggested by Theorem C.3 in the appendix. The results are
plotted in Figure 2, where each curve corresponds to the
mean of 100 independent trails. It can be seen that SGD
with subsampling achieves a lower loss than the standard
SGD asymptotically, due to the use of less dependent data.
Moreover, mini-batch SGD achieves the smallest asymptotic
loss. All these observations are consistent with our results.



Figure 1: Impact of τ , batch size B and convergence rate of
mixing coefficient on the bias in quadratic programming.

Figure 2: Comparison of sample complexity of different
SGD algorithms in quadratic programming.

6.2 NEURAL NETWORK TRAINING

We further apply these online SGD algorithms to train a
convolutional neural network with the MNIST dataset [Le-
cun et al., 1998]. The network consists of two convolution
blocks followed by two fully connected layers. Specifically,
each convolution block contains a convolution layer, a max-
pooling layer with stride step 2, and a ReLU activation layer.
The convolution layers in the two blocks have input channel
1, 10 and output channel 10, 20, respectively, and both of
them have kernel size 5, stride step 1 and with no padding.
The two fully connected layers have input dimensions 320,
50 and output dimensions 50, 10, respectively.

To generate a stream of dependent data, we first generate an
algebraic ϕ-mixing Markov chain {Xt}t with the construc-
tion provided in [Jarner and Roberts, 2002]. Then, we map
each Xt to a label of the MNIST dataset {0, 1, 2, . . . , 9},
and uniformly sample an image at random from the corre-
sponding image class. This data-generating process gener-
ates a dependent data stream with a ϕξ-mixing coefficient
approximately k−

1
r .

We first test the performance of SGD with a fixed batch
size and different correlation coefficients. Specifically, we
choose batch size B = 1000 and consider different cor-
relation coefficients r ∈ {1.0, 1.25, 1.5, 1.75, 2.0}. Here, a
larger r implies higher data dependency. Figure 3 (left) plots
the experiment results. It can be seen that with an increasing
correlation coefficient, the convergence of SGD is slower.

We further fix the correlation coefficient r = 2.0 and vary
the batch size B ∈ {8, 16, 32, 64, 128}. Figure 3 (right)
plots the experiment results. It can be seen that SGD with
the largest batch size B = 128 achieves the smallest asymp-
totic loss among all choices of batch sizes. In particular,
SGD with a larger batch size tends to converge faster over
such dependent data. This also matches our theoretical anal-
ysis and it implies that mini-batch SGD with a large batch
size can benefit neural network training over dependent data.

Figure 3: Comparison of SGD over dependent data with
different mixing coefficients and batch sizes.

7 CONCLUSION

In this study, we investigate the convergence property of
SGD under various popular stochastic update schemes over
highly dependent data. Unlike the conventional i.i.d. data
setting in which the stochastic update schemes do not affect
the sample complexity of SGD, the convergence of SGD in
the data-dependent setting critically depends on the structure
of the stochastic update scheme. In particular, we show that
both data subsampling and mini-batch sampling can substan-
tially improve the sample complexity of SGD over highly
dependent data. Our study takes one step forward toward
understanding the theoretical limits of stochastic optimiza-
tion over dependent data, and it opens many directions for
future study. For example, it is interesting to further explore
the impact of algorithm structure on the sample complexity
of stochastic reinforcement learning algorithms. Also, it is
important to develop advanced algorithm update schemes
that can facilitate the convergence of learning over highly
dependent data.
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