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Abstract

Likelihood-based, or explicit, deep generative models use neural networks to construct
flexible high-dimensional densities. This formulation directly contradicts the manifold
hypothesis, which states that observed data lies on a low-dimensional manifold embedded in
high-dimensional ambient space. In this paper we investigate the pathologies of maximum-
likelihood training in the presence of this dimensionality mismatch. We formally prove, in
a measure-theoretic way, that degenerate optima are achieved wherein the manifold itself
is learned but not the distribution on it, a phenomenon we call manifold overfitting. We
propose a class of two-step procedures consisting of a dimensionality reduction step followed
by maximum-likelihood density estimation, and prove that they recover the data-generating
distribution in the nonparametric regime, thus avoiding manifold overfitting. We also show
that these procedures enable density estimation on the manifolds learned by implicit models,
such as generative adversarial networks, hence addressing a major shortcoming of these
models. Several recently proposed methods are instances of our two-step procedures; we thus
unify, extend, and theoretically justify a large class of models.

1 Introduction

We consider the standard setting for generative modelling, where samples {xn}N
n=1 ⊂ RD of high-dimensional

data from some unknown distribution P∗ are observed, and the task is to estimate P∗. Many deep generative
models (DGMs) (Bond-Taylor et al., 2021), including variational autoencoders (VAEs) (Kingma & Welling,
2014; Rezende et al., 2014; Ho et al., 2020; Kingma et al., 2021) and variants such as adversarial variational
Bayes (AVB) (Mescheder et al., 2017), normalizing flows (NFs) (Dinh et al., 2017; Kingma & Dhariwal, 2018;
Behrmann et al., 2019; Chen et al., 2019; Durkan et al., 2019; Cornish et al., 2020), energy-based models
(EBMs) (Du & Mordatch, 2019), and continuous autoregressive models (ARMs) (Uria et al., 2013; Theis &
Bethge, 2015), use neural networks to construct a flexible density trained to match P∗ by maximizing either
the likelihood or a lower bound of it. This modelling choice implies the model has D-dimensional support,
thus directly contradicting the manifold hypothesis (Bengio et al., 2013), which states that high-dimensional
data is supported on an unknown d-dimensional manifold M ⊂ RD, where d < D.

There is strong evidence supporting the manifold hypothesis (Pope et al., 2021), and a natural question arises:
how relevant is this modelling mismatch? We answer this question by proving that when P∗ is supported on
M, maximum-likelihood training of a flexible D-dimensional density results in M itself being learned, but not
P∗. Our result extends that of Dai & Wipf (2019) beyond VAEs to all likelihood-based models and drops the
empirically unrealistic assumption that M is homeomorphic to Rd (e.g. one can imagine the MNIST (LeCun,
1998) manifold as having 10 connected components, one per digit). This phenomenon – which we call manifold
overfitting – has profound consequences for generative modelling. Maximum-likelihood is indisputably one of
the most important concepts in statistics, and enjoys well-studied theoretical properties such as consistency and
asymptotic efficiency under seemingly mild regularity conditions (Lehmann & Casella, 2006). These conditions
can indeed be reasonably expected to hold in the setting of “classical statistics” under which they were first
considered, where models were simpler and available data was of much lower ambient dimension than by modern
standards. However, in the presence of d-dimensional manifold structure, the previously innocuous assumption
that there exists a ground truth D-dimensional density cannot possibly hold. Manifold overfitting thus shows
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that DGMs do not enjoy the supposed theoretical benefits of maximum-likelihood, which is often regarded as
a principled objective for training DGMs, because they will recover the manifold but not the distribution on it.

Figure 1: Depiction of our two-step procedures. In the
first step, we learn to map from M to Rd through g, and
to invert this mapping through G. In the second step,
we perform density estimation (green density on the
right) on the dataset encoded through g. Our learned
distribution on M (shades of green on the spiral) is
given by pushing forward the density from the second
step through G.

In order to address manifold overfitting, we propose
a class of two-step procedures, depicted in Fig. 1.
The first step, which we call generalized autoencod-
ing1, reduces the dimension of the data through an
encoder g : RD → Rd while also learning how to map
back to M through a decoder G : Rd → RD. In the
second step, maximum-likelihood estimation with
a DGM is performed on the low-dimensional rep-
resentations {g(xn)}N

n=1. Intuitively, the first step
removes the dimensionality mismatch in order to
avoid manifold overfitting in the second step. This
intuition is confirmed in a second theoretical result
where we prove that, given enough capacity, our
two-step procedures indeed recover P∗ in the infinite
data limit while retaining density evaluation. We also
identify DGMs that are instances of our procedure
class. Our methodology thus results in novel models,
and provides a unifying perspective and theoretical
justification for all these related works.

We also show that some implicit models (Mohamed & Lakshminarayanan, 2016), e.g. generative adversarial
networks (GANs) (Goodfellow et al., 2014), can be made into generalized autoencoders. Consequently,
in addition to preventing manifold overfitting on explicit models, our two-step procedures enable density
evaluation for implicit models, thus addressing one of their main limitations.

Finally, we achieve significant empirical improvements in sample quality over maximum-likelihood, strongly
supporting our theoretical findings. We show these improvements persist even when accounting for the
additional parameters of the second-step model, or when adding Gaussian noise to the data as an attempt to
remove the dimensionality mismatch that causes manifold overfitting. We also obtain very promising results
in out-of-distribution (OOD) detection using only likelihoods.

2 Related Work and Motivation

Manifold mismatch It has been observed in the literature that RD-supported models exhibit undesirable
behaviour when the support of the target distribution has complicated topological structure. For example,
Cornish et al. (2020) show that the bi-Lipschitz constant of topologically-misspecified NFs must go to infinity,
even without dimensionality mismatch, explaining phenomena like the numerical instabilities observed by
Behrmann et al. (2021). Mattei & Frellsen (2018) observe VAEs can have unbounded likelihoods and are
thus susceptible to similar instabilities. Dai & Wipf (2019) study dimensionality mismatch in VAEs and
its effects on posterior collapse. These works motivate the development of models with low-dimensional
support. Goodfellow et al. (2014) and Nowozin et al. (2016) model the data as the pushforward of a
low-dimensional Gaussian through a neural network, thus making it possible to properly account for the
dimension of the support. However, in addition to requiring adversarial training – which is more unstable
than maximum-likelihood (Chu et al., 2020) – these models minimize the Jensen-Shannon divergence or
f -divergences, respectively, in the nonparametric setting (i.e. infinite data limit with sufficient capacity),
which are ill-defined due to dimensionality mismatch. Attempting to minimize Wasserstein distance has
also been proposed (Arjovsky et al., 2017; Tolstikhin et al., 2018) as a way to remedy this issue, although
estimating this distance is hard in practice Arora et al. (2017) and unbiased gradient estimators are not
available. In addition to having a more challenging training objective than maximum-likelihood, these implicit
models lose a key advantage of explicit models: density evaluation. Our work aims to both properly account

1Our generalized autoencoders are unrelated to those of Wang et al. (2014).
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for the manifold hypothesis in likelihood-based DGMs while retaining density evaluation, and endow implicit
models with density evaluation.

NFs on manifolds Several recent flow-based methods properly account for the manifold structure of
the data. Gemici et al. (2016), Rezende et al. (2020), and Mathieu & Nickel (2020) construct flow models
for prespecified manifolds, with the obvious disadvantage that the manifold is unknown for most data of
interest. Brehmer & Cranmer (2020) propose injective NFs, which model the data-generating distribution
as the pushforward of a d-dimensional Gaussian through an injective function G : Rd → RD, and avoid
the change-of-variable computation through a two-step training procedure; we will see in Sec. 5 that this
procedure is an instance of our methodology. Caterini et al. (2021) and Ross & Cresswell (2021) endow
injective flows with tractable change-of-variable computations, the former through automatic differentiation
and numerical linear algebra methods, and the latter with a specific construction of injective NFs admitting
closed-form evaluation. We build a general framework encompassing a broader class of DGMs than NFs
alone, giving them low-dimensional support without requiring injective transformations over Rd.

Adding noise Denoising approaches add Gaussian noise to the data, making the D-dimensional model
appropriate at the cost of recovering a noisy version of P∗ (Vincent et al., 2008; Vincent, 2011; Alain &
Bengio, 2014; Chae et al., 2021; Horvat & Pfister, 2021a;b; Cunningham & Fiterau, 2021). In particular,
Horvat & Pfister (2021b) show that recovering the true manifold structure in this case is only guaranteed
when adding noise orthogonally to the tangent space of the manifold, which cannot be achieved in practice
when the manifold itself is unknown. In the context of score-matching (Hyvärinen, 2005), denoising has led
to empirical success (Song & Ermon, 2019; Song et al., 2021). In Sec. 3.2 we show that adding small amounts
of Gaussian noise to a distribution supported on a manifold results in highly peaked densities, which can be
hard to learn. Zhang et al. (2020a) also make this observation, and propose to add the same amount of noise
to the model itself. However, their method requires access to the density of the model after having added
noise, which in practice requires a variational approximation and is thus only applicable to VAEs. Our first
theoretical result can be seen as a motivation for the method of Zhang et al. (2020a), and our procedures are
applicable to all likelihood-based DGMs. We empirically verify that simply adding noise is not enough to
avoid manifold overfitting in practice, and that our two-step methodology outperforms this approach.

3 Manifold Overfitting

3.1 An Illustrative Example

Consider the simple case where D = 1, d = 0, M = {−1, 1}, and P∗ = 0.3δ−1 + 0.7δ1, where δx denotes a
point mass at x. Suppose the data is modelled with a mixture of Gaussians p(x) = λ · N (x; m1, σ2) + (1 −
λ) · N (x; m2, σ2) parameterized by λ ∈ [0, 1], m1, m2 ∈ R, and σ2 ∈ R>0, which we will think of as a flexible
density. This model can learn the correct distribution in the limit σ2 → 0, as shown on the left panel of Fig. 2
(dashed line). However, arbitrarily large likelihood values can be achieved by other densities – the one shown
with a dotted line approximates a distribution P† on M which is not P∗ but nonetheless has large likelihoods.
The implication is simple: maximum-likelihood estimation will not necessarily recover the data-generating
distribution P∗. Our choice of P† (see figure caption) was completely arbitrary, hence any distribution on
M other than δ−1 or δ1 could be recovered with likelihoods diverging to infinity. Recovering P∗ is then a
coincidence which we should not expect to occur when training via maximum-likelihood. In other words, we
should expect maximum-likelihood to recover the manifold (i.e. m1 = ±1, m2 = ∓1 and σ2 → 0), but not the
distribution on it (i.e. λ /∈ {0.3, 0.7}). We also plot the density learned by a Gaussian VAE (see App. C.1)
in blue to show this issue empirically. While this model assigns some probability outside of {−1, 1} due to
limited capacity, the probabilities assigned around −1 and 1 are far off from 0.3 and 0.7, respectively; even
after quantizing with the sign function, the VAE only assigns probability 0.53 to x = 1.

The underlying issue here is that M is “too thin in RD” (it has Lebesgue measure 0), and thus p(x) can
“spike to infinity” at every x ∈ M. If the dimensionalities were correctly matched this could not happen, as
the requirement that p integrate to 1 would be violated. We highlight that this issue is not only a problem
with data having d = 0 dimensions, and can happen whenever d < D. The right panel of Fig. 2 shows
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Figure 2: Left panel: P∗ (green); pt(x) = 0.3 · N (x; −1, 1/t) + 0.7 · N (x; 1, 1/t) (orange, dashed) for t = 5,
which converges weakly to P∗ as t → ∞; and p′

t(x) = 0.8 · N (x; −1, 1/t) + 0.2 · N (x; 1, 1/t) (purple, dotted)
for t = 5, which converges weakly to P† = 0.8δ−1 + 0.2δ1 while getting arbitrarily large likelihoods under
P∗, i.e. p′

t(x) → ∞ as t → ∞ for x ∈ M; Gaussian VAE density (blue, solid). Right panel: Analogous
phenomenon with D = 2 and d = 1, with the blue density “spiking” around M in a manner unlike P∗ (green)
while achieving large likelihoods.

another example of this phenomenon with d = 1 and D = 2, where a distribution P∗ (green curve) is poorly
approximated with a density p (blue surface) which nonetheless would achieve high likelihoods by “spiking
around M”. Looking ahead to our experiments, the middle panel of Fig. 4 shows a 2-dimensional EBM
suffering from this issue, spiking around the ground truth manifold on the left panel, but not correctly
recovering the distribution on it. The intuition provided by these examples is that if a flexible D-dimensional
density p is trained with maximum-likelihood when P∗ is supported on a low-dimensional manifold, it is
possible to simultaneously achieve large likelihoods while being close to any P†, rather than close to P∗: this
calls into question the validity of maximum-likelihood as a training objective in this setting.

3.2 The Manifold Overfitting Theorem

We now formalize the intuition developed so far. We assume some familiarity with measure theory (Billingsley,
2008) and with smooth (Lee, 2013) and Riemannian manifolds (Lee, 2018). Nonetheless, we provide a
measure theory primer in App. A, where we informally review relevant concepts such as absolute continuity
of measures (≪), weak convergence, and pushforward measures. We also use the concept of Riemannian
measure (Pennec, 2006), which plays an analogous role on manifolds to that of the Lebesgue measure on
Euclidean spaces. We briefly review Riemannian measures in App. B.1, and refer the reader to Dieudonné
(1973) for a thorough treatment.2 We begin by defining a useful condition on probability distributions for the
following theorems, which captures the intuition of “continuously spreading mass all around M”.

Definition 1 (Smoothness of Probability Measures): Let M be a finite-dimensional C1 manifold,
and let P be a probability measure on M. Let g be a Riemannian metric on M and µ

(g)
M the corresponding

Riemannian measure. We say that P is smooth if P ≪ µ
(g)
M and it admits a continuous density p : M → R>0

with respect to µ
(g)
M .

Note that smoothness of P is independent of the choice of Riemannian metric g (see App. B.1). We emphasize
that this is a weak requirement, corresponding in the Euclidean case to P admitting a continuous and positive
density with respect to the Lebesgue measure. Denoting the Lebesgue measure on RD as µD, we now state
our first result.

Theorem 1 (Manifold Overfitting): Let M ⊂ RD be an analytic d-dimensional embedded submanifold
of RD with d < D, and P† a smooth probability measure on M. Then there exists a sequence of probability
measures (Pt)∞

t=1 on RD such that:

2See especially Sec. 22 of Ch. 16. Note Riemannian measures are called Lebesgue measures in this reference.
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1. Pt → P† weakly as t → ∞.

2. For every t ≥ 1, Pt ≪ µD and Pt admits a density pt : RD → R>0 with respect to µD such that:
(a) lim

t→∞
pt(x) = ∞ for every x ∈ M.

(b) lim
t→∞

pt(x) = 0 for every x /∈ cl(M), where cl(·) denotes closure in RD.

Proof sketch: We construct Pt by convolving P† with 0 mean, σ2
t ID covariance Gaussian noise for a sequence

(σ2
t )∞

t=1 satisfying σ2
t → 0 as t → ∞, and then carefully verify that the stated properties of Pt indeed hold.

See App. B.2 for the full formal proof.

Informally, part 1 says that Pt can get arbitrarily close to P†, and part 2 says that this can be achieved
with densities diverging to infinity on all M. The relevance of this statement is that large likelihoods of a
model do not imply it is adequately learning the target distribution P∗, showing that maximum-likelihood is
not a valid objective when data has low-dimensional manifold structure. Maximizing 1

N

∑N
n=1 log p(xn), or

EX∼P∗ [log p(X)] in the nonparametric regime, over a D-dimensional density p need not recover P∗: since P∗

is supported on M, it follows by Theorem 1 that not only can the objective be made arbitrarily large, but
that this can be done while recovering any P†, which need not match P∗. The failure to recover P∗ is caused
by the density being able to take arbitrarily large values on all of M, thus overfitting to the manifold. When
p is a flexible density, as for many DGMs with universal approximation properties (Hornik, 1991; Koehler
et al., 2021), manifold overfitting becomes a key deficiency of maximum-likelihood – which we fix in Sec. 4.

Note also that the proof of Theorem 1 applied to the specific case where P† = P∗ formalizes the intuition that
adding small amounts of Gaussian noise to P∗ results in highly peaked densities, suggesting that the resulting
distribution, which denoising methods aim to estimate, might be empirically difficult to learn. More generally,
even if there exists a ground truth D-dimensional density which allocates most of its mass around M, this
density will be highly peaked. In other words, even if Theorem 1 does not technically apply in this setting, it
still provides useful intuition as manifold overfitting might still happen in practice. Indeed, we empirically
confirm in Sec. 6 that even if P∗ is only “very close” to M, manifold overfitting remains a problem.

Differences from regular overfitting Manifold overfitting is fundamentally different from regular
overfitting, where the empirical distribution P̂N = 1

N

∑N
n=1 δxn is recovered.3 First, regular overfitting

requires more model capacity as N increases, since every new data point needs to be memorized. In contrast,
once a model has enough capacity to learn M and concentrate mass around it, no extra capacity is needed
for manifold overfitting to occur regardless of how much data is observed. Second, a standard result from
empirical process theory (Van Der Vaart & Wellner, 1996) states that P̂N converges in distribution to P∗

as N → ∞, whereas in manifold overfitting P∗ is not recovered even with infinite data, making the latter a
more severe problem. Finally, an unseen test datapoint xN+1 ∈ M will still be assigned very high likelihood –
in line with the training data – under manifold overfitting, yet very low likelihood under regular overfitting.
Manifold overfitting is thus undetectable when comparing train and test likelihoods.

A note on divergences Maximum-likelihood is often thought of as minimizing the KL divergence KL(P∗||P)
over the model distribution P. Naïvely one might believe that this contradicts the manifold overfitting theorem,
but this is not the case. In order for KL(P∗||P) < ∞, it is required that P∗ ≪ P, which does not happen
when P∗ is a distribution on M and P ≪ µD. For example, KL(P∗||Pt) = ∞ for every t ≥ 1 even if
EX∼P∗ [log pt(X)] varies in t. In other words, minimizing the KL divergence is not equivalent to maximizing
the likelihood in the setting of dimensionality mismatch, and the manifold overfitting theorem elucidates the
effect of maximum-likelihood training in this setting. Similarly, other commonly considered divergences – such
as f -divergences – cannot be meaningfully minimized. Arjovsky et al. (2017) propose using the Wasserstein
distance as it is well-defined even in the presence of support mismatch, although we highlight once again that
estimating and/or minimizing this distance is difficult in practice.

Non-convergence of maximum-likelihood The manifold overfitting theorem shows that any smooth
distribution P† on M can be recovered through maximum-likelihood, even if it does not match P∗. It does not,

3As an example of regular overfitting, the flexible model p(x) = 1
N

∑N

n=1N (x; xn, σ2ID) with σ2 → 0 recovers P̂N and
achieves arbitrarily large likelihoods, but may not generalize.
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however, guarantee that some P† will even be recovered. It is thus natural to ask whether it is possible to have
a sequence of distributions achieving arbitrarily large likelihoods while not converging at all. The result below
shows this to be true: in other words, training a D-dimensional model could result in maximum-likelihood
not even converging.

Corollary 1: Let M ⊂ RD be an analytic d-dimensional embedded submanifold of RD with more than a
single element, and d < D. Then, there exists a sequence of probability measures (Pt)∞

t=1 on RD such that:

1. (Pt)∞
t=1 does not converge weakly.

2. For every t ≥ 1, Pt ≪ µD and Pt admits a density pt : RD → R>0 with respect to µD such that:

(a) lim
t→∞

pt(x) = ∞ for every x ∈ M.

(b) lim
t→∞

pt(x) = 0 for every x /∈ cl(M).

Proof: Let P†1 and P†2 be two different smooth probability measures on M, which exist since M has
more than a single element. Let (P1

t )∞
t=1 and (P2

t )∞
t=1 be the corresponding sequences from Theorem 1. The

sequence (Pt)∞
t=1, given by Pt = P1

t if t is even and Pt = P2
t otherwise, satisfies the above requirements.

4 Fixing Manifold Overfitting

4.1 The Two-Step Correctness Theorem

The previous section motivates the development of likelihood-based methods which work correctly even in
the presence of dimensionality mismatch. Intuitively, fixing the mismatch should be enough, which suggests
(i) first reducing the dimension of the data to some d-dimensional representation, and then (ii) applying
maximum-likelihood density estimation on the lower-dimensional dataset. The following theorem, where µd

denotes the Lebesgue measure on Rd, confirms that this intuition is correct.

Theorem 2 (Two-Step Correctness): Let M ⊆ RD be a C1 d-dimensional embedded submanifold of RD,
and let P∗ be a distribution on M. Assume there exist measurable functions G : Rd → RD and g : RD → Rd

such that G(g(x)) = x, P∗-almost surely. Then:

1. G#(g#P∗) = P∗, where h#P denotes the pushforward of measure P through the function h.

2. Moreover, if P∗ is smooth, and G and g are C1, then:

(a) g#P∗ ≪ µd.
(b) G(g(x)) = x for every x ∈ M, and the functions g̃ : M → g(M) and G̃ : g(M) → M given by

g̃(x) = g(x) and G̃(z) = G(z) are diffeomorphisms and inverses of each other.

Proof: See App. B.3.

We now discuss the implications of Theorem 2.

Assumptions and correctness The condition G(g(x)) = x, P∗-almost surely, is what one should expect
to obtain during the dimensionality reduction step, for example through an autoencoder (AE) (Rumelhart
et al., 1985) where EX∼P∗[||G(g(X))−X||22] is minimized over G and g, provided these have enough capacity
and that population-level expectations can be minimized. We do highlight however that we allow for a much
more general class of procedures than just autoencoders, nonetheless we still refer to g and G as the “encoder”
and “decoder”, respectively. Part 1, G#(g#P∗) = P∗, justifies using a first step where g reduces the dimension
of the data, and then having a second step attempting to learn the low-dimensional distribution g#P∗: if a
model PZ on Rd matches the encoded data distribution, i.e. PZ = g#P∗, it follows that G#PZ = P∗. In other
words, matching the distribution of encoded data and then decoding recovers the target distribution.

Part 2a guarantees that maximum-likelihood can be used to learn g#P∗: note that if the model PZ is such
that PZ ≪ µd with density pZ = dPZ/dµd, and g#P∗ ≪ µd, then both distributions are dominated by µd.
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Their KL divergence can then be expressed in terms of their respective densities:

KL(g#P∗||PZ) =
∫

g(M)
p∗

Z log p∗
Z

pZ
dµd, (1)

where p∗
Z = dg#P∗/dµd is the density of the encoded ground truth distribution. Assuming that

|
∫

g(M) p∗
Z log p∗

Zdµd| < ∞, the usual decomposition of KL divergence into expected log-likelihood
and entropy applies, and it thus follows that maximum-likelihood over pZ is once again equivalent
to minimizing KL(g#P∗||PZ) over PZ . In other words, learning the distribution of encoded data
through maximum-likelihood with a flexible density approximator such as a VAE, AVB, NF, EBM, or
ARM, and then decoding the result is a valid way of learning P∗ which avoids manifold overfitting.

Figure 3: Illustration of how g and G can biject between
M (spiral) and g(M) (line segment) while not being
fully bijective.

Density evaluation Part 2b of the two-step cor-
rectness theorem bears some resemblance to injective
NFs. However, note that the theorem does not imply
G is injective, it only implies its restriction to g(M),
G|g(M), is injective (and similarly for g). Fig. 3 ex-
emplifies how this can happen even if g and G are
not injective. As with injective NFs, the density pX

of G#PZ (with respect to the Riemannian measure
on M corresponding to the Riemannian metric inher-
ited from RD, which can equivalently be understood
as the volume form on M) for a model PZ on g(M)
is given by the injective change-of-variable formula:

pX(x) = pZ(g(x))
∣∣det J⊤

G (g(x))JG(g(x))
∣∣−1/2

, (2)

for x ∈ M, where JG(g(x)) ∈ RD×d is the Jacobian matrix of G evaluated at g(x). Practically, this observation
enables density evaluation of a trained two-step model, for example for OOD detection. Implementation-wise,
we can use the approach proposed by Caterini et al. (2021) in the context of injective NFs, which uses
forward-mode automatic differentiation to efficiently construct the Jacobian in (2). We highlight that, unlike
Caterini et al. (2021), we do not train our models through (2). Furthermore, injectivity is not enforced in G,
but rather achieved at optimality of the encoder/decoder pair, and only on g(M).

4.2 Generalized Autoencoders

We now explain different approaches for obtaining G and g. As previously mentioned, a natural choice would
be an AE minimizing EX∼P∗ [||G(g(X)) − X||22] over G and g. However, many other choices are also valid.
We call a generalized autoencoder (GAE) any procedure in which both (i) low-dimensional representations
zn = g(xn) are recovered for n = 1, . . . , N , and (ii) a function G is learned with the intention that G(zn) = xn

for n = 1, . . . , N .

As alternatives to an AE, some DGMs can be used as GAEs, either because they directly provide G and
g or can be easily modified to do so. These methods alone might obtain a G which correctly maps to M,
but might not be correctly recovering P∗. From the manifold overfitting theorem, this is what we should
expect from likelihood-based models, and we argue it is not unreasonable to expect from other models as well.
For example, the high quality of samples generated from adversarial methods (Brock et al., 2019) suggests
they are indeed learning M, but issues such as mode collapse (Che et al., 2017) suggest they might not be
recovering P∗ (Arbel et al., 2021). Among other options (Wang et al., 2020), we can use the following explicit
DGMs as GAEs: (i) VAEs, taking G as the decoder mean, and g as the encoder mean, or (ii) AVB, using
the encoder as g and the mean from the decoder as G. We can also use the following implicit DGMs as
GAEs: (iii) Wasserstein autoencoders (WAEs) (Tolstikhin et al., 2018), again using the decoder as G and
the encoder as g, (iv) bidirectional GANs (BiGANs) (Donahue et al., 2017; Dumoulin et al., 2017), taking G
as the generator and g as the encoder, or (v) any GAN, by fixing G as the generator and then learning g by
minimizing reconstruction error EX∼P∗ [||G(g(X)) − X||22].
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Note that explicit construction of g can be avoided as long as the representations {zn}N
n=1 are learned, which

could be achieved through non-amortized models (Gershman & Goodman, 2014; Kim et al., 2018), or with
optimization-based GAN inversion methods (Xia et al., 2021). While Theorem 2 justifies using GAN inversion
or related techniques as GAEs, these methods fall outside of our current scope, and we thus do not explore
them empirically in Sec 6.

We summarize our two-step procedure class once again:

1. Learn G and {zn}N
n=1 from {xn}N

n=1 with a GAE.

2. Learn pZ from {zn}N
n=1 with a likelihood-based DGM.

The final model is then given by pushing pZ forward through G. Any choice of GAE and likelihood-based
DGM gives a valid instance of a two-step procedure.

5 Towards Unifying Deep Generative Models

Making implicit models explicit As noted above, some DGMs are themselves GAEs, including some
implicit models for which density evaluation is not typically available, such as WAEs, BiGANs, and GANs.
Ramesh & LeCun (2018) use (2) to train implicit models, but they do not train a second step DGM and thus
have no mechanism to encourage trained models to satisfy the change-of-variable formula. Dieng et al. (2019)
aim to provide GANs with density evaluation, but add D-dimensional Gaussian noise in order to achieve this,
resulting in an adversarially-trained explicit model, rather than truly making an implicit model explicit. The
two-step correctness theorem not only fixes manifold overfitting for explicit likelihood-based DGMs, but also
enables density evaluation for these implicit models through (2) once a low-dimensional likelihood model
has been trained on g(M). We highlight the relevance of training the second step model pZ for (2) to hold:
even if G mapped some base distribution on Rd, e.g. a Gaussian, to P∗, it need not be injective to achieve
this, and could map distinct inputs to the same point on M (see Fig. 3). Such a G could be the result of
training an implicit model, e.g. a GAN, which correctly learned its target distribution. Training g, and pZ on
g(M) ⊆ Rd, is still required to ensure G|g(M) is injective and (2) can be applied, even if the end result of
this additional training is that the target distribution remains properly learned.

Two-step procedures Several methods can be seen through the lens of our two-step approach, and can be
interpreted as addressing manifold overfitting thanks to Theorem 2. Dai & Wipf (2019) use a two-step VAE,
where both the GAE and DGM are taken as VAEs. Xiao et al. (2019) use a standard AE along with an NF.
Brehmer & Cranmer (2020), and Kothari et al. (2021) use an AE as the GAE where G is an injective NF and
g its left inverse and use an NF as the DGM. Ghosh et al. (2020) use an AE with added regularizers along
with a Gaussian mixture model. Rombach et al. (2021) use a VAE along with a diffusion model (Ho et al.,
2020) and obtain highly competitive empirical performance, which is justified by our theoretical results.

Other methods, while not exact instances, are philosophically aligned. Razavi et al. (2019) first obtain
discrete low-dimensional representations of observed data and then train an ARM on these, which is similar
to a discrete version of our own approach. Arbel et al. (2021) propose a model which they show is equivalent
to pushing forward a low-dimensional EBM through G. The design of this model fits squarely into our
framework, although a different training procedure is used.

The methods of Zhang et al. (2020b), Caterini et al. (2021), and Ross & Cresswell (2021) simultaneously
optimize G, g, and pZ rather than using a two-step approach, combining in their loss a reconstruction term
with a likelihood term as in (2). The validity of these methods however is not guaranteed by the two-step
correctness theorem, and we believe a theoretical understanding of their objectives to be an interesting
direction for future work.

6 Experiments

We now experimentally validate the advantages of our proposed two-step procedures across a variety of
settings. We use the nomenclature A+B to refer to the two-step model with A as its GAE and B as its DGM.
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Figure 4: Results on simulated data: von Mises ground truth (left), EBM (middle), and AE+EBM (right).

All experimental details are provided in App. C. Our code4 provides baseline implementations of all our
considered GAEs and DGMs, which we hope will be useful to the community even outside of our proposed
two-step methodology.

6.1 Simulated Data

Table 1: FID scores (lower is better). Means ± stan-
dard errors across 3 runs are shown. The superscript
“+” indicates a larger model, and the subscript “σ” in-
dicates added Gaussian noise. Unreliable FID scores
are highlighted in red (see text for description).

MODEL MNIST FMNIST SVHN CIFAR-10
AVB 22.1 ± 0.1 19.2 ± 0.2 8.5 ± 0.0 14.4 ± 0.3
AVB+ 21.1 ± 0.2 17.9 ± 0.4 9.3 ± 0.4 14.0 ± 0.0
AVB+

σ 21.0 ± 0.0 17.8 ± 0.2 9.1 ± 0.0 14.1 ± 0.1
AVB+ARM 10.1 ± 0.0 12.0 ± 0.0 5.4 ± 0.1 12.0 ± 0.1
AVB+AVB 13.2 ± 0.1 14.6 ± 0.3 6.6 ± 0.1 12.1 ± 0.2
AVB+EBM 11.0 ± 0.1 13.9 ± 0.6 6.2 ± 0.1 12.4 ± 0.3
AVB+NF 10.2 ± 0.1 12.0 ± 0.1 5.5 ± 0.0 12.0 ± 0.0
AVB+VAE 11.0 ± 0.1 12.4 ± 0.1 5.6 ± 0.3 12.2 ± 0.0
VAE 21.4 ± 0.1 17.8 ± 0.2 8.8 ± 0.1 14.8 ± 0.3
VAE+ 21.1 ± 0.1 18.3 ± 0.2 8.9 ± 0.2 14.7 ± 0.1
VAE+

σ 21.3 ± 0.1 18.0 ± 0.2 8.9 ± 0.1 14.6 ± 0.2
VAE+ARM 10.1 ± 0.1 12.0 ± 0.1 5.3 ± 0.1 12.0 ± 0.1
VAE+AVB 14.0 ± 0.2 14.5 ± 0.4 6.9 ± 0.0 12.3 ± 0.3
VAE+EBM 11.7 ± 0.2 13.6 ± 0.2 6.3 ± 0.1 12.9 ± 0.4
VAE+NF 10.1 ± 0.1 11.8 ± 0.0 5.3 ± 0.1 11.9 ± 0.1

ARM+ 17.9 ± 2.4 11.8 ± 1.3 8.2 ± 0.5 11.4 ± 0.1
ARM+

σ 5.3 ± 0.1 4.7 ± 0.1 6.4 ± 0.1 10.8 ± 0.1
AE+ARM 9.8 ± 0.1 12.2 ± 0.1 5.8 ± 0.0 12.2 ± 0.1

EBM+ 8.7 ± 0.3 12.7 ± 0.3 7.7 ± 0.2 12.0 ± 0.1
EBM+

σ 8.2 ± 0.4 12.1 ± 0.4 8.4 ± 0.5 11.9 ± 0.2
AE+EBM 11.3 ± 0.2 12.7 ± 0.1 6.7 ± 0.2 11.9 ± 0.1

We consider a von Mises distribution on the unit
circle in Fig. 4. We learn this distribution both with
an EBM and a two-step AE+EBM model. While the
EBM indeed concentrates mass around the circle, it
assigns higher density to an incorrect region of it (the
top, rather than the right), corroborating manifold
overfitting. The AE+EBM model not only learns
the manifold more accurately, it also assigns higher
likelihoods to the correct part of it.

6.2 Comparisons Against Maximum-Likelihood

We now show that our two-step methods empirically
outperform maximum-likelihood training. Conve-
niently, some likelihood-based DGMs recover low-
dimensional representations and hence are GAEs
too, providing the opportunity to compare two-step
training and maximum-likelihood training directly.
In particular, AVB and VAEs both maximize a lower
bound of the log-likelihood, so we can train a first
model as a GAE, recover low-dimensional representa-
tions, and then train a second-step DGM. Any perfor-
mance difference compared to maximum-likelihood
is then due to the second-step DGM rather than the
choice of GAE.

We show the results in Table 1 for MNIST, FMNIST
(Xiao et al., 2017), SVHN (Netzer et al., 2011), and
CIFAR-10 (Krizhevsky et al., 2009). We use Gaussian decoders with learnable scalar variance for both
models, even for MNIST and FMNIST, as opposed to Bernoulli or other common choices (Loaiza-Ganem &
Cunningham, 2019) in order to properly model the data as continuous and allow for manifold overfitting to
happen. While ideally we would compare models based on log-likelihood, this is only sensible for models
sharing the same dominating measure, here this is not the case as the single-step models are D-dimensional,

4See supplementary material. We will publicly release our code upon publication.
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while our two-step models are not. We thus use the FID score (Heusel et al., 2017) as a measure of how
well models recover P∗. Table 1 shows that our two-step procedures consistently outperform single-step
maximum-likelihood training, even when adding Gaussian noise to the data, thus highlighting that manifold
overfitting is still an empirical issue even when the ground truth distribution is D-dimensional but highly
peaked around a manifold. We also note that some of the baseline models are significantly larger, e.g. the
VAE+ on MNIST has approximately 824k parameters, while the VAE model has 412k, and the VAE+EBM
only 416k. The parameter efficiency of two-step models highlights that our empirical gains are not due to
increasing model capacity but rather from addressing manifold overfitting.

Table 1 also shows comparisons between single and two-step models for ARMs and EBMs, which unlike AVB
and VAEs, are not GAEs themselves; we thus use an AE as the GAE for these comparisons. Although FID
scores did not consistently improve for these two-step models over their corresponding single-step baselines,
we found the visual quality of samples was significantly better for almost all two-step models, as demonstrated
in the first two columns of Fig. 5, and by the additional samples shown in App. D.1. We thus highlight
with red the corresponding FID scores as unreliable in Table 1. We believe these failures modes of the FID
metric itself, wherein the scores do not correlate with visual quality, emphasize the importance of further
research on sample-based scalar evaluation metrics for DGMs (Borji, 2022), although developing such metrics
falls outside our scope. We also show comparisons using precision and recall (Kynkäänniemi et al., 2019) in
App. D.3, and observe that two-step models still outperform single-step ones.

We also point out that one-step EBMs exhibited training difficulties consistent with maximum-likelihood
non-convergence (App. D.2). Meanwhile, Langevin dynamics (Welling & Teh, 2011) for AE+EBM exhibit
better and faster convergence, yielding good samples even when not initialized from the training buffer (see
Fig. 12 in App. D.2), and AE+ARM speeds up sampling over the baseline ARM by a factor of O(D/d), in
both cases because there are fewer coordinates in the sample space. Of the 44 two-step models shown in
Table 1, only one (AE+EBM on MNIST) did not visually outperform its single-step counterpart (App. D.1),
empirically corroborating our theoretical findings.

Finally, we have omitted some comparisons verified in prior work: Dai & Wipf (2019) show VAE+VAE
outperforms VAE, and Xiao et al. (2019) that AE+NF outperforms NF.

6.3 OOD Detection with Implicit Models

Table 2: OOD classification accuracy as a percentage
(higher is better). Means ± standard errors across 3
runs are shown. Arrows point from in-distribution to
OOD data.

MODEL FMNIST → MNIST CIFAR-10 → SVHN

ARM+ 9.9 ± 0.6 15.5 ± 0.0
BiGAN+ARM 81.9 ± 1.4 38.0 ± 0.2
WAE+ARM 69.8 ± 13.9 40.1 ± 0.2

AVB+ 96.0 ± 0.5 23.4 ± 0.1
BiGAN+AVB 59.5 ± 3.1 36.4 ± 2.0
WAE+AVB 90.7 ± 0.7 43.5 ± 1.9

EBM+ 32.5 ± 1.1 46.4 ± 3.1
BiGAN+EBM 51.2 ± 0.2 48.8 ± 0.1
WAE+EBM 57.2 ± 1.3 49.3 ± 0.2

NF+ 36.4 ± 0.2 18.6 ± 0.3
BiGAN+NF 84.2 ± 1.0 40.1 ± 0.2
WAE+NF 95.4 ± 1.6 46.1 ± 1.0

VAE+ 96.1 ± 0.1 23.8 ± 0.2
BiGAN+VAE 59.7 ± 0.2 38.1 ± 0.1
WAE+VAE 92.5 ± 2.7 41.4 ± 0.2

Having verified that, as predicted by Theorem 2,
two-step models outperform maximum-likelihood
training, we now turn our attention to the other
consequence of this theorem, namely endowing im-
plicit models with density evaluation after training
a second-step DGM. We demonstrate that our ap-
proach advances fully-unsupervised likelihood-based
out-of-distribution detection. Nalisnick et al. (2019)
discovered the counter-intuitive phenomenon that
likelihood-based DGMs sometimes assign higher like-
lihoods to OOD data than to in-distribution data.
In particular, they found models trained on FM-
NIST and CIFAR-10 assigned higher likelihoods to
MNIST and SVHN, respectively. While there has
been a significant amount of research trying to rem-
edy and explain this situation (Choi et al., 2018; Ren
et al., 2019; Le Lan & Dinh, 2020; Caterini & Loaiza-
Ganem, 2021), there is little work achieving good
OOD performance using only likelihoods (Caterini
et al., 2021).

We train several two-step models where the GAE is either a BiGAN or a WAE, which do not by themselves
allow for likelihood evaluation, and then use the resulting log-likelihoods (or lower bounds/negative energy
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Figure 5: Uncurated samples from single-step models (first row, showing ARM+
σ , EBM+, AVB+

σ , and
VAE) and their respective two-step counterparts (second row, showing AE+ARM, AE+EBM, AVB+NF,
and VAE+AVB), for MNIST (first column), FMNIST (second column), SVHN (third column), and
CIFAR-10 (fourth column).

functions) for OOD detection. Two-step models allow us to use either the high-dimensional log pX from (2)
or low-dimensional log pZ as heuristics for this task. We conjecture that the latter is more reliable, since (i)
the base measure is always µd, and (ii) the encoder-decoder is unlikely to exactly satisfy the conditions of
Theorem 2. Hence, we use log pZ here, and show results for log pX in App. D.4.

Table 2 shows the classification accuracy of a decision stump given only the log-likelihood; we show some
corresponding histograms in App. D.4. The stump is forced to assign large likelihoods as in-distribution,
so that accuracies below 50% indicate it incorrectly assigned higher likelihoods to OOD data. We correct
the classification accuracy to account for datasets of different size (details in App. D.4), resulting in an
easily interpretable metric which can be understood as the expected classification accuracy if two same-sized
samples of in-distribution and OOD data were compared. Not only did we enable implicit models to perform
OOD detection, but we also outperformed likelihood-based single-step models in this setting. To the best of
our knowledge, no other model achieves nearly 50% accuracy on CIFAR-10→SVHN using only likelihoods.
Although admittedly the problem is not yet solved, we have certainly made progress on a challenging task
for fully-unsupervised methods. For completeness, we show samples from these models in App. D.1 and
FID scores in App. D.3. Implicit models see less improvement in FID from adding a second-step DGM than
explicit models, suggesting that manifold overfitting is a less dire problem for implicit models. Nonetheless,
we do observe some improvements, particularly for BiGANs, hinting that our two-step methodology not only
endows these models with density evaluation, but that it can also improve their generative performance. We
further show in App. D.4 that OOD improvements obtained by two-step models apply to explicit models too.

Interestingly, whereas the VAEs used in Nalisnick et al. (2019) have Bernoulli likelihoods, we find that our
single-step likelihood-based Gaussian-decoder VAE and AVB models perform quite well on distinguishing
FMNIST from MNIST, yet still fail on the CIFAR-10 task. Studying this is of future interest but is outside
the scope of this work.

7 Conclusions, Scope, and Limitations

In this paper we diagnosed manifold overfitting, a fundamental problem of maximum-likelihood training with
flexible densities when the data lives in a low-dimensional manifold. We proposed to fix manifold overfitting
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with a class of two-step procedures which remedy the issue, theoretically justify a large group of existing
methods, and endow implicit models with density evaluation after training a low-dimensional likelihood-based
DGM on encoded data.

Our two-step correctness theorem remains nonetheless a nonparametric result. In practice, the reconstruction
error will be positive, i.e. EX∼P∗ [||G(g(X)) − X||22] > 0. Note that this can happen even when assuming
infinite capacity, as M needs to be diffeomorphic to g(M) for some C1 function g : RD → Rd for the
reconstruction error to be 0. We leave a study of learnable topologies of M for future work. The density in
(2) might then not be valid, either if the reconstruction error is positive, or if pZ assigns positive probability
outside of g(M). However, we note that our approach at least provides a mechanism to encourage our trained
encoder-decoder pair to invert each other, suggesting that (2) might not be too far off. We also believe that a
finite-sample extension of our result, while challenging, would be a relevant direction for future work. We
hope our work will encourage follow-up research exploring different ways of addressing manifold overfitting,
or its interaction with the score-matching objective.

Finally, we treated d as a hyperparameter, but in practice d is unknown and improvements can likely be
had by estimating it (Levina & Bickel, 2004). Still, we observed significant empirical improvements across a
variety of tasks and datasets, demonstrating that manifold overfitting is not just a theoretical issue in DGMs,
and that two-step methods are an important class of procedures to deal with it.

Broader Impact Statement

Due to the theoretical and methodological nature of our contributions, we do not foresee our work having
any negative societal consequences. We advance the understanding of the distributions learned by our DGMs,
which can be important for fairness and reducing biases (Humayun et al., 2022), particularly in the context
of natural image and facial generation.
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A Informal Measure Theory Primer

Before stating Theorems 1 and 2, and studying their implications, we provide a brief tutorial on some aspects
of measure theory that are relevant to follow our discussion. This review is not meant to be comprehensive,
and we prioritize intuition over formalism. Readers interested in the topic may consult textbooks such as
Billingsley (2008).

A.1 Probability Measures

Let us first motivate the need for measure theory in the first place and consider the question: what is a
density? Intuitively, the density pX of a random variable X is a function having the property that integrating
pX over any set A gives back the probability that X ∈ A. This density characterizes the distribution of X, in
that it can be used to answer any probabilistic question about X. It is common knowledge that discrete
random variables are not specified through a density, but rather a probability mass function. Similarly, in
our setting, where X might always take values in M, such a density will not exist. To see this, consider the
case where A = M, so that the integral of pX over M would have to be 1, which cannot happen since M
has volume 0 in RD (or more formally, Lebesgue measure 0). Measure theory provides the tools necessary
to properly specify any distribution, subsuming as special cases probability mass functions, densities of
continuous random variables, and distributions on manifolds.

A measure µ on RD is a function mapping subsets A ⊆ RD to R≥0, obeying the following properties: (i)
µ(A) ≥ 0 for every A, (ii) µ(∅) = 0, where ∅ denotes the empty set, and (iii) µ(∪∞

k=1Ak) =
∑∞

k=1 µ(Ak) for
any sequence of pairwise disjoint sets A1, A2, . . . (i.e. Ai ∩ Aj = ∅ whenever i ≠ j). Note that most measures
of interest are only defined over a large class of subsets of RD (called σ-algebras, the most notable one being
the Borel σ-algebra) rather than for every possible subset due to technical reasons, but we omit details in the
interest of better conveying intuition. A measure is called a probability measure if it also satisfies µ(RD) = 1.
To any random variable X corresponds a probability measure µX , having the property that µX(A) is the
probability that X ∈ A for any A. Analogously to probability mass functions or densities of continuous
random variables, µX allows us to answer any probabilistic question about X. The probability measure µX

is often called the distribution or law of X. Throughout our paper, P∗ is the distribution from which we
observe data.

Let us consider two examples to show how probability mass functions and densities of continuous random
variables are really just specifying distributions. Given a1, . . . , aK ∈ RD, consider the probability mass
function of a random variable X given by pX(x) = 1/K for x = a1, a2, . . . , aK and 0 otherwise. This
probability mass function is simply specifying the distribution µX(A) = 1/K ·

∑K
k=1 1(ak ∈ A), where

1(· ∈ A) denotes the indicator function for A, i.e. 1(a ∈ A) is 1 if a ∈ A, and 0 otherwise. Now consider
a standard Gaussian random variable X in RD with density pX(x) = N (x; 0, ID). Similarly to how the
probability mass function from the previous example characterized a distribution, this density does so as
well through µX(A) =

∫
A

N (x; 0, ID)dx. We will see in the next section how these ideas can be extended to
distributions on manifolds.

The concept of integrating a function h : RD → R with respect to a measure µ on RD is fundamental in
measure theory, and can be thought of as “weighting the inputs of h according to µ”. In the case of the
Lebesgue measure µD (which assigns to subsets A of RD their “volume” µD(A)), integration extends the
concept of Riemann integrals commonly taught in calculus courses, and in the case of random variables
integration defines expectations, i.e. EX∼µX

[h(X)] =
∫

hdµX . In the next section we will talk about the
interplay between integration and densities.

A.2 Absolute Continuity

So far we have seen that probability measures allow us to talk about distributions in full generality, and that
probability mass functions and densities of continuous random variables can be used to specify probability
measures. A distribution on a manifold M embedded in RD can simply be thought of as a probability
measure µ such that µ(M) = 1. We would like to define densities on manifolds in an analogous way to
probability mass functions and densities of continuous random variables, in such a way that they allow us to
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characterize distributions on the manifold. Absolute continuity of measures is a concept that allows us to
formalize the concept of density with respect to a dominating measure, and encompasses probability mass
functions, densities of continuous random variables, and also allows us to define densities on manifolds. We
will see that our intuitive definition of a density as a function which, when integrated over a set gives back its
probability, is in fact correct, just as long as we specify the measure we integrate with respect to.

Given two measures µ and ν, we say that µ is absolutely continuous with respect to ν if for every A such
that ν(A) = 0, it also holds that µ(A) = 0. If µ is absolutely continuous with respect to ν, we also say that
ν dominates µ, and denote this property as µ ≪ ν. The Radon-Nikodym theorem states that, under some
mild assumptions on µ and ν which hold for all the measures considered in this paper, µ ≪ ν implies the
existence of a function h such that µ(A) =

∫
A

hdν for every A. This result provides the means to formally
define densities: h is called the density or Radon-Nikodym derivative of µ with respect to ν, and is often
written as dµ/dν.

Before explaining how this machinery allows us to talk about densities on manifolds, we first continue
our examples to show that probability mass functions and densities of continuous random variables are
Radon-Nikodym derivatives with respect to appropriate measures. Let us reconsider the example where
pX(x) = 1/K for x = a1, a2, . . . , aK and 0 otherwise, and µX(A) = 1/K ·

∑K
k=1 1(ak ∈ A). Consider

the measure ν(A) =
∑K

k=1 1(ak ∈ A), which essentially just counts the number of aks in A. Clearly
µX ≪ ν, and so it follows that µX admits a density with respect to ν. This density turns out to be
pX , since µX(A) =

∫
A

pXdν. In other words, the probability mass function pX can be thought of as a
Radon-Nikodym derivative, i.e. pX = dµX/dν. Let us now go back to the continuous density example where
pX(x) = N (x; 0, ID) and µX is given by the Riemann integral µX(A) =

∫
A

N (x; 0, ID)dx. In this case,
ν = µD, and since the Lebesgue integral extends the Riemann integral, it follows that µX(A) =

∫
A

pXdµD,
so that the density pX is actually also a density in the formal sense of being a Radon-Nikodym derivative,
so that pX = dµX/dµD. We can thus see that the formal concept of density or Radon-Nikodym derivative
generalizes both probability mass functions and densities of continuous random variables as we usually think
of them, allowing to specify distributions in a general way.

The concept of Radon-Nikodym derivative also allows us to obtain densities on manifolds, the only missing
ingredient being a dominating measure on the manifold. Riemannian measures (App. B.1) play this role on
manifolds, in the same way that the Lebesgue measure plays the usual role of dominating measure to define
densities of continuous random variables on RD.

A.3 Weak Convergence

A key point in Theorem 1 is weak convergence of the sequence of probability measures (Pt)∞
t=1 to P†. The

intuitive interpretation that this statement simply means that “Pt converges to P†” is correct, although
formally defining convergence of a sequence of measures is still required. Weak convergence provides such a
definition, and Pt is said to converge weakly to P† if the sequence of scalars Pt(A) converges to P†(A) for
every A satisfying a technical condition (for intuitive purposes, one can think of this property as holding for
every A). In this sense weak convergence is a very natural way of defining convergence of measures: in the
limit, Pt will assign the same probability to every set as P†.

A.4 Pushforward Measures

We have seen that to a random variable X in RD corresponds a distribution µX . Applying a function
h : RD → Rd to X will result in a new random variable, h(X) in Rd, and it is natural to ask what its
distribution is. This distribution is called the pushforward measure of µX through h, which is denoted as
h#µX , and is defined as h#µX(B) = µX(h−1(B)) for every subset B of Rd. A way to intuitively understand
this concept is that if one could sample X from µX , then sampling from h#µX can be done by simply
applying h to X. Note that here h#µX is a measure on Rd.

The concept of pushforward measure is relevant in Theorem 2 as it allows us to formally reason about e.g.
the distribution of encoded data, g#P∗. Similarly, for a distribution PZ corresponding to our second-step
model, we can reason about the distribution obtained after decoding, i.e. G#PZ .
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B Proofs

B.1 Riemannian Measures

We begin with a quick review of a Riemannian measures. Let M be a d-dimensional Riemannian manifold
with Riemannian metric g, and let (U, ϕ) be a chart. The local Riemannian measure µ

(g)
M,ϕ on M (with its

Borel σ-algebra) is given by:

µ
(g)
M,ϕ(A) =

∫
ϕ(A∩U)

√
det
(
g

(
∂

∂ϕi
,

∂

∂ϕj

))
dµd (3)

for any measurable A ⊆ M. The Riemannian measure µ
(g)
M on M is such that:

µ
(g)
M (A ∩ U) = µ

(g)
M,ϕ(A) (4)

for every measurable A ⊆ M and every chart (U, ϕ).

If g1 and g2 are two Riemannian metrics on M, then µ
(g1)
M ≪ µ

(g2)
M and µ

(g1)
M admits a continuous and

positive density with respect to µ
(g2)
M . Thus, as mentioned in the main manuscript, smoothness of probability

measures is indeed independent of the choice of Riemannian metric.

Below we prove a lemma which we will later use, showing that much like the Lebesgue measure, Riemannian
measures assign positive measure to nonempty open sets. While we are sure this is a known property, we
could not find a proof and thus provide one.

Lemma 1: Let M be a d-dimensional Riemannian manifold, and µ
(g)
M a Riemannian measure on it. Let

A ⊆ M be a nonempty open set in M. Then µ
(g)
M (A) > 0.

Proof: Let (U, ϕ) be a chart such that U ∩ A ̸= ∅, which exists because A ̸= ∅. Clearly U ∩ A is open, and
since ϕ is a diffeomorphism onto its image, it follows that ϕ(U ∩ A) ⊆ Rd is also open and nonempty, and
thus µd(ϕ(U ∩ A)) > 0. As a result,

µ
(g)
M (A) ≥ µ

(g)
M (U ∩ A) =

∫
ϕ(U∩A)

√
det
(
g

(
∂

∂ϕi
,

∂

∂ϕj

))
dµd > 0, (5)

where the last inequality follows since the integrand is positive and the integration set has positive measure.

B.2 Manifold Overfitting Theorem

We restate the manifold overfitting theorem below for convenience:

Theorem 1 (Manifold Overfitting): Let M ⊂ RD be an analytic d-dimensional embedded submanifold
of RD with d < D, and P† a smooth probability measure on M. Then there exists a sequence of probability
measures (Pt)∞

t=1 on RD such that:

1. Pt → P† weakly as t → ∞.

2. For every t ≥ 1, Pt ≪ µD and Pt admits a density pt : RD → R>0 with respect to µD such that:

(a) lim
t→∞

pt(x) = ∞ for every x ∈ M.

(b) lim
t→∞

pt(x) = 0 for every x /∈ cl(M), where cl(·) denotes closure in RD.

Before proving the theorem, note that P† is a distribution on M and Pt is a distribution on RD, with their
respective Borel σ-algebras. Weak convergence is defined for measures on the same probability space, and

20



Under review as submission to TMLR

so we slightly abuse notation and think of P† as a measure on RD assigning to any measurable set A ⊆ RD

the probability P†(A ∩ M), which is well-defined as M is an embedded submanifold of RD. We do not
differentiate between P† on M and P† on RD to avoid cumbersome notation.

Proof: Let Y be a random variable whose law is P†, and let (Zt)∞
t=1 be a sequence of i.i.d. standard Gaussians

in RD, independent of Y . We assume all the variables are defined on the same probability space (Ω, F ,P).
Let Xt = Y + σtZt where (σt)∞

t=1 is a positive sequence converging to 0. Let Pt be the law of Xt.

First we prove 1. Clearly σtZt → 0 in probability and Y → Y in distribution as t → ∞. Since σtZt converges
in probability to a constant, it follows that Xt → Y in distribution, and thus Pt → P† weakly.

Now we prove that Pt ≪ µD. Let A ⊆ RD be a measurable set such that µD(A) = 0. We denote the law
of σtZt as Gt and the Gaussian density in RD with mean m and covariance matrix Σ evaluated at y as
N (y; m, Σ). Let B = {(w, y) ∈ RD × M : y + w ∈ A}. By Fubini’s theorem:

Pt(A) = P(Y + σtZt ∈ A) =
∫

B

dGt × P†(w, y) =
∫

B

N (w; 0, σ2
t ID) dµD × P†(w, y) (6)

=
∫

A×M
N (x − y; 0, σ2

t ID) dµD × P†(x, y) =
∫

M

∫
A

N (x − y; 0, σ2
t ID) dµD(x) dP†(y) (7)

=
∫

M
0 dP†(y) = 0. (8)

Then, Pt ≪ µD, proving the first part of 2. Note also that:

pt(x) =
∫

M
N (x − y; 0, σ2

t ID) dP†(y) (9)

is a valid density for Pt with respect to µD, once again by Fubini’s theorem since, for any measurable set
A ⊆ RD: ∫

A

pt(x) dµD(x) =
∫

A

∫
M

N (x − y; 0, σ2
t ID) dP†(y) dµD(x) (10)

=
∫

A×M
N (x − y; 0, σ2

t ID)dµD × P†(x, y) = Pt(A). (11)

We now prove 2a. Since P† being smooth is independent of the choice of Riemannian measure, we can assume
without loss of generality that the Riemannian metric g on M is the metric inherited from thinking of M
as a submanifold of RD, and we can then take a continuous and positive density p† with respect to the
Riemannian measure µ

(g)
M associated with this metric.

Take x ∈ M and let BM
r (x) = {y ∈ M : d

(g)
M (x, y) ≤ r} denote the geodesic ball on M of radius r centered

at x, where d
(g)
M is the geodesic distance. We then have:

pt(x) =
∫

M
N (x − y; 0, σ2

t ID) dP†(y) ≥
∫

BM
σt

(x)
N (x − y; 0, σ2

t ID) dP†(y) (12)

=
∫

BM
σt

(x)
p†(y) · N (x − y; 0, σ2

t ID) dµ
(g)
M (y) ≥

∫
BM

σt
(x)

inf
y′∈BM

σt
(x)

p†(y′)N (x − y′; 0, σ2
t ID) dµ

(g)
M (y) (13)

= µ
(g)
M (BM

σt
(x)) · inf

y′∈BM
σt

(x)
p†(y′)N (x − y′; 0, σ2

t ID) (14)

≥ µ
(g)
M (BM

σt
(x)) · inf

y′∈BM
σt

(x)
N (x − y′; 0, σ2

t ID) · inf
y′∈BM

σt
(x)

p†(y′). (15)

Since BM
σt

(x) is compact in M for small enough σt and p† is continuous in M and positive, it follows that
infy′∈BM

σt
(x) p†(y′) is bounded away from 0 as t → ∞. It is then enough to show that as t → ∞,

µ
(g)
M (BM

σt
(x)) · inf

y′∈BM
σt

(x)
N (x − y′; 0, σ2

t ID) → ∞ (16)
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in order to prove that 2a holds. Let Bd
r (0) denote an L2 ball of radius r in Rd centered at 0 ∈ Rd, and let

µd denote the Lebesgue measure on Rd, so that µd(Bd
r (0)) = Cdrd, where Cd > 0 is a constant depending

only on d. It is known that µ
(g)
M (BM

r (x)) = µd(Bd
r (0)) · (1 + O(r2)) for analytic d-dimensional Riemannian

manifolds (Gray, 1974), and thus:

µ
(g)
M (BM

σt
(x)) · inf

y′∈BM
σt

(x)
N (x − y′; 0, σ2

t ID)

= Cdσd
t

(
1 + O(σ2

t )
)

· inf
y′∈BM

σt
(x)

1
σD

t (2π)D/2 exp
{

−||x − y′||22
2σ2

t

}
(17)

= Cd

(2π)D/2 ·
(
1 + O(σ2

t )
)

· σd−D
t · exp

−

sup
y′∈BM

σt
(x)

||x − y′||22

2σ2
t

 . (18)

The first term is a positive constant, and the second term converges to 1. The third term goes to infinity since
d < D, which leaves only the last term. Thus, as long as the last term is bounded away from 0 as t → ∞,
we can be certain that the product of all four term goes to infinity. In particular, verifying the following
equation would be enough:

sup
y′∈BM

σt
(x)

||x − y′||22 ≤ σ2
t . (19)

This equation holds, since for any x, y′ ∈ M, it is the case that ||x − y′||2 ≤ d
(g)
M (x, y′) as g is inherited from

M being a submanifold of RD.

Now we prove 2b for pt. Let x ∈ RD \ cl(M). We have:

pt(x) =
∫

M
N (x − y; 0, σ2

t ID) dP†(y) ≤
∫

M
sup

y′∈M
N (x − y′; 0, σ2

t ID) dP†(y) = sup
y′∈M

N (x − y′; 0, σ2
t ID) (20)

= sup
y′∈M

1
σD

t (2π)D/2 exp
{

−||x − y′||22
2σ2

t

}
= 1

σD
t (2π)D/2 · exp

−
inf

y′∈M
||x − y′||22

2σ2
t

 t→∞−−−→ 0, (21)

where convergence to 0 follows from x /∈ cl(M) implying that infy′∈M ||x − y′||22 > 0.

B.3 Two-Step Correctness Theorem

We restate the two-step correctness theorem below for convenience:

Theorem 2 (Two-Step Correctness): Let M ⊆ RD be a C1 d-dimensional embedded submanifold of RD,
and let P∗ be a distribution on M. Assume there exist measurable functions G : Rd → RD and g : RD → Rd

such that G(g(x)) = x, P∗-almost surely. Then:

1. G#(g#P∗) = P∗, where h#P denotes the pushforward of measure P through the function h.

2. Moreover, if P∗ is smooth, and G and g are C1, then:

(a) g#P∗ ≪ µd.
(b) G(g(x)) = x for every x ∈ M, and the functions g̃ : M → g(M) and G̃ : g(M) → M given by

g̃(x) = g(x) and G̃(z) = G(z) are diffeomorphisms and inverses of each other.

Similarly to the manifold overfitting theorem, we think of P∗ as a distribution on RD, assigning to any Borel
set A ⊆ RD the probability P∗(A∩M), which once again is well-defined since M is an embedded submanifold
of RD.

22



Under review as submission to TMLR

Proof: We start with part 1. Let A = {x ∈ RD : G(g(x)) ̸= x}, which is a null set under P∗ by assumption.
By applying the definition of pushforward measure twice, for any measurable set B ⊆ M:

G#(g#P∗)(B) = g#P∗(G−1(B)) = P∗(g−1(G−1(B))) = P∗ (g−1 (G−1 ((B \ A) ∪ (A ∩ B))
))

(22)
= P∗ (g−1 (G−1 (B \ A)

)
∪ g−1 (G−1 (A ∩ B)

))
= P∗(g−1 (G−1 (B \ A)

)
) (23)

= P∗(B \ A) = P∗(B), (24)

where we used that g−1(G−1(A ∩ B)) ⊆ A, and thus G#(g#P∗) = P∗. Note that this derivation requires
thinking of P∗ as a measure on RD to ensure that A and g−1(G−1(A ∩ B)) can be assigned 0 probability.

We now prove 2b. We begin by showing that G(g(x)) = x for all x ∈ M. Consider RD × M endowed
with the product topology. Clearly RD × M is Hausdorff since both RD and M are Hausdorff (M is
Hausdorff by the definition of a manifold). Let E = {(x, x) ∈ RD × M : x ∈ M}, which is then closed in
RD × M (since diagonals of Hausdorff spaces are closed). Consider the function H : M → RD × M given
by H(x) = (G(g(x)), x), which is clearly continuous. It follows that H−1(E) = {x ∈ M : G(g(x)) = x}
is closed in M, and thus M \ H−1(E) = {x ∈ M : G(g(x)) ̸= x} is open in M, and by assumption
P∗(M \ H−1(E)) = 0. It follows by Lemma 1 in App. B.1 that M \ H−1(E) = ∅, and thus G(g(x)) = x for
all x ∈ M.

We now prove that g̃ is a diffeomorphism. Clearly g̃ is surjective, and since it admits a left inverse (namely
G), it is also injective. Then g̃ is bijective, and since it is clearly C1 due to g being C1 and M being an
embedded submanifold of RD, it only remains to show that its inverse is also C1. Since G(g(x)) = x for every
x ∈ M, it follows that G(g(M)) = M, and thus G̃ is well-defined (i.e. the image of its domain is indeed
contained in its codomain). Clearly G̃ is a left inverse to g̃, and by bijectivity of g̃, it follows G̃ is its inverse.
Finally, G̃ is also C1 since G is C1, so that g̃ is indeed a diffeomorphism.

Now, we prove 2a. Let K ⊂ Rd be such that µd(K) = 0. We need to show that g#P∗(K) = 0 in order to
complete the proof. We have that:

g#P∗(K) = P∗ (g−1(K)
)

= P∗ (g−1(K) ∩ M
)

. (25)

Let g be a Riemannian metric on M. Since P∗ ≪ µ
(g)
M by assumption, it is enough to show that µ

(g)
M (g−1(K)∩

M) = 0. Let {Uα}α be an open (in M) cover of g−1(K) ∩ M. Since M is second countable by definition, by
Lindelöf’s lemma there exists a countable subcover {Vβ}β∈N. Since g|M is a diffeomorphism onto its image,
(Vβ , g|Vβ

) is a chart for every β ∈ N. We have:

µ
(g)
M
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)
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(g)
M
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⋃
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Vβ

 = µ
(g)
M

⋃
β∈N

g−1(K) ∩ M ∩ Vβ

 (26)

≤
∑
β∈N

µ
(g)
M (g−1(K) ∩ M ∩ Vβ) (27)

=
∑
β∈N

∫
g|Vβ

(g−1(K)∩M∩Vβ)

√√√√det
(
g

(
∂

∂g|iVβ

,
∂

∂g|jVβ

))
dµd = 0, (28)

where the final equality follows from g|Vβ
(g−1(K) ∩ M ∩ Vβ) ⊆ K for every β ∈ N and µd(K) = 0.

C Experimental Details

C.1 VAE from Fig. 2

We generated N = 1000 samples from P∗ = 0.3δ−1 + 0.7δ1, resulting in a dataset containing 1 a total of 693
times. The Gaussian VAE had d = 1, D = 1, and both the encoder and decoder have a single hidden layer
with 25 units and ReLU activations. We use the Adam optimizer (Kingma & Ba, 2015) with learning rate
0.001 and train for 200 epochs. We use gradient norm clipping with a value of 10.
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C.2 Simulated Data

For the ground truth, we use a von Mises distribution with parameter κ = 1, and transform to Cartesian
coordinates to obtain a distribution on the unit circle in RD = R2. We generate N = 1000 samples from this
distribution. For the EBM model, we use an energy function with two hidden layers of 25 units each and
Swish activations (Ramachandran et al., 2017). We use the Adam optimizer with learning rate 0.01, and
gradient norm clipping with value of 1. We train for 100 epochs. We follow Du & Mordatch (2019) for the
training of the EBM, and use 0.1 for the objective regularization value, iterate Langevin dynamics for 60
iterations at every training step, use a step size of 10 within Langevin dynamics, sample new images with
probability 0.05 in the buffer, use Gaussian noise with standard deviation 0.005 in Langevin dynamics, and
truncate gradients to (−0.03, 0.03) in Langevin dynamics. For the AE+EBM model, we use an AE with
d = 1 and two hidden layers of 20 units each with ELU activations (Clevert et al., 2016). We use the Adam
optimizer with learning rate 0.001 and train for 200 epochs. We use gradient norm clipping with a value of
10. For the EBM of this model, we use an energy function with two hidden layers of 15 units each, and all
the other parameters are identical to the single step EBM. We observed some variability with respect to the
seed for both the EBM and the AE+EBM models; the manuscript shows the best performing versions.

C.3 Comparisons Against Maximum-Likelihood and OOD Detection with Implicit Models

For all experiments, we use the Adam optimizer, typically with learning rate 0.001. For all experiments we
also clip gradient entries larger than 10 during optimization. We also set d = 20 in all experiments.

C.3.1 Single and First Step Models

For all single and first step models, unless specified otherwise, we pre-process the data by scaling it, i.e.
dividing by the maximum absolute value entry. For all versions with added Gaussian noise, we tried standard
deviation values σ ∈ {1, 0.1, 0.01, 0.001, 0.0001} and kept the best performing one (σ = 0.1, as measured by
FID) unless otherwise specified.

AEs For MNIST and FMNIST, we use MLPs for the encoder and decoder, with ReLU activations. The
encoder and decoder have each a single hidden layer with 256 units. For SVHN and CIFAR-10, we use
convolutional networks. The encoder and decoder have 4 convolutional layers with (32, 32, 16, 16) and
(16, 16, 32, 32) channels, respectively, followed by a flattening operation and a fully-connected layer. The
convolutional networks also use ReLU activations, and have kernel size 3 and stride 1. We perform early
stopping on reconstruction error with a patience of 10 epochs, for a maximum of 100 epochs.

ARMs We use an updated version of RNADE (Uria et al., 2013), where we use an LSTM (Hochreiter
& Schmidhuber, 1997) to improve performance. More specifically, every pixel is processed sequentially
through the LSTM, and a given pixel is modelled with a mixture of Gaussians whose parameters are given by
transforming the hidden state obtained from all the previous pixels through a linear layer. The dimension
of a pixel is given by the number of channels, so that MNIST and FMNIST use mixtures of 1-dimensional
Gaussians, whereas SVHN and CIFAR-10 use mixtures of 3-dimensional Gaussians. We also tried a continuous
version of the PixelCNN model (Van Oord et al., 2016), where we replaced the discrete distribution over
pixels with a mixture of Gaussians, but found this model highly unstable – which is once again consistent
with manifold overfitting – and thus opted for the LSTM-based model. We used 10 components for the
Gaussian mixtures, and used an LSTM with 2 layers and hidden states of size 256. We train for a maximum
of 100 epochs, and use early stopping on log-likelihood with a patience of 10. We also use cosine annealing on
the learning rate. For the version with added Gaussian noise, we used σ = 1.0.

AVB We use the exact same configuration for the encoder and decoder as in AEs, and use an MLP with 2
hidden layers of size 256 each for the discriminator, which also uses ReLU activations. We train the MLPs
for a maximum of 50 epochs, and CNNs for 100 epochs, using cosine annealing on the learning rates. For the
large version, AVB+, we use two hidden layers of 256 units for the encoder and decoder MLPs, and increase
the encoder and decoder number of hidden channels to (64, 64, 32, 32) and (32, 32, 64, 64), respectively, for
convolutional networks. In all cases, the encoder takes in 256-dimensional Gaussian noise with covariance
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9 · ID. We also tried having the decoder output per-pixel variances, but found this parameterization to be
numerically unstable, which is again consistent with manifold overfitting.

BiGAN We used a Wasserstein-GAN (W-GAN) objective Arjovsky et al. (2017) with gradient penalties
Gulrajani et al. (2017) where both the data and latents are interpolated between the real and generated
samples. The gradient penalty weight was 10. The generator-encoder loss includes the W-GAN loss, and the
reconstruction loss (joint latent regressor from Donahue et al. (2017)), equally weighted. For both small and
large versions, we use the exact same configuration for the encoder, decoder, and discriminator as for AVB.
We used learning rates of 0.0001 with cosine annealing over 200 epochs. The discriminator was trained for
two steps for every step taken with the encoder/decoder.

EBMs For all datasets, our energy functions match the structure of the large version of the AVB encoders,
except with the Swish activation function, spectral normalization, and scalar outputs. We set the energy
function’s ouput regularization coefficient to 1 and the learning rate to 0.0003. Otherwise, we use the same
hyperparameters as on the simulated data. At the beginning of training, we scale all the data to between 0
and 1. We train for 100 epochs without early stopping, which tended to halt training too early.

NFs We use a rational quadratic spline flow (Durkan et al., 2019) with 128 hidden units, 4 layers, and
3 blocks per layer. We train using early stopping on validation loss with a patience of 30 epochs, up to a
maximum of 100 epochs. We use a learning rate of 0.0005, and use a whitening transform at the start of
training to make the data zero-mean and marginally unit-variance, whenever possible (some pixels, particularly
in MNIST, were only one value throughout the entire training set); note that this affine transformation does
not affect the manifold structure of the data.

VAEs The setting for VAEs were largely identical to those of AVB, except we did not do early stopping
and always trained for 100 epochs, in addition to not needing a discriminator. For large models a single
hidden layer of 512 units was used for each of the encoder and decoder MLPs. We also tried the same decoder
per-pixel variance parameterization that we attempted with AVB and obtained similar numerical instabilities,
once again in line with manifold overfitting.

WAEs The setting for WAEs were identical to those of AVB, except (i) we used a patience of 30 epochs,
trained for a maximum of 300 epochs, and (ii) we used only convolutional encoders and decoders, with
(64, 64, 32, 32) and (32, 32, 64, 64) hidden channels, respectively. For large models the number of hidden
channels was increased to (96, 96, 48, 48) and (48, 48, 96, 96) for the encoder and decoder, respectively.

C.3.2 Second Step Models

All second step models, unless otherwise specified, pre-process the encoded data by standardizing it (i.e.
subtracting the mean and dividing by the standard deviation).

ARMs We used the same configuration for second step ARMs as for the first step version, except the
LSTM has a single hidden layer with hidden states of size 128.

AVB We used the same configuration for second step AVB as we did for the first step MLP version of AVB,
except that we do not do early stopping and train for 100 epochs. The latent dimension is set to d (i.e. 20).

EBMs We used the same configuration as the EBM used for simulated data, except we use a learning rate
of 0.001, clip gradient entries larger than 10, and take the energy function to have two hidden layers with
(64, 32) units. We scale the data rather than standardizing as the pre-processing step.

NFs We used the same settings for second step NFs as we did for first step NFs, except (i) we use 64 hidden
units, (ii) we do not do early stopping, training for a maximum of 100 epochs, and (iii) we use a learning
rate of 0.001.
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VAEs We used the same settings for second step VAEs as we did for first step VAEs. The latent dimension
is also set to d (i.e. 20).

D Additional Experimental Results

D.1 Samples

We show samples obtained by the VAE, VAE+, VAE+
σ , and VAE+ARM models in Fig. 6. In addition to

the FID improvements shown in the main manuscript, we can see a very noticeable qualitative improvement
obtained by the two-step models. Note that the VAE in the VAE+ARM model is the same as the single-step
VAE model. Similarly, we show samples from AVB+

σ , AVB+NF, AVB+EBM, and AVB+VAE in Fig. 7
where two-step models greatly improve visual quality. We also show samples from the ARM+, ARM+

σ , and
AE+ARM from the main manuscript in Fig. 8; and for the EBM+, EBM+

σ , and AE+EBM models in Fig. 9.
We can see that FID score is indeed not always indicative of image quality, and that our AE+ARM and
AE+EBM models significantly outperform their single-step counterparts (except AE+EBM on MNIST).
Finally, the BiGAN and WAE samples shown in Fig. 10 and Fig. 11 respectively are not consistently better for
two-step models, but neither BiGANs nor WAEs are trained via maximum likelihood so manifold overfitting
is not necessarily implied by Theorem 1. Other two-step combinations not shown gave similar results.
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Figure 6: Uncurated samples from models trained on MNIST (first row), FMNIST (second row), SVHN
(third row), and CIFAR-10 (fourth row). Models are VAE (first column), VAE+ (second column),
VAE+

σ (third column), and VAE+ARM (fourth column).
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Figure 7: Uncurated samples from models trained on MNIST (first row), FMNIST (second row), SVHN
(third row), and CIFAR-10 (fourth row). Models are AVB+

σ (first column), AVB+EBM (second
column), AVB+NF (third column), and AVB+VAE (fourth column).
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Figure 8: Uncurated samples from models trained on MNIST (first row), FMNIST (second row), SVHN
(third row), and CIFAR-10 (fourth row). Models are ARM+ (first column), ARM+

σ (second column),
and AE+ARM (third column).
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Figure 9: Uncurated samples with Langevin dynamics run for 60 steps initialized from training buffer on
MNIST (first row), FMNIST (second row), SVHN (third row), and CIFAR-10 (fourth row). Models
are EBM+ (first column), EBM+

σ (second column), and AE + EBM (third column).
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Figure 10: Uncurated samples from models trained on MNIST (first row), FMNIST (second row),
SVHN (third row), and CIFAR-10 (fourth row). Models are BiGAN (first column), BiGAN+ (second
column), BiGAN+AVB (third column), and BiGAN+NF (fourth column). BiGANs are not trained via
maximum-likelihood, so Theorem 1 does not imply that manifold overfitting should occur.
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Figure 11: Uncurated samples from models trained on MNIST (first row), FMNIST (second row), SVHN
(third row), and CIFAR-10 (fourth row). Models are WAE+ (first column), WAE+ARM (second
column), WAE+NF (third column), and WAE+VAE (fourth column). WAEs are not trained via
maximum-likelihood, so Theorem 1 does not imply that manifold overfitting should occur.
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D.2 EBM Improvements

Following Du & Mordatch (2019), we evaluated the single-step EBM’s sample quality on the basis of samples
initialized from the training buffer. However, when MCMC samples were initialized from uniform noise, we
observed that all samples would converge to a small collection of low-quality modes (see Fig. 12). Moreover,
at each training epoch, these modes would change, even as the loss value decreased.

The described non-convergence in the EBM’s model distribution is consistent with Corollary 1. On the other
hand, when used as a low-dimensional density estimator in the two-step procedure, this problem vanished:
MCMC samples initialized from random noise yielded diverse images. See Fig. 12 for a comparison.

Figure 12: Uncurated samples with Langevin dynamics initialized from random noise (with no buffer) trained
on MNIST (first row), FMNIST (second row), SVHN (third row), and CIFAR-10 (fourth row). Models
are EBM+ with 60 steps (first column), EBM+ with 200 steps (second column), EBM+ with 500 steps
(third column), and AE + EBM with 60 steps, (fourth column).
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D.3 FID, Precision, and Recall Scores

We show in Table 3 precision and recall (along with FID) of all the models used in Sec. 6.2. We opt for the
precision and recall scores of Kynkäänniemi et al. (2019) rather than those of Sajjadi et al. (2018) as the
former aim to improve on the latter. We also tried the density and coverage metrics proposed by Naeem et al.
(2020), but found these metrics to correlate with visual quality less than FID. We can see in Table 3 that
two-step models consistently outperform single-step models in recall, while either also outperforming or not
underperforming in precision. Much like with FID score, some instances of AE+ARM and AE+EBM have
worse scores on both precision and recall than their corresponding single-step model. Given the superior visual
quality of those two-step models, we also consider these as failure cases of the evaluation metrics themselves,
which we highlight in red in Table 3. We believe that some non-highlighted results do not properly reflect the
magnitude by which the two-step models outperformed single-step models, and encourage the reader to see
the corresponding samples (as previously mentioned, the only two-step model out of 445 that did not visually
outperform its single-step counterpart was AE+EBM on MNIST).

We show in Table 4 the FID scores of models involving BiGANs and WAEs. These methods are not trained
via maximum likelihood, so Theorem 1 does not apply. In contrast to the likelihood-based models from Table
1, there is no significant improvement in FID for BiGANs and WAEs from using a two-step approach, and
sometimes two-step models perform worse. However, for BiGANs we observe similar visual quality in samples
(see Fig. 10), once again highlighting a failure of the FID score as a metric. We show these failures with red
in Table 4.

Table 3: FID (lower is better) and Precision, and Recall scores (higher is better). Means ± standard errors
across 3 runs are shown. Unreliable scores are highlighted in red.

MODEL MNIST FMNIST SVHN CIFAR-10
FID Precision Recall FID Precision Recall FID Precision Recall FID Precision Recall

AVB 22.1 ± 0.1 0.08 ± 0.00 0.12 ± 0.01 19.2 ± 0.2 0.21 ± 0.01 0.06 ± 0.01 8.5 ± 0.0 0.79 ± 0.01 0.06 ± 0.00 14.4 ± 0.3 0.93 ± 0.01 0.04 ± 0.00
AVB+ 21.1 ± 0.2 0.10 ± 0.00 0.12 ± 0.00 17.9 ± 0.4 0.31 ± 0.01 0.05 ± 0.01 9.3 ± 0.4 0.82 ± 0.01 0.04 ± 0.01 14.0 ± 0.0 0.96 ± 0.00 0.03 ± 0.00
AVB+

σ 21.0 ± 0.0 0.10 ± 0.00 0.11 ± 0.01 17.8 ± 0.2 0.31 ± 0.01 0.05 ± 0.00 9.1 ± 0.0 0.77 ± 0.02 0.06 ± 0.01 14.1 ± 0.1 0.96 ± 0.01 0.03 ± 0.00
AVB+ARM 10.1 ± 0.0 0.28 ± 0.00 0.28 ± 0.00 12.0 ± 0.0 0.35 ± 0.00 0.11 ± 0.00 5.4 ± 0.1 0.64 ± 0.01 0.24 ± 0.00 12.0 ± 0.1 0.81 ± 0.01 0.10 ± 0.00
AVB+AVB 13.2 ± 0.1 0.20 ± 0.00 0.25 ± 0.01 14.6 ± 0.3 0.27 ± 0.01 0.08 ± 0.00 6.6 ± 0.1 0.73 ± 0.01 0.12 ± 0.00 12.1 ± 0.2 0.88 ± 0.00 0.07 ± 0.00
AVB+EBM 11.0 ± 0.1 0.27 ± 0.00 0.21 ± 0.02 13.9 ± 0.6 0.36 ± 0.01 0.08 ± 0.02 6.2 ± 0.1 0.67 ± 0.00 0.18 ± 0.01 12.4 ± 0.3 0.85 ± 0.01 0.08 ± 0.00
AVB+NF 10.2 ± 0.1 0.28 ± 0.00 0.28 ± 0.00 12.0 ± 0.1 0.36 ± 0.00 0.11 ± 0.00 5.5 ± 0.0 0.64 ± 0.00 0.23 ± 0.00 12.0 ± 0.0 0.82 ± 0.01 0.10 ± 0.00
AVB+VAE 11.0 ± 0.1 0.26 ± 0.00 0.28 ± 0.00 12.4 ± 0.1 0.32 ± 0.00 0.12 ± 0.00 5.6 ± 0.3 0.65 ± 0.00 0.21 ± 0.00 12.2 ± 0.0 0.82 ± 0.01 0.10 ± 0.00
VAE 21.4 ± 0.1 0.13 ± 0.00 0.09 ± 0.00 17.8 ± 0.2 0.20 ± 0.01 0.09 ± 0.00 8.8 ± 0.1 0.71 ± 0.01 0.10 ± 0.01 14.8 ± 0.3 0.90 ± 0.00 0.05 ± 0.00
VAE+ 21.1 ± 0.1 0.08 ± 0.00 0.16 ± 0.00 18.3 ± 0.2 0.18 ± 0.00 0.10 ± 0.00 8.9 ± 0.2 0.69 ± 0.01 0.11 ± 0.00 14.7 ± 0.1 0.90 ± 0.01 0.05 ± 0.00
VAE+

σ 21.3 ± 0.1 0.08 ± 0.00 0.15 ± 0.00 18.0 ± 0.2 0.18 ± 0.01 0.11 ± 0.00 8.9 ± 0.1 0.67 ± 0.02 0.12 ± 0.01 14.6 ± 0.2 0.90 ± 0.01 0.05 ± 0.00
VAE+ARM 10.1 ± 0.1 0.28 ± 0.00 0.29 ± 0.01 12.0 ± 0.1 0.38 ± 0.00 0.10 ± 0.00 5.3 ± 0.1 0.64 ± 0.00 0.23 ± 0.01 12.0 ± 0.1 0.81 ± 0.00 0.10 ± 0.00
VAE+AVB 14.0 ± 0.2 0.20 ± 0.01 0.24 ± 0.01 14.5 ± 0.4 0.27 ± 0.01 0.11 ± 0.00 6.9 ± 0.0 0.68 ± 0.01 0.16 ± 0.00 12.3 ± 0.3 0.84 ± 0.00 0.09 ± 0.00
VAE+EBM 11.7 ± 0.2 0.27 ± 0.00 0.17 ± 0.00 13.6 ± 0.2 0.37 ± 0.00 0.07 ± 0.00 6.3 ± 0.1 0.66 ± 0.00 0.19 ± 0.01 12.9 ± 0.4 0.84 ± 0.00 0.09 ± 0.00
VAE+NF 10.1 ± 0.1 0.27 ± 0.00 0.29 ± 0.00 11.8 ± 0.0 0.38 ± 0.01 0.11 ± 0.00 5.3 ± 0.1 0.64 ± 0.00 0.23 ± 0.00 11.9 ± 0.1 0.82 ± 0.00 0.10 ± 0.00

ARM+ 17.9 ± 2.4 0.53 ± 0.03 0.11 ± 0.05 11.8 ± 1.3 0.31 ± 0.03 0.23 ± 0.04 8.2 ± 0.5 0.85 ± 0.02 0.01 ± 0.00 11.4 ± 0.1 0.92 ± 0.00 0.07 ± 0.00
ARM+

σ 5.3 ± 0.1 0.46 ± 0.02 0.47 ± 0.03 4.7 ± 0.1 0.40 ± 0.03 0.38 ± 0.05 6.4 ± 0.1 0.73 ± 0.03 0.10 ± 0.04 10.8 ± 0.1 0.90 ± 0.01 0.08 ± 0.01
AE+ARM 9.8 ± 0.1 0.28 ± 0.00 0.29 ± 0.00 12.2 ± 0.1 0.38 ± 0.00 0.09 ± 0.00 5.8 ± 0.0 0.64 ± 0.00 0.21 ± 0.00 12.2 ± 0.1 0.82 ± 0.00 0.09 ± 0.00

EBM+ 8.7 ± 0.3 0.42 ± 0.01 0.02 ± 0.00 12.7 ± 0.3 0.38 ± 0.01 0.38 ± 0.01 7.7 ± 0.2 0.73 ± 0.01 0.08 ± 0.01 12.0 ± 0.1 0.89 ± 0.00 0.05 ± 0.00
EBM+

σ 8.2 ± 0.4 0.42 ± 0.01 0.02 ± 0.00 12.1 ± 0.4 0.38 ± 0.00 0.01 ± 0.00 8.4 ± 0.5 0.73 ± 0.01 0.08 ± 0.01 11.9 ± 0.2 0.90 ± 0.00 0.05 ± 0.00
AE+EBM 11.3 ± 0.2 0.27 ± 0.01 0.21 ± 0.01 12.7 ± 0.1 0.37 ± 0.01 0.09 ± 0.01 6.7 ± 0.2 0.68 ± 0.00 0.16 ± 0.00 11.9 ± 0.1 0.85 ± 0.01 0.09 ± 0.00

5Among the 44 models comparing against maximum-likelihood in Table 3.
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Table 4: FID scores (lower is better) for non-likelihood based GAEs and two-step models. These GAEs are
not trained to maximize likelihood, so Theorem 1 does not apply. Means ± standard errors across 3 runs are
shown. Unreliable scores are shown in red. Samples for unreliable scores are provided in Fig. 10.

MODEL MNIST FMNIST SVHN CIFAR-10
BiGAN 12.2 ± 0.1 13.2 ± 0.0 6.6 ± 0.0 12.9 ± 0.2
BiGAN+ 12.0 ± 0.1 12.8 ± 0.1 7.1 ± 0.1 11.5 ± 0.1
BiGAN+ARM 10.6 ± 0.1 12.8 ± 0.0 6.1 ± 0.0 13.9 ± 0.1
BiGAN+AVB 12.5 ± 0.0 13.3 ± 0.2 7.4 ± 0.2 15.4 ± 0.2
BiGAN+EBM 11.4 ± 0.1 13.5 ± 0.0 6.9 ± 0.2 14.5 ± 0.2
BiGAN+NF 10.5 ± 0.0 12.8 ± 0.0 6.2 ± 0.2 13.7 ± 0.1
BiGAN+VAE 11.4 ± 0.1 13.4 ± 0.0 6.2 ± 0.0 14.0 ± 0.1
WAE 8.0 ± 0.9 9.7 ± 0.9 7.5 ± 0.9 13.0 ± 0.2
WAE+ 7.7 ± 0.8 10.0 ± 0.5 7.6 ± 1.1 12.8 ± 0.0
WAE+ARM 6.0 ± 0.6 12.2 ± 0.5 9.2 ± 3.3 12.7 ± 0.2
WAE+AVB 8.2 ± 0.9 10.8 ± 0.9 9.3 ± 3.0 12.8 ± 0.3
WAE+EBM 7.2 ± 0.8 14.0 ± 1.3 8.6 ± 2.0 12.9 ± 0.1
WAE+NF 6.0 ± 0.5 10.6 ± 1.5 9.2 ± 3.3 12.6 ± 0.2
WAE+VAE 6.6 ± 0.7 10.7 ± 1.1 9.1 ± 3.1 12.8 ± 0.2

D.4 OOD Detection

OOD Metric We now precisely describe our classification metric, which properly accounts for datasets
of imbalanced size and ensures correct directionality, in that higher likelihoods are considered to be in-
distribution. First, using the in- and out-of-sample training likelihoods, we train a decision stump – i.e.
a single-threshold-based classifier. Then, calling that threshold T , we count the number of in-sample test
likelihoods which are greater than T , nI>T , and the number of out-of-sample test likelihoods which are
greater than T , nO>T . Then, calling the number of in-sample test points nI , and the number of OOD test
points nO, our final classification rate acc is given as

acc =
nI>T + nI

nO
· (nO − nO>T )
2nI

. (29)

Intuitively, we can think of this metric as simply the fraction of correctly-classified points (i.e. acc′ =
nO>T +(nO−nI>T )

nI +nO
), but with the contributions from the OOD data re-weighted by a factor of nI

nO
to ensure

both datasets are equally weighted in the metric.

We show further OOD detection results using log pZ in Table 5, and using log pX in Table 6. We also show
corresponding histograms in Fig. 13, Fig. 14, and Fig. 15.
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Table 5: OOD classification accuracy as a percentage (higher is better), using log pZ . Means ± standard
errors across 3 runs are shown. Arrows point from in-distribution to OOD data.

MODEL FMNIST → MNIST CIFAR-10 → SVHN

AVB+ 96.0 ± 0.5 23.4 ± 0.1
AVB+ARM 89.9 ± 2.4 40.6 ± 0.2
AVB+AVB 74.4 ± 2.2 45.2 ± 0.2
AVB+EBM 49.5 ± 0.1 49.0 ± 0.0
AVB+NF 89.2 ± 0.9 46.3 ± 0.9
AVB+VAE 78.4 ± 1.5 40.2 ± 0.1

VAE+ 96.1 ± 0.1 23.8 ± 0.2
VAE+ARM 92.6 ± 1.0 39.7 ± 0.4
VAE+AVB 80.6 ± 2.0 45.4 ± 1.1
VAE+EBM 54.1 ± 0.7 49.2 ± 0.0
VAE+NF 91.7 ± 0.3 47.1 ± 0.1

ARM+ 9.9 ± 0.6 15.5 ± 0.0
AE+ARM 86.5 ± 0.9 37.4 ± 0.2

EBM+ 32.5 ± 1.1 46.4 ± 3.1
AE+EBM 50.9 ± 0.2 49.4 ± 0.6

Table 6: OOD classification accuracy as a percentage (higher is better), using log pX . Means ± standard
errors across 3 runs are shown. Arrows point from in-distribution to OOD data.

MODEL FMNIST → MNIST CIFAR-10 → SVHN

AVB+ 96.0 ± 0.5 23.4 ± 0.1
AVB+ARM 90.8 ± 1.8 37.7 ± 0.5
AVB+AVB 75.0 ± 2.2 43.7 ± 2.0
AVB+EBM 53.3 ± 7.1 39.1 ± 0.9
AVB+NF 89.2 ± 0.8 43.9 ± 1.3
AVB+VAE 78.7 ± 1.6 40.2 ± 0.2

VAE+ 96.1 ± 0.1 23.8 ± 0.2
VAE+ARM 93.7 ± 0.7 37.6 ± 0.4
VAE+AVB 82.4 ± 2.4 42.2 ± 1.0
VAE+EBM 63.7 ± 1.7 42.4 ± 0.9
VAE+NF 91.7 ± 0.3 42.4 ± 0.3

ARM+ 9.9 ± 0.6 15.5 ± 0.0
AE+ARM 89.5 ± 0.2 33.8 ± 0.3

EBM+ 32.5 ± 1.1 46.4 ± 3.1
AE+EBM 56.9 ± 14.4 34.5 ± 0.1
BiGAN+ARM 81.5 ± 1.4 35.7 ± 0.4
BiGAN+AVB 59.6 ± 3.2 34.3 ± 2.3
BiGAN+EBM 57.4 ± 1.7 47.7 ± 0.7
BiGAN+NF 83.7 ± 1.2 39.2 ± 0.3
BiGAN+VAE 59.3 ± 2.1 35.6 ± 0.4
WAE+ARM 68.1 ± 12.5 37.4 ± 0.5
WAE+AVB 88.5 ± 1.4 39.6 ± 1.3
WAE+EBM 46.3 ± 4.0 37.8 ± 0.9
WAE+NF 92.2 ± 1.9 41.5 ± 2.4
WAE+VAE 88.4 ± 3.1 38.3 ± 0.6
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Figure 13: Comparison of the distribution of log-likelihood values between in-distribution (green) and
out-of-distribution (blue) data. In both cases, the two-step models push the in-distribution likelihoods further
to the right than the NF+ model alone. N.B.: The absolute value of the likelihoods in the NF+ model on its
own are off by a constant factor because of the aforementioned whitening transform used to scale the data
before training. However, the relative value within a single plot remains correct.

Figure 14: Comparison of the distribution of log-likelihood values between in-distribution (green) and out-of-
distribution (blue) data for VAE-based models. While the VAE+ model does well on FMNIST→MNIST, its
performance is poor for CIFAR-10→SVHN. The two-step model VAE+NF improves on the CIFAR-10→SVHN
task.
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Figure 15: Comparison of the distribution of log-likelihood values between in-distribution (green) and out-of-
distribution (blue) data for AVB-based models. While the AVB+ model does well on FMNIST→MNIST, its
performance is poor for CIFAR-10→SVHN. The two-step model AVB+NF improves on the CIFAR-10→SVHN
task.
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