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Abstract

A key property of successful learning algorithms is generalization. In classical supervised
learning, generalization can be achieved by ensuring that the empirical error converges to
the expected error as the number of training samples goes to infinity. Within this classical
setting, we analyze the generalization properties of iterative optimizers such as stochastic
gradient descent and natural gradient flow through the lens of dynamical systems and control
theory. Specifically, we use contraction analysis to show that generalization and dynamical
robustness are intimately related through the notion of algorithmic stability.
In particular, we prove that Riemannian contraction in a supervised learning setting implies
generalization. We show that if a learning algorithm is contracting in some Riemannian
metric with rate λ > 0, it is uniformly algorithmically stable with rate O(1/λn), where n is
the number of examples in the training set. The results hold for stochastic and deterministic
optimization, in both continuous and discrete-time, for convex and non-convex loss surfaces.
The associated generalization bounds reduce to well-known results in the particular case
of gradient descent over convex or strongly convex loss surfaces. They can be shown to be
optimal in certain linear settings, such as kernel ridge regression under gradient flow. Finally,
we demonstrate that the well-known Polyak-Lojasiewicz condition is intimately related to the
contraction of a model’s outputs as they evolve under gradient descent. This correspondence
allows us to derive uniform algorithmic stability bounds for nonlinear function classes such
as wide neural networks.

1 Introduction

Since the seminal work of Bousquet & Elisseeff (2002), the concept of algorithmic stability has been used to
analyze the generalization properties of learning algorithms (Mukherjee et al., 2006; Shalev-Shwartz et al.,
2009; 2010; Hardt et al., 2016). Roughly speaking, algorithmic stability refers to the notion that small
changes to the training set will lead to small changes in the output of the learning process.

In this work, we focus on iterative optimizers within a supervised learning setting, where we are given access
to a number of labelled training points drawn from some underlying common distribution, as well as a loss
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function which quantifies performance. Within this setting, we show that algorithmic stability is intimately
related to notions of robustness from the dynamical systems and control literature. In particular, we make
a connection between algorithmic stability and contractive stability (Lohmiller & Slotine, 1998). Loosely, a
dynamical system is contracting if it forgets its initial conditions exponentially quickly.

Contraction analysis has found wide application in nonlinear control theory (Manchester & Slotine, 2017),
robotics (Chung & Slotine, 2009), and synchronization (Pham & Slotine, 2007). However, it has only recently
been applied to machine learning (Boffi et al., 2020; Revay & Manchester, 2020; Jafarpour et al., 2021; Burghi
et al., 2022). We show that if an optimizer is contracting (Lohmiller & Slotine, 1998) in some Riemannian
metric (in a precise sense defined below) then it is algorithmically stable. Due to the generality of contraction
analysis and the flexibility afforded us by the choice of metric, our theory applies to wide variety of common
optimizers–for example gradient flows and stochastic minibatch gradient descent–operating over both convex
and non-convex loss surfaces (see Figures 1, 2, and 3).

Figure 1: Example loss surfaces for which our results apply. Left panel: strongly convex and convex loss
surfaces (sections 3.1 and 4.2.1). Middle panel: isolated local minima surrounded by basins of contraction
(see Theorem 7). Right panel: valley of path-connected global minima (see section 4.2).

1.1 Related Work

A key early result in analyzing generalization in iterative optimization came from (Hardt et al., 2016),
which established algorithmic stability for stochastic gradient methods. Later (Mou et al., 2018) proved
similar results for stochastic gradient Langevin dynamics. Shortly thereafter (Charles & Papailiopoulos,
2018) showed that for loss functions satisfying certain geometrical constraints (e.g., the Polyak-Łojasiewicz
inequality (Polyak, 1963)), any optimizer that converges to a global minimum is also algorithmically stable.
Since then, several follow-up works have analyzed the algorithmic stability of accelerated gradient methods,
and the tradeoffs between optimization accuracy and algorithmic stability (Chen et al., 2018; Ho et al.,
2020; Attia & Koren, 2021). The present work is similar in spirit to Charles & Papailiopoulos (2018), in
the sense that we use an assumed stability property (in our case, contraction of optimizer trajectories) to
derive generalization bounds for a wide class of optimizers. The following section introduces our supervised
learning setting, which is the same setting as in Hardt et al. (2016), and provides necessary background on
algorithmic stability.

1.2 Algorithmic Stability Background

We consider a generic supervised learning setting where we have access to n labelled examples, assumed to
be drawn i.i.d from an unknown distribution D (Vapnik, 1999). We collect these examples into a training
set S = (z1, . . . , zn). The population risk with respect to a loss function ℓ is defined as

R[θ] = Ez∼D ℓ(θ, z)

where θ ∈ Rm describes a model. We assume that we do not know the population risk, so we use the
empirical risk as a proxy

RS [θ] = 1
n

n∑
i=1

ℓ(θ, zi)

The difference between the population and empirical risk is denoted as the generalization error of model θ

∆gen(θ) ≡ R[θ] −RS [θ]
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We now define the stability of an algorithm, and relate it to this generalization error. Consider an algorithm
A that takes in S and outputs a model (e.g., a parameter vector θ).
Definition 1 (Uniform Algorithmic Stability). An algorithm A is ϵ-uniformly stable if for all data sets S, S′

such that S and S′ differ in at most one example, we have

sup
z

EA[ℓ(A(S), z) − ℓ(A(S′), z)] ≤ ϵ (1)

where the expectation is taken over the randomness of A, if any.

A key result in learning theory states that uniform stability leads to generalization in expectation (Bousquet
& Elisseeff, 2002; Shalev-Shwartz et al., 2010; Hardt et al., 2016). In particular, we use Theorem 2.2 of
Hardt et al. (2016).
Theorem 1. Let A be ϵ-uniform stable and let ES,A denote an expectation taken over the samples S and
the randomness of A. Then, |ES,A

[
∆gen(A(S))

]
| ≤ ϵ.

If the output of A is some parameter vector θ and we assume that our loss function is L-Lipshitz for every
example zi with respect to some norm || · ||, then the difference between two trajectories of an optimizer
trained on set S and S′ can be used to bound the generalization error, because

EA[|ℓ(θS , z) − ℓ(θS′ , z)|] ≤ LEA||θS − θS′ || (2)

Rather than only considering the Euclidean distance ||θS − θS′ ||, in this paper we consider the geodesic
distance dM(θS ,θS′) computed on a Riemannian manifold M = (Rm,M) (Figure 2). Here M(θ, t) ∈ Rm×m

is the positive definite metric associated to M. There are many optimization settings for which the geodesic
distance between two points – as opposed to the Euclidean norm – is the more natural distance measure
to consider (Amari, 1998; Wensing & Slotine, 2020). The main takeaway of this paper is that Riemannian
contraction implies generalization in supervised learning. The details about this generalization (e.g., its
dependence on the number of samples n and the training time T ) depend on the dynamical equations of
the optimizer, as well as the geometry of the loss landscape, as we will see. We now provide background on
nonlinear contraction analysis before stating our results.

1.3 Nonlinear Contraction Theory Background

Consider a state vector θ ∈ Rm, evolving according to the continuous-time dynamics

θ̇ = f(θ, t) (3)

where it is assumed that all quantities are real and smooth, so any required derivative or partial derivative
exists and is continuous. Then we have the following definition
Definition 2 (Contracting Dynamical System). Denote the Jacobian of (3) by J ≡ ∂f

∂θ (θ, t). If there exists
a symmetric positive-definite metric M(θ, t) : Rm × R → Rm×m and a scalar λ > 0 such that the following
differential Lyapunov matrix equation is uniformly satisfied in space and time

Ṁ + MJ + JTM ≤ −2λM (4)

then the geodesic distance defined with respect to M between any two trajectories of (3) converges to
zero exponentially, with rate λ, and (3) is said to be contracting. Discrete-time contraction can be defined
similarly (Lohmiller & Slotine, 1998). One may consider more generally in (4) a (uniformly positive definite)
instantaneous contraction rare λ(t).

1.3.1 Robustness of Contracting Systems

Contracting systems are robust to disturbances, in the following sense. Assume that (3) is contracting in
metric M = T(θ, t)TT(θ, t) with rate λ. Now consider the same dynamics as (3), perturbed with some
disturbance

θ̇p = f(θp, t) + d(θp, t) (5)
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Figure 2: The geodesic distance between optimizer trajectories θS and θS′ . If the optimizer is contracting
with rate λ, this distance, denoted by the dashed line in the figure and dM(θS ,θS′) in the text, shrinks until
the two trajectories are within a ball of radius O( 1

nλ ).

The geodesic distance dM(θ,θp) satisfies the differential inequality
d
dtdM(θ,θp) + λdM(θ,θp) ≤ ||T(θ, t)d(θp, t)|| (6)

Assuming there exists a finite constant D such that ||d(θp, t)|| ≤ D uniformly, (6) implies

R(t) ≤ χR(0)e−λt + Dχ

λ
(7)

where R(t) ≡ ||θ(t) − θp(t)|| and χ denotes an upper-bound on the condition number of T. Likewise for the
discrete-time dynamics contracting in some metric with rate 0 < µ < 1

θt+1 = f(θt, t)

the analogous result is
R(t) ≤ χR(0)µt + Dχ

(1 − µ) (8)

For proofs of these statements we refer the reader to Lohmiller & Slotine (1998) (section 3.7, vii) as well as
Del Vecchio & Slotine (2012) and Proposition 1 in the appendix of Zhang et al. (2021).

If we interpret (3) as an algorithm, then the only source of indeterminacy in this algorithm is the initial
condition θ(0). Therefore if (3) is always initialized within a ball of radius C/2 of some reference point, then
(7) may be stated in expectation

EA[R(t)] ≤ EA[χR(0)e−λt + Dχ

λ
] ≤ χCe−λt + Dχ

λ
(9)

where we have used the linearity of the expectation value operator, as well as the assumption EA[R(0)] ≤ C.

Let us also state a new robustness result using instantaneous contraction rates, which will be useful later.
Theorem 2. If the instantaneous contraction rate λ(t) > 0 of a system tends towards a finite limit λ∞,
with λ̇ → 0, then R(t) tends to the bound 0 ≤ R(t) ≤ χD

λ∞
.

Proof. By analogy with (Slotine & Coetsee, 1986), define R∆ = R− ϕ sat(R/ϕ) where ϕ ≡ χD
λ(t) . One has

d

dt
R2

∆ + 2λ(t)R2
∆ ≤ 2R∆ϕ̇

As t → +∞, the right-hand side of the above inequality tends to zero, which in turn implies (from the
Bellman-Gronwall lemma) that R∆ tends to zero, i.e., that R tends to the bound R ≤ ϕ∞ = χD

λ∞
.
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1.3.2 Geodesics and Bounded Distortions

To ensure that our results are coordinate-free, we show that the ‘distortion factor’ between the geodesic dis-
tances computed along two different manifolds M1 and M2 is uniformly bounded. The practical implication
is that geodesic distances as measured in two different metrics can differ by no more than a constant factor,
which precludes any situation where a system is stable in one metric (geodesic distances between trajectories
shrink to zero) and not stable in another metric (geodesic distances do not shrink to zero).
Theorem 3. Consider two Riemannian metrics M1(θ, t) and M2(θ, t) satisfying

α1I ⪯ M1(θ, t) ⪯ β1I (10)
α2I ⪯ M2(θ, t) ⪯ β2I (11)

with αi, βi > 0. Then the corresponding geodesic distances evaluated between two points, θ and y, satisfy the
bound √

α1

β2
≤ dM1(θ,y)
dM2(θ,y) ≤

√
β1

α2

Note that the lower bound on the metric follows from the requirement that to define a proper metric, the
matrix M(θ, t) must be uniformly positive definite for all θ and t. The upper bound can be ensured when
e.g., the norm of the metric is Lipshitz with respect to the state, and the state remains within a finite set
(as is the case with contracting optimizers, as we will see).

2 Main Results

2.1 Contracting Optimizers are Algorithmically Stable

In this section we prove our main result for continuous-time optimizers using the entire training batch. We
start with this case because it is the simplest. Later on, we provide the same result for stochastic, discrete-
time optimizers such as mini-batch stochastic gradient descent. We assume that our parameter update is
sum-separable with respect to training set S

θ̇S = G(θS , S) = 1
n

n∑
i=1

g(θS , zi) (12)

In this case the output of algorithm A(S) is the vector θS obtained by simulating (12) for time t. We also
assume that ||g|| ≤ ξ, for some constant ξ. If we interpret g as the gradient of some loss ℓ, then this corre-
sponds to assuming that ℓ is ξ-Lipschitz. Finally, we assume that the optimizer is always initialized–perhaps
randomly– within a ball of radius C/2 around some reference point. Now consider the same parameter
update with respect to training set S′, which differs from S in one example

θ̇S′ = G(θS′ , S′) (13)

We can now state our first main result.
Theorem 4. [Contraction Implies Algorithmic Stability] If the dynamics (12) are contracting in metric
M = T(θ, t)TT(θ, t) with rate λ, then A is uniformly ϵ-stable, with

ϵ ≤ χLe−λtC + 2χLξ
λn

(14)

where χ denotes a uniform upper-bound on the condition number of T(θ, t). Going forward we refer to
ϵstab ≡ 2χLξ

λn .

Proof. We shall write (13) as a perturbed version of (12) and then apply the robustness property of con-
tracting systems to yield the result. Letting k denote the index of the replaced element in S ′, we can write
θ̇S′ as

θ̇S′ = 1
n

n∑
i=1

g(θS′ , zi) − 1
n

[
g(θS′ , zk) − g(θS′ , z′

k)
]
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where we have just subtracted out the term involving zk from the sum, and added in the replacement term
z′
k. This may be viewed as a perturbed version of (12), with disturbance

||d(θS′ , zk, z
′
k, n)|| = || 1

n
(g(θS′ , zk) − g(θS′ , z′

k))|| ≤ 2ξ
n

= D (15)

Plugging D into (9), multiplying through by L because of (2), and taking the expectation EA to produce
R(0) yields the result.

Remark 1 (Leave-One-Out Stability). As pointed out in (Bousquet et al., 2020), for interpolation algo-
rithms (such as, e.g., the highly overparameterized searches common in deep learning) it is more meaningful
to analyze leave-one-out stability, rather than replace-one stability as we just did. The same dynamical ro-
bustness argument applies immediately to this case, with D and therefore ϵstab reduced by a factor of two, as
(15) is replaced by

||d(θS′ , zk, z
′
k, n)|| = || 1

n
g(θS′ , zk)|| ≤ ξ

n

Remark 2 (Generalization with High Probability). A well-known limitation of using algorithmic stability to
derive generalization bounds is that the bounds only hold in expectation. However, one can use Chebyshev’s
inequality to derive generalization bounds that hold with high probability (Bousquet & Elisseeff, 2002; Elisseeff
et al., 2005; Feldman & Vondrak, 2019; Bousquet et al., 2020). It is well known that these bounds are tight
in the case when algorithmic stability scales with 1/n, see e.g., Theorem 12 and Remark 13 in (Bousquet &
Elisseeff, 2002). Theorem 4 shows that (after exponentially decaying transients) deterministic contracting
optimizers generalize with rate 1/n. In Section 2.2, Theorem 5 will show that this 1/n scaling also holds for
the stochastic optimization case.
Remark 3 (Scaling Dynamics Does not Change Generalization Rate). Note that if we ‘speed up’ the dy-
namics in (12) by some factor κ > 0

G(θS , S) → κG(θS , S)

one might intuitively expect the contraction rate to be scaled by κ as well (λ → κλ), which would allow
an arbitrary increase of the rate of generalization in (14) by simply increasing κ. Note however that this
is prevented by the presence of ξ in (14), which is also scaled by κ. The κ terms in the numerator and
denominator therefore cancel out, leaving ϵstab unchanged. The exponentially decaying term in (14), however,
decays with new rate κλ.
Remark 4 (Lipschitz Assumption). As pointed out in Hardt et al. (2016), there are cases where L as defined
in (2) may not exist. For example, strongly convex functions have unbounded gradients on Rm. In this case
we will overload the symbol L to be

L = sup
θ∈Ω

sup
z

||∇ℓ(θ, z)||2

where Ω denotes a compact set where the iterates of the optimizer are known to remain when initialized in
a given compact region. For contracting optimizers and β-smooth loss functions (∇2ℓ ⪯ βI), L is always
finite. In particular, if we have some compact set of initial conditions and our optimizer is contracting (in a
uniformly positive-definite metric), then the trajectories of the optimizer from any of those initial conditions
will remain bounded. Indeed, any one trajectory will converge to a fixed point, and all the others must remain
in a tube around its iterates (Lohmiller & Slotine, 1998). With this construction, we have a direct bound on
the diameter of the set that the iterates of the optimizer must remain within, which we denote diameter(Ω).
In this case we have L ≤ β diameter(Ω).

2.2 Stochastic, Contracting Optimizers are Algorithmically Stable

In this section we show that a variant of Theorem 4 holds for stochastic, discrete-time optimizers (for example
mini-batch stochastic gradient descent). Consider the iterative optimizer

θSt+1 = 1
b

b∑
i=1

g(θSt , zi) (16)
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Figure 3: Left subplot) Two trajectories of a contracting optimizer, seeded from two different initial conditions,
evolving over a non-convex loss surface (Rosenbrock function, f(x, y) = 100(x2 − y)2 + (x − 1)2). Both
exponentially converge to the global minimizer of the function. Trajectories superimposed over a contour
plot of the loss surface. Right subplot) A different view of the same optimization process, more clearly
displaying the non-convexity of the loss surface.

where 1 ≤ b ≤ n is the size of the mini-batch and zi are samples drawn randomly from set S. As before we
assume that g is smooth and bounded as ||g|| ≤ ξ. Since (16) defines a discrete-time, random dynamical
system (Tabareau & Slotine, 2013) we have to define what we mean by ‘contraction’. In particular we
will rely on an assumption of ‘contraction in expectation’, by which we mean the following. Consider two
instantiations of the same discrete-time, random dynamical system

θt+1 = f(θt, t,Γ)
yt+1 = f(yt, t,Γ)

with potentially different θ0 and y0, and where Γ denotes a particular realization of a stochastic process
which is the same for both θ and y. In our case, this stochasticity stems from the random sampling of
training set datapoints to form a mini-batch. We will say that this system is contracting in expectation if
for a sequence of metrics M0, . . . ,Mt we have

EA[dMt+1(f(θt, t,Γ), f(yt, t,Γ))] ≤ µEA[dMt(θt,yt)]

where 0 < µ < 1 and each metric is bounded MminI ⪯ Mi ⪯ MmaxI. We can now state the following
theorem
Theorem 5. [Contraction Implies Algorithmic Stability (Stochastic, Discrete)] Assume (16) is contracting
in expectation, as defined above. In this case A is uniformly ϵ-stable with bound

ϵ ≤ LχCµt + 2χLξ
(1 − µ)n (17)

Proof. See appendix section A.1.

Remark 5. Note that (17) does not depend on the batch size, b. Intuitively, this is because the resampled
datapoint z′

k will appear in a given batch with probability b/n, but the magnitude of the disturbance this causes
on the optimizer dynamics scales with 1/b. These two terms interact multiplicatively, so that the b terms
cancel, leaving only the 1/n scaling.

3 Examples of Metrics

3.1 Preconditioned Gradient Descent On Strongly Convex Loss Functions

In this example we show that our theory reproduces known stability bounds for gradient descent on strongly
convex losses. To illustrate the role of the contraction metric, we consider preconditioned gradient descent.
Consider this descent over an empirical loss function which is γ-strongly convex with respect to a parameter
vector θ

θ̇ = −P−1∇L
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where P is a positive-definite and symmetric matrix. Denote the largest and smallest eigenvalues of P as
pmax and pmin, respectively. The Jacobian of this system is

J = ∂θ̇

∂θ
= −P−1∇2L

Picking the metric M = P, we see that

PJ + JTP = −2∇2L ≤ −2γI ≤ − 2γ
pmax

P

and thus the system is contracting in metric P with rate λ = γ/pmax. Our algorithmic stability bound is
therefore

ϵstab =

√
p3
max

pmin

2L2

γn

Where L is given by (4). Note that in the case of regular gradient descent, without preconditioning (i.e.,
P = I) the above analysis shows that λ = γ and χ = 1. Plugging these numbers into equation (14) yields
the following

ϵstab = 2L2

γn

which is precisely the result of Theorem 3.9 in (Hardt et al., 2016).
Remark 6 (Natural Gradient on Geodesically Strongly Convex Losses). Natural gradients are a popular
way to incorporate geometric information about the loss surface into gradient-based optimization techniques
(Amari, 1998; Zhang et al., 2019). An equivalence between g-Strong Convexity and global contraction of
natural gradient flows was given in (Theorem 1, (Wensing & Slotine, 2020)). That is, the optimizer dynamics

θ̇ = −M(θ)−1∇L(θ)

are globally contracting in the metric M if and only if L(θ) is geodesically strongly convex over M. In
this case Theorem 4 of the present work applies immediately, in precisely the same fashion as the preceding
subsection.

3.2 The Choice of Metric is Critical

We now consider a simple two-dimensional, analytical example where failing to include a metric leads to
inconclusive stability and generalization bounds. Consider minimizing the classical nonconvex Rosenbrock
function (Figure 3)

ℓi = ai(θ2
1 − θ2)2 + (θ1 − 1)2

where θ =
[
θ1 θ2

]T and ai is a bounded random variable whose expected value is 100. The mean loss over
training samples is

L = 1
n

n∑
i=1

ℓi = ⟨a⟩(θ2
1 − θ2)2 + (θ1 − 1)2

where ⟨a⟩ denotes the empirical average

⟨a⟩ = 1
n

n∑
i=1

ai

We consider the large n limit, where ⟨a⟩ ≈ 100. It was shown in Wensing & Slotine (2020) that when
a = 100, the natural gradient descent dynamics

d
dtθ = −M−1(θ)∇θL
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is contracting with rate α > 0 in metric

M(θ) =
[
400 θ2

1 + 1 −200 θ1
−200 θ1 100

]
By Theorem 4, this implies a generalization rate of order 1/nα. We can now ask what happens if we use the
identity metric in the stability analysis, instead of M(θ). It can be shown that the Jacobian of the natural
gradient descent dynamics above are

J = ∂θ̇

∂θ
= 2

[
1 0

θ1 − 1 −1

]
without the metric, the contraction condition (4) requires that the eigenvalues of the symmetric part of J
are uniformly negative definite. However, it is readily shown these eigenvalues are

λ1 = −
√
θ2

1 − 2θ1 + 5 = −λ2

Because λ2 is always positive, the natural gradient descent dynamics are not contracting in the identity
metric, and thus one would not be able to derive generalization bounds in this case.

3.3 Identity Metric is Optimal for Ridge Regression

In section 3.2, we demonstrated that the choice of metric can be critical for establishing stability and
generalization bounds. For certain nonlinear optimization problems, this metric will naturally be state-
dependent (such as in natural gradient descent). However, for other optimization problems, in particular
linear ones, a constant metric is to be expected. In this setting, one can ask if there exists an optimal metric
in terms of providing the best generalization bounds. In the case of ridge regression, we prove that the
answer is yes, and that this metric is in fact the identity metric. This is sharply contrasted with nonlinear
optimization problems, where the identity metric can fail to produce stability and generalization bounds (see
section 3.2).

For constant metrics, our stability bound ϵstab ∼ χ
λ depends on the condition number of the contraction

metric (specifically its square root) to the contraction rate measured in that metric. Different metrics yield
different ϵstab, so it is natural to ask whether an ‘optimal’ metric Moptimal exists, such that

ϵstab(Moptimal) ≤ ϵstab(M)

While finding such a metric is in general not easy to do, we show that it is possible in the case of gradient
descent for kernel ridge regression (Shawe-Taylor et al., 2004). Kernel methods (which are inherently linear)
can be used to derive insights into nonlinear systems such deep neural networks (Jacot et al., 2018; Lee et al.,
2019; Fort et al., 2020; Canatar et al., 2021). Without loss of generality, we assume an element-wise feature
map such that for a matrix X ∈ Rq×z, the matrix ϕ(X) ∈ Rq×z satisfies ϕ(X)ij = ϕ(Xij). The squared-loss
for kernel ridge-regression is

L = 1
2n

n∑
i=1

(ϕ(xi)w − yi)2 + α

2 ||w||2

where the ϕ(xi) are feature row vectors, w ∈ Rm are the linear model parameters to be learned, and the
yi ∈ R are target labels. The parameter α > 0 is the regularization parameter. Under gradient descent
ẇ = −∇L the Jacobian of the optimizer dynamics is

∂ẇ
∂w = J = −(G + αI)

where G ≡ 1
nϕ(X)Tϕ(X) and X ∈ Rn×d is a constant matrix with xi as the ith row. The Jacobian J is

symmetric, constant, and negative-definite. Thus, the optimizer is contracting in the identity metric with
rate λI = λmin(G) + α, where λmin(·) denotes the smallest eigenvalue. We now prove the following
Theorem 6. For kernel ridge regression, the algorithmic stability bound ϵstab is minimized for M = I.
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Proof. Recall that for an arbitrary, constant metric we are looking for a positive-definite symmetric Q such
that

MJ + JM = −Q ≤ −2λM
Ignoring χ for a moment, we can ask: out of the set of all possible metrics, is there a metric that yields the
largest contraction rate λ? An interesting result from linear dynamical systems theory is that the answer
is in fact yes. While there can be many metrics for linear systems that give the largest possible λ, one can
always be found from setting Q = I and solving for M (see, e.g., section 3.5.5 in (Slotine & Li, 1991)). Since
J is symmetric, in our case this metric corresponds to the diagonalizing metric

Mlargest = 1
2J−1 = 1

2(G + αI)−1

The contraction rate λlargest corresponding to this metric is

λlargest = 1
2

1
λmax(Mlargest)

= λmin(G) + α

which is precisely the same contraction rate as measured in the identity metric. Thus λI = λlargest. Now
we simply use the fact that χI = 1 ≤ χM for any metric. Since M = I corresponds to the largest possible λ
and the smallest possible χ = 1, the ratio of χ to λ is minimal over all possible M when M = I. Thus

ϵstab(I) ≤ ϵstab(M)

Figure 4: For a fixed G ∈ R3×3, we randomly generate Q and solve for M. We then calculate the ratio
χ/λM (the only metric-dependent terms in our algorithmic stability bound). We repeat this procedure 4000
times. Left subplot) The ratio χ/λM plotted against χ. Right subplot) The ratio χ/λM bound plotted against
λM . Details are in the main text. These plots illustrate our theoretical result that the identity metric gives
the optimal (i.e smallest) algorithmic stability bound. They also illustrate the reason: the identity metric
simultaneously obtains the smallest condition number and the largest contraction rate, thus minimizing the
ratio of the former to the latter.

This result is illustrated in Figure 4. To create this plot we generated a random G ∈ R3×3. Then we
generated random Q and solved the Lyapunov equation for M using an implementation of the Bartels-
Stewart algorithm in SciPy (Bartels & Stewart, 1972; Virtanen et al., 2020). In addition to these random
Q, we also set Q = I to obtain the M corresponding to the largest λ. For each of these Q and M pairs, λM
is given by λM = 1

2
λmin(Q)
λmax(M) (Slotine & Li, 1991). We computed T via a Cholesky decomposition (also using

SciPy) and then performed a singular value decomposition to obtain χ. One interpretation of this result
is: there is no ‘better’ coordinate system. That is, there is no coordinate transformation we could perform
on the state vector w which would give us tighter algorithmic stability bounds. This is because a constant
metric M = TTT corresponds to the coordinate change w → Tw.
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3.4 Immersions and Embeddings

Early concepts in machine learning, such as support vector machines (Vapnik, 1999) and kernel meth-
ods (Shawe-Taylor et al., 2004), build on the idea that immersing data points into a higher dimensional
space can often simplify learning. Using the same intuition, we explore the potential to simplify the con-
traction analysis of an optimizer through the use of a higher-dimensional immersion. Contraction properties
of immersions in higher-dimensional spaces can be easily translated in terms of metrics in the original low
dimensional space, as pointed out in (Yi & Manchester, 2021) in the special case of linear Koopman embed-
dings. Conversely, modern machine learning makes extensive use of compressed representations and lower
dimensional embeddings of the original space (Goodfellow et al., 2016), e.g. through the use of autoencoders.
We show how contraction properties in the compressed (or latent) space can be related to contraction prop-
erties of the original space. In both cases, the generalization bounds derived in this paper can be readily
applied.

Immmersions Consider immersing a lower dimensional state θ ∈ Rm into a higher dimensional one z ∈ Rd,
with d ≥ m

z = ψ(θ) (18)
where ψ(θ) is continuously differentiable, ∂ψ

∂θ has full column rank, and the vector fields ż and θ̇ are com-
patible (i.e., for each θ, ż at ψ(θ) agrees with ∂ψ

∂θ θ̇ at θ).

Assume that the higher dimensional system is contracting in some metric M(z, t)

d

dt
δzTM(z, t)δz ≤ −2λ δzTM(z, t)δz (19)

with δz a differential displacement (Lohmiller & Slotine, 1998) and λ a strictly positive constant. Since

δz = ∂ψ

∂θ
δθ

equation (19) can be equivalently written

d

dt
δθTMθ(θ, t)δθ ≤ −2λ δθTMθ(θ, t)δθ

with
Mθ(θ, t) = ∂ψ

∂θ

T

M(ψ(θ), t) ∂ψ
∂θ

This shows that the original θ system is also contracting, in metric Mθ , with the same contraction rate λ.

More generally, one can consider a differential immersion of the form

δz = T(θ, t)δθ

with T(θ, t) of full column rank, and assuming as before that d
dtδz and d

dtδθ are compatible. Note that
such an immersion does not require the above equation to be integrable, i.e., an explicit z to exist as
in (18). It corresponds to immersing the vector field for θ into one defined in some higher dimensional
Riemannian manifold rather than a Euclidean space. By the same argument as above, contraction of the
higher-dimensional system in the metric M(ψ(θ), t) implies contraction of the lower dimensional system at
the same rate in the metric

Mθ(θ, t) = TT (θ, t) M(ψ(θ), t) T(θ, t)
This result may simplify the contraction analysis of the lower dimensional one. In particular, if the higher
dimensional system is contracting in a constant metric M, so that Ṁ = 0 in (4), then we can immedi-
ately conclude that the lower dimensional system is contracting in the time-varying, state-dependent metric
Mθ(θ, t) = TT (θ, t) M T(θ, t) , without having to deal explicitly with the time-derivative of that metric.

In the generalization bound of Theorem (4), both the contraction rate λ and the 1/n scaling remain un-
changed. In addition, decomposing M(ψ(θ), t) as M(ψ(θ), t) = BT (ψ(θ), t)B(ψ(θ), t), χ is now replaced by
χ = χTχB where χT and χB denote upper bounds on the condition numbers of T(θ, t) and B(ψ(θ), t).
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Embeddings The same logic can in fact be applied to embeddings in lower-dimensional spaces. Assume
for instance that there exists a high-quality autoencoder for the original state θ ∈ Rm. In other words, there
exists an encoder E and a decoder D such that z = E(θ) ∈ Rd and (ideally) D(z) = θ, with d ≤ m. Assume
the compressed (latent) z dynamics are contracting with rate λ in a metric of a specific form,

d

dt
δzTMz(z, t)δz ≤ −2λ δzTMz(z, t)δz with Mz(z, t) = ∂D

∂z

T
M(z, t) ∂D

∂z
then the original θ dynamics are contracting in metric M(E(θ), t) with the same rate λ. This follows
directly from substituting above the identity δθ = ∂D

∂z δz and using z = E(θ). One may choose to compute
generalization bounds in the latent space or the original space.

4 Weaker Notions of Stability

Contraction imposes a strong condition on trajectories: they must converge toward one another exponentially.
Such convergence can be expected for parameter trajectories around isolated local or global minima, as
discussed above. However, in modern machine learning, one often observes parameter trajectories which
converge towards a common basin of low/zero loss, where minima may lie among a low-dimensional manifold
(Garipov et al., 2018; Draxler et al., 2018; Fort et al., 2020; Liu et al., 2021). To accommodate these cases,
we now discuss several weaker notions of contraction–specifically local contraction, semi-contraction, partial
contraction, and output contraction–which also yield ‘well-behaved’ algorithmic stability bounds.

4.1 Loss Surfaces with Many Local Minima

A contraction region (i.e., a forward invariant region of state space that satisfies Definition 2) for an au-
tonomous system contains at most one equilibrium point (Lohmiller & Slotine, 1998). From this it follows
that gradient descent over a loss surface with many local equilibria cannot be globally contracting. For-
tunately, if Definition 2 holds within a subset of state-space, and additionally the system can be shown to
remain in that subset for all time (i.e., the subset is forward invariant), then that system is locally contracting.
This motivates the following general result, as well as an optimization-specific remark.
Theorem 7. Consider the system (3) initialized inside an inner Euclidean ball of radius b, which is fully
contained within an outer contraction region (which we also assume without loss of generality to be a Eu-
clidean ball) of radius B > b. Assume that (3) stays within the inner ball for all time. Now consider the
perturbed dynamics (5). If B ≥ b(χ+ 1) + χD

λ then (5) stays within the outer contraction region for all time,
and the robustness result (7) holds.

Proof. By (7), the perturbed trajectory will be at most distance χb+ χD
λ from the unperturbed trajectory.

Since the unperturbed trajectory is always contained within a ball of radius b, this implies the perturbed
trajectory is also contained in a ball of radius b + χb + χD

λ , assuming it stays in a contraction region. To
ensure that it does in fact stay within a contraction region, we must have that B ≥ b(χ+ 1) + χD

λ .

Remark 7. In the case of continuous-time optimizer (12), we have that θS converges exponentially to the
equilibrium point θ∗

S enclosed by the contraction region

||θ∗
S − θS || ≤ χe−λtb

Since θ∗
S is a particular trajectory of the optimizer dynamics, by robustness we also have

||θ∗
S − θS′ || ≤ χe−λtb+ 2χξ

λn

by the triangle inequality
||θS − θS′ || ≤ 2χe−λtb+ 2χξ

λn
this puts the following lower bound on the size of the contraction region B

B > 2bχ+ 2χξ
λn

12
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4.2 Semi-Contracting Optimizers

If the optimizer is not strictly contracting (λ > 0), but instead is semi-contracting (i.e., λ ≥ 0) then our
algorithmic stability bound ϵstab is not independent of the training time. This is because the geodesic
distance dM(θ,θp) between unperturbed and perturbed trajectories evolves according to

d
dtdM(θ,θp) + λdM(θ,θp) ≤ ||T(θ, t)d(θp, t)||

If the only information we have about λ is that it is non-negative, then we can only bound the distance
between trajectories as

dM(θ,θp) ≤ sup(||T(θ, t)d(θp, t)||)T +R(0)

Considering the disturbance bound ||d(θp, t)|| ≤ 2ξ
n leads to the algorithmic stability bound

ϵ ≤ L

[
2χξ
n
T +R(0)

]
(20)

This bound holds generally for semi-contracting systems. However, without additional information about
the optimizer dynamics, this bound gets worse as T → ∞. If we know additional information about the
dynamics–for example, that they are modulated by a decaying learning rate–much tighter bounds can be
obtained. We show this with the following example.

4.2.1 Example: Gradient Flows on Convex Losses

Here we show how the above analysis reproduces a well-known result from Hardt et al. (2016) regarding the
algorithmic stability of SGD on convex (but not strongly convex) losses.

Assume that the Hessian of the loss function is positive semi-definite

∇2L ≥ 0

and consider the gradient flow with learning rate scheduler (Goodfellow et al., 2016)

θ̇ = −α(t)∇L

where α(t) ≥ 0. This optimizer is semi-contracting in the identity metric, since

∂θ̇

∂θ
= −α(t)∇2L ≤ 0

In this case the disturbance term in Theorem 4 is the same as before, only with an additional α(t) factored
in. To facilitate comparison with Hardt et al. (2016), we assume as they do that the optimizer is always
initialized at the origin (i.e., R(0) = 0). The Euclidean distance between the optimizer trajectories on
training sets S and S′ evolves according to

Ṙ ≤ α(t)D

where D = 2L/n. Integrating this inequality and setting R(0) = 0 yields the algorithmic stability bound

ϵ ≤ 2L2

n

∫ T

t=0
α(t)dt

which is the result of Hardt et al. (2016), Theorem 3.8. We remind the reader that the extra factor of L
is picked up from (2). This result helps explain why a decaying learning rate is a useful strategy in deep
learning–if the learning rate decays quickly enough (e.g., exponentially), the above integral converges, so
that n and T do not compete with each other, as they do in (20).
Remark 8. The equivalence between semi-contraction of natural gradient flows in the natural metric and
geodesic convexity was recently proven in Wensing & Slotine (2020). Thus the above algorithmic stability
bound extends immediately to this case.
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4.3 Output Contractions, Neural Tangent Kernels, and Polyak-Lojasiewicz

The same robustness arguments developed above can be applied to outputs of nonlinear models, through the
concept of a Neural Tangent Kernel (NTK) (Jacot et al., 2018). While so far we have been using contraction of
the model parameters θ to derive generalization bounds, for this section will use the contraction of the model
outputs to derive generalization bounds. NTK training may be viewed as contraction on a Hilbert space,
a special case of Riemannian manifold, allowing a straightforward application of the robustness arguments
developed above. As we will show, contraction of the model outputs is a consequence of using gradient
descent/flow together with mean-squared loss, and does not require any additional assumptions, such as
convexity of the loss with respect to the model parameters.

Consider the following nonlinear model Fθ, parameterized by a set of weights θ ∈ Rm. For each input vector
xi the model produces a p-dimensional output. We denote this output yi. We will also find it useful to
define a vector y obtained by stacking these vectors

yi = Fθ(xi) = F(xi) ∈ Rp and y =

y1
...

yn

 ∈ Rnp (21)

We will assume that Fθ(xi) is Lipschitz with respect to the weights θ, namely that there exists some κ ≥ 0
such that

||∇θF(xi)||2 ≤ κ

We will also assume that the model is sufficiently overparameterized (Liu et al., 2021; Arora et al., 2019;
Nguyen et al., 2021) so that the NTK, H ∈ Rnp×np, is positive definite

H = 1
n

∇T
θ y ∇θy ⪰ λ0 with λ0 > 0

With these assumptions in hand, the main result of this section is as follows.
Theorem 8. Using gradient flow together with mean-squared loss, the overparameterized model defined in
(21) is algorithmically stable with rate

ϵstab ∼ O
(

κ

λ0
√
n

)
where λ0 > 0 is a uniform lower bound on the smallest eigenvalue of the Neural Tangent Kernel.

Proof. As in the previous sections, we will consider training this model on two datasets S and S ′ which
differ at a single datapoint at index k. We will focus on the case where the parameters θ of the model
defined in (21) are trained using gradient flow. To distinguish between the two different models, we will use
the notation yi and θS when referring to the model learned by training on dataset S, and the notation y′

i

and θS′ when referring to the model learned by training on dataset S ′. Similarly, to refer to the replaced
datapoint we will use the notation x′

k to denote the input and y′
k to denote the desired output. To begin, we

note that (1) is agnostic with respect to what we define as the outputs of the optimization algorithm A. In
this section, we consider the outputs of the trained model defined in (21) as the outputs of the optimization
procedure. That is

yi(t → ∞) = A(S)
as in (2), we will assume that the loss function is Lipschitz with respect to the model outputs

∀i EA[|ℓ(yi, z) − ℓ(y′
i, z)|] ≤ Ly EA||yi − y′

i|| (22)

The goal of this section is to show that as the number of training samples n → ∞, the distance ||yi − y′
i||

shrinks to zero, which implies a vanishing generalization gap via (1). With this notation in hand, consider
the time evolution of the output yi

d
dtyi = ∇θS F(xi)T

d
dtθS = − 1

n

n∑
j=1

∇θS F(xi)T∇θS ℓ(yj ,yj) (23)
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Using the same idea as in the proof of Theorem 4, we view the dynamics of y′
i as a perturbed version of the

dynamics of yi.

d
dty

′
i = ∇θS′ F(xi)T

d
dtθS′ = − 1

n

n∑
j=1

∇θS′ F(xi)T∇θS′ ℓ(y′
j ,yj) + di(t) (24)

where the disturbance term di(t) is given by

di(t) = 1
n

[
∇θS′ F(x′

k)T∇θS′ ℓ(y′
i,y′

k) − ∇θS′ F(xk)T∇θS′ ℓ(y′
i,yk)

]
with k being the index of the replaced element in S ′. As in previous sections, the effect of this disturbance
term is to “subtract out” the gradient corresponding to index k in dataset S, and to “add in” the gradient
corresponding to index k in dataset S ′. The norm of the disturbance term is upper-bounded simply as

||di(t)|| ≤ 2κL
n

(25)

Note that this disturbance term applies to each model output separately, whereas the NTK perspective
emerges when considering all model outputs jointly and using the mean squared loss function. To obtain
the final generalization bound using (25), we also have to consider all the outputs jointly and use the mean
squared loss function. The time evolution of the stacked vector y (21) is obtained by taking the time
derivative and substituting in (23)

d
dty =


d
dty1

...
d
dtyn

 = −H(t) (y − yd) with H(t) = 1
n

∇T
θS

y ∇θS y ⪰ 0 (26)

where yd is the stacked vector of desired model outputs, defined analogously to y. The matrix H(t) is the
NTK at time t. The vector y′ follows a perturbed evolution

ẏ′ = −H′(t) (y′ − yd) + d(t) with H′(t) = 1
n

∇T
θ′y′ ∇θ′y′ ⪰ 0

with d(t) is obtained by stacking the disturbance terms di(t), analogously to y and yd. Recent works have
shown that for certain sufficiently overparameterized neural networks, H(t) remains strictly positive definite
throughout the training process (Du et al., 2018; Arora et al., 2019; Huang & Yau, 2020; Liu et al., 2021).
That is, there exists a strictly positive constant λ0 > 0 such that

H(t) ⪰ λ0 (27)

Because the dynamics of y are contracting with rate λ0, and y = yd is a particular trajectory of the dynamics
(since in that case d

dty = 0), we can conclude that y will converge towards yd exponentially. Similarly, y′

will converge to a ball of radius D centered around yd, where ||d|| ≤ D. We can determine D as follows

||d|| =

√√√√ n∑
j=1

||di||2 ≤

√√√√ n∑
j=1

4κ2L2

n2 = 2κL√
n

= D

where the first inequality was obtained by substituting in (25). This analysis shows that, after exponential
transients of rate λ0, we have that supi ||yi − y′

i|| ≤ ||y − y′|| ≤ 2κL
λ0

√
n

.

Remark 9. The generalization bounds achieved above using output contraction scale as 1/
√
n, while the

generalization bounds achieved using parameter contraction (Theorem 4) scale as 1/n. Intuitively, this is
because the output vectors (21) interact with each other through equation (26). While resampling produces
a disturbance of norm 1/n for each individual output vector, these disturbances can be amplified through
coupling via (26). In particular, each individual disturbance term has a squared norm on the order of 1/n2.
Adding these squared norms together, one finds that the total disturbance has a squared norm of the order of
n/n2 = 1/n. Thus, the total disturbance has a norm on the order of 1/

√
n.
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Equivalence of Polyak-Lojasiewicz and Output Contraction in the NTK Limit Here we relate
the well-known Polyak-Lojasiewicz (PL) condition to contraction of the model outputs in the NTK setting.
Specifically, we consider the notion of µ-PL* introduced in (Liu et al., 2021). A loss landscape satisfies the
µ-PL* condition with µ > 0 if

||∇L||2 ≥ µL (28)
uniformly. It was shown in Liu et al. (2021), Theorem 1, that uniform positive definiteness of the Neural
Tangent Kernel is sufficient for the mean-squared loss landscape to satisfy the µ-PL* condition with µ = λ0,
where λ0 is a uniform lower bound on the smallest eigenvalue of Neural Tangent Kernel (27).

||∇θL||2 = (y − yd)TH(t)(y − yd) ≥ λ0||y − yd||2 = λ0L (29)

Equation (29) shows that if the loss landscape L satisfies µ-PL* uniformly, then the neural tangent kernel H(t)
is uniformly positive definite, which in turn implies output contraction, i.e., contraction of the y dynamics (26)
in the section above. This is true for any nonlinear model, and does not require an infinite width assumption.

We now show in the wide network regime, where the Neural Tangent Kernel becomes constant during
training, contraction of the model outputs is equivalent to the positive definiteness of the Neural Tangent
Kernel. Thus, contraction of the model outputs implies the µ-PL* condition. Indeed, the dynamics of the
model outputs in the wide-network regime may be written as

d
dt (y − yd) = −H(y − yd)

where H = HT is now constant. Because this is a linear time-invariant dynamical system, and H is
symmetric, it is contracting if and only if H is positive definite – for linear systems, global asymptotic
stability, global contraction, and eigenvalues with strictly negative real part are all equivalent conditions.
Thus, in the wide network limit, where H is constant and symmetric, uniform positive definiteness of the
Neural Tangent Kernel is equivalent to contraction of the model outputs.

A Generalized Polyak-Lojasiewicz Condition with Metric The preceding paragraph establishes a
connection between PL and output contraction. Given the prevalence of the metric in contraction analysis,
this suggests generalizing the µ-PL* condition to include explicit metric terms.

Assume for instance that the parameter vector θ is being updated according to a natural gradient flow

θ̇ = −M−1(θ)∇θL

where M−1(θ) ⪰ αI is a symmetric positive definite matrix. The generalized PL condition

∇θLTQ(θ)∇θL ≥ µL

where 0 < Q(θ) ⪯ βI is bounded and symmetric, guarantees that the loss L converges exponentially to zero
with rate αµ/β, as

d
dtL = ∇θLT θ̇ = −∇θLTM(θ)−1∇θL ≤ −α

β
∇θLTQ(θ)∇θL ≤ −αµ

β
L

4.4 Partial Contraction and Virtual Systems

In some cases, a ‘pure’ contraction analysis may be hard to do. For example, when an optimizer has an
adaptive learning rate, this can significantly complicate the calculation of the Jacobian. To deal with these
difficulties, we make use of a generalization of contraction known as partial contraction, introduced in Wang
& Slotine (2005) and further discussed in Jouffroy & Slotine (2004).
Definition 3 (Partially Contracting Dynamical System). Consider the system (3) (not necessarily contract-
ing) and an auxiliary, virtual system of the form

ẏ = g(y,θ, t)

Assume that this virtual system is contracting (with respect to y) in metric M with rate λ, and also that
g(θ,θ, t) = f(θ, t). We then say that (3) is partially contracting. If one particular trajectory y(t) of the
virtual system is known, then all trajectories of (3) converge exponentially towards y(t).
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Robustness properties of a virtual contracting system lead directly to robustness properties for the original
system (Del Vecchio & Slotine, 2012), which need not be contracting itself. This result provides a direct
bridge for using virtual systems analysis to study generalization.

4.4.1 Adaptive Learning Rates

The results of the previous sections can be extended to include the presence of a state-dependent, time-
varying, learning rate (Zeiler, 2012; Kingma & Ba, 2014; Goodfellow et al., 2016; Liu et al., 2019). In
particular consider the learning dynamics with a learning rate scheduler ρ(θ, t)

θ̇S = −ρ(θS , t)G(θS , S)

where ρmax ≥ ρ(θ, t) ≥ ρmin > 0. Now consider the virtual system

θ̇y = −ρ(θS , t)G(θy, S)

If the θy system is contracting in M with rate ρminλ, then we have, by the same arguments in Theorem 4,
that A(S) is asymptotically (after exponential transients of rate ρminλ) uniformly ϵ-stable with

ϵstab = 2 ρmax
ρmin

χLξ

λn

Note that the factor ρmax/ρmin ≥ 1 plays a similar role to the condition number upper bound χ ≥ 1. It
may be viewed as the "cost" of using a virtual system, similarly to that of switching to a new metric. This
step is necessary because a naive application of contraction analysis on an optimizer with adaptive learning
rates may be inconclusive. Using a virtual system provides a simple route toward obtaining the desired 1/n
generalization bounds.

4.4.2 Sharpness Aware Minimization

Let us apply a simple partial contraction analysis to the recently introduced Sharpness Aware Minimization
algorithm (SAM) (Foret et al., 2020). In continuous-time, SAM may be written

θ̇ = −∇θL
(
θ + ρ

∇θL
||∇θL||

)
(30)

where ρ > 0. Assume first, slightly generalizing (Bartlett et al., 2022), that L is a convex quadratic loss of
the form

L = 1
2θTP(t)θ

with P(t) a symmetric uniformly positive definite matrix, i.e., P(t) ⪰ p(t)I ⪰ pminI ≻ 0 where p(t) and
pmin are scalars. Substituting in this loss function, the SAM optimizer dynamics may be written

θ̇ = −P(t)
(
θ + ρ

P(t)θ
||P(t)θ||

)
= −

(
P(t) + ρ

P2(t)
||P(t)θ||

)
θ = −A(θ)θ

where A(θ) is uniformly positive definite. It is readily shown that this optimizer is partially contracting in
the identity metric, by using the virtual system

θ̇y = −A(θ)θy

which has θy = θ and θy = 0 as particular solutions. Thus θ → 0 exponentially with rate of at least
λ = pmin > 0, which implies that SAM achieves a generalization rate on the order of 1/λn for this loss
function.

Consider now the case of an arbitrary (time-invariant) strongly convex loss, and modify the SAM dynamics
(30) slightly for improved regularity to

θ̇ = −∇θL
(

θ + ρ
∇θL

||∇θL|| + ϵ

)
(31)
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with ϵ > 0 a small constant. Defining e = ∇θL
∥∇θL∥+ϵ , we then have

∇θL
(
θ + ρe

)
= ∇θL(θ) +

∫ ρ

0
∇2

θL(θ + se) e ds = ∇θL(θ) + ρHe

where H is the average Hessian over the line element, which is positive definite via strong convexity. This
implies that −∇θL

(
θ + ρe

)
is a descent direction for the loss,

−∇θL(θ)T∇θL
(
θ + ρe

)
= −∇θL(θ)T

(
I + ρ

H
∥∇θL∥ + ϵ

)
∇θL(θ) ≤ −∥∇θL(θ)∥2

This in turn implies that the modified SAM dynamics (31) converges to the unknown global optimizer θ∗.
Similarly to the previous example, consider now the virtual system

θ̇y = −A(θ)∇θL(θy) with A(θ) = I + ρ
H(θ)

∥∇θL(θ)∥ + ϵ
(32)

This virtual system has θy = θ and θy = θ∗ as particular solutions. Furthermore, considering for this
system the metric M(θ) = A−1(θ) (which is purely time-dependent to the virtual system), and denoting
fy = θ̇y ,

M(θ) ∂fy
∂θy

(θy) + ∂fy
∂θy

(θy)T M(θ) + Ṁ(θ) = −2∇2L(θy) − A−1(θ) Ȧ(θ) A−1(θ)

Letting β = λmin[∇2L(θy)] λmin[A(θ)] , the above implies 1

M(θ) ∂fy
∂θy

(θy) + ∂fy
∂θy

(θy)T M(θ) + Ṁ(θ) ≤ −2βM(θ) − A−1(θ) Ȧ(θ) A−1(θ)

As θ(t) approaches the global optimum θ∗, H(θ) reaches some limit and ∥∇θL(θ)∥ goes to zero, so that
Ȧ(θ) goes to zero. Let h∗

min and h∗
max be the minimum and maximum eigenvalue of the Hessian ∇2

θL at θ∗.
The virtual system becomes contracting with rate h∗

min(1 + ρ h∗
min/ϵ) , so that including the conditioning

term χ and the disturbance term D ≤ 2||A(θ)||L yields by Theorem (2) the generalization bound

2χ(1 + ρh∗
max/ϵ)L2

λ∞n
=

√√√√1 + ρ
h∗

max

ϵ

1 + ρ
h∗

min

ϵ

2(1 + ρh∗
max/ϵ)L2

h∗
min(1 + ρ h∗

min/ϵ)n
≈

(
h∗
max

h∗
min

)3/2 2L2

h∗
minn

where we have approximated the expression for small ϵ. Aside from a constant prefactor of
(
h∗

max

h∗
min

)3/2
, this

is the same generalization bound and desirable 1/n scaling as in standard gradient descent. Note that this
result, as far as we aware, provides the first global convergence analysis and generalization bound for SAM
in a distribution-free, general convex setting. The empirical observation that SAM generalizes better than
gradient descent (Foret et al., 2020) suggests that this bound may be further tightened.

5 Concluding Remarks

Is Contraction the Correct Approach to Studying Generalization? In deep learning, models are
trained using gradient descent on non-convex loss functions. Despite the non-convexity of the loss, these
models achieve low test error. However, most theoretical analyses of generalization are only applied to
convex loss landscapes. This disconnect suggests the need for more general nonlinear analysis tools which
can provide tighter generalization bounds for non-convex landscapes (Foret et al., 2020; Bartlett et al., 2022).
We demonstrate that contraction analysis is one such tool, although of course it may only provide part of the
picture. Contraction analysis can be applied either directly to optimizer dynamics (as in Theorem 4), or to
the outputs of a model being trained with gradient flow (as in the Neural Tangent Kernel examples). In both

1Since both ∇2L and A are symmetric positive definite, ∇2L(θy) ≥ λmin(∇2L(θy))I = β 1/λmin(A(θ))I ≥ βA−1(θ)
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cases, contraction yields generalization certificates that improve as the number of training samples increases.
Although overparameterized optimizers cannot be globally contracting (because overparameterization implies
many possible optima), it is expected that the outputs of an overparameterized model will be contracting
as the loss converges to zero. Contraction is also consistent with training curves that do not look like pure
exponential decay. This is because contraction analysis yields upper bounds on the contraction rate; training
curves are free to be arbitrarily complicated as long as they are upper-bounded by an exponential decay
function.

Why Metrics are Critical Metrics play a crucial role in our analysis. It is natural to wonder whether
changing the metric (or contraction rate) could improve optimization but harm generalization (Chen et al.,
2018). However, since metrics are an analysis tool (i.e., they do not influence the optimization process, only
how it is analyzed), their use in analyzing generalization has no bearing on the performance of the optimizer.
That said, as section 3.2 shows, a “bad” choice of metric can significantly alter the stability and generalization
bounds for a given optimizer. Indeed, the dependence of stability measurement on coordinate systems is
precisely why metrics are necessary. Contraction analysis considers differential coordinate transforms, which
provide a more flexible set of tools than other stability analyses that only consider explicit coordinate
transforms (Lohmiller & Slotine, 1998).

Comparison to Related Work Our results are similar in spirit to Charles & Papailiopoulos (2018),
in the sense that we also use an optimizer’s intrinsic dynamical stability to provide generalization error
bounds. In certain cases–for example gradient flow on strongly convex losses–our results allow us to derive
tighter bounds, because we do not assume the existence of a global minimizer θ∗ and go through the triangle
inequality to bound the distance between θS and θS′ .

Future Directions Contracting systems are robust to noise (Pham & Slotine, 2013), and therefore it
seems likely that the results presented here can straightfowardly be extended to stochastic gradient flows–
along the lines of Mandt et al. (2015) or Boffi & Slotine (2020). This may be applicable to settings where
gradient training may be seen as Wasserstein gradient flow (Bouvrie & Slotine, 2019; Mei et al., 2019; Chizat,
2022). Our work also suggests a potential connection to the double descent phenomenon (Nakkiran et al.,
2021). In particular (14) implies that the generalization error can overshoot by a factor of Lχ, which gives
room for the generalization to increase transiently from its initial value before it eventually decreases. It
has recently been shown that gradient training of deep linear networks is related to Riemannian gradient
flow (Cohen et al., 2022), another potential application of our results relating contraction to generalization.
Similarly, it has been shown in Bernacchia et al. (2018) that training deep linear networks with natural
gradient descent leads to contraction (in the identity metric) of the network weights towards their optimal
value. Theorem 4 is immediately applicable to this setting. Additionally, it has been shown that the self-
attention mechanism of Transformers may be interpreted as a primal-dual algorithm (Nguyen et al., 2023).
Given the correspondence between primal-dual algorithms and contraction (Nguyen et al., 2018), and in
particular between pre-conditioned primal-dual algorithms and Riemannian contraction (Wensing & Slotine,
2020, Section 3.2), it could be interesting to also analyze Transformers through a contraction lens.

Finally, recent extensions of Riemannian contraction to general Banach spaces (Srinivasan & Slotine, 2023)
may allow further insights in this broad context.

We conclude with some speculations on the potential connection between our results and biology, specifically
neuroscience. The role of non-Euclidean geometry in the objective-based functions of the brain remains an
open question (Surace et al., 2020). Many local synaptic rules can be viewed as implementing optimization
over a loss function, such as Hebbian plasticity minimizing Principal Component Loss in certain settings
(Oja, 1992). It seems plausible that our results can be used to quantify the generalization behavior of such
rules. Additionally, we did not explore the combination properties of contracting systems, which can be
combined in various hierarchical and feedback forms that automatically preserve contraction (Lohmiller &
Slotine, 1998; Slotine & Lohmiller, 2001; Kozachkov et al., 2021). Our results suggest that combinations
of contracting optimizers automatically generalize well, a property that evolution would likely preserve in a
system like the brain.
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A Appendix

A.1 Proof of (8)

Proof. For every time t we randomly sample b indices i1, · · · , ib. Using these indices we select datapoints
zi, · · · , zib from S and S′ to update θSt and θS

′

t respectively. At every time t there are two possibilities.
Either we do not draw the replaced element z′

k or we do. Denote these events A and B, respectively (Figure
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5). We have P (A) = 1 − b
n and P (B) = b

n . If event A occurs, then by assumption we expect the geodesic
distance to shrink

EA[dMt+1(θSt+1,θ
S′

t+1)|A] ≤ µEA[dMt(θSt ,θS
′

t )|A] (33)

where E[·|A] denotes the conditional expectation given event A. However, if the replaced element is drawn
(i.e., event B occurs) then we have

θSt+1 = 1
b

b∑
i=1

g(θSt , zi) ≡ Ĝ(θSt )

θS
′

t+1 = Ĝ(θS
′

t ) + d(θS
′

t )

where d(θS′

t ) = 1
b (g(θS′

t , z
′
k) − g(θS′

t , zk)). As in Theorem (4), we have written the update for θS
′ as a

‘perturbed’ version of the update for θS . We will now derive an analogous robustness result, and then use
the linearity of expectation to bound the overall geodesic distance. Note that

dMt+1(θSt+1,θ
S′

t+1) = dMt+1(Ĝ(θSt ), Ĝ(θS
′

t ) + d(θS
′

t ))

≤ dMt+1(Ĝ(θSt ), Ĝ(θS
′

t )) + dMt+1(Ĝ(θS
′

t ), Ĝ(θS
′

t ) + d(θS
′

t ))

≤ dMt+1(Ĝ(θSt ), Ĝ(θS
′

t )) +
√
Mmax

2ξ
b

where the first inequality comes from the triangle inequality and the second comes from the boundedness
of d(θS′

t ) and the metric distortion bound in Theorem 3. Now applying the assumption of contraction in
expectation we get

EA[dMt+1(θSt+1,θ
S′

t+1)|B] ≤ EA[dMt+1(Ĝ(θSt ), Ĝ(θS
′

t ))|B] +
√
Mmax

2ξ
b

≤ µEA[dMt(θSt ,θS
′

t )|B] +
√
Mmax

2ξ
b

(34)

We can now use the linearity of the expectation operator to bound the geodesic distance, and then use the
metric distortion result to bound the Euclidean distance

EA[dMt+1(θSt+1,θ
S′

t+1)] = EA[dMt+1(θSt+1,θ
S′

t+1)|A]P (A) + EA[dMt+1(θSt+1,θ
S′

t+1)|B]P (B)

≤ µEA[dMt(θSt ,θS
′

t )](1 − b

n
) + (µEA[dMt(θSt ,θS

′

t )] +
√
Mmax

2ξ
b

) b
n

= µEA[dMt(θSt ,θS
′

t )] +
√
Mmax

2ξ
n

Using the metric distortion bounds and unraveling the recursion yields

EA[d(θSt ,θS
′

t )] ≤ χµtC + 2χξ
(1 − µ)n

Where χ =
√

Mmax

Mmin
has again come from the metric distortion bound. Multiplying through by L, we have

that
ϵstab = 2Lχξ

n(1 − µ)
which is the same result as the continuous-time case, except that λ → (1 − µ).
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Figure 5: Illustration of the two cases for updating with mini-batches. At each time t, we randomly sample
b indices between 1 and n. Then we draw the corresponding datapoints from sets S and S′ to form the
mini-batches used to update θSt and θS

′

t respectively. In Event A (left column), the index of the replaced
element is not selected, and therefore the datapoints used to update θSt and θS

′

t are the same. In Event B,
the index of the replaced element is selected, and so the datapoints used to perform the update are different.
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