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Abstract—Sequential dynamics are a key feature of many
modern recommender systems, which seek to capture the ‘con-
text’ of users’ activities on the basis of actions they have
performed recently. To capture such patterns, two approaches
have proliferated: Markov Chains (MCs) and Recurrent Neural
Networks (RNNs). Markov Chains assume that a user’s next
action can be predicted on the basis of just their last (or last few)
actions, while RNNs in principle allow for longer-term semantics
to be uncovered. Generally speaking, MC-based methods perform
best in extremely sparse datasets, where model parsimony is
critical, while RNNs perform better in denser datasets where
higher model complexity is affordable. The goal of our work is
to balance these two goals, by proposing a self-attention based
sequential model (SASRec) that allows us to capture long-term
semantics (like an RNN), but, using an attention mechanism,
makes its predictions based on relatively few actions (like an
MC). At each time step, SASRec seeks to identify which items
are ‘relevant’ from a user’s action history, and use them to
predict the next item. Extensive empirical studies show that our
method outperforms various state-of-the-art sequential models
(including MC/CNN/RNN-based approaches) on both sparse and
dense datasets. Moreover, the model is an order of magnitude
more efficient than comparable CNN/RNN-based models. Visual-
izations on attention weights also show how our model adaptively
handles datasets with various density, and uncovers meaningful
patterns in activity sequences.

I. INTRODUCTION

The goal of sequential recommender systems is to combine
personalized models of user behavior (based on historical
activities) with some notion of ‘context’ on the basis of
users’ recent actions. Capturing useful patterns from sequential
dynamics is challenging, primarily because the dimension of
the input space grows exponentially with the number of past
actions used as context. Research in sequential recommendation
is therefore largely concerned with how to capture these high-
order dynamics succinctly.

Markov Chains (MCs) are a classic example, which assume
that the next action is conditioned on only the previous action
(or previous few), and have been successfully adopted to char-
acterize short-range item transitions for recommendation [1].
Another line of work uses Recurrent Neural Networks (RNNs)
to summarize all previous actions via a hidden state, which is
used to predict the next action [2].

Both approaches, while strong in specific cases, are some-
what limited to certain types of data. MC-based methods, by
making strong simplifying assumptions, perform well in high-
sparsity settings, but may fail to capture the intricate dynamics
of more complex scenarios. Conversely RNNs, while expressive,
require large amounts of data (an in particular dense data)
before they can outperform simpler baselines.
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Figure 1: A simplified diagram showing the training process of
SASRec. At each time step, the model considers all previous
items, and uses attention to ‘focus on’ items relevant to the
next action.

Recently, a new sequential model Transfomer achieved state-
of-the-art performance and efficiency for machine translation
tasks [3]. Unlike existing sequential models that use convolu-
tional or recurrent modules, Transformer is purely based on
a proposed attention mechanism called ‘self-attention,” which
is highly efficient and capable of uncovering syntactic and
semantic patterns between words in a sentence.

Inspired by this method, we seek to apply self-attention
mechanisms to sequential recommendation problems. Our hope
is that this idea can address both of the problems outlined above,
being on the one hand able to draw context from all actions in
the past (like RNNs) but on the other hand being able to frame
predictions in terms of just a small number of actions (like
MCs). Specifically, we build a Self-Attention based Sequential
Recommendation model (SASRec), which adaptively assigns
weights to previous items at each time step (Figure 1).

The proposed model significantly outperforms state-of-the-
art MC/CNN/RNN-based sequential recommendation methods
on several benchmark datasets. In particular, we examine
performance as a function of dataset sparsity, where model
performance aligns closely with the patterns described above.
Due to the self-attention mechanism, SASRec tends to consider
long-range dependencies on dense datasets, while focusing on
more recent activities on sparse datasets. This proves crucial
for adaptively handling datasets with varying density.

Furthermore, the core component (i.e., the self-attention



block) of SASRec is suitable for parallel acceleration, resulting
in a model that is an order of magnitude faster than CNN/RNN-
based alternatives. In addition, we analyze the complexity
and scalability of SASRec, conduct a comprehensive ablation
study to show the effect of key components, and visualize the
attention weights to qualitatively reveal the model’s behavior.

II. RELATED WORK

Several lines of work are closely related to ours. We first
discuss general, followed by temporal, recommendation, before
discussing sequential recommendation (in particular MCs and
RNNs). Last we introduce the attention mechanism, especially
the self-attention module which is at the core of our model.

A. General Recommendation

Recommender systems focus on modeling the compatibil-
ity between users and items, based on historical feedback
(e.g. clicks, purchases, likes). User feedback can be explicit
(e.g. ratings) or implicit (e.g. clicks, purchases, comments) [4],
[5]. Modeling implicit feedback can be challenging due to the
ambiguity of interpreting ‘non-observed’ (e.g. non-purchased)
data. To address the problem, point-wise [4] and pairwise [5]
methods are proposed to solve such challenges.

Matrix Factorization (MF) methods seek to uncover latent
dimensions to represent users’ preferences and items’ properties,
and estimate interactions through the inner product between
the user and item embeddings [6], [7]. In addition, another line
of work is based on Item Similarity Models (ISM) and doesn’t
explicitly model each user with latent factors (e.g. FISM [8]).
They learn an item-to-item similarity matrix, and estimate a
user’s preference toward an item via measuring its similarities
with items that the user has interacted with before.

Recently, due to their success in related problems, various
deep learning techniques have been introduced for recommen-
dation [9]. One line of work seeks to use neural networks to
extract item features (e.g. images [10], [11], text [12], [13],
etc.) for content-aware recommendation. Another line of work
seeks to replace conventional MF. For example, NeuMF [14]
estimates user preferences via Multi-Layer Perceptions (MLP),
and AutoRec [15] predicts ratings using autoencoders.

B. Temporal Recommendation

Dating back to the Netflix Prize, temporal recommendation
has shown strong performance on various tasks by explicitly
modeling the timestamp of users’ activities. TimeSVD++ [16]
achieved strong results by splitting time into several segments
and modeling users and items separately in each. Such models
are essential to understand datasets that exhibit significant
(short- or long-term) temporal ‘drift’ (e.g. ‘how have movie
preferences changed in the last 10 years,” or ‘what kind of
businesses do users visit at 4pm?’, etc.) [16]-[18]. Sequential
recommendation (or next-item recommendation) differs slightly
from this setting, as it only considers the order of actions, and
models sequential patterns which are independent of time.
Essentially, sequential models try to model the ‘context’ of
users’ actions based on their recent activities, rather than
considering temporal patterns per se.

C. Sequential Recommendation

Many sequential recommender systems seek to model item-
item transition matrices as a means of capturing sequential
patterns among successive items. For instance, FPMC fuses
an MF term and an item-item transition term to capture long-
term preferences and short-term transitions respectively [1].
Essentially, the captured transition is a first-order Markov
Chain (MC), whereas higher-order MCs assume the next action
is related to several previous actions. Since the last visited
item is often the key factor affecting the user’s next action
(essentially providing ‘context’), first-order MC based methods
show strong performance, especially on sparse datasets [19].
There are also methods adopting high-order MCs that consider
more previous items [20], [21]. In particular, Convolutional
Sequence Embedding (Caser), a CNN-based method, views
the embedding matrix of L previous items as an ‘image’ and
applies convolutional operations to extract transitions [22].

Other than MC-based methods, another line of work adopts
RNNs to model user sequences [2], [23]-[25]. For example,
GRU4Rec uses Gated Recurrent Units (GRU) to model click
sequences for session-based recommendation [2], and an
improved version further boosts its Top-N recommendation
performance [26]. In each time step, RNNs take the state from
the last step and current action as its input. These dependencies
make RNNs less efficient, though techniques like ‘session-
parallelism’ have been proposed to improve efficiency [2].

D. Attention Mechanisms

Attention mechanisms have been shown to be effective in
various tasks such as image captioning [27] and machine
translation [28], among others. Essentially the idea behind
such mechanisms is that sequential outputs (for example)
each depend on ‘relevant’ parts of some input that the model
should focus on successively. An additional benefit is that
attention-based methods are often more interpretable. Recently,
attention mechanisms have been incorporated into recommender
systems [29]-[31]. For example, Attentional Factorization
Machines (AFM) [30] learn the importance of each feature
interaction for content-aware recommendation.

However, the attention technique used in the above is
essentially an additional component to the original model
(e.g. attention+RNNs, attention+FMs, etc.). Recently, a purely
attention-based sequence-to-sequence method, Transfomer [3],
achieved state-of-the-art performance and efficiency on machine
translation tasks which had previously been dominated by
RNN/CNN-based approaches [32], [33]. The Transformer
model relies heavily on the proposed ‘self-attention’ modules
to capture complex structures in sentences, and to retrieve
relevant words (in the source language) for generating the next
word (in the target language). Inspired by Transformer, we seek
to build a new sequential recommendation model based upon
the self-attention approach, though the problem of sequential
recommendation is quite different from machine translation,
and requires specially designed models.



Table I: Notation.

Notation

u,z user and item set
S historical interaction

(Sil7S§L7 "'7S|1zgu‘)

Description

sequence for a wuser wu:

deN latent vector dimensionality

n €N maximum sequence length

beN number of self-attention blocks

M € RIZI¥d  jtem embedding matrix

P c R?x4 positional embedding matrix

E e rnxd input embedding matrix

S(®) ¢ R"*4  item embeddings after the b-th self-attention layer
F(® ¢ R"*d  jtem embeddings after the b-th feed-forward network

III. METHODOLOGY

In the setting of sequential recommendation, we are given
a user’s action sequence S* = (5,85, ..., S5.)), and seek
to predict the next item. During the training process, at time
step t, the model predicts the next item depending on the
previous t items. As shown in Figure 1, it will be convenient
to think of the model’s input as (Sy', S5, . .., S/g. _;) and its
expected output as a ‘shifted” version of the same sequence:
(Sy, 8%, ..., I%“I)' In this section, we describe how we build
a sequential recommendation model via an embedding layer,
several self-attention blocks, and a prediction layer. We also
analyze its complexity and further discuss how SASRec differs
from related models. Our notation is summarized in Table I.

A. Embedding Layer

We transform the training sequence (S}, S, ..., Sj5u|_;)
into a fixed-length sequence s = (s1,82,...,8,), where n
represents the maximum length that our model can handle. If
the sequence length is greater than n, we consider the most
recent n actions. If the sequence length is less than n, we
repeatedly add a ‘padding’ item to the left until the length is
n. We create an item embedding matrix M € RIZI*4 where d
is the latent dimensionality, and retrieve the input embedding
matrix E € R"*? where E; = M;,. A constant zero vector
0 is used as the embedding for the padding item.

Positional Embedding: As we will see in the next section,
since the self-attention model doesn’t include any recurrent
or convolutional module, it is not aware of the positions of
previous items. Hence we inject a learnable position embedding
P € R™*? into the input embedding:

Msl + Pl
M82 + P2

&=
I

_ (1)
M;, +P,

We also tried the fixed position embedding as used in [3],

but found that this led to worse performance in our case. We

analyze the effect of the position embedding quantitatively and
qualitatively in our experiments.

B. Self-Attention Block
The scaled dot-product attention [3] is defined as:

T
Attention(Q, K, V) = softmax (Q\Z )V, )

where Q represents the queries, K the keys and V the values
(each row represents an item). Intuitively, the attention layer
calculates a weighted sum of all values, where the weight
between query ¢ and value j relates to the interaction between
query 7 and key j. The scale factor v/d is to avoid overly large
values of the inner product, especially when the dimensionality
is high.

Self-Attention layer: In NLP tasks such as machine
translation, attention mechanisms are typically used with
K=V (e.g. using an RNN encoder-decoder for translation: the
encoder’s hidden states are keys and values, and the decoder’s
hidden states are queries) [28]. Recently, a self-attention method
was proposed which uses the same objects as queries, keys,
and values [3]. In our case, the self-attention operation takes
the embedding E as input, converts it to three matrices through
linear projections, and feeds them into an attention layer:

S = SA(E) = Attention(EW?, EWX EW"), (3)

where the projection matrices W@, WX WV ¢ R%*¢ The
projections make the model more flexible. For example, the
model can learn asymmetric interactions (i.e., <query i, key
7> and <query j, key +> can have different interactions).

Causality: Due to the nature of sequences, the model should
consider only the first ¢ items when predicting the (¢ + 1)-st
item. However, the ¢-th output of the self-attention layer (S;)
contains embeddings of subsequent items, which makes the
model ill-posed. Hence, we modify the attention by forbidding
all links between Q; and K; (5 > 7).

Point-Wise Feed-Forward Network: Though the self-
attention is able to aggregate all previous items’ embeddings
with adaptive weights, ultimately it is still a linear model. To
endow the model with nonlinearity and to consider interactions
between different latent dimensions, we apply a point-wise
two-layer feed-forward network to all S; identically (sharing
parameters):

F; = FFN(S;) = ReLU(S;W® 4+ bMYW® L b (4)

where W), W®) are d x d matrices and b("), b(® are d-
dimensional vectors. Note that there is no interaction between
S; and S; (¢ # j), meaning that we still prevent information
leaks (from back to front).

C. Stacking Self-Attention Blocks

After the first self-attention block, F; essentially aggregates
all previous items’ embeddings (i.e., E;, j < 7). However, it
might be useful to learn more complex item transitions via
another self-attention block based on F'. Specifically, we stack
the self-attention block (i.e., a self-attention layer and a feed-
forward network), and the b-th (b > 1) block is defined as:

S®) = SA(F®=1),

5
F\” =FEN(S{"), Vie {1,2,...,n}, ®
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and the 1-st block is defined as S() =S and F() = F.

However, when the network goes deeper, several problems
become exacerbated: 1) the increased model capacity leads to
overfitting; 2) the training process becomes unstable (due to
vanishing gradients etc.); and 3) models with more parameters
often require more training time. Inspired by [3], We perform
the following operations to alleviate these problems:

g(z) = x + Dropout(g(LayerNorm(z))),

where g(z) represents the self attention layer or the feed-
forward network. That is to say, for layer g in each block, we
apply layer normalization on the input = before feeding into g,
apply dropout on g’s output, and add the input x to the final
output. We introduce these operations below.

Residual Connections: In some cases, multi-layer neural
networks have demonstrated the ability to learn meaningful
features hierarchically [34]. However, simply adding more
layers did not easily correspond to better performance until
residual networks were proposed [35]. The core idea behind
residual networks is to propagate low-layer features to higher
layers by residual connection. Hence, if low-layer features are
useful, the model can easily propagate them to the final layer.
Similarly, we assume residual connections are also useful in
our case. For example, existing sequential recommendation
methods have shown that the last visited item plays a key
role on predicting the next item [1], [19], [21]. However, after
several self-attention blocks, the embedding of the last visited
item is entangled with all previous items; adding residual
connections to propagate the last visited item’s embedding to
the final layer would make it much easier for the model to
leverage low-layer information.

Layer Normalization: Layer normalization is used to
normalize the inputs across features (i.e., zero-mean and unit-
variance), which is beneficial for stabilizing and accelerating
neural network training [36]. Unlike batch normalization [37],
the statistics used in layer normalization are independent of
other samples in the same batch. Specifically, assuming the
input is a vector x which contains all features of a sample, the
operation is defined as:

a® — X

vV 02 +e€
where ©® is an element-wise product (i.e., the Hadamard
product), ¢ and o are the mean and variance of x, a and
3 are learned scaling factors and bias terms.

Dropout: To alleviate overfitting problems in deep neural
networks, ‘Dropout’ regularization techniques have been shown
to be effective in various neural network architectures [38].
The idea of dropout is simple: randomly ‘turn off’ neurons
with probability p during training, and use all neurons when
testing. Further analysis points out that dropout can be viewed
as a form of ensemble learning which considers an enormous
number of models (exponential in the number of neurons and
input features) that share parameters [39]. We also apply a
dropout layer on the embedding E.

LayerNorm(x) = + 8,

D. Prediction Layer

After b self-attention blocks that adaptively and hierarchically
extract information of previously consumed 1tems we predict
the next item (given the first ¢ items) based on F Spec1ﬁcally,
we adopt an MF layer to predict the relevance of item i:

ris =FYNT,

where 7; ; is the relevance of item ¢ being the next item given
the first ¢ items (i.e., s1,592,...,s:), and N € RIZIX4 jg an
item embedding matrix. Hence, a high interaction score r; ;
means a high relevance, and we can generate recommendations
by ranking the scores.

Shared Item Embedding: To reduce the model size and
alleviate overfitting, we consider another scheme which only
uses a single item embedding M:

rig =FOMT. (6)

Note that ng) can be represented as a function depending
on the item embedding M: ng) = f(Ms,,M,,,...,My,).
A potential issue of using homogeneous item embeddings is
that their inner products cannot represent asymmetric item
transitions (e.g. item ¢ is frequently bought after j, but not
vise versa), and thus existing methods like FPMC tend to use
heterogeneous item embeddings. However, our model doesn’t
have this issue since it learns a nonlinear transformation. For
example, the feed forward network can easily achieve the
asymmetry with the same item embedding: FFN(M; )MT *
FFN(M;)M?. Empirically, using a shared item embeddmg
significantly improves the performance of our model.
Explicit User Modeling: To provide personalized recom-
mendations, existing methods often take one of two approaches:
1) learn an explicit user embedding representing user prefer-
ences (e.g. MF [40], FPMC [1] and Caser [22]); 2) consider the
user’s previous actions, and induce an implicit user embedding
from embeddings of visited items (e.g. FSIM [8], Fossil [21],
GRU4Rec [2]). Our method falls into the latter category, as we
generate an embedding F(b) by considering all actions of a user.
However, we can also insert an explicit user embedd1n§ at the
last layer, for example via addition: 7, ;, = (U,
where U is a user embedding matrix. However, we emp1r1cally
find that adding an explicit user embedding doesn’t improve
performance (presumably because the model already considers
all of the user’s actions).

E. Network Training

Recall that we convert each user sequence (excluding the
last action) (S}, Sy, . - ’Sﬁs'“ljl) to a ﬁx.ed l.ength sequence
s ={s1, 82,...,8p} via truncation or padding items. We define
o; as the expected output at time step t:

<pad> if s; is a padding item
0 = 4 St41 1<t<n )
SI%“ t=n

where <pad> indicates a padding item. Our model takes a
sequence s as input, the corresponding sequence o as expected



output, and we adopt the binary cross entropy loss as the
objective function:

-2 2

S*eSte[1,2,...,n]

log(0(ro,.)) + 3 log(1 — o(r;.))
jgs
Note that we ignore the terms where o, = <pad>.

The network is optimized by the Adam optimizer [41], which
is a variant of Stochastic Gradient Descent (SGD) with adaptive
moment estimation. In each epoch, we randomly generate one
negative item j for each time step in each sequence. More
implementation details are described later.

F. Complexity Analysis

Space Complexity: The learned parameters in our model
are from the embeddings and parameters in the self-attention
layers, feed-forward networks and layer normalization. The
total number of parameters is O(|Z|d + nd + d?), which is
moderate compared to other methods (e.g. O(|U|d + |Z|d) for
FPMC) since it does not grow with the number of users, and
d is typically small in recommendation problems.

Time Complexity: The computational complexity of our
model is mainly due to the self-attention layer and the feed-
forward network, which is O(n?d + nd?). The dominant term
is typically O(n2d) from the self-attention layer. However,
a convenient property in our model is that the computation
in each self-attention layer is fully parallelizable, which is
amenable to GPU acceleration. In contrast, RNN-based methods
(e.g. GRU4Rec [2]) have a dependency on time steps (i.e.,
computation on time step ¢ must wait for results from time
step ¢-1), which leads to an O(n) time on sequential operations.
We empirically find our method is over ten times faster than
RNN and CNN-based methods with GPUs (the result is similar
to that in [3] for machine translation tasks), and the maximum
length n can easily scale to a few hundred which is generally
sufficient for existing benchmark datasets.

During testing, for each user, after calculating the embedding
FY | the process is the same as standard MF methods. (O(d)
for evaluating the preference toward an item).

Handing Long Sequences: Though our experiments empir-
ically verify the efficiency of our method, ultimately it cannot
scale to very long sequences. A few options are promising to
investigate in the future: 1) using restricted self-attention [42]
which only attends on recent actions rather than all actions, and
distant actions can be considered in higher layers; 2) splitting
long sequences into short segments as in [22].

G. Discussion

We find that SASRec can be viewed as a generalization of
some classic CF models. We also discuss conceptually how
our approach and existing methods handle sequence modeling.

Reduction to Existing Models:

e Factorized Markov Chains: FMC factorizes a first-order

item transition matrix, and predicts the next item j
depending on the last item :

P(jli) o« M N;.

If we set the self-attention block to zero, use unshared
item embeddings, and remove the position embedding,
SASRec reduces to FMC. Furthermore, SASRec is
also closely related to Factorized Personalized Markov
Chains (FPMC) [1], which fuse MF with FMC to capture
user preferences and short-term dynamics respectively:

P(jlu,i) o< [Uy, M| NT.

Following the reduction operations above for FMC, and
adding an explicit user embedding (via concatenation),
SASRec is equivalent to FPMC.

o Factorized Item Similarity Models [8]: FISM estimates
a preference score toward item ¢ by considering the
similarities between ¢ and items the user consumed before:

P(jlu) <|51u| > M) NT.

i€ESY

If we use one self-attention layer (excluding the feed-
forward network), set uniform attention weights (i.e.,
ﬁ) on items, use unshared item embeddings, and
remove the position embedding, SASRec is reduced to
FISM. Thus our model can be viewed as an adaptive,
hierarchical, sequential item similarity model for next
item recommendation.

MC-based Recommendation: Markov Chains (MC) can
effectively capture local sequential patterns, assuming that the
next item is only dependent on the previous L items. Exiting
MC-based sequential recommendation methods rely on either
first-order MCs (e.g. FPMC [1], HRM [43], TransRec [19])
or high-order MCs (e.g. Fossil [21], Vista [20], Caser [22]).
The first group of methods tend to perform best on sparse
datasets. In contrast, higher-order MC based methods have
two limitations: (1) The MC order L needs to be specified
before training, rather than being chosen adaptively; (2) The
performance and efficiency doesn’t scale well with the order
L, hence L is typically small (e.g. less than 5). Our method
resolves the first issue, since it can adaptively attend on related
previous items (e.g. focusing on just the last item on sparse
dataset, and more items on dense datasets). Moreover, our
model is essentially conditioned on n previous items, and can
empirically scale to several hundred previous items, exhibiting
performance gains with moderate increases in training time.

RNN-based Recommendation: Another line of work seeks
to use RNNs to model user action sequences [2], [17],
[26]. RNNs are generally suitable for modeling sequences,
though recent studies show CNNs and self-attention can be
stronger in some sequential settings [3], [44]. Our self-attention
based model can be derived from item similarity models,
which are a reasonable alternative for sequence modeling
for recommendation. For RNNs, other than their inefficiency
in parallel computation (Section III-F), their maximum path
length (from an input node to related output nodes) is O(n).
In contrast, our model has O(1) maximum path length, which
can be beneficial for learning long-range dependencies [45].



IV. EXPERIMENTS

In this section, we present our experimental setup and
empirical results. Our experiments are designed to answer
the following research questions:

RQ1: Does SASRec outperform state-of-the-art models
including CNN/RNN based methods?

What is the influence of various components in the
SASRec architecture?

What is the training efficiency and scalability (regard-
ing n) of SASRec?

Are the attention weights able to learn meaningful
patterns related to positions or items’ attributes?

RQ2:
RQ3:

RQ4:

A. Datasets

We evaluate our methods on four datasets from three real
world applications. The datasets vary significantly in domains,
platforms, and sparsity:

« Amazon: A series of datasets introduced in [46], com-
prising large corpora of product reviews crawled from
Amazon.com. Top-level product categories on Amazon are
treated as separate datasets. We consider two categories,
‘Beauty,” and ‘Games.” This dataset is notable for its high
sparsity and variability.

o Steam: We introduce a new dataset crawled from Steam, a
large online video game distribution platform. The dataset
contains 2,567,538 users, 15,474 games and 7,793,069
English reviews spanning October 2010 to January 2018.
The dataset also includes rich information that might
be useful in future work, like users’ play hours, pricing
information, media score, category, developer (etc.).

o MovieLens: A widely used benchmark dataset for evalu-
ating collaborative filtering algorithms. We use the version
(MovieLens-1M) that includes 1 million user ratings.

We followed the same preprocessing procedure from [1],
[19], [21]. For all datasets, we treat the presence of a review
or rating as implicit feedback (i.e., the user interacted with the
item) and use timestamps to determine the sequence order of
actions. We discard users and items with fewer than 5 related
actions. For partitioning, we split the historical sequence S
for each user u into three parts: (1) the most recent action
Sl’fsul for testing, (2) the second most recent action SﬁSu\—1
for validation, and (3) all remaining actions for training. Note
that during testing, the input sequences contain training actions
and the validation action.

Data statistics are shown in Table II. We see that the two
Amazon datasets have the fewest actions per user and per item
(on average), Steam has a high average number of actions per
item, and MovieLens-1m is the most dense dataset.

B. Comparison Methods

To show the effectiveness of our method, we include three
groups of recommendation baselines. The first group includes
general recommendation methods which only consider user
feedback without considering the sequence order of actions:

Table II: Dataset statistics (after preprocessing)

avg. avg.

Dataset #users #items actions actions #actions
luser /item

Amazon Beauty 52,024 57,289 7.6 6.9 0.4M

Amazon Games 31,013 23,715 9.3 12.1 0.3M

Steam 334,730 13,047 11.0 282.5 3.7M

MovieLens-1IM 6,040 3,416 163.5 289.1 1.0M

e PopRec: This is a simple baseline that ranks items
according to their popularity (i.e., number of associated
actions).

« Bayesian Personalized Ranking (BPR) [5]: BPR is a
classic method for learning personalized rankings from
implicit feedback. Biased matrix factorization is used as
the underlying recommender.

The second group contains sequential recommendation
methods based on first order Markov chains, which consider
the last visited item:

o Factorized Markov Chains (FMC): A (first-order
Markov chain method. FMC factorizes an item transi-
tion matrix using two item embeddings, and generates
recommendations depending only on the last visited item.

o Factorized Personalized Markov Chains (FPMC) [1]:
FPMC uses a combination of matrix factorization and
factorized first-order Markov chains as its recommender,
which captures users’ long-term preferences as well as
item-to-item transitions.

o Translation-based Recommendation (TransRec) [19]:
A state-of-the-art first-order sequential recommendation
method which models each user as a translation vector to
capture the transition from the current item to the next.

The last group contains deep-learning based sequential rec-
ommender systems, which consider several (or all) previously
visited items:

e GRU4Rec [2]: A seminal method that uses RNNs to
model user action sequences for session-based recom-
mendation. We treat each user’s feedback sequence as a
session.

o GRU4Rec* [26]: An improved version of GRU4Rec,
which adopts a different loss function and sampling
strategy, and shows significant performance gains on Top-
N recommendation.

o Convolutional Sequence Embeddings (Caser) [22]: A
recently proposed CNN-based method capturing high-
order Markov chains by applying convolutional operations
on the embedding matrix of the L most recent items,
and achieves state-of-the-art sequential recommendation
performance.

Since other sequential recommendation methods
(e.g. PRME [47], HRM [43], Fossil [21]) have been
outperformed on similar datasets by baselines among those
above, we omit comparison against them. We also don’t include
temporal recommendation methods like TimeSVD++ [16] and
RRN [17], which differ in setting from what we consider here.



Table III: Recommendation performance. The best performing method in each row is boldfaced, and the second best method in
each row is underlined. Improvements over non-neural and neural approaches are shown in the last two columns respectively.

Dataset  Metric @ (b) (c) (d) ©) (H (€9) (h) ) Improvement vs.
PopRec BPR FMC FPMC  TransRec GRU4Rec  GRU4Rec* Caser SASRec  (a)-(e) (f)-(h)

Bean Hit@10 04003 03775 03771 04310  0.4607 0.2125 0.3949 04264 04854  54%  13.8%
' NDCG@10 02277 02183 02477 02891  0.3020 0.1203 0.2556 02547 03219  66%  259%

G Hit@10 04724 04853 0.6358 0.6802  0.6838 0.2938 0.6599 05282 07410 85%  12.3%
ames  NDCG@10 02779 02875 04456 04680  0.4557 0.1837 0.4759 03214  0.5360  14.5% 12.6%
S Hit@10 0.7172 07061 07731 0.7710  0.7624 0.4190 0.8018 0.7874  0.8729  132%  8.9%
€am  NDCG@10 04535 04436 05193 05011 04852 0.2691 0.5595 05381  0.6306 21.4% 12.7%
vy Hit@10 04329 05781 0.698 07599  0.6413 0.5581 0.7501 0.7886  0.8245  85%  4.6%
- NDCG@10 02377 03287 04676 05176  0.3969 0.3381 0.5513 0.5538  0.5905 14.1%  6.6%

For fair comparison, we implement BPR, FMC, FPMC, and
TransRec using TemsorFlow with the Adam [41] optimizer.
For GRU4Rec, GRU4Rec*, and Caser, we use code provided
by the corresponding authors. For all methods except PopRec,
we consider latent dimensions d from {10, 20, 30,40, 50}. For
BPR, FMC, FPMC, and TransRec, the /5 regularizer is chosen
from {0.0001,0.001,0.01,0.1,1}. All other hyperparameters
and initialization strategies are those suggested by the methods’
authors. We tune hyper-parameters using the validation set, and
terminate training if validation performance doesn’t improve
for 20 epochs.

C. implementation Details

For the architecture in the default version of SASRec, we
use two self-attention blocks (b = 2), and use the learned
positional embedding. Item embeddings in the embedding layer
and prediction layer are shared. We implement SASRec with
TensorFlow. The optimizer is the Adam optimizer [41], the
learning rate is set to 0.001, and the batch size is 128. The
dropout rate of turning off neurons is 0.2 for MovieLens-1m
and 0.5 for the other three datasets due to their sparsity. The
maximum sequence length n is set to 200 for MovieLens-1m
and 50 for the other three datasets, i.e., roughly proportional to
the mean number of actions per user. Performance of variants
and different hyper-parameters is examined below.

All code and data shall be released at publication time.

D. Evaluation Metrics

We adopt two common Top-N metrics, Hit Rate@10 and
NDCG@10, to evaluate recommendation performance [14],
[19]. Hit@10 counts the fraction of times that the ground-truth
next item is among the top 10 items, while NDCG@10 is a
position-aware metric which assigns larger weights on higher
positions. Note that since we only have one test item for each
user, Hit@10 is equivalent to Recall@10, and is proportional
to Precision@10.

To avoid heavy computation on all user-item pairs, we
followed the strategy in [14], [48]. For each user u, we
randomly sample 100 negative items, and rank these items
with the ground-truth item. Based on the rankings of these 101
items, Hit@10 and NDCG@10 can be evaluated.

E. Recommendation Performance

Table III presents the recommendation performance of all
methods on the four datasets (RQ1). By considering the second
best methods across all datasets, a general pattern emerges
with non-neural methods (i.e., (a)-(e)) performing better on
sparse datasets and neural approaches (i.e., (f)-(h)) performing
better on denser datasets. Presumably this owes to neural
approaches having more parameters to capture high order
transitions (i.e., they are expressive but easily overfit), whereas
carefully designed but simpler models are more effective in
high-sparsity settings.

Our method SASRec outperforms all baselines on both sparse
and dense datasets, and gains 6.9% Hit Rate and 9.6% NDCG
improvements (on average) against the strongest baseline. One
likely reason is that our model can adaptively attend items
within different ranges on different datasets (e.g. only the
previous item on sparse datasets and more on dense datasets).
We further analyze this behavior in Section IV-H.

In Figure 2 we also analyze the effect of a key hyper-
parameter, the latent dimensionality d, by showing NDCG@ 10
of all methods with d varying from 10 to 50. We see that
our model typically benefits from larger numbers of latent
dimensions. For all datasets, our model achieves satisfactory
performance with d > 40.

F. Ablation Study

Since there are many components in our architecture, we
analyze their impacts via an ablation study (RQ?2). Table IV
shows the performance of our default method and its 8 variants
on all four dataset (with d = 50). We introduce the variants
and analyze their effect respectively:

e (1) Remove PE (Positional Embedding): Without the
positional embedding P, the attention weight on each
item depends only on item embeddings. That is to say,
the model makes recommendations based on users’ past
actions, but their order doesn’t matter. This variant might
be suitable for sparse datasets, where user sequences
are typically short. This variant performs better then the
default model on the sparsest dataset (Beauty), but worse
on other denser datasets.
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Figure 2: Effect of the latent dimensionality d on ranking performance (NDCG@10).

Table IV: Ablation analysis (NDCG@10) on four datasets.
Performance better than the default version is boldfaced. ‘|’
indicates a severe performance drop (more than 10%).

Architecture Beauty Games Steam ML-IM
(0) Default 0.3142 0.5360 0.6306 0.5905
(1) Remove PE 0.3183 0.5301 0.6036 0.5772
(2) Unshared IE 0.2437)  0.4266]  0.4472] 0.4557)
(3) Remove RC 02591  0.4303)  0.5693 0.5535
(4) Remove Dropout  0.2436)  0.4375]  0.5959 0.5801
(5) 0 Block (b=0) 026204  0.4745]  0.5588]  0.48304
(6) 1 Block (b=1) 0.3066 0.5408 0.6202 0.5653
(7) 3 Blocks (b=3) 0.3078 0.5312 0.6275 0.5931
(8) Multi-Head 0.3080 0.5311 0.6272 0.5885

o (2) Unshared IE (Item Embedding): We find that using two
item embeddings consistently impairs the performance,
presumably due to overfitting.

e (3) Remove RC (Residual Connections): Without residual
connections, we find that performance is significantly
worse. Presumably this is because information in lower
layers (e.g. the last item’s embedding and the output of
the first block) can not be easily propagated to the final
layer, and this information is highly useful for making
recommendations, especially on sparse datasets.

o (4) Remove Dropout: Our results show that dropout can
effectively regularize the model to achieve better test
performance, especially on sparse datasets. The results
also imply the overfitting problem is less severe on dense
datasets.

e (5)-(7) Number of blocks: Not surprisingly, results are
inferior with zero blocks, since the model would only
depend on the last item. The variant with one block
performs reasonably well, though using two blocks (the
default model) still boosts performance especially on
dense datasets, meaning that the hierarchical self-attention
structure is helpful to learn more complex item transitions.
Using three blocks achieves similar performance to the
default model.

o (8) Multi-head: The authors of Transformer [3] found that
it is useful to use ‘multi-head’ attention, which applies
attention in h subspaces (each a d/h-dimensional space).
However, performance with two heads is consistently and

slightly worse than single-head attention in our case. This
might owe to the small d in our problem (d = 512 in
Transformer), which is not suitable for decomposition into
smaller subspaces.

G. Training Efficiency & Scalability

We evaluate two aspects of the training efficiency (RQ3)
of our model: Training speed (time taken for one epoch
of training) and convergence time (time taken to achieve
satisfactory performance). We also examine the scalability of
our model in terms of the maximum length n. All experiments
are conducted with a single GTX-1080 Ti GPU.

Training Efficiency: Figure 3 demonstrates the efficiency of
deep learning based methods with GPU acceleration. GRU4Rec
is omitted due to its inferior performance. For fair comparison,
there are two training options for Caser and GRU4Rec*: using
complete training data or just the most recent 200 actions (as
in SASRec). For computing speed, SASRec only spends 1.7
seconds on model updates for one epoch, which is over 11
times faster than Caser (19.1s/epoch) and 18 times faster than
GRU4Rec* (30.7s/epoch). We also see that SASRec converges
to optimal performance within around 350 seconds on ML-IM
while other models require much longer. We also find that using
full data leads to better performance for Caser and GRU4Rec™.

NDCG@10

SASRec (cut 200), 1.7s/epoch
== Caser (full), 31.98s/epoch
Caser (cut 200), 19.1s/epoch
== GRU4Rec™ (full), 46.9s/epoch
== GRU4Rec" (cut 200), 30.7s/epoch

0.40

0 1000 2000 3000 4000

Wall Clock Time (s)

5000 6000 7000

Figure 3: Training efficiency on ML-IM. SASRec is an order
of magnitude faster than CNN/RNN-based recommendation
methods in terms of training time per epoch and in total.
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first-order Markov chain based model would be a diagonal matrix.

Scalability: As with standard MF methods, SASRec scales
linearly with the total number of users, items and actions.
A potential scalability concern is the maximum length n,
however the computation can be effectively parallelized with
GPUs. Here we measure the training time and performance
of SASRec with different n, empirically study its scalability,
and analyze whether it can handle sequential recommendation
in most cases. Table V shows the performance and efficiency
of SASRec with various sequence lengths. Performance is
better with larger n, up to around n = 500 at which point
performance saturates (possibly because 99.8% of actions have
been covered). However, even with n = 600, the model can
be trained in 2,000 seconds, which is still faster than Caser
and GRU4Rec*. Hence, our model can easily scale to user
sequences up to a few hundred actions, which is suitable for
typical review and purchase datasets. We plan to investigate
approaches (discussed in Section III-F) for handling very long
sequences in the future.

Table V: Scalability: performance and training time with
different maximum length n on ML-IM.

n 10 50 100 200 300 400 500 600

Time(s) 75 101 157 341 613 965 1406 1895
NDCG@10 0.480 0.557 0.571 0.587 0.593 0.594 0.596 0.595

H. Visualizing Attention Weights

Recall that at time step ¢, the self-attention mechanism in our
model adaptively assigns weights on the first ¢ items depending
on their position embeddings and item embeddings. To answer
RQ4, we examine all training sequences and seek to reveal
meaningful patterns by showing the average attention weights
on positions as well as items.

Attention on Positions: Figure 4 shows four heatmaps of
average attention weights on the last 15 positions at the last
15 time steps. Note that when we calculate the average weight,
the denominator is the number of valid weights, so as to avoid
the influence of padding items in short sequences.

We consider a few comparisons among the heatmaps:

e (a) vs. (c): This comparison indicates that the model

tends to attend on more recent items on the sparse dataset
Beauty, and less recent items for the dense dataset ML-IM.

This is the key factor that allows our model to adaptively
handle both sparse and dense datasets, whereas existing
methods tend to focus on one end of the spectrum.

e (b) vs. (c): This comparison shows the effect of using
positional embeddings (PE). Without them attention
weights are essentially uniformly distributed over previous
items, while the default model (c) is more sensitive in
position as it is inclined to attend on recent items.

e (c) vs. (d): Since our model is hierarchical, this shows
how attention varies across different blocks. Apparently,
attention in high layers tends to focus on more recent
positions. Presumably this is because the first self-attention
block already considers all previous items, and the second
block does not need to consider far away positions.

Overall, the visualizations show that the behavior of our
self-attention mechanism is adaptive, position-aware, and
hierarchical.

Attention Between Items: Showing attention weights
between a few cherry-picked items might not be statisti-
cally meaningful. To perform a broader comparison, using
MovieLens-1IM, where each movie has several categories, we
randomly select two disjoint sets where each set contains 200
movies from 4 categories: Science Fiction (Sci-Fi), Romance,
Animation, and Horror. The first set is used for the query and
the second set as the key. Figure 5 shows a heatmap of average
attention weights between the two sets. We can see the heatmap
is approximately a block diagonal matrix, meaning that the
attention mechanism can identify similar items (e.g. items
sharing a common category) and tends to assign larger weights
between them (without being aware of categories in advance).

V. CONCLUSION

In this work, we proposed a novel self-attention based sequen-
tial model SASRec for next item recommendation. SASRec
models the entire user sequence (without any recurrent or
convolutional operations), and adaptively considers consumed
items for prediction. Extensive empirical results on both sparse
and dense datasets show that our model outperforms state-
of-the-art baselines, and is an order of magnitude faster than
CNN/RNN based approaches. In the future, we plan to extend
the model by incorporating rich context information (e.g. dwell
time, action types, locations, devices, etc.), and to investigate
approaches to handle very long sequences (e.g. clicks).
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