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ABSTRACT

Recently, there has been great success in leveraging pre-trained large language mod-
els (LLMs) for time series analysis. The core idea lies in effectively aligning the
modality between natural language and time series. However, the multi-scale struc-
tures of natural language and time series have not been fully considered, resulting
in insufficient utilization of LLMs capabilities. To this end, we propose MSH-
LLM, a Multi-Scale Hypergraph method that aligns Large Language Models
for time series analysis. Specifically, a hyperedging mechanism is designed to
enhance the multi-scale semantic information of time series semantic space. Then,
a cross-modality alignment (CMA) module is introduced to align the modality
between natural language and time series at different scales. In addition, a mixture
of prompts (MoP) mechanism is introduced to provide contextual information
and enhance the ability of LLMs to understand the multi-scale temporal patterns
of time series. Experimental results on 27 real-world datasets across 5 different
applications demonstrate that MSH-LLM achieves the state-of-the-art results. Code
is available at: https://anonymous.4open.science/r/MSH-LLM-1E9B.

1 INTRODUCTION

Time series analysis is a critical ingredient in a myriad of real-world applications, e.g., forecasting (Liu
et al.,2023b;|Wan et al.|[2024; [Shang et al.,[2024a)), imputation (Wang et al.,|2024a), and classification
(Chen et al.| [2024b; |Wang et al., 2024c)), which is applied across diverse domains, including retail,
transportation, economics, meteorology, healthcare, etc. In these real-world applications, the task-
specific models usually require domain knowledge and custom designs (Chen et al., [2024a; Zhou
et al.,[2023a). This contrasts with the demand of time series foundation models, which are designed
to perform well in diverse applications, including few-shot learning and zero-shot learning, where
minimal and no training data is provided.

Recently, pre-trained foundation models, especially large language models (LLMs), have achieved
great success across many fields, e.g., natural language processing (NLP) (Touvron et al.| 2023}
Achiam et al.,|2023]; |Radford et al., 2021)) and computer vision (CV) (Wang et al., [2024b; |Pi et al.}
2024])). Although the lack of large pre-training datasets and a consensus unsupervised objective makes
it difficult to train foundation models for time series analysis from scratch (Sun et al.| [2024; Jin et al.
2024; Pan et al., [2024), the fundamental commonalities between natural language and time series
in sequential structure and contextual dependency provide an avenue to apply LLMs for time series
analysis. The core idea lies in the effective alignment of the modality between natural language and
time series, either by reprogramming the input time series (Xue & Salim) 2023} (Cao et al., [2024) or
by introducing prompts to provide contextual information for the input time series (Sun et al., |2024;
Kamarthi & Prakash, [2023; [Jin et al.| [2024).

In the process of aligning LLMs for time series analysis, we observe that both natural language
and time series present multi-scale structures. In natural language, multi-scale structures typically
manifest as semantic structures at different scales (Yang et al., |2024b), e.g., words, phrases, and
sentences. In time series, the multi-scale structures often demonstrate as multi-scale temporal patterns
(Wen et al.| 2021} Liu et al., 2021} [Shang et al., [2024a). For example, due to periodic human
activities, traffic occupation and electricity consumption show clear daily patterns (e.g., afternoon
or evening) and weekly patterns (e.g., weekday or weekend). Considering multi-scale alignment
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between natural language and time series enables models to learn richer representations and enhance
their cross-modality learning abilities. However, we argue that performing multi-scale alignment is a
non-trivial task, as two notable problems need to be addressed.

The first problem lies in the disparity between the multi-scale semantic space of natural language
and that of time series. The multi-scale semantic space of natural language is both distinctive and
informative (Pan et al.|[2024)), while the multi-scale semantic space of time series faces the semantic
information sparsity problem due to an individual time point containing less semantic information
(Shang et al.,|2024b; |Chang et al., 2024)). This disparity makes it difficult to leverage off-the-shelf
LLMs for time series analysis. To tackle this, most existing works employ patch-based methods
(Nie et al., [2022} Jin et al., [2024) to capture group-wise interactions and enhance the semantic
information of time series semantic space. However, simple partitioning of patches may introduce
noise interference and make it hard to discover implicit interactions.

The second problem when performing multi-scale alignment lies in the knowledge and reasoning
capabilities to interpret temporal patterns are not naturally present within the pre-trained LLMs.
To unlock the knowledge within LLMs and activate their reasoning capabilities for time series
analysis, existing methods introduce prefix prompts (Jin et al., 2024; |Liu et al.| [2024)) or self-prompt
mechanisms (Sun et al.| [2024)) to provide task instruction and enrich the input contextual information.
While these methods are intuitive and straightforward, they struggle to understand temporal patterns
due to their failure to leverage multi-scale temporal features. Therefore, it is still an open challenge
to design prompts that are accurate, data-correlated, and task-specific.

Motivated by the above, we propose MSH-LLM, a Multi-Scale Hypergraph method that aligns
Large Language Models for time series analysis. To the best of our knowledge, MSH-LLM is the
first multi-scale alignment work for time series analysis, which leverages the hyperedging mechanism
to enhance the multi-scale semantic information of time series and employs the mixture of prompts
mechanism to enhance the ability of LLMs in understanding multi-scale temporal patterns. The main
contributions of this paper are summarized as follows:

* We introduce a hyperedging mechanism that leverages learnable hyperedges to extract
hyperedge features with group-wise information from multi-scale temporal features, which
can enhance the multi-scale semantic information of time series semantic space while
reducing irrelevant information interference.

* We design a cross-modality alignment module to perform multi-scale alignment based
on the multi-scale prototypes and hyperedge features, which goes beyond relying solely
on single-scale alignment and obtains richer representations. In addition, we propose a
mixture of prompts (MoP) mechanism, which augments the input contextual information
with different prompts to enhance the reasoning ability of LLMs for time series analysis.

* We conduct experiments on 27 real-world datasets across 5 different applications. The
experimental results demonstrate that MSH-LLM achieves the state-of-the-art (SOTA)
performance, highlighting its effectiveness in activating the capability of LLMs for time
series analysis.

2 RELATED WORK

In-Modality Learning Methods. Recent studies in NLP (Devlin, 2018} |Radford et al., 2019; |Brown,
2020; [Touvron et al., [2023)) and CV (Touvron et al., 2021; Wang et al., [2023} |[Bao et al., 2022) have
shown that pre-trained foundation models can be fine-tuned for various downstream tasks within the
same modality, significantly reducing the need for costly training from scratch while maintaining
high performance. BERT (Devlin, 2018)) uses bidirectional encoder representations from transformers
to recover the random masked tokens of the sentences. GPT3 (Brown, [2020) trains a transformer
decoder on a large language corpus with much more parameters, which can be utilized for diverse
applications. BEIT (Bao et al.l 2022)) designs a masked image modeling task to pretrain vision
transformers. Motivated by the above, recent time series pre-trained models use different strategies,
e.g., supervised learning methods (Fawaz et al., 2018) or self-supervised learning methods (Chen
et al., 2025;|Woo et al., 2022a), to learn representations across diverse domains and then fine-tune on
similar applications to perform specific tasks. However, due to the lack of large pre-training datasets
and a consensus unsupervised objective, it is difficult to train foundation models for general-purpose
time series analysis that covers diverse applications.
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Cross-Modality Learning Methods. Due to the fundamental commonalities between natural
language and time series in sequential structure and contextual dependency, recent works have
explored cross-modality learning by applying LLMs for time series analysis (Bian et al.,|2024; [Zhou
et al} 2023a; Liu et al.| 2024} Jin et al.l [2024). FPT (Zhou et al.| [2023a)) is the pilot work that
fine-tunes the key parameters of LLMs and transforms them into a unified framework for time series
analysis. aLLMA4TS (Bian et al., 2024) introduces a two-stage pre-training strategy that first performs
causal next-patch training and then enacts a fine-tuning strategy for downstream tasks. However, fine-
tuning LLMs for training and inference can sometimes be resource-consuming due to the immense
size of LLMs (Liu et al.}[2024). Some recent works have explored the alignment of frozen LLMs
for time series analysis, either by reprogramming the input time series or introducing prompts to
provide contextual information for the input time series. Time-LLM (Jin et al., |2024) introduces
a reprogramming mechanism to align the input time series with text prototypes before feeding it
into the frozen LLMs. AutoTimes (Liu et al.| 2024)) repurposes frozen LLMs as autoregressive time
series forecasters and introduces relevant time series prompts to enhance forecasting. Although these
methods achieve promising results, they overlook the multi-scale structures of natural language and
time series.

Multi-Scale Time Series Analysis Methods. Existing multi-scale time series analysis methods
are aimed at modeling temporal pattern interactions at different scales (Chen et al.l 2021} Shang
et al., |2024b; |Chen et al) [2023)). TAMS-RNNs (Chen et al.| [2021)) disentangles input series into
multi-scale representations and uses different update frequencies to model multi-scale temporal
pattern interactions. Benefiting from the attention mechanism, transformers achieve promising results
in time series analysis. Pyraformer (Liu et al.|[2021) treats multi-scale features as nodes and leverages
pyramidal attention to model interactions between nodes at different scales. To solve the problem
of semantic information sparsity, Pathformer (Chen et al., [2023)) divides time series into multiple
resolutions using patches of different sizes and uses the dual attention to capture group-wise pattern
interactions at different scales. MSHyper (Shang et al.,|2024b) combines transformer with multi-scale
hypergraphs to model group-wise pattern interactions at different scales. However, fixed segments or
pre-defined rules cannot capture implicit pattern interactions and may introduce noise interference.

In this paper, we find that both natural language and time series present multi-scale structures.
Therefore, we propose a multi-scale hypergraph method that aligns large language models (LLMs)
for time series analysis. Specifically, a hyperedging mechanism is introduced to enhance the multi-
scale semantic information of time series semantic space and reduce noise interference. Then, a
cross-modality alignment (CMA) module is introduced to perform multi-scale alignment. In addition,
a mixture of prompts (MoP) mechanism is designed to enhance the reasoning capabilities of LLMs
towards the multi-scale temporal patterns.

3 PRELIMINARIES

Hypergraph. A hypergraph can be represented as G = {V, £}, where V = {v1,...,v,,..., 0N}
denotes the node set and £ = {ej,...,epm,...,en} denotes the hyperedge set. Each hyperedge
represents group-wise interactions by connecting a set of nodes {v1, va,...,v,} C V. The topology
of the hypergraph can be represented by the incidence matrix H € RV *M  where H,,,,, = 1 if the nth
node connected to the mth hyperedge, otherwise H,,,,, = 0. The degree of the nth node is defined as

d(v,) = 2%21 H,,,,, and the degree of the mth hyperedge is defined as d(v,,) = 22;1 H,,,. The

node degrees and hyperedge degrees are sorted in diagonal matrices D, € RV*" and D, € RM*M
respectively. More descriptions of hypergraph learning are provided in Appendix [C]

Problem Definition. The proposed MSH-LLM is designed to align frozen LLMs for time series
analysis, which covers different applications across various domains. For a given specific application
that consists the input time series X! . € RT*? with T time steps and D dimensions, the goal of
time series analysis is to predict important properties of the time series. For example, the forecasting
task aims at predicting the future H steps X9 t17eH € R D while the classification task aims at
predicting the class labels of the given time series.

4 METHODOLOGY

As depicted in Figure[TI] MSH-LLM focuses on reprogramming an embedding-visible large language
model, e.g., LLaMA (Touvron et al.l 2023) and GPT-2 (Radford et al.| 2019), for general time
series analysis, while accounting for the multi-scale structures of natural language and time series.
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Figure 1: The framework of MSH-LLM. (a) and (b) provide detailed delineation of the multi-scale
extraction module, while (c) elaborates on the hyperedging mechanism.

In doing so, we first map the time series data and word token embeddings (based on pre-trained
LLMs) into multi-scale temporal features and text prototypes, respectively. Then, a hyperedging
mechanism is designed to enhance the multi-scale semantic information of time series semantic space
and a cross-modality alignment (CMA) module is introduced to align the modality between natural
language and time series. In addition, a mixture of prompts (MoP) mechanism is introduced to
provide multi-scale contextual information and enhance the ability of LLMs in understand multi-scale
temporal patterns of time series.

4.1 MULTI-SCALE EXTRACTION (ME) MODULE

The ME module is designed to extract the multi-scale features, which includes multi-scale temporal
features extraction and multi-scale text prototypes extraction.

Multi-Scale Temporal Features Extraction. As shown in Figure [T[a), given input time series
X! = X! ., we first normalize it through reversible instance normalization (Kim et al., 2021). Then,
we perform multi-scale temporal features extraction, which can be formulated as follows:

X* = Agg(X* 057 e RVXP 5> 2, (1

where X* = {z{|z; € RP t € [1, N*]} denotes the sub-sequence at scale s, s = 2, ..., S denotes
the scale index, and S is the total number of scales. Agg is the aggregation function, e.g., 1D
convolution or average pooling. #°~! denotes the learnable parameters of the aggregation function

s—1 . .
at scale s — 1, N° = {%J is the sequence length at scale s, and 15—1 denotes the size of the

aggregation window at scale s — 1.

Multi-Scale Text Prototypes Extraction. The multi-scale text prototypes extraction aims to map
word token embeddings in natural language to multi-scale structures, e.g., words, phrases, and
sentences, for alignment with multi-scale temporal features. As shown in Figure[I[b), given the word
token embeddings based on pre-trained LLMs U € RV *¥ where V is the vocabulary size and P
is the hidden dimension of LLMs. We first transform them to a small collection of text prototypes
through linear mapping, which can be represented as U! € RY'*P where V' < V. This approach is
efficient and can capture key linguistic signals related to time series. Then, we can obtain multi-scale
text prototypes through linear mapping, which is formulated as follows:

U® = Linear(U*~ 5 X7 1) € RV *P s> 2, 2)

where Linear denotes the linear mapping function, U® represents the text prototypes at scale s, and
A*~1 denotes the learnable parameters of the linear mapping function at scale s — 1. After mapping,
we aim for the multi-scale text prototypes to capture the linguistic signals that describe multi-scale
temporal patterns. Experimental results in Appendix [H| validate the effectiveness of the multi-scale
text prototype extraction compared to manually selected approaches.
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4.2 HYPEREDGING MECHANISM

After obtaining the multi-scale temporal features and text prototypes, a straight way to align LLMs for
time series analysis is to perform cross-modality alignment at different scales. However, the semantic
space disparity poses a significant challenge, making it difficult to leverage the off-the-shelf LLMs
for time series analysis. To tackle this, some recent studies (Jin et al.| [2024; [Shang et al., 2024a)
show that group-wise interactions can help enrich the semantic information of time series semantic
space, thereby enhancing its consistency with the semantic space of natural language. Therefore,
we introduce a hyperedging mechanism that utilizes learnable hyperedges to capture group-wise
interactions at different scales.

As depicted in Figure[T|c), we first treat multi-scale temporal features as nodes and initialize two

kinds of learnable embeddings at scale s, i.e., hyperedge embeddings Ey_ .. € RM**D and node

embeddings E; ;. € RN"XD where M* is a hyperparameter that defines the number of hyperedges
at scale s. Then, the similarity calculation is performed to construct the scale-specific incidence
matrix H?®, which can be formulated as follows:

U7 = tanh(E; 4.s8),

nodes
U; = tanh(Eﬁypersa), &)
H*® = Linear(ReLU (U (U3)T)),

where 3 € R'! and ¢ € R'*! are learnable parameters. The tanh activation function is used to
perform nonlinear transformations and the ReLU activation function is applied to eliminate weak
connections. To enhance the robustness of the model, reduce the computation cost of subsequent
operations, and mitigate the impact of noise, we introduce a sparsity strategy to make H? sparse,
which can be formulated as follows:

« [ 1, H:, €TopK(H:,,n)
Hnnz - { O7 Hflm ¢ TOpK(H,fL*,T]) (4)

where 7 is the threshold of T'opK function and denotes the max number of neighboring hyper-
edges connected to a node. The final scale-specific incidence matrices can be represented as
{H!,... ,H*,--- ,H} and the hyperedge features of the ith hyperedge e € £° based on the
scale-specific incidence matrix at scale s is formulated as follows:

el = Avg(zmjeN(ef) zi)e RP, 5)

where Avg is the average operation, A/ (ef) is the neighboring nodes connected by e at scale s, and
x; € X* represents the jth node features at scale s. The final hyperedge feature set at different scales

can be represented as {E',--- €% - -, 83}.

Compared with other methods, our hyperedging mechanism is novel in two aspects. Firstly, our
methods can capture implicit group-wise interactions at different scales in a learnable manner, while
most existing methods (Nie et al., [2022; [Zhou et al., [2023a; Shang et al.,|2024b) rely on pre-defined
rules to model group-wise interactions at a single scale. Secondly, although some methods (Shang
et al.,|2024a; Jiang et al., 2019) learn from hypergraphs, they focus on constraints or clustering-based
approaches to learn the hypergraph structures. In contrast, our method learns the hypergraph structures
in a data-driven manner by incorporating learnable parameters and nonlinear transformations, which
is more flexible and can learn more complex hypergraph structures.

4.3 CROSS-MODALITY ALIGNMENT (CMA) MODULE

The CMA module is designed to align the modality between natural language and time series based on
the multi-scale hyperedge features and text prototypes. To achieve this, a multi-head cross-attention
is used to perform alignment at different scales. Specifically, for the given text prototpyes U® and

hyperedge features £° at scale s, we first transform it into query Q=& SW; ;- key K7 = U Wy
and value V; = U*WY | respectively, where j = 1, ..., J denotes the head index. W | € RPxd,
W; € RE>d and W: € RP*4 are learnable weight matrices at scale s, d = L%J Then, the

mulii-head cross-attention is applied to align the hyperedging features with text prototypes, which
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can be formulated as follows:

. ‘ . . Qs(Ks)T
2 = Attn(Q;, K3, V;) = softmam(%

Then, we aggregate Z% in every head to obtain the output of multi-head attention Z* € RM" <P at
scale s. The final aligned features at different scales can be represented as { 2 1, - ANEE Al 1.

VS, (©6)

4.4 MIXTURE OF PROMPTS (MOP) MECHANISM

The performance of LLMs depends significantly on the design of the prompts used to steer the model
capabilities (Pan et al.} 2024; Zhou et al.,2023b)). To enhance the reasoning capabilities of LLMs,
most existing methods focus on prefix prompts (Jin et al., 2024} [Liu et al., |2024) or self-prompt
mechanisms (Sun et al., |2024; |Lester et al., 2021)) to provide task instructions and enrich the input
contextual information. However the prompts affecting the reasoning capabilities of LLMs are
multifaceted. Relying on a single type of prompt cannot fully activate the reasoning capabilities of
LLMs. Therefore, we propose a MoP mechanism, which augments the input contextual information
with different prompts (i.e., learnable prompts, data-correlated prompts, and capability-enhancing
prompts) and enhances the reasoning capabilities of LLMs towards multi-scale temporal patterns.

Learnable Prompts. Learnable or soft prompts show great effectiveness across many fields by
utilizing learnable embeddings, which are learned from the supervised loss between the output of
the model and the ground truth. However, existing learnable prompts cannot capture the temporal
dynamics from multi-scale temporal patterns. Therefore, we introduce multi-scale learnable prompts
C; = {P, ..., P ... . P°}, where P* € RL" %P is the scale-specific prompts and L® is the prompt
length at scale s. C; learns from the loss between the output of LLMs and task-specific ground truth.

Data-Correlated Prompts. As shown in Figure[2{a), we introduce three components to construct
data-correlated prompts Cg4, i.e., data description (7), task introduction (7), and data statistics (u).
The data description provides LLMs with essential background information about the input time
series, the task introduction is used to guide LLMs in understanding and performing specific tasks,
and the data statistics provide time series statistics that include both input sequence and sub-sequences
at different scales. The final data-correlated prompts can be formulated as follows:

Cq = LLMs(tokenizer(mw, T, 1)). @)

Capability-Enhancing Prompts. Some recent
StUdleS n NLP (Kojlma et al" 2022) and CV [Data Description]: The Electricity Transformer
(Ge et al'7 2023) haVe Shown that prompt en- Temperature (ETT) datasets are from XXxX ...
gineering, e.g., template and chain-of-thought e e b N
prompts can significantly enhance the reason- | _ _

! . R Data statistics|: The number of scale is <o, t-
ing abilities of LLMs, especially for few-shot or  \be maxvalueis -, the min value s <1-,...

& ¢: Think it step by step

&  (P: That's really important for me

[ -] ¢: Considering ARIMA (AutoRegressive
Intergrated Moving Average)

ZerO-ShOt lea_rning, We haVe Observed the Sim_ (a) Data-Correlated Prompt (b) Capability-Enhancing Prompt
ilar rules when aligning LLMs for time series
analysis. Therefore, as shown in Figure[2b), we Figure 2: Prompt example. and <> are task-

design three components to construct capability- specific configurations and input statistic informa-
enhancing prompts C.., i.e., logical thinking (¢), tion, respectively.

emotional manipulation (¢), and time series reasoning correlated prompts (). The logical thinking
prompts guide LLMs to solve problems in a step-by-step manner, which may enhance the multi-step
reasoning abilities of LLMs; The emotional manipulation prompts mimic the impact of emotions on
human decision-making, using “emotional blackmail” to make the model focus more on the current
task; The time series reasoning correlated prompts provide specific methodologies that help LLMs to
deal with temporal features. The final capability-enhancing prompts are formulated as follows:

C. = LLM s(tokenizer(¢, p,)). (8)

4.5 OUTPUT PROJECTION

After obtaining the MoP, we first concatenate the learnable prompts with the aligned features at
different scales, then concatenate it with data-correlated prompts and capability-enhancing prompts
and put them into LLMs to get the output representations, which can be formulated as follows:

O = LLMs([Cq4,C., [PY, 21, ..., [P5, Z°))). 9)

where [.,.] denotes the concatenation operation. Then, we obtain the final results through linear
mapping and instance denormalization.
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5 EXPERIMENTS

Experimental Settings. We conduct experiments on 27 real-world datasets across 5 different appli-
cations to verify the effectiveness of MSH-LLM, including long/short-term time series forecasting,
classification, few-shot learning, and zero-shot learning. Overall, MSH-LLM achieves state-of-the-art
results in a range of critical time series analysis tasks against 19 adavanced baselines. More details
about baselines, datasets, and experiment settings are given in Appendix [B] [D] and [E] respectively.

5.1 LONG-TERM FORECASTING

Setups. For long-term time series forecasting, we evaluate the performance of MSH-LLM on 7
commonly used datasets, including ETT (i.e., ETTh1, ETTh2, ETTml, and ETTm?2), Weather, Traffic,
and Electricity datasets. More details about the datasets are given in Appendix |D} Following existing
works (Jin et al.; 2024} Zhou et al., [2023a} [Pan et al.,[2024)), we set the input length 7" = 512 and the
forecasting lengths H € {96, 192, 336, 720}. The mean square error (MSE) and mean absolute error
(MAE) are set as the evaluation metrics.

Table 1: Long-term time series forecasting results. Results are averaged from all forecasting lengths.
Lower values mean better performance. The best results are bolded and the second best results are
underlined. Full results are listed in Appendix [G.1] Table[TT]

Methods | MSH-LLM | S’IP-LLM | Time-LLM AutoTimes T A ASHyper iTransformer | MSHyper DLinear TimesNet | FEDformer
Methods (Ours) | (ICML2024) | (ICLR 2024) | (NeurIPS 2024) | (NeurlPS 2023) | (AAAI2025) | (NeurIPS 2024) | (ICLR 2024) | (arXiv 2024) | (AAAI2023) | (ICLR 2023) | (ICML 2022)
Metie | MSEMAE | MSEMAE | MSEMAE | MSEMAE MSEMAE | MSEMAE | MSEMAE MSEMAE | MSEMAE | MSEMAE | MSEMAE | MSEMAE

Weather ‘ 0.217 0.254 ‘ 0.223 0.259 ‘ 0.231 0.269 ‘ 0.2330.279 0.2370.271 0.225 0.265 0.2540.283 0.305 0.335 ‘ 0.2430.271 } 0.249 0.300 ‘ 0.259 0.287 ‘ 0.309 0.360
Electricity ‘ 0.159 0.253 ‘ 0.163 0.258 ‘ 0.165 0.261 ‘ 0.162 0.261 0.167 0.263 0.162 0.25 0.162 0.253 0.203 0.298 ‘ 0.176 0.276 ‘ 0.166 0.264 ‘ 0.193 0.295 ‘ 0.214 0.327
Traffic ‘ 0.381 0.283 ‘ 0.406 0.287 ‘ 0.408 0.291 ‘ 0.397 0.289 0.414 0.295 0.4120.289 0.3910.289 0.384 0.295 ‘ 0.3930.317 ‘ 0.434 0.295 ‘ 0.620 0.336 ‘ 0.6100.376
ETThl | 0.4020.420 | 0.4050.426 | 04140435 | 0.4050437 0.418 0.431 0.4120.428 0.416 0.428 0.4510.462 | 0.4290.437 | 0.4190.439 | 0.5200.503 | 0.440 0.460

0.367 0.402
0.355 0.386
0.264 0.328

0.366 0.407
0.3520.378
02540315

0.351 0.392
0.3550.381
0.263 0.322

ETTh2 | 0.3420.383 | 03480392 | 0.3550.398 | 03580.387
ETTml | 0.3400.371 | 03430380 | 0.3500.383 | 03550380
ETTm2 | 0.2520311 | 02570319 | 02720.332 | 0.2580.347

0.3820.414 | 03670393 | 0.5020481 | 04250451 | 04370449
03700399 | 03880385 | 0.3570.380 | 0.4000.418 | 04480452
02720331 | 02770326 | 0.2760.341 | 03050355 | 0.3050349

Results. Table [T] summarizes the results of long-term time series forecasting. We can observe
that: (1) MSH-LLM achieves the SOTA results in all datasets. Specifically, MSH-LLM achieves
an average error reduction of 4.10% and 3.72% compared to LLM4TS methods (i.e., S2IP-LLM,
AutoTimes, Time-LLM, and FPT), 8.54% and 6.45% compared to latest Transformer-based methods
(i.e., ASHyper, iTransformer, and MSHyper), and 7.48% and 5.58% compared to the Linear-based
methods (i.e., AMD and DLinear) in MSE and MAE, respectively. (2) By considering group-wise
interactions, Ada-MSHyper, MSHyper, and PatchTST achieve competitive performance. (3) Based
on this, LLM4TS methods (e.g., S?IP-LLM and Time-LLM) introduce group-wise interactions into
LLMs and generally outperform better than other methods. However, they overlook the multi-scale
structures of natural language and time series. (4) By considering the multi-scale structures of natural
language and time series, MSH-LLM outperforms other LLM4TS methods in almost all cases.

5.2 SHORT-TERM FORECASTING

Setups. To fully evaluate the performance of MSH-LLM, we also conduct short-term forecasting
experiments on M4 datasets, which contain marketing data with different sampling frequencies. More
details about M4 dataset are given in Appendix [D| The forecasting lengths are set between 6 and 48,
which are significantly shorter than those in long-term time series forecasting. Following existing
works (Zhou et al.| 2023a; Jin et al., [2024; |Pan et al., |2024), we set the input length to be twice the
forecasting length. The symmetric mean absolute percentage error (SMAPE), mean absolute scaled
error (MASE), and overall weighted average (OWA) are used as the evaluation metrics.

Table 2: The average results of short-term time series forecasting on M4 datasets. Lower values
mean better performance. The best results are bolded and the second best results are underlined. Full
results are listed in Appendix[G.2] Table[T2]

Method MSH-LLM |  AutoTimes S2IP-LLM | Time-LLM FPT iTransformer |  DLinear PatchTST N-HiTS N-BEATS | TimesNet
cthods (Ours) | (NeurIPS 2024) | (ICML 2024) | (ICLR 2024) | (NeurIPS 2023) | (ICLR 2024) | (AAAI2023) | (ICLR 2023) | (AAAI2023) | (ICLR 2020) | (ICLR 2023)
SMAPE |  11.659 11.831 12,021 12.494 12,690 12.142 13.639 12,059 12,035 12.25 12.88
Avg. | MASE 1.557 585 1612 1.731 1.808 1.631 2.095 1.623 1.625 1.698 1.836
OWA 0.837 0.850 0.857 0913 0.940 0.874 1.051 0.869 0.869 0.896 0.955

Results. Table [2| gives the short-term time series forecasting results. We can see that: (1) MSH-
LLM performs slightly better than AutoTimes and substantially exceeds other baseline methods.
(2) By leveraging LLMs and Patch mechanisms, AutoTimes and PatchTST achieve competitive
results than other baseline methods. (3) Compared to AutoTimes and PatchTST, MSH-LLM achieves
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superior performance, the reason may be that the hyperedging mechanism can enhance the multi-scale
semantic information of time series semantic space while reducing irrelevant information interference.
5.3 TIME SERIES CLASSIFICATION

Setups. We also perform the time series classi-
fication task to verify the generalization abil-

. . . . SH-LLI
ity of the model. Following existing works R
TimesNet;
(Zhou et al., |2023a; Wu et al., 2022), we use Flowformer
. 0 0 0 . . Stationary
10 multivariate UEA time series classification  Rocket
datasets for evaluation, which cover different do- Transformer
mains (e.g., gesture, medical diagnosis, and au- eformer
dio recognition). More details about the datasets IS
are given in Appendix [G.3] Accuracy is used as FEDfommer
. . LightTS
the evaluation metric. Dz_m
. . . . XGBoost
Results. Figure 3]shows time series classifica- %
tion results. MSH-LLM achieves an average Average Accuracy (%)

accuracy of 75.38%, surpassing all baselines in-

cluding advanced LLM4TS methods FPT (74%). Figure 3: Time series classification results. The re-
It is also notable that other methods considering ~sults are averaged from 10 subsets of UEA. Higher
multi-scale structures (e.g., TimesNet and Flow- values mean better performance. Full results are
former) can also achieve better performance. given in Appendix @

The reason is that the time series classification is a sequence-level task, and multi-scale structures
help models learn hierarchical representations. However, MSH-LLM still performs better than those
methods, the reason may be that MSH-LLM leverages MoP mechanism to enhance the reasoning
capabilities of LLMs, thereby promoting LLMs to learn more comprehensive representations of
multi-scale temporal patterns.

5.4 FEW-SHOT LEARNING

Setups. LLMs have shown impressive capabilities for few-shot learning (L1u et al.,2023a). Following
existing works (Jin et al., 2024} |Zhou et al.,|2023a), we use limited training data (i.e., 5% and 10% of
the training data) on 7 commonly used datasets to evaluate the few-short learning performance.

Table 3: Few-shot learning results under 5% training data. Results are averaged from all forecasting
lengths. The best results are bolded and the second best results are underlined. Full results are listed

in Appendix [G.4] Table[T6
Methods MSH-LLM ‘ S*IP-LLM Time-LLM FPT iTransformer PatchTST TimesNet FEDformer NSFormer ETSformer Autoformer
(Ours) (ICML 2024) | (ICLR 2024) | (NeurIPS 2023) | (ICLR 2024) | (ICLR 2023) | (ICLR 2023) | (ICML 2022) | (NeurIPS 2022) | (arXiv 2022) | (NeurIPS 2021)
Metric | MSEMAE | MSEMAE | MSEMAE | MSEMAE | MSEMAE | MSEMAE | MSEMAE MSE MAE MSEMAE | MSEMAE | MSEMAE
Weather | 0.2470.281 | 0.2600.297 | 0.2640.301 02630301 | 0.3090.339 | 0.2690.303 | 0.2980.318 0.309 0.353 03100353 | 03270328 | 0.3330.371
Electricity | 0.1740.269 | 0.1790.275 | 0.1810.279 0.3460.404 | 0.6270.603 | 0.8000.685

Traffic | 0.4130.292 | 0.4200299 | 0.4230.302
ETT(Avg) | 04210423 | 04450438 | 0.5800.497

04340305 | 04500.324 | 04180296 | 0.8670.493 | 0.6760.423
0.4650.447 | 0.6750.542 | 0.5900.503 | 0.6060.507 | 0.5580.503

0.8330502 | 1.5260.839 | 1.8590.927
0.5870.527 | 0.6760.526 | 0.9140.712

I
I
01780273 | 0.2010.296 | 0.1810277 | 0.4020453 | 0.2660.353
I
\

Results. Table 3| summarizes the few-shot learning results under 5% training data. We can see that
LLMA4TS methods (i.e., MSH-LLM, SQIP—LLM, and Time-LLM) outperform all other baselines by a
large margin. The reason may be that other baseline methods, which are trained from scratch, have
limited training data under this scenario. In contrast, LLM4TS methods can apply/align pre-trained
knowledge for time series analysis, thereby enhancing its ability to understand and reason time series.
Notably, MSH-LLM achieves SOTA results in almost all cases, reducing the prediction error by
an average of 10.47% and 6.74% over other LLM4TS methods (i.e., S?IP-LLM and Time-LLM)
in terms of MSE and MAE, respectively. This may attribute to that MSH-LLM can consider the
multi-scale structures of natural language and time series, while leveraging the MoP mechanism to
unlock the knowledge within LLMs to understand multi-scale patterns. The few-shot learning results
under 10% training data are given in Appendix [5.4]

5.5 ZERO-SHOT LEARNING

Setups. Except for few-shot learning, LLMs have shown remarkable generalization ability for
zero-shot learning. In this section, we evaluate the performance of MSH-LLM for few-shot learning,
where no training sample of the target domain is available. Specifically, we adhere to the benchmark
established by (Zhou et al., [2023a; |[Liu et al.| [2024) and evaluate the cross-dataset adaptation
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performance (i.e., how well the model performance on dataset A when trained on dataset B). M3 and
M4 datasets are used to evaluate the zero-shot learning performance.

Table 4: Zero-shot learning results in terms of averaged SMAPE. M4—M3 means training on M4
datasets and testing on M3 datasets, and vice versa. The best results are bolded and the second best
results are underlined. Full results are listed in Appendix [G.5] Table[I7]

Method MSH-LLM AutoTimes FPT DLinear PatchTST TimesNet NSformer FEDformer Informer Reformer
cthods (Ours) (NeurIPS 2024) | (NeurIPS 2023) | (AAAI2023) | (ICLR 2023) | (ICLR 2023) | (NeurIPS 2022) | (ICML 2022) | (AAAI2021) | (ICLR 2019)

M4—M3 | 12469 | 12.750 | 13.060 | 14.030 | 13390 | 14170 | 15.290 | 13.530 | 15.820 | 13.370

M3—M4 | 12968 | 13.036 | 13.125 | 15.337 | 13228 | 14553 | 14.327 | 15.047 | 19.047 | 14.092

Results. Table [ provides the zero-short learning results. It is notable that both M3 and M4 datasets
contain complex multi-scale temporal patterns and show different data distributions. MSH-LLM
still achieves the best performance, which may be due to its ability to better leverage the reasoning
capabilities of LLMs for interpreting multi-scale temporal patterns. Specifically, MSH-LLM achieves
an average of 10.23% SMAPE error reductions across all baselines on average.

5.6 ABLATION STUDIES

LLMs Selection. Scaling law is an essential characteristic that extends from small models to large
foundation models. To investigate the impact of backbone model size, we design the following three
variants: (1) Using the first 12 Transformer layers of LLaMA-7B (L.12). (2) Replacing LLaMA-7B
with GPT-2 Small (G.12). (3) Replacing LLaMA-7B with the first 6 Transformer layers of GPT-2
Small (G.6). The experimental results on Traffic dataset are shown in Table[5] We can observe that
MSH-LLM (Default 32) performs better than L.12, G.12, and G.6, which indicate that the scaling
law also applies to cross-modalities alignment with frozen LLMs.

Table 5: Results of different LLMs selection and MoP mechanism. The best results are bolded.

Methods | L.12 | G.12 | G.6 | -wioC; | -wloCq | -wloC. | -w/oMoP | MSH-LLM (Default:32)
Metric | MSEMAE | MSE MAE | MSE MAE | MSEMAE | MSEMAE | MSEMAE | MSE MAE | MSE MAE
96 0.3700.274 | 0.377 0.281 | 0.3930.295 | 0.373 0.272 | 0.368 0.273 | 0.3750.272 | 0.399 0.283 0.365 0.270
192 0.3750.283 | 0.3850.290 | 0.404 0.297 | 0.3790.289 | 0.383 0.286 | 0.3920.282 | 0.403 0.290 0.372 0.281
336 0.393 0.286 | 0.397 0.289 | 0.4110.316 | 0.4000.293 | 0.4050.292 | 0.391 0.284 | 0.409 0.295 0.385 0.279

MoP Mechanism. To investigate the impact of MoP mechanism, we design three variants: (1)
Removing the learnable prompts (-w/o C;). (2) Removing the data-correlated prompts (-w/o Cy). (3)
Removing the capability-enhancing prompts (-w/o C..). (3) Removing the MoP mechanism (-w/o
MoP). The experimental results on Traffic dataset are shown in Table[5] from which we can observe
that MSH-LLM performs better than -w/o C;, -w/o C4, and -w/o C., showing the effectiveness
of learnable prompts, data-correlated prompts, and capability-enhancing prompts, respectively. In
addition, -w/o MoP achieves the worst performance, demonstrating the effectiveness of the MoP
mechanism. More ablation experiments on the MoP mechanism, hyperedging mechanism, ME
module, and CMA module are shown in Appendix [H|and[l]

5.7 PARAMETER STUDIES

We perform parameter studies on Traffic

datasets to evaluate the impact of the max num- e =
ber of hyperedges connected to a node (1) and Lol E
the number of scales (# scales). The experimen- ~ Zeo;
tal results are shown in Figure El, from which e T T
we can observe that: (1) The best performance 7

can be obtained when ) = 4. The reason is that T oNmeorees '
smaller values of n fail to capture group-wise
interactions, while large values of 7 may intro-
duce noise interference. (2) The optimal # scales is 3. The reason is that smaller # scales limit the
expressive ability of MSH-LLM, while large # scales may introduce excessive parameters and cause
overfitting problems.

045
6 .- H96

=192 . H=192
36 § e He336

720 T +- H=720
. .-

(b) Number of Scales

Figure 4: The impact of different hyperparameters.

5.8 VISUALIZATION

Visualization of the MoP Mechanism. We perform qualitative analysis to investigate how prompts
can guide LLMs in time series analysis. The t-SNE visualization results on Traffic dataset are provided
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in Figure[5] We can observe that the output of pre-trained LLMs with the MoP mechanism (Figure
[l@)) shows distinct clusters, while the output of pre-trained LLMs without the MoP mechanism
(Figure3]e)) reveals a more spread-out and lacks clear clustering. The experimental results show
the effectiveness of the MoP mechanism in activating the abilities of LLMs to capture multi-scale
temporal patterns. In addition, we observe that Figures Eka) and Figure Ekb) (-w/o C) share similar
clusters, while Figures Ekc) (-w/o C;) and Figure Ekd) (-w/o C.) show less distinct clusters compared
to Figure[5|a), suggesting that C, has a relatively minor influence compared C; and C. on Traffic
dataset for long-term forecasting. However, this does not imply that C is unimportant, as removing
C, leads to a performance degradation. The qualitative analysis also aligns with the experimental
results in Table

(a) MSH-LLM (b) -w/o Cyq (c) -w/o Cc (d) -w/o C; (e) -w/o MoP

Figure 5: The t-SNE visualization of the output generated by pre-trained LLMs under different
prompts.

Visualization of the hyperedge embeddings. We perform qualitative analysis to investigate the
training-time trajectories of the hyperedge embeddings. The t-SNE visualization results of hyperedge
embeddings on ETTh1 dataset are given in Figure[6] From Figure[f] we can discern the following
tendencies: 1) As training progresses, hyperedge embeddings at different scales form distinct clusters.
This indicates that MSH-LLM is able to distinguish and capture multi-scale temporal patterns. In
addition, even within the same scale, different hyperedge embeddings reside in distinct clusters,
indicating the ability of MSH-LLM in capturing diverse temporal patterns within the same scale.
2) From Figure [6fa) to Figure [f[c), we can observe that embeddings of large-scale hyperedges
form distinct clusters earlier during training, while embeddings of small-scale hyperedges gradually
separate from the large-scale clusters over time. This suggests that during the early stages of training,
the model is more focused on capturing coarse-grained temporal patterns (e.g., weekly patterns), and
later shifts its focus to learning finer-grained temporal patterns(e.g., hourly and daily patterns).

(a) Initial embeddings (b) Embeddings at epoch 1 (c) Embeddings at epoch 3

Figure 6: The t-SNE visualization of hyperedge embeddings at different epochs.

6 CONCLUSIONS

In this paper, we propose MSH-LLM, a multi-scale hypergraph framework that aligns pre-trained
large language models for time series analysis. Empowered by the hyperedging mechanism and
cross-modality alignment (CMA) module, MSH-LLM can perform alignment at different scales,
addressing the problem of multi-scale semantic space disparity between natural language and time
series. In addition, a mixture of prompts (MoP) mechanism is introduced to enhance the reasoning
capabilities of LLMs towards multi-scale temporal patterns. Experimental results on 27 real-world
datasets across 5 different applications justify the effectiveness of MSH-LLM.

10
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7 ETHICS STATEMENT

Our work focuses solely on scientific problems and does not involve human subjects, animals, or
environmentally sensitive materials. We foresee no ethical risks or conflicts of interest.

8 REPRODUCIBILITY STATEMENT

We have rigorously formalized the model architecture, loss functions, and evaluation metrics through
illustrations, equations, and descriptions in the main text. We provide the reproducibility details in the
Appendix, including dataset descriptions (Appendix D), experimental details (Appendix [E), ablation
studies (Appendix [H)), and visualization (Appendix [[). We provide our source code in an anonymous
link: https://anonymous.4open.science/r/MSH-LLM-1E9B, which will be publicly available upon
acceptance.
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A DESCRIPTION OF NOTATIONS

To help understand the symbols used throughout the paper, we provide a detailed list of the key
notations in Table [l

Table 6: Description of the key notations.

Notation | Descriptions
g | Hypergraph
£ ‘ Hyperedge set
4 ‘ Node set
N*® | Number of nodes at scale s
M*® ‘ Number of hyperedges at scale s
T | Input length
H | Output length
D ‘ Temporal feature dimension
s | Scale index
S ‘ Number of temporal scales
XIl:T ‘ Input time series
b & ‘ Sub-sequence at scale s
65—t ‘ Learnable parameters of the aggregation function at scale s — 1
Tt | Values at time step ¢
18 ‘ ‘Word token embeddings of pre-trained LLMs
\% | Vocabulary size
P ‘ Hidden dimension size of LLMs
U ‘ Prototypes at scale s
As—1 ‘ Learnable parameters of the linear mapping function at scale s — 1
E;’S]Ode S ]RNS xD ‘ Node embeddings at scale s
Eﬁyper € RM® XD ‘ Hyperedge embeddings at scale s
ef | ith hyperedge at scale s
z? | ith node at scale s
ef ‘ ith hyperedge feature representation at scale s
mf ‘ 1th node feature representation at scale s
n | Threshold of TopK function
£E3 ‘ Hyperedge feature set at scale s
H? ‘ Incidence matrix at scale s
Be RIX1 ‘ Learnable parameters
@ € RIX1 ‘ Learnable parameters
st ‘ Size of the aggregation window at scale s — 1
N(ef) | Nodes connected by e
;, K;, V]S ‘ Queries, keys, and values of the 7 head at scale s
7 | Head index
J | Number of heads
zs ‘ Cross-modality aligned features
(] | Learnable prompts
Ps ‘ Scale-specific prompts
L3 ‘ Length of learnable prompts at scale s
Cy ‘ Data-correlated prompts
T, T, ‘ Dataset description, task introduction, and dataset statistics prompts
b, o, P ‘ Logical thinking, emotional manipulation, and time series reasoning prompts
Ce ‘ Capability-enhancing prompts
[,:] | Concatenation operation
(@] ‘ Output representation
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B DESCRIPTION OF BASELINES

We compare MSH-LLM with 19 competitive baselines. Below are brief descriptions of the baselines:

AutoTimes (Liu et al., |2024): AutoTimes repurposes frozen LLMs as autoregressive time series
forecasters and introduces time series-related prompts to enhance forecasting.

Time-LLM (Jin et al., [2024): Time-LLM introduces a patch reprogramming mechanism to align the
input time series with text prototypes, and then feeds the aligned features into frozen LLMs to get the
output results.

FPT (Zhou et al.,|2023a): FPT fine-tunes the key parameters of LLMs and transforms the LLMs into
a unified framework for time series analysis.

SZIP-LLM (Pan et al,[2024): S*IP-LLM aligns the semantic space of LLMs with that of time series
and performs time series forecasting based on learned prompts from the joint space.

DLinear (Zeng et al. 2022): DLinear decomposes the input time series into seasonal and trend
components, and employs a linear layer for each component to model temporal dependencies.

N-HiTS (Challu et al.}2023): N-HiTS proposes a novel hierarchical interpolation and multi-rate data
sampling techniques to model multi-scale temporal patterns.

N-BEATS (Oreshkin et al.,[2020): N-BEATS employs a deep stack of fully-connected layers based
on backward and forward residual connections to model temporal dependencies.

AMD (Hu et al., 2025): AMD decomposes time series into distinct temporal patterns at different
scales and leverages the multi-scale decomposable mixing block to dissect and aggregate these
patterns in a residual manner.

Ada-MSHyper (Shang et al., |2024a): Ada-MSHyper utilizes an adaptive hypergraph to capture
group-wise interactions at different scales and introduces a constraint mechanism to address the
problem of temporal variations entanglement.

iTransformer (Liu et al., 2023b): iTransformer embeds individual time points of time series into
variate tokens, then applies the attention mechanism and feed-forward network to capture variate
correlations and learn nonlinear representations, respectively.

PatchTST (Nie et al., 2022): PatchTST segments time series into subsequence-level patches and
treats them as input tokens to model temporal dependencies in a channel-independent manner.

TimesNet (Wu et al [2022)): TimesNet transforms 1D time series into a set of 2D tensors by
multi-periodicity analysis to model complex temporal variations from a 2D perspective.

MSHyper (Shang et al.,2024b): MSHyper constructs multi-scale hypergraphs in a rule-based manner
and combines them with a tri-stage message passing mechanism to model group-wise interactions
between multi-scale temporal patterns.

Autoformer (Wu et all 2021): Autoformer utilizes a decomposition architecture with an auto-
correlation mechanism to discover the long-range dependencies.

NSFormer (Liu et all, [2022): NSFormer introduces a series stationarization module and a de-
stationary attention module to improve the predictability of time series and address the over-
stationarization problem, respectively.

FEDformer (Zhou et al.,2022): FEDformer utilizes a decomposition method to capture the global
information of time series and a frequency-enhanced block to capture important structures.

ETSformer (Woo et al., 2022b): ETSformer incorporates the principles of exponential smoothing by
replacing traditional self-attention with exponential smoothing attention and frequency attention for
time series forecasting.

Reformer (Kitaev et al.,[2019): Reformer approximates the attention value through local-sensitive
hashing (LSH) and leverages reversible residual layers to reduce the computation cost.

Informer (Zhou et al., 2021): Informer selects dominant query by calculating KL-divergence to
reduce computational complexity and utilizes a generative style decoder to accelerate inference speed.
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C DESCRIPTION OF HYPERGRAPH LEARNING

Compared to Graph Neural Networks (GNNs), which model pairwise interactions by operating
on graphs where each edge connects exactly two nodes, Hypergraph Neural Networks (HGNNs)
generalize this paradigm to capture group-wise interactions through hyperedges that can connect an
arbitrary number of nodes. As shown in Figure[7] the graph is represented using the adjacency matrix,
in which each edge connects two nodes. In contrast, the hypergraph is represented by the incidence
matrix, which can capture group-wise interaction using its degree-free hyperedges.
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Figure 7: The comparison between graph and hypergraph.

Recently, HGNNs have been applied in different fields, e.g., video object segmentation (Huang et al.}
2009), stock selection (Sawhney et al.,[2021), temporal knowledge graphs (Tang et al., 2024), and
time series forecasting (Shang et al, 2024a3b} Zhao et al., 2023} |Tian et al.| [2025). HyperGCN
(Yadati et al., |2019) is the first work to incorporate convolutional operations into hypergraphs,
demonstrating the superiority of HGNNSs over ordinary GNNs in capturing group-wise interactions.
STHAN-SR (Sawhney et al., [2021) reformulates stock prediction as a learning-to-rank task and
utilizes hypergraphs to capture group-wise interactions between stocks. GroupNet (Xu et al., 2022)
employs multi-scale hypergraphs for trajectory prediction, which combines relational reasoning
with hypergraph structures to capture group-wise pattern interactions among multiple agents. In the
context of time series forecasting, MSHyper (Shang et al.,|2024b) is the first work to incorporate
hypergraphs into long-term time series forecasting, which leverages predefined hypergraphs and
the tri-stage message passing mechanism to capture multi-scale pattern interactions. Building on
this, Ada-MSHyper (Shang et al., [2024a) introduces adaptive hypergraph modeling, which combines
adaptive hypergraphs with the node and hyperedge constraint mechanism to capture abundant and
implicit group-wise temporal pattern interactions.

In this paper, we represent temporal features of different scales as nodes and use learnable hyperedges
in the hypergraph to capture group-wise interactions, thereby enhancing the semantic information of
time series semantic space. We formulate this process as the hyperedging mechanism. As mentioned
above, our hyperedging mechanism differs from previous methods in two aspects. Firstly, our
methods can capture implicit group-wise interactions at different scales in a learnable manner, while
most existing methods (Nie et al., 2022 [Zhou et al., [2023a}; [Shang et al.,|2024b)) rely on pre-defined
rules to model group-wise interactions at a single scale. Secondly, although some methods (Shang
et al.||2024a; |Jiang et al.l|2019) learn from hypergraphs, they focus on constraints or clustering-based
approaches to learn the hypergraph structures. In contrast, our method learns the hypergraph structures
in a pure data-driven manner by incorporating learnable parameters and nonlinear transformations,
which is more flexible and can learn more complex hypergraph structures.

D DESCRIPTION OF DATASETS

Datasets for Long-Term Forecasting and Few-Shot Learning. For long-term time series forecasting
and few-shot learning, we conduct experiments on 7 commonly used datasets, including Electricity
Transformers Temperature (ETT), Trafﬁ Electricit and Weathe datasets following existing
works (Zhou et al., 2023a}; [Pan et al., 2024} Jin et al., 2024). ETT datasets include data from
two counties in China. The datasets are further divided into four subsets with different sampling

'http://pems.dot.ca.gov
Zhttps://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
Shttps://www.bgc-jena.mpg.de/wetter/
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frequencies: ETTm1 and ETTm2, which are sampled every 15 minutes, and ETTh1 and ETTh2,
which are sampled hourly. Each subset contains seven variables, including the target variable ‘oil
temperature’ and six power load variables. Traffic dataset provides hourly road occupancy rates, which
are sampled from 821 freeway sensors across the state of California. Electricity dataset comprises
hourly electricity consumption data of 321 clients. Weather dataset records 21 meteorological
indicators collected every 10 minutes from weather stations in Germany. The detailed descriptions of
the datasets are given in Table

Table 7: Dataset descriptions for long-term time series forecasting and few-shot learning.

Dataset | Variates | Forecasting Length | Frequency | Information
ETThl, ETTh2 | 7 | (96,192,336, 720) | Hourly | Temperature
ETTml, ETTm2 | 7 | (96,192,336,720) | 15mins | Temperature
Electricity | 321 | (96,192,336,720) | Hourly | Electricity
Traffic | 862 | (96,192,336,720) | Hourly | Transportation
Weather | 21 | (96,192,336,720) | 10 mins | Weather

We follow the same data processing and training-validation-testing split protocol as in existing works
(Zhou et al.,[2023a; Jin et al., 2024} |Pan et al., [2024). Each dataset is split into training, validation,
and testing sets based on chronological order. For ETT datasets (i.e., ETThl, ETTh2, ETTml, and
ETTm?2), the split ratio of training-validation-testing sets is 6:2:2. For Traffic, Electricity, and Weather
datasets, the split ratio is 7:2:1. For the few-shot learning task, only a portion (5% or 10%) of training
data is used, while the validation and testing sets remain unchanged.

Datasets for Short-Term Forecasting and Zero-Shot Learning. Following existing works (Liu
et al.,|2024; Zhou et al., 2023a), we leverage M4 dataset for short-term forecasting and use both M3
and M4 datasets for zero-shot learning. M4 dataset is a large dataset that covers different domains
(e.g., demographic, financial, and industry) and has been divided into six subsets based on different
sampling frequencies that range from hourly to yearly. M3 dataset is smaller than M4 but also
contains time series with different sampling frequencies. The detailed descriptions of M3 and M4
datasets are outlined in Table

Table 8: Dataset descriptions for short-term time series forecasting and zero-shot learning. The
dataset size is organized in (training, validation, and testing).

Dataset | Forecasting Length | Dataset Size | Frequency | Information | Mapping

M3 Yearly | 6 | (645,0, 645) | Yearly | Demographic | M4 Yearly

M3 Quarterly | 8 | (756,0,756) | Quarterly | Finance | M4 Quarterly
M3 Monthly | 18 | (1428,0,1428) | Monthly | Industry | M4 Monthly
M3 Others | 8 | (174,0, 174) | Weekly | Macro | M4 Quarterly
M4 Yearly | 6 | (23000, 0,23000) | Yearly | Demographic | M3 Yearly

M4 Quarterly | 8 | (24000, 0,24000) | Quarterly | Finance | M3 Quarterly
M4 Monthly | 18 | (48000, 0,48000) | Monthly | Industry | M3 Monthly
M4 Weekly | 13 | (359,0,359) | Weekly | Macro | M3 Monthly
M4 Daily | 14 | 4227,0,4227) | Daily | Micro | M3 Monthly
M4 Hourly | 48 | (414,0,414) | Hourly | Other | M3 Monthly

Datasets for Time Series Classification. Following existing works (Zhou et al., 2023a; Wu et al.,
2022)), we use 10 multivariate datasets selected from the UEA time series classification Archive
(Bagnall et al., 2018}, |Zerveas et al., 2021) for time series classification. These datasets are complex,
which cover different domains (e.g., gesture, medical diagnosis, and audio recognition) and exhibit
diverse characteristics in terms of sample size, dimensionality, and number of classes. The detailed
descriptions of the datasets are provided in Table 9]

E EXPERIMENTAL SETTINGS

MSH-LLM is implemented in PyTorch (Paszke et al., 2019), with all experiments conducted on
NVIDIA A100-80 GPUs and NVIDIA GeForce RTX 3090 GPUs. We use LLaMA-7B (Touvron
et al.,[2023)) as the default base LLM unless specified otherwise. We repeat all experiments 3 times
and use the mean as the final results. Adam (Kingmal 2014) is used as the optimizer with the initial
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Table 9: Dataset descriptions for time series classification. The dataset size is organized in (training,
validation, and testing).

Dataset | Datasetsize | Variates | Classes | Information
EthanolConcentration | (261,0,263) | 3 | 4 | Biomedical
FaceDetection | (5890.0,3524) | 144 |2 | Computer Vision
Handwriting | (150,0,850) |3 | 26 | Pattern Recognition
Heartbeat | (204,0,205) | 61 |2 | Medical Recognition
JapaneseVowels | (270,0,370) | 12 |9 | Audio Recognition
PEMS-SF | (267,0,173) | 963 |7 | Transportation
SelfRegulationSCP1 | (268,0,293) | 6 |2 | Psychology
SelfRegulationSCP2 | (200,0, 180) | 7 |2 | Psychology
SpokenArabicDigits | (6599, 0,2199) | 13 | 10 | Speech Recognition
UWaveGestureLibrary | (120,0,320) | 3 |8 | Gesture

learning rate chosen from {1073,5 x 1073,107*}. The total number of scales S is set to 3. We
use 1D convolution as our aggregation function. For other key hyperparameters, unlike existing
works that use grid search over tunable hyperparameters, we leverage Neural Network Intelligence
(NNI) E]toolkit to automatically search for the best hyperparameters. The detailed search space of
key hyperparameters is given in Table[I0] Following existing works (Zhou et al.l 2023a;[Wu et al|
2022), we adopt MSE as the objective function for long-term time series forecasting and few-shot
learning tasks. For short-term time series forecasting and zero-shot learning, we use SMAPE as the
objective function. It is notable that some baselines cannot be used directly due to different choices of
input and output lengths. For a fair comparison, we primarily adopt the results from existing papers
(Jin et al., [20245 Zhou et al., |2023a; [Pan et al., [2024)). For other results, we utilize their official code
while adjusting the input and out lengths. The source code of MSH-LLM is released on Anonymous
GitHub

Table 10: The search space of hyperparameters.

Parameters | Choise
Batch size ‘ {8, 16, 32, 64, 128, 256}
Number of hyperedges at scale 1 | {5, 10, 20, 30, 50}
|

Number of hyperedges at scale 2 {2,5,10, 15,20}

Number of hyperedges at scale 3 ‘ {1,2,4,5,8, 12}
Number of text prototypes at scale 1 ‘ {20, 50, 100, 200, 500, 1000}
Number of text prototypes at scale 1 \ {10, 25, 50, 100, 200, 500}

Number of text prototypes at scale 1 \ {4,5, 10, 25, 50, 100}
Aggregation window size at scale 1 | {2,4,8}
Aggregation window size at scale 2 | {2,4}

n ‘ {2,3,4,5,10, 15,20}

F EVALUATION METRICS

For long-term time series forecasting and few-shot learning, we employ the Mean Squared Error
(MSE) and Mean Absolute Error (MAE) as our evaluation metrics, which can be formulated as
follows:

11 2 1,4
MSE = — | R%rrr — X$rren,, MAE = = [X9i1in — X0 izl (10

where T" and H are the input and output lengths, }A(% wrren and X2 are the forecasting
results and ground truth, respectively.

For short-term time series forecasting and zero-shot learning on M4 benchmark, we adopt the
Symmetric Mean Absolute Percentage Error (SMAPE), Mean Absolute Scaled Error (MASE), and

Ynttps://nni.readthedocs.io/en/latest/
Shttps://anonymous.4open.science/r/MSH-LLM-1E9B
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Overall Weighted Average (OWA) as our evaluation metrics, which can be formulated as follows:

H |xo0 0
SMAPE — 200 Z |XT+1:T+(1;{ - XT+1:T+H|7 (an
H i~ X7 1 yml

H 0 0
1 X7 1+ — Xpirriml
MASE = — , (12)

1 H 0 o
h=1 H—s Zj:s+1 |XT+1:T+H - XT+1:T+H71

1 SMAPE MASE
OWA = 3 | SMAPENawes T MASENanes | (13

Notably, the OWA metric is a specific metric that is only used for short-term time series forecasting.

G FULL RESULTS

We compare MSH-LLM with 19 baselines that cover five different applications: Long-term time
series forecasting, short-term time series forecasting, time series classification, few-shot learning,
and zero-shot learning. For a fair comparison, we follow the unified experimental settings used in
existing works (Zhou et al2023a; [Pan et al.} 2024; Jin et al.| [2024). The average results refer to the
mean of results under different forecasting results, where the best results are bolded and the second
best results are underlined. * indicates that some results do not meet the unified settings, thus we
rerun their official code under unified settings and fine-tune their key hyperparameters.

G.1 LONG-TERM TIME SERIES FORECASTING

Table [TT] summarizes the full results of long-term time series forecasting. We can observe that
MSH-LLM achieves the SOTA results in 54 out of 70 cases across 7 time series datasets. Specifically,
on the well-studied Traffic datast, MSH-LLM achieves an average error reduction of 11.54% and
6.71% across all baselines. On the challenging Weather dataset, MSH-LLM achieves an average
error reduction of 12.78% and 11.26% across all baselines.

Table 11: Full results of long-term time series forecasting. The input length is set to 512, and the
forecasting lengths are set to 96, 192, 336, and 720. Lower values mean better performance. The best
results are bolded and the second best results are underlined.

Methods ‘ MSH-LLM ‘ SIP-LLM | Time-LLM ‘ AutoTimes* FPT ‘ AMD* ‘ ASHyper* | iTransformer | MSHyper* ‘ DLinear ‘ TimesNet | FEDformer
(Ours) (ICLR 2024) | (ICLR 2024) | (NeurIPS 2024) | (NeurIPS 2023) | (AAAI2025) | (NeurIPS 2024) | (ICLR 2024) | (arXiv 2024) | (AAAI2023) | (ICLR 2023) | (ICML 2022)

Metric MSEMAE | MSEMAE | MSEMAE MSE MAE MSE MAE MSE MAE MSE MAE MSEMAE | MSEMAE MSE MAE MSE MAE MSE MAE

96 | 0.1380.187 | 0.1450.195 | 0.1580.210 0.1610.216 0.162 0.212 0.148 0.203 0.169 0.228 0.2530.304 | 0.1710.212 0.176 0.237 0.172 0.220 0.2170.296

192 | 0.1870.230 | 0.1900.235 | 0.197 0.245 0.2050.253 0.204 0.248 0.193 0.243 0.2350.288 0.2800.319 | 0.2140.250 | 0.2200.282 0.2190.261 0.276 0.336

Weather | 336 | 0.2370.282 0.248 0.285 0.2510.289 0.2540.286 0.242 0.281 0.2750.287 0.3210.344 | 0.2600.287 | 0.2650.319 | 0.2800.306 | 0.339 0.380
720 | 0.3 0.3190.334 0.3140.356 0.326 0.337 3 0.3350.327 0.3640.374 | 0.3270.336 | 0.3330.362 | 0.3650.359 | 0.4030.428

Avg. | 0.217 0.254 0.2310.269 0.2330.279 0.2370.271 0.2540.283 0.3050.335 | 0.2430.271 | 0.2490.300 | 0.2590.287 | 0.309 0.360

96 0.1350.230 | 0.1370.237 0.1340.233 0.1390.238 0.1310.228 0.1290.234 0.1470.248 | 0.1470.251 0.1400.237 | 0.1680.272 | 0.193 0.308

192 0.149 0.247 | 0.1500.249 0.1500.247 0.1530.251 0.1510.244 0.1540.227 0.1650.267 | 0.1670.269 | 0.1530.249 | 0.1840.289 | 0.201 0.315

Electricity | 336 5! 0.1670.266 | 0.168 0.266 0.169 0.266 0.167 0.262 0.165 0.262 0.1780.279 | 0.1740.275 | 0.1690.267 | 0.1980.300 | 0.2140.329
720 | 0.1980.279 | 0.200 0.287 | 0.203 0.293 0.206 0.297 0.200 0.292 0.201 0.290 0.3220.398 | 0.216 0.308 0.203 0.301 0.220 0.320 0.246 0.355

Avg. | 0.1590.253 | 0.1630.258 | 0.1650.261 0.1620.261 0.167 0.263 257 0. 253 0.2030.298 | 0.1760.276 | 0.1660.264 | 0.1930.295 | 0.2140.327

96 | 0.3650.270 | 0.3790.274 | 0.3800.277 0.366 0.279 0.3880.282 0.3870.278 0.368 0.277 0.3670.288 | 0.3940.389 | 0.4100.282 | 0.5930.321 0.5870.366

192 | 0.3720.281 | 0.3970.282 | 0.3990.288 0.395 0.287 0.407 0.290 0.402 0.282 0.379 0.288 0.3780.293 | 0.3750.289 0.423 0.287 0.617 0.336 0.604 0.373

Traffic 336 | 0.3850.279 | 0.4070.289 | 0.408 0.290 0.406 0.283 0.4120.294 0.4130.288 0.3970.292 0.3890.294 | 0.3950.283 0.4360.296 | 0.629 0.336 0.621 0.383
720 | 0.4020.303 | 0.440 0.30 0.4450.308 0.4210.305 0.4500.312 0.4440.306 0.4210.298 0.4010.304 | 0.4070.308 | 0.4660.315 | 0.6400.350 | 0.6260.382

Avg. | 0.3810.283 | 0.406 0.287 | 0.4080.291 0.397 0.289 0.4140.295 0.4120.289 0.3910.289 0.3840.295 | 0.3930.317 | 0.4340.295 | 0.6200.336 | 0.6100.376

96 | 0.360 0.388 | 0.3660.396 | 0.3830.410 0.368 0.395 0.379 0.402 0.371 0.399 0.368 0.391 0.3950.420 | 0.3720.417 0.367 0.396 0.468 0.475 0.376 0.419

192 | 0.398 0.411 | 0.401 0420 | 0.4190.435 0404 0.415 0.4150.424 0.403 0.420 0.4290.417 0.427 0.441 0.4180.432 0.4010.419 0.484 0.485 0.4200.448

ETThl 336 | 04150432 | 04120431 | 0.426 0.440 0.408 0.435 0.4350.440 0423 0.432 0.4190.438 0.4450.457 | 04510440 | 04340449 | 05360.516 | 0.459 0.465
720 | 0.4360.447 | 0.4400.458 | 0.428 0.456 0439 0.503 0.4410.459 0.4520.461 0.446 0.465 0.5370.530 | 0.4760.458 | 04720493 | 0.5930.537 | 0.506 0.507

Avg. | 0.4020.420 | 04050426 | 04140435 0.405 0.437 0.418 0.431 0.4120.428 0.416 0.428 0.4510.462 | 0.4290.437 0.4190.439 0.5200.503 0.440 0.460

96 | 0.2730.331 | 0.2780.340 | 0.297 0.357 0.2820.329 0.2890.347 0.2790.343 0.3040.360 | 0.2870.331 | 03010367 | 0.3760.415 | 0.3580.397

192 | 0.3350.372 | 0.3460.385 | 0.349 0.390 0.3520.391 0.358 0.392 0.363 0.397 0.3770.403 | 0.3720.389 | 0.3940.427 | 0.4090.440 | 0.4290.439

ETTh2 336 | 0.3630.400 | 0.3670.406 | 0.3730.408 0.382 0.403 0.3830.414 0.381 0.419 0.4050.429 | 0.4070.423 0.506 0.495 0.4250.455 0.496 0.487
720 4000436 | 0.400 0.436 0.417 0.425 0.438 0.456 0.442 0.467 0.407 0.430 0.4430.464 | 0.400 0.428 0.805 0.635 0.488 0.494 0.463 0.474

Avg. | 0.3420.383 | 0.348 0.392 .355 0.398 0.358 0.387 0.367 0.402 0.366 0.407 0.3510.392 0.3820.414 | 0.3670.393 | 0.5020.481 | 0.4250.451 0.4370.449

96 | 0.2850.340 2 0.291 0.346 0.301 0.347 0.296 0.353 0.289 0.343 0.297 0.338 03120366 | 0.3230.348 0.304 0.348 0.3290.377 0.3790.419

192 0.336 0.373 0.3310.371 0.3350.373 0.329 0.366 0.333 0.367 0.3470.385 | 0.368 0.369 0.336 0.367 0.3710.401 0.426 0.441

ETTml 336 0.3620.390 0.365 0.380 0.369 0.394 0.365 0.386 0.365 0.388 0.3790.404 | 0.3920.390 | 0.3680.387 | 0.4170.428 | 0.4450.459
720 10 0410 0.421 0423 0.422 0418 0.424 04230417 0.4250.431 0.4410.442 | 04690433 | 04210418 | 04830464 | 0.5430.490

Avg. | 0.3400.371 | 0.3430.380 | 0.3500.383 0.3550.380 0.3550.386 0.3520.378 0.3550.381 0.3700.399 | 0.3880.385 | 0.3570.380 | 0.4000.418 | 0.4480.452

96 | 0.1610.246 | 0.1650.257 | 0.1840.275 0.167 0.261 0.1700.264 0.168 0.258 0.168 0.256 0.1790.271 | 0.168 0.254 | 0.1680.263 | 0.2010.286 | 0.203 0.287

192 .284 | 0.2220.299 | 0.2380.310 0.2140.311 0.2310.306 0.2210.295 0.229 0.301 0.2420.313 | 02430311 | 0.2290.310 | 0.2600.329 | 0.269 0.328

ETTm2 336 0.2770.330 | 0.286 0.340 0.284 0.325 0.2800.339 0.2710.327 0.2810.334 0.2880.344 | 0.2990.338 | 0.2890.352 | 0.3310.376 | 0.3250.366
720 0.3630.390 | 0.379 0.403 0.367 0.49: 0.373 0.402 0.355 0.381 0.3720.397 0.378 0.397 | 0.397 0.399 0.416 0.437 0.428 0.430 0.421 0415

Avg. 0.2570.319 | 0.2720.332 0.258 0.347 0.264 0.328 0.2540.315 0.263 0.322 0.2720.331 | 0.2770.326 | 0.276 0.341 | 0.3050.355 | 0.3050.349
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G.2 SHORT-TERM TIME SERIES FORECASTING

Table |12] summarizes the full results of short-term time series forecasting. We can observe that
MSH-LLM achieves the SOTA results on almost all datasets. Specifically, MSH-LLM performs
slightly better than AutoTimes and S?IP-LLM (i.e., 1.45% and 3.01% average SMAPE improvement),
outperforming other latest baselines by a large margin (e.g., 6.68% and 8.13% average SMAPE
improvement over Time-LLM and FPT, respectively).

Table 12: Full results of short-term time series forecasting. We follow the protocol of existing work
(Pan et al.| 2024) and set the input length to twice the output length. Lower values mean better
performance. The best results are bolded and the second best results are underlined.

Methods MSH-LLM | AutoTimes* S*IP-LLM | Time-LLM FPT iTransformer | DLinear PatchTST N-HiTS N-BEATS | TimesNet

cthods (Ours) | (NeurIPS 2024) | (ICML 2024) | (ICLR 2024) | (NeurlPS 2023) | (ICLR 2024) | (AAAI2023) | (ICLR 2023) | (AAAI2023) | (ICLR 2020) | (ICLR 2023)
SMAPE | 13305 13.319 13413 13.750 15.110 13.652 16.965 13.477 13.422 13.487 15.378
Year. | MASE 2,995 2.993 3.024 3.055 3565 3.005 4283 3019 3.056 3.036 3554
OWA 0784 0792 0.805 0911 0807 1.058 792 0.795 0.795 0918
SMAPE | 10.024 10.352 10.671 10.597 10.353 12,145 10.380 10.185 10.564 10.465
Quart. | MASE 1.146 1228 1276 1253 1209 1520 1233 80 1252 1227
OWA 0873 0922 0950 0.938 0911 1.106 0921 0.893 0.936 0923
SMAPE | 12410 12.995 13416 13.258 13.079 13514 12.959 13.059 13.089 13513
Month. | MASE 0912 0970 1.045 1.003 0974 1.037 0.970 1013 0.996 1.039
OWA 0859 0910 0957 0.931 0911 0956 0.905 0.929 0.922 0957
SMAPE 4.805 4.973 6.124 4.780 6709 4952 4711 6599 6913
Others. | MASE 3247 3412 4.116 3231 4953 3347 3.054 443 4507
OWA 1017 1.053 1259 1012 1.487 1.049 0977 1393 1438
SMAPE 12.021 12.494 12.690 12,142 13.639 12,059 12.035 12.25 12.88
Avg. | MASE 1612 1731 1.808 1.631 2095 1623 1.625 1.698 1.836
OWA 0857 0913 0.940 0.874 1.051 0.869 0.869 0.896 0955

G.3 TIME SERIES CLASSIFICATION

Table [13] summarizes the full results of time series classification. The baseline results are from
existing works (Zhou et al., 2023aj; |Wu et al., 2022). From Table we can observe that MSH-LLM
achieves an average accuracy of 75.38%, surpassing all baselines including the best baseline FPT
(74%) and TimesNet (73.6%).

Table 13: Full results of time series classification. We follow the protocol of existing work (Zhou et al.|
2023a). The results are averaged from 10 subsets of UEA and higher values mean better performance.
The best results are bolded and the second best results are underlined. # in the Transformers means
the name of #former.

LLM4TS Transformers CNN MLP RNN Classical methods

Methods MSH-LLM PT | Trans# Re# In# Pyra# Auto# Station# FED# ETS# Flow# | TimesNet TCN ‘ DLinear LightTS. ‘ LSTNet LSSL ‘ XGBoost  Rocket
EthanolConcentration | 362  342| 327 319 316 308 316 327 312 281 338 | 357 289 | 326 207 | 399 311 | 437 452
FaceDetection | 67 2| 673 686 61 657 684 68 66 663 616 | 686 528 | 68 675 | 657 667 | 633 64.7
Handwriting | 335 327 32 274 328 294 367 316 28 325 338 | 321 533 | 27 2.1 | 258 246 | 158 58.8
Heartbeat | 809 772 761 711 805 756 746 737 131 712 716 | 18 756 | 5.1 750 | 71 27| 132 75.6
JapaneseVowels | 973 986| 987 978 959 984 962 992 984 959 989 | 984 989 | 962 962 | 981 984 | 865 96.2
PEMS-SF | 912 879 sa1 827 815 832 827 873 809 86 838 | 896 688 | 75.1 884 | 867 861 | 983 751
SelfRegulationSCPI | 935 030 922 904 901 881 84 894 887 896 925 | 918 846 | 873 898 | 84 908 | 846 90.8
SelfRegulationSCP2 | 598 594 | 539 567 533 533 506 572 544 55 561 | 512 556 | 505 511 | 528 522 | 489 533
SpokenArabicDigits | 99 992 984 97 100 996 100 100 100 100 988 | 99 956 | 814 100 | 100 100 | 69.6 71.2
UWaveGestureLibrary | 927 88.1 | 856 856 856 834 859 8.5 853 8 866 | 853 884 | 821 803 | 878 859 | 759 944
Average | 7538 74| 719 715 721 708 711 727 707 71 73 | 736 03| 615 704 | 718 709 | 66 725

G.4 FEW-SHOT LEARNING

Table[T4]and Table [T3]summarize the results of few-shot learning under 10% training data. In the
scope of 10% few-shot learning, MSH-LLM achieves SOTA results in almost all cases. Specifically,
MSH-LLM achieves an average error reduction of 7.32% and 3.95% compared to LLM4TS methods
(i.e., S’IP-LLM and Time-LLM) in MSE and MAE, respectively, and outperforms the latest training
from scratch method iTransformer by 24.85% and 20.03% in MSE and MAE, respectively. Table
[I6] summarizes the average results and full results of few-shot learning under 5% training data. We
can observe that MSH-LLM still achieves SOTA results even with fewer training data. Specifically,
MSH-LLM achieves an average error reduction of 10.47% and 6.74% compared to LLM4TS methods
(i.e., S?2IP-LLM and Time-LLM) in MSE and MAE, respectively.
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Table 14: Few-shot learning results under 10% training data setting. Results are averaged from all
forecasting lengths. The best results are bolded and the second best results are underlined. Full
results are listed in Appendix [G.4] TabldT3]

Methods ‘MSH—LLM‘ S’IP-LLM | Time-LLM FPT iTransformer | PatchTST | TimesNet ‘ FEDformer ‘ NSFormer | ETSformer ‘ Autoformer
(Ours) | (ICML2024) | (ICLR 2024) | (NeurIPS 2023) | (ICLR 2024) | (ICLR 2023) | (ICLR 2023) | (ICML 2022) | (NeurIPS 2022) | (arXiv 2022) | (NeurIPS 2021)
Metic | MSEMAE | MSEMAE | MSEMAE | MSEMAE | MSEMAE | MSEMAE | MSEMAE | MSEMAE | MSEMAE | MSEMAE | MSEMAE
Weather | 0.230 0.267 | 02330272 | 02370275 | 02380275 | 03080338 | 02420279 | 02790301 | 02840324 | 03180323 | 03180360 | 0.3000.342
Electricity | 0.1670.260 | | 01770273 | 00760269 | 0.1960.293 | 0.1800.273 | 03230.392 | 03460427 | 04440480 | 0.6600.617 | 04310478
Traffic | 0.4230.29 | | 04290307 | 04400310 | 04950361 | 04300305 | 0.9510.535 | 0.6630425 | 14530815 | 19140936 | 0.749 0.446
ETThI | 0.5630.514 | 05930529 | 0.7850.553 | 0 5 0.9100.860 | 0.6330.542 | 0.8690.628 | 06390561 | 09150639 | 1.1800.834 | 0702059
ETTh2 | 03920423 | 04190439 | 04240441 | | 04890483 | 04150431 | 04790465 | 04660475 | 04620455 | 0.8940.713 | 04880499
ETTml | 0.4030.424 | 04550435 | 04870461 | 04640441 | 0.7280.565 | 0.5010.466 | 0.6770.537 | 07220605 | 07970578 | 09800714 | 0.8020.628
ETTm2 | 0.2800.327 | 02840332 | 03050344 | 02930335 | 03360373 | 02960.343 | 03200353 | 04630488 | 03320366 | 04470487 | 1.3420.930

Table 15: Full results of few-shot learning under 10% training data. We follow the same protocol of
existing work . The input length is set to 512, and the forecasting lengths are set to
96, 192, 336, and 720. Lower values mean better performance. The best results are bolded and the
second best results are underlined.

Methods ‘ MSH-LLM ‘ S?IP-LLM ‘ Time-LLM ‘ ‘ iTransformer ‘ PatchTST TimesNet FEDformer NSFormer ETSformer Autoformer
: (Ours) (ICML 2024) | (ICLR 2024) | (NeurIPS 2023) | (ICLR 2024) | (ICLR 2024) | (ICLR 2023) | (ICML 2022) | (NeurIPS 2022) | (arXiv 2022) | (NeurIPS 2021)
Mewic | MSEMAE | MSEMAE | MSEMAE | MSEMAE | MSEMAE | MSEMAE | MSEMAE | MSEMAE | MSEMAE | MSEMAE | MSEMAE
96 | 0.1520.208 | 0.1590.2 0.160 0.213 0.163 0.215 0.2530.307 | 0.1650.215 | 0.1840.230 0.188 0.253 0.1920.234 0.199 0.272 0.221 0.297
192 | 0.206 0.248 | 0.200 0.251 0.2100.254 0.2920.328 | 0.2100.257 | 0.2450.283 0.250 0.304 0.269 0.295 0.279 0.332 0.270 0.322
Weather | 336 | 0.2520.286 | 0.2570.293 0.256 0.292 0.3220.346 | 0.2590.297 | 0.3050.321 0.370 0.357 0.356 0.386 0.3200.351
720 | 0.3110.326 | 0. 0.335 0.3290.345 0.321 0.339 0.3650.374 | 0.3320.346 | 0.3810.371 0.441 0.405 0.437 0.448 0.390 0.396
Avg | 0.2300.267 | O ).272 0.2370.275 0.238 0.275 0.308 0.338 | 0.2420.279 | 0.2790.301 0.318 0.323 0.318 0.360 0.300 0.342
96 | 0.1390.235 | 0.1430.243 0.137 0.240 0.139 0.237 0.154 0.257 0.140 0.238 0.299 3 0.420 0.466 0.599 0.587 0.261 0.348
192 | 0.1530.248 | 0.159 0.258 0.159 0.258 0.15¢ 2 0.1710.272 0.160 0.255 0.305 0.379 0.4110.459 0.620 0.598 0.338 0.406
Electricity 336 | 0.169 0.263 9 0.181 0.278 0.175 0.270 0.196 0.295 0.180 0.276 0.3190.391 0.434 0.473 0.662 0.619 0.410 0.474
720 | 0.207 0.295 0.2320.317 0.2330.317 0.263 0.348 0.2410.323 0.369 0.426 0.530 0.585 0.5100.521 0.757 0.664 0.715 0.685
Avg | 0.167 0.260 0.177 0.273 0.176 0.269 0.1960.293 | 0.1800.273 | 0.3230.392 0.346 0.427 0.444 0.480 0.660 0.617 0.4310.478
96 | 0.4050.286 | 0.4030.293 0.406 0.295 0.4140.297 0.4480.329 | 0.4030.289 | 0.7190.416 0.639 0.400 1.4120.802 1.643 0.855 0.672 0.405
192 | 0.4150.286 | 0.4120.295 0.416 0.300 0.426 0.301 0.4870.360 | 0.4150.296 | 0.748 0.428 0.637 0.416 1.419 0.806 1.641 0.854 0.727 0.424
Traffic 336 | 0.4170.293 | 0.4270.316 0.4300.309 0.434 0.303 0.5140.372 | 0.4260.304 | 0.8530.471 0.6550.427 1.443 0.815 1.7110.878 0.749 0.454
720 | 0.4530.319 | 0.4690.325 0.467 0.324 0.487 0.337 0.5320.383 | 0.4740.331 1.485 0.825 0.722 0.456 1.5390.837 2.660 1.157 0.847 0.499
Avg | 0.4230.296 | 0.4270.307 0.429 0.307 0.4400.310 0.495 0.361 0.4300.305 | 0.9510.535 0.663 0.425 1.4530.815 1.914 0.936 0.749 0.446
96 | 0.460 0.450 | 0.4810.474 0.720 0.533 0.458 0.456 0.7900.586 | 0.5160.485 | 0.8610.628 0.5120.499 0.918 0.639 1.112 0.806 0.613 0.552
192 | 0.516 0.488 | 0.518 0.491 0.747 0.545 0.570 0.516 0.8370.609 | 0.5980.524 | 0.797 0.593 0.624 0.555 0.915 0.629 1.1550.823 0.722 0.598
ETThl 336 | 0.5940.537 | 0.6640.570 | 0.793 0.551 0.608 0.535 0.7800.575 | 0.6570.550 | 0.9410.648 0.691 0.574 0.939 0.644 1.179 0.832 0.750 0.619
720 | 0.680 0.581 0.711 0.584 0.880 0.584 0.725 0.591 1.2340.811 0.762 0.610 0.877 0.641 0.728 0.614 0.887 0.645 1.2730.874 0.7210.616
Avg | 0.5630.514 | 0.5930.529 0.785 0.553 0.590 0.525 0.910 0.860 0.633 0.542 0.869 0.628 0.639 0.561 0.9150.639 1.180 0.834 0.702 0.596
96 | 0.3310.366 | 0.354 0.400 0.3340.381 0.3310.374 0.404 0.435 0.353 0.389 0.378 0.409 0.3820.416 0.3890.411 0.678 0.619 0.413 0.451
192 | 0.3740.414 | 0.4010.423 0.430 0.438 0.402 0.411 0.470 0.474 0.403 0.414 0.490 0.467 0.478 0.474 0.473 0.455 0.785 0.666 0.474 0.477
ETTh2 336 | 0.3960.432 | 0.4420.450 | 0.4490.458 0.406 0.433 0.4890.485 | 0.426 0.441 0.5370.494 0.504 0.501 0.477 0.472 0.839 0.694 0.547 0.543
720 | 0.4650.478 | 0.480 0.486 0.485 0.490 0.449 0.464 0.5930.538 | 0.4770.480 | 0.5100.491 0.499 0.509 0.507 0.480 1.273 0.874 0.516 0.523
Avg | 0.3920.423 | 04190439 0.424 0.441 0.397 0.421 0.4890.483 | 0.4150.431 0.479 0.465 0.466 0.475 0.462 0.455 0.8940.713 0.488 0.499
96 | 0.349 0.383 0.4120.422 0.390 0.404 0.709 0.556 | 0.4100.419 | 0.5830.501 0.578 0.518 0.761 0.568 0.911 0.688 0.774 0.614
192 | 0.377 0.410 0.447 0.438 0.429 0.423 0.7170.548 | 0.4370.434 | 0.6300.528 0.617 0.546 0.781 0.574 0.9550.703 0.754 0.592
ETTml 336 | 0.4050.434 .430 0.497 0.465 0.469 0.439 0.7350.575 | 0.4760.454 | 0.7250.568 0.998 0.775 0.803 0.587 0.9910.719 0.869 0.677
720 | 0.482 0.468 40.490 0.594 0.521 0.569 0.498 0.7520.584 | 0.6810.556 | 0.769 0.549 0.693 0.579 0.844 0.581 1.062 0.747 0.810 0.630
Avg | 0.4030.424 | 04550435 0.487 0.461 0.464 0.441 0.728 0.565 | 0.5010.466 | 0.677 0.537 0.722 0.605 0.797 0.578 0.9800.714 0.802 0.628
96 | 0.178 0.261 | 0.1920.274 0.224 0.296 0.2450.322 | 0.1910.274 | 0.2120.285 0.291 0.399 0.229 0.308 0.331 0.430 0.3520.454
192 4 0.2600.317 0.251 0.309 0.274 0.338 0.2520.317 0.270 3 0.307 0.379 0.291 0.343 0.400 0.464 0.694 0.691
ETTm2 336 0.3120.349 0.307 0.346 0.361 0.394 0.306 0.353 0.323 3 0.543 0.559 0.348 0.376 0.469 0.498 2.408 1.407
720 0.400 0.403 0.424 0416 0.426 0.417 0.467 0.442 0.433 0.427 0.474 0.449 0.7120.614 0.461 0.438 0.589 0.557 1.913 1.166
Avg 0.284 0.332 0.305 0.344 0.293 0.335 0.336 0.373 0.296 0.343 0.320 0.353 0.463 0.488 0.3320.366 0.447 0.487 1.342 0.930
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Table 16: Full results of few-shot learning under 5% training data. We follow the same protocol of
existing work (Pan et al.,[2024). The input length is set to 512, and the forecasting lengths are set to
96, 192, 336, and 720. ‘- -’ indicates 5% training data is insufficient to constitute a training set. The
best results are bolded and the second best results are underlined.

Methods MSH-LLM S?IP-LLM Time-LLM FPT iTransformer PatchTST TimesNet FEDformer NSFormer ETSformer Autoformer
cthods (Ours) (ICML 2024) | (ICLR 2024) | (NeurIPS 2023) | (ICLR 2024) | (ICLR 2024) | (ICLR 2023) | (ICML 2022) | (NeurIPS 2022) | (arXiv 2022) | (NeurIPS 2021)
Metic | MSEMAE | MSEMAE | MSEMAE | MSEMAE | MSEMAE | MSEMAE | MSEMAE | MSEMAE | MSEMAE | MSEMAE | MSEMAE

96 | 0.1700.214 | 0.1750.228 | 0.176 0.230 0.1750.230 0.2640.307 | 0.1710.224 | 0.2070.253 | 0.2290.309 0.2150.252 0.218 0.295 0.2270.299
192 | 0.2130.253 | 0.2250.27 0.226 0.275 0.2270.276 0.2840.326 | 0.2300.277 | 0.2720.307 | 0.2650.317 0.290 0.307 0.2940.331 0.278 0.333
Weather 336 | 0.259 0.289 0.292 0.325 0.286 0.322 0.323 0.349 0.2940.326 | 0.3130.328 0.3530.392 0.353 0.348 0.359 0.398 0.351 0.393

720 | 0.346 0.367 | 0.36 371 0.364 0.375 0.366 0.379 0.366 0.375 0.384 0.387 0.400 0.385 0.391 0.394 0.452 0.407 0.461 0.461 0.387 0.389

Avg | 0.247 0.281 0.260 0.297 0.264 0.301 0.263 0.301 0.309 0.339 0.269 0.303 0.298 0.318 0.309 0.353 0.327 0.328 0.3330.371 0.3100.353

96 0.148 0.248 0.148 0.248 0.143 0.241 0.162 0.264 0.145 0.244 0.3150.389 0.2350.322 0.4840.518 0.697 0.638 0.297 0.367

192 0.159 0.255 0.160 0.257 0.159 0.255 0.1800.278 0.163 0.260 0.318 0.396 0.247 0.341 0.501 0.531 0.718 0.648 0.308 0.375

Electricity | 336 01750271 | 0.1830.282 02070.305 | 0.1830.281 | 0.3400.415 | 02670356 | 05740578 | 0.7580.667 | 0.3540.411

720 0.2350.326 | 0.236 0329 02580.339 | 02330323 | 0.6350.613 | 03180.394 | 09520786 | 1.0280.788 | 0.4260.466

Avg 0.1790.275 | 0.1810279 02010296 | 0.1810.277 | 04020453 | 02660.353 | 0.6270.603 | 0.8000.685 | 0.3460.404

96 | 0.4050.273 | 04100288 | 04140293 | 04190298 | 04310312 08540492 | 0.6700421 | 14680.821 | 1.6430855 | 0.7950.481

192 | 0.4050.291 | 04160.298 | 0.4190300 | 04340305 | 04560326 0.8940.517 | 0.6530405 | 15090838 | 1.8560928 | 0.8370.503

Traffic | 336 | 04280312 | 04350313 | 04380315 | 04490313 | 04650334 | 04390310 | 0.8530.471 | 07070445 | 1.6020.860 | 2.0800.999 | 0.8670.523
720 -- -- - -- - -- -- -- -- --

Avg 04200299 | 04230302 | 04340305 | 04500324 | 04180296 | 0.8670.493 | 0.6760.423 | 1.5260.839 | 1.8590927 | 08330502

96 0.5000.493 | 0.7320.556 08080610 | 0.5570.519 | 0.8920.625 | 0.5930.529 | 0.9520.650 | 1.1690832 | 06810570

192 | 0.6580.535 | 0.690 0.539 0.872 0.604 0.928 0.658 0.711 0.570 0.940 0.665 0.652 0.563 0.943 0.645 1.221 0.853 0.725 0.602

ETThl 336 | 0.7380.600 | 0.761 0.620 1.0710.721 1.475 0.861 0.816 0.619 0.945 0.653 0.731 0.594 0.9350.644 1.179 0.832 0.761 0.624
720 -- -- -- -- -- -- -- -- -- --

Avg | 0.628 0.537 | 0.650 0.550 0.891 0.627 0.681 0.560 1.070 0.710 0.694 0.569 0.925 0.647 0.658 0.562 0.943 0.646 1.189 0.839 0.722 0.598

96 | 0.3420.389 03990420 | 03760421 | 03970427 | 04010421 | 04090420 | 0.3900.424 | 04080423 | 0.6780.619 | 04280.468

192 | 0.3750.412 04870479 | 04180441 | 0.4380445 | 04520455 | 04830464 | 0.4570465 | 04970468 | 0.8450697 | 0.4960.504

ETTh2 | 336 | 0.4010.419
720 --
Avg | 03730407

0.858 0.660 0.408 0.439 0.6310.553 | 0.4640.469 | 0.4990.479 | 0.4770.483 0.507 0.481 0.905 0.727 0.486 0.496

0.5810.519 0.400 0.433 0.4880.475 | 0.8270.615 | 0.4390.448 | 0.4630.454 0.470 0.489 0.809 0.681 0.4410.457

96 | 0.3280.365 | 0.3570.390 | 0.4220.424 0.386 0.405 0.5890.510 | 0.3990.414 | 0.6060.518 | 0.628 0.544 0.823 0.587 1.0310.747 0.726 0.578
192 | 0.3530.395 | 0.4320.434 | 0.448 0.440 0.440 0.438 0.7030.565 | 0.4410.436 | 0.6810.539 | 0.6660.566 0.844 0.591 1.087 0.766 0.750 0.591
ETTml 336 | 0.3940.412 | 04400442 | 0.5190.482 0.4850.459 0.898 0.641 | 0.4990.467 | 0.7860.597 | 0.807 0.628 0.870 0.603 1.138 0.787 0.851 0.659
720 | 0.518 0.483 | 0.593 0.521 0.708 0.573 0.577 0.499 0.948 0.671 0.767 0.587 0.796 0.593 0.822 0.633 0.8930.611 1.2450.831 0.857 0.655
Avg | 0.3980.414 | 0.4550.446 0.524 0.479 0.472 0.450 0.784 0.596 0.526 0.476 | 0.7170.561 0.730 0.592 0.857 0.598 1.1250.782 0.796 0.620
96 | 0.179 0.264 ] 0.225 0.300 0.199 0.280 0.265 0.339 0.206 0.288 0.220 0.299 0.229 0.320 0.238 0.316 0.404 0.485 0.2320.322
192 | 0.242 0.309 0.275 0.334 0.256 0.316 0.310 0.362 0.2640.324 | 0.3110.361 0.394 0.361 0.298 0.349 0.479 0.521 0.291 0.357
ETTm2 | 336 | 0.3000.344 0.3390.371 0.3180.353 0.3730.399 | 0.3340.367 | 0.3380.366 | 0.3780.427 0.3530.380 0.5520.555 0.478 0.517

720 | 0.4110.414
Avg | 0.2830.333

0.464 0.441 0.460 0.436 0.478 0.454 | 0.4540.432 | 0.5090.465 | 0.5230.510 0.475 0.445 0.701 0.627 0.553 0.538
0.3250.361 0.308 0.346 0.3560.388 | 0.3140.352 | 0.3440.372 | 0.3810.404 0.3410.372 0.5340.547 0.3880.433

G.5 ZERO-SHOT LEARNING

The zero-shot learning experiment is conducted on two distinct datasets, i.e., the source dataset and
the target dataset, where the model is trained on the source dataset and tested on the target dataset
without fine-tuning. Following existing works (Zhou et al.,2023aj [Liu et al.| [2024), we use M3 and
M4 datasets to evaluate the zero-shot capabilities of the models.

For M4 — M3, which means training on M4 dataset and testing on M3 dataset, we directly utilize
the M4 model trained in short-term forecasting experiments. Due to the varying forecasting lengths
across different subsets, we use models trained on the corresponding subsets of M4 to test on M3
Yearly, M3 Quarterly, and M3 Monthly. For M3 Others, we use the model trained on M4 Quarterly to
maintain the same forecasting lengths.

For M3 — M4, similarly, for M4 Yearly, M4 Quarterly, and M4 Monthly, we directly employ models
trained on corresponding subsets of M3 for testing. For the remaining subsets, M4 Weekly, M4 Daily,
and M4 Hourly, we perform inference using the model trained on M3 Monthly, following the settings
of existing works (Zhou et al., [2023a; |L1iu et al.| [2024)).

Table 17: Full results of zero-shot learning. We adopt the same protocol of existing work (Pan et al.,
2024). M4—M3 means training on M4 datasets and testing on M3 datasets, and vice versa. Lower
SMAPE means better performance. The best results are bolded and the second best results are
underlined.

Method ‘ MSH-LLM ‘ AutoTimes ‘ FPT ‘ DLinear ‘ PatchTST TimesNet NSformer FEDformer Informer Reformer
(Ours) (NeurIPS 2024) | (NeurIPS 2023) | (AAAI2023) | (ICLR 2023) | (ICLR 2023) | (NeurIPS 2022) | (ICML 2022) | (AAAI2021) | (ICLR 2019)

- Yearly 15.650 16.420 17.430 15.990 18.750 17.050 16.000 19.700 16.030
= | Quarterly 9.240 10.130 9.740 9.620 12.260 12.560 9.480 13.000 9.760
1| Monthly 13.570 14.100 15.650 14.710 14.010 16.820 15.120 15.910 14.800
3 Others 5.663 4.810 6.810 9.440 6.880 8.130 8.940 13.030 7.530
= Average 12.469 13.060 14.030 13.390 14.170 15.290 13.530 15.820 13.370
- Yearly 13.645 13.740 14.193 13.966 15.655 14.988 13.887 18.542 15.652
= | Quarterly 10.703 10.787 18.856 10.929 11.877 11.686 11.513 16.907 11.051
1| Monthly 14.489 14.630 14.765 14.664 16.165 16.098 18.154 23.454 15.604
© Others 6.132 7.081 9.194 7.087 6.863 6.977 7.529 7.348 7.001

= Average 12.968 13.125 15.337 13.228 14.553 14.327 15.047 19.047 14.092

Table [T7) summarizes the full results of zero-shot learning. MSH-LLM remarkably surpasses all
other baselines in zero-shot learning. Specifically, we observe over 10.23% SMAPE error reductions
across all baselines on average. Our improvements are consistently significant on typical scenarios
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(e.g., M4—M3 Others and M3—M4 Others), with over 23.04% and 14.72% average SMAPE error
reductions, respectively. We attribute this to the successful utilization of transfer learning capabilities
in LLMs.

H ABLATION STUDIES
Multi-Scale Extraction (ME) Module. To investigate the effectiveness of the ME module, we
conduct an ablation study by carefully designing the following variant:

-w/o ME: Removing the multi-scale extraction module and only performs alignment between input
time series and text prototypes.

Table 18: The results of different ME module and hyperedging mechanism on ETTh1 dataset. The
best results are bolded.

Methods | -w/oME | -w/oHM | -PM | MSH-LLM
Metirc ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE
96 0.412 0.400 | 0.693 0.560 | 0.380 0.392 | 0.360 0.388
192 0.4130.412 | 0.7510.513 | 0.405 0.424 | 0.398 0.411
336 0.421 0.436 | 0.756 0.596 | 0.423 0.443 | 0.415 0.432

The experimental results on ETTh1 dataset are shown in Table[T8] We can observe that MSH-LLM
performs better than -w/o ME, showing the effectiveness of the ME module. The reason is that the
ME module can provide richer representations than relying solely on single-scale alignment.

Hyperedging Mechanism. To investigate the effect of the hyperedging mechanism, we conduct an
ablation study by carefully designing the following two variants:

-w/o HM: Removing the hyperedging mechanism and directly performing alignment between temporal
features and text prototypes at different scales.

-PM: Replacing the hyperedging mechanism with the patching mechanism.

The experimental results on ETTh1 dataset are shown in Table [T8] We can observe that MSH-
LLM performs better than -w/o HM and -PM, demonstrating the effectiveness of our hyperedging
mechanism in enhancing the semantic information of time series semantic space. In addition, we can
observe that -w/o HM achieves the worst performance, the reason is that the individual time point
or temporal feature contains less semantic information, making it hard to align with the informative
semantic space of natural language.

Multi-Scale Text Prototypes Extraction. To investigate the impact of different multi-scale text
prototypes extraction, we conduct an ablation study by designing the following two variants:

R.1: Replacing word token embeddings based on pre-trained LLMs with word token embeddings
generated from manually select word and phrase descriptions (e.g., small, big, rapid increase, and
steady decrease).

R.2: Replacing word token embeddings based on pre-trained LLMs with word token embeddings
generated from randomly selected word and phrase descriptions (e.g., increase, happy, can, and white
noise).

Table 19: The results of different multi-scale text prototypes extraction and CMA module on ETThl
dataset._The best results are bolded.

Methods | R.1 R2 R3 P.1 -ASO | MSH-LLM
Metric ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE
96 | 0.4670.467 | 0.4410.447 | 0.697 0.561 | 0.363 0.390 | 0.396 0.413 | 0.360 0.388
192 | 0.4970.483 | 0.4750.467 | 0.760 0.600 | 0.4050.417 | 0.417 0.428 | 0.398 0.411
336 | 0.5170.496 | 0.5140.489 | 0.787 0.609 | 0.417 0.424 | 0.433 0.442 | 0.4150.432

The experimental results on ETTh1 dataset are shown in Table[T9] from which we can observe that
MSH-LLM performs better than R.1 and R.2 by a large margin, which indicates the effectiveness
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of our multi-scale text prototype extraction than approaches of manually selecting. In addition,
it is notable that we initially assumed that aligning multi-scale temporal features with relevant
natural language descriptions (e.g., small, big, rapid increase, and steady decrease) can offer better
performance. However, the experimental results show that word token embeddings generated from
randomly selected word and phrase descriptions achieve better performance than R.1. The reason is
that the aligned word token embeddings may not be fully related to time series. Actually, LLMs can
function as pattern recognition machines (Sun et al.,[2024} Zhou et al.} 2023a)), and we believe the
text prototypes matched by LLMs can better match temporal patterns, even they may not be fully
related to time series.

CMA Module. To investigate the effectiveness of the cross-modality alignment module, we conduct
an ablation study by designing the following two variants:

R.3: Removing the CMA module and directly concatenating the hyperedge features with MoP before
feeding them into LL.Ms to obtain the output representations.

P.1: Performing detailed cross-modality alignment across all scales.

The experimental results on ETTh1 dataset are shown in Table[T9} from which we can observe that
MSH-LLM performs significantly better than R.3, showing the effectiveness of the CMA module.
The reason is that the CMA module can help align the semantic space of natural language and that
of time series. In addition, we can observe that MSH-LLM outperforms P.1 in most cases. This
is because performing detailed alignment across all scales may introduce redundant information
interference.

In addition, it has been shown that treating cross-modality alignment as an independent task (L1 et al.,
2023) can help the model focus more on the alignment objective and may potentially improve model
performance. To investigate the impact of different cross-modality alignment strategy, we conduct
ablation studies on the ETTh1 dataset by carefully designing the following variant:

-ASO: This approach treats cross-modality alignment as a standalone objective and employs a two-
stage training strategy for time series analysis. The detailed design of the objective function are
formulated as follows:

Specifically, for the given hyperedge feature e and text prototypes uj at scale s, we first we first
compute both the cosine similarity and the Euclidean distance between them. The cosine similarity
can be formulated as follows:

ei(e;)”

G A (14)
ezl [|es]

Tij

2
where . denotes the dot product and ||.||> represents the L2 norm. The Euclidean distance can be
defined as:

D
Dmﬂw—@m—¢2@ﬂﬁtﬁmw (1s)

Then, the loss function L?

5 <o at scale s based on the correlation weight and Euclidean distance can be
formulated as follows:

Lo = T Dory Sogy (s Diy + (1= )mas(s = Dy.0)). (16)
where v > 0 denotes the threshold. Notably, when 7; ; = 1, indicating that e and uj, are deemed
similar, the loss turns to L,s, = ﬁ levi 31 > JM:1 7i,5Di j, where the loss will increase if D; ;
becomes large. Conversely, when o ; = 0, meaning e; and ej, are regarded as dissimilar, the loss
turns to Lyso = ﬁ Zf‘il Z?; (1 — 7; j)max(y — D, ;,0), where the loss will increase if D; ;

falls below the threshold and turns smaller. Other cases lie between the above circumstances. The
final loss function can be formulated as follows:

L= Lo (7

The experimental results are shown in Table[T9} We can observe that MSH-LLM performs better
than -ASO in most cases. We attribute the performance drop to the following two aspects: 1) Treating
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cross-modality alignment as a standalone objective, the model may lack supervision signals from
the primary time series analysis task, thereby missing the potential synergy with the main task. 2)
Unlike CV or NLP, time series datasets often contain limited training samples, which may result in
insufficient generalization capability when cross-modality alignment is trained independently as a
standalone objective. The experimental results show the effectiveness of our CMA module.

LLM backbones. To investigate the effectiveness of LLM backbones for time series analysis, we
conduct an ablation study by designing the following two variants:

-w/o LLM: Removing the LLM backbones and directly feeding the connected multi-scale temporal
features into the linear mapping layer.

-LLM2Attn: Replacing the LLM backbones with a single multi-head attention layer.

Table 20: The results of LLM backbone variants on ETTh1 dataset. The best results are bolded.

Methods | -w/o LLM | -LLM2Attn | MSH-LLM
Metric | MSE MAE | MSE MAE | MSE MAE
96 0.401 0.437 | 0.3810.405 | 0.360 0.388
192 0.4350.447 | 0.4150.423 | 0.398 0.411
336 0.4410.453 | 0.421 0.437 | 0.4150.432

The experimental results on ETTh1 dataset are shown in Table[20] from which we can observe that
MSH-LLM performs better than -w/o LLM and -LLM2Attn, demonstrating the effectiveness of LLM
backbones for time series analysis.

Data-Correlated Prompts. To quantify the impact of endogenous data-correlated prompts on
the final performance, we have newly added ablation studies by carefully designing the following
variants:

-TV: It replaces the data-correlated prompts with the prompt template used in Time-LLM.

-SD1: It incorporates more data statistics (e.g., trends, lags, means, and standard deviation) into the
data-correlated prompts.

-SD2: It selects a few key statistical metrics to include as data statistics in the data-correlated prompts.

-TG: It incorporates different temporal granularity information into the data-correlated prompts.

Table 21: The results of different multi-scale text prototypes extraction and CMA module on ETTh1
dataset. The best results are bolded.

Methods | TV | -SDI | -SD2 | -TG | MSH-LLM
Metric | MSEMAE | MSEMAE | MSEMAE | MSEMAE | MSE MAE
96 | 0.3630.389 | 0.3600.389 | 0.3580.388 | 0.3590.390 | 0.360 0.388
192 | 03980413 | 0.4000.411 | 0.3970.413 | 0.398 0.413 | 0.398 0.411
336 | 04170435 | 04150433 | 0.4140.431 | 0.4130.432 | 0.4150.432

The experimental results are shown in Table 21} From Table 2T} we can obtain the following
tendencies: 1) MSH-LLM performs better than -TV in most cases, showing the effectiveness of our
prompt template. 2) -SD2 outperforms both -SD1 and MSH-LLM, suggesting that more statistical
features do not necessarily lead to better performance, and carefully selected statistical metrics may
yield superior results. 3) MSH-LLM achieves comparable performance to these variants. The reason
is that we design the mixture of prompts (MoP) mechanism, which mitigates the impact of relying on
a single prompt or specific statistical features. The experimental results demonstrate the robustness
of our MoP mechanism.

Capability-Enhancing Prompts. To investigate the impact of the logical thinking prompt and time
series reasoning correlated prompt used in capability-enhancing prompts, we conduct ablation studies
by carefully designing the following variants:

-w/o LR: It removes the logical thinking prompt used in the MoP mechanism.

-w/o TSR: It removes the time series reasoning correlated prompt used in the MoP mechanism.
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Table 22: The results of different capability-enhancing prompts. The best results are bolded.
Methods | -w/oLR | -w/o TSR | MSH-LLM
Metric ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE

96 0.3720.274 | 0.370 0.268 | 0.365 0.270
192 0.3890.287 | 0.3830.283 | 0.3720.281
336 0.390 0.282 | 0.379 0.280 | 0.385 0.279

The experimental results on Traffic dataset are shown in Table[22] From Table[22] we can observe
that -w/o LR performs better than -w/o TSR, indicating that the logical reasoning prompt plays a
more critical role than the time series reasoning correlated prompt. In addition, -w/o LR and -w/o
TSR perform worse than MSH-LLM, showing the effectiveness of the logical reasoning prompts and
time series reasoning correlated prompts, respectively.

Table 23: The results of different logical thinking prompts.

No. | Category | Template | MAE Results
1 ) Think it step by step. 0.450
2 | Instructive | predict the outcome step by step. 0.452
3 . . Use your imagination to think the results. 0.462
4 | Misleading | Don’t think, just feel. 0.464
5 She is beautiful. 0.456
6 | Irrelevant | 1am hungry. 0.453

Logical Thinking Prompts. It has been shown that logical thinking prompts can significantly
enhance the reasoning abilities of LLMs (Zhou et al.| 2023b), especially for zero-shot and few-shot
learning. To investigate the effect of different logical thinking prompts, we design seven different
logical thinking prompts with three categories, i.e., instructive, misleading, and irrelevant categories.
The experimental results for few-shot learning with 10% training data are shown in Table 23] The
experiment is conducted on ETTh1 dataset with the forecasting length H = 96. The experimental
results indicate that the performance is improved if we let LLMs think in a step-by-step manner. In
contrast, the prompts that belong to misleading or irrelevant categories can decrease the performance
of LLMs. It remains an open question how to automatically create better prompts for time series
analysis.

I VISUALIZATION

Visualization of The Weight Between Text Prototypes and Word Embeddings. To investigate
whether different text prototypes possess explicit semantic meanings, we conduct qualitative analysis
by visualizing the similarity scores between 10 randomly selected text prototypes and word embed-
dings derived from 3 different word sets. The visualization results on ETTh1 dataset are given in
Figure[8] From Figure[8] we can discern the following tendencies: 1) Prototypes 2, 3, 7, and 8 exhibit
strong associations with word set 1 (noun-like time series descriptions), while prototypes 0, 1, and
4 show strong correlations with word set 2 (adjective-like time series descriptions). This suggests
that the prototypes capture different semantic roles, indicating explicit semantic differentiation. 2)
Although both word set 1 and word set 3 consist of noun-like descriptions, almost all prototypes show
weak correlations with word set 3 (name-related words). The reason may be that the text prototypes
encode time-series-specific, context-specific semantic information. The experimental results show
that the text prototypes possess explicit meaning.

J METHOD ANALYSIS
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‘Word Set 1: {'peak’, 'trough', 'irregularity’, ...}

‘Word Set 2: {'cyclical', 'rising’, 'smooth', ...}

Prototypes
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Word Set 3: {'cat', 'dog', 'table', 'desk’, ...}
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Figure 8: The visualization of the weight between text prototypes and word embeddings.

J.1 GENERALITY ANALYSIS ON DIFFERENT TASKS.

To further investigate the generalization ability of MSH-LLM across different tasks, we compare
MSH-LLM with baselines in anomaly detection. Following existing works (W
et al., [2022), we choose five commonly used datasets for comparison, including SMD (Su et al.
2019), MSL (Hundman et al.|[2018), SMAP (Hundman et al} 2018)), SWaT(Mathur & Tippenhauer
2016), and PSMAbdulaal et al.| (2021)). The experimental seetings follow those in existing works
(e.g., FPT and TimesNet). The experimental results are given in Table 24]

Table 24: The results of time series anomaly detection. We follow the protocol of existing work
(Zhou et al.,[2023a). The best results are bolded. # in the Transformers means the name of #former.

Methods MSH-LLM  FPT  TimesNet PatchTS# ETS# FED# LightTS DLinear Stationary Auto# Pyra# In# Re#  LogTrans# Trans#

SMD 88.12 86.89 84.61 84.62 83.13  85.08 82.53 77.10 84.72 85.11 83.04 81.65 7532 76.21 79.56
MSL 84.33 82.45 81.84 78.70 85.03 78.57 78.95 84.88 77.50 79.05 84.86 84.06 84.40 79.57 78.68
SMAP 75.93 72.88 69.39 68.82 69.50 70.76  69.21 69.26 71.09 7112 71.09 69.92 70.40 69.97 69.70
SWaT 94.58 94.23 93.02 85.72 8491 9319 9333 87.52 79.88 92.74 91.78 81.43 82.80 80.52 80.37
PSM 97.45 97.13 97.34 96.08 91.76  97.23 97.15 93.55 97.29 93.29 82.08 77.10 73.61 76.74 76.07
Average 88.08 86.72 85.24 82.79 82.87 84.97 84.23 82.46 82.08 84.26 82.57 7883 7731 76.60 76.88

As shown in Table[24] MSH-LLM achieves an average F1-score of 88.08%, outperforming all baseline
methods and highlighting its effectiveness in time series anomaly detection. The experimental results
indicate that MSH-LLM is capable of detecting infrequent anomalies in time series, which can be
attributed to the multi-scale hypergraph structure that enhances the reasoning capabilities of LLMs
for modeling multi-scale temporal patterns.

J.2 GENERALITY ANALYSIS ON DIFFERENT LLM BACKBONES.

For a fair comparison, following existing works (Liu et all,[2024} [Pan et al., 2024), we use LLaMA-7B
as the default LLM backbone. However, MSH-LLM is designed to enhance the general ability of
LLMs to understand and process time series data, rather than being tailored to specific LLMs (e.g.,
LLaMA-7B). To evaluate the performance and generality of existing methods, we evaluate MSH-LLM
with other baseline methods on more advanced LLMs. We adopt LLaMA-3.1-8B
(-w L-8B), Qwen2.5-7B (Yang et all,[2024a) (-w Q-7B), and DeepSeek-R1-Distill-LLaMA-8B
2025) (-w D-8B) for comparison. The experimental results on the ETTh1 dataset with
input length T=512 and output length H=96 are presented in Table 23]

Table 25: The results of different LLM backbones on ETTh1 dataset. The best results are bolded.

Methods | -wL-8B | -wQ-7B | -wD-8B | LLaMA-7B (Default)
Metric ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE
S?IP-LLM | 0.3500.393 | 0.364 0.395 | 0.362 0.395 0.366 0.396
Time-LLM | 0.378 0.403 | 0.379 0.413 | 0.378 0.408 0.383 0.410
MSH-LLM | 0.350 0.377 | 0.3520.383 | 0.348 0.365 0.360 0.388

From Table we can observe that existing LLM4TS methods (i.e., MSH-LLM S?IP-LLM, and
Time-LLM) achieve better performance on more advanced LLMs, demonstrating the significance of
the choice of LLM backbones for time series analysis. In addition, we can observe that MSH-LLM
shows a more significant improvement compared to other methods when using more advanced LLM
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backbones. This indicates the effectiveness of the framework design, rather than being merely
influenced by the LLM backbones.

J.3 ROBUSTNESS ANALYSIS

All experimental results reported in the main text and appendix are averaged over three runs with
different random seeds: 2021, 2022, and 2023. To evaluate the robustness of MSH-LLM to the
choice of random seeds, we report the standard deviation of MSH-LLM under long-term time series
forecasting settings. The experimental results are shown in Table[26and 27] We can observe that the
variances are considerably small, which indicates the robustness of MSH-LLM against the choice of
random seeds.

Table 26: The standard deviation results of MSH-LLM on Weather, Electricity, and Traffic datasets.
Results are averaged from three random seeds.

Dataset | Weather ‘ Electricity ‘ Traffic

Horizon ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE
96 0.138-+0.0005 0.187+0.0007 | 0.127+0.0012 0.231+£0.0005 | 0.365+0.0000 0.270+0.0003
192 0.187+0.0010 0.230+0.0009 | 0.150+0.0006 0.242+0.0003 | 0.372+0.0005 0.281+0.0002
336 0.237+0.0007 0.282+0.0003 | 0.162+0.0001 0.258-0.0000 | 0.385+0.0000 0.279+0.0003
720 0.305+0.0002 0.315+0.0001 | 0.198+0.0005 0.279+0.0003 | 0.402+0.0006 0.303+0.0009

Table 27: The standard deviation results of MSH-LLM on ETT dataset. Results are averaged from
three random seeds.

Dataset | ETThl ‘ ETTh2 ‘ ETTml ‘ ETTm2

Horizon ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE ‘ MSE MAE
96 0.360+0.0007 0.388+0.0005 | 0.27340.0009 0.331+0.0004 | 0.285+0.0031 0.3404+0.0011 | 0.1614-0.0001 0.2460.0005
192 0.398+0.0014 0.41140.0003 | 0.33540.0005 0.372+0.0003 | 0.313+0.0016 0.3584+-0.0017 | 0.2184-0.0008 0.284+0.0003
336 0.415+0.0010 0.43240.0007 | 0.36340.0007 0.400+0.0000 | 0.355+0.0068 0.37740.0024 | 0.2714-0.0005 0.320+0.0003
720 0.436+0.0003 0.44740.0006 | 0.39640.0015 0.428+0.0009 | 0.405+0.0121 0.41040.0062 | 0.35840.0007 0.392+0.0004

In addition, it is notable that achieving significant performance improvement across all well-studied
datasets is inherently challenging. To rule out the influence of experimental errors, instead of just
showing the MSE and MAE results, we repeat all experiments 3 times and report the standard
deviation and statistical significance level (T-test) of MSH-LLM and the and the second-best baseline
(i.e., S?IP-LLM). The experimental results are shown in Table

Table 28: The standard deviation and T-test results of MSH-LLM and the second-best baseline.
Results are averaged from three random seeds.

Dataset ‘ MSH-LLM S?IP-LLM ‘ Confidence Interval
Horizon | MSE MAE | MSE MAE | Percent

96 0.217£0.0006 0.254+0.0005 | 0.223+0.0007 0.259+0.0005 99%

192 0.159+£0.0006 0.253+0.0003 | 0.163+0.0006 0.258-0.0005 99%

336 0.381£0.0003 0.283+0.0004 | 0.406+0.0003 0.287+0.0004 99%

720 0.334+0.0020 0.371£0.0010 | 0.338+0.0014 0.379+0.0010 95%

From Table 28] we can observe that all the statistical significance reaches 95%, indicating that the
performance improvements achieved by MSH-LLM are substantial and consistent across all datasets.

To evaluate the robustness of the proposed method, we compare MSH-LLM with baselines (i.e.,
S2IP-LLM, Time-LLM, and FPT) across three challenging scenarios: forecasting with anomaly
injection, ultra-long forecasting, and forecasting with missing data.The corresponding results are
presented below.Note that to quantify robustness, we compute the performance drop rate (PDR) as:

r-o

PDR = —— 1
R T (18)

where I" and I are forecasting results and forecasting results under challenging scenarios, respectively.
Higher PDR values indicate lower robustness. The reported PDR is averaged across the MSE and
MAE metrics to provide a comprehensive evaluation.
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Forecasting With Anomaly Injection. We conduct experiments by injecting randomly generated
anomalies in the training data. The anomaly rate varies from 10% to 20%. The experiments are
conducted on ETTh1 dataset with the input length set to 512 and output length set to 96. Table 1
summarizes the results of forecasting with anomaly injection.

Table 29: Forecasting results with anomaly injection on ETTh1 dataset. The best results are bolded.

Methods | ~ MSH-LLM |  S’IPLLM |  TimeLLM | FPT
Metric | MSEMAEPDR | MSEMAEPDR | MSEMAEPDR | MSEMAEPDR
0% 0.360 0.388 / 0.366 0.396 / 0.3830.410/ 0.3790.402 /

10% 0.374 0.393 2.589 | 0.7120.574 69.743 | 0.398 0.419 3.056 0.410 0.393 2.970
15% 0.425 0.427 14.053 | 0.723 0.578 71.750 | 0.443 0.435 10.812 | 0.741 1.103 134.946
20% 0.773 0.598 81.106 | 0.773 0.598 81.106 | 0.751 0.589 69.871 | 0.935 1.421 200.092

From Table[29] we can obtain the following tendencies: 1) MSH-LLM achieves the best performance
in almost all cases, showing its superior ability in time series forecasting even under scenarios
with anomaly injection. 2) Although the performance of all methods declines as the anomaly ratio
increases, MSH-LLM exhibits a slower performance degradation compared to the other methods,
demonstrating its robustness for forecasting with anomaly injection. 3) When the anomaly ratio
reaches about 20%, the PDR value of MSH-LLM is greater than 20%, indicating that the robustness
boundary of MSH-LLM is near 20% anomaly injection.

Ultra-Long-Term Forecasting. We conduct ultra-long-term time series forecasting by taking a fixed
input length (T=512) to predict ultra-long horizons (H={1008, 1440, 1800}). Table [30|summarizes
the results of ultra-long-term time series forecasting.

Table 30: Ultra-long-term forecasting on ETTh1 dataset. The best results are bolded.

Methods | MSH-LLM | S2IP-LLM | Time-LLM |  FPT
Metric | MSEMAE | MSEMAE | MSEMAE | MSE MAE
1008 | 0.4630.498 | 0.5430.520 | 0.4780.475 | 0.5270.576
1440 | 0.5160.513 | 0.8060.642 | 0.5470.521 | 0.5940.716
1800 | 0.6480.557 | 0.9400.725 | 0.683 0.5587 | 0.660 0.886

From Table[30] we can observe that MSH-LLM achieves SOTA results on almost all cases, showing
the effectiveness of MSH-LLM for ultra-long-term time series forecasting. In addition, although all
baselines suffer from performance drops when increasing forecasting horizons, MSH-LLM declines
more gradually. The reason may be that the multi-scale hypergraph structure enhances the ability of
LLMs in understanding and processing ultra-long-term time series.

Forecasting With Missing Data.We conduct forecasting with missing data by randomly masking
the training data. The experiments are conducted on Electricity dataset with the input length set to
512 and output length set to 96. Table 31| summarizes the results of forecasting with missing data.

Table 31: Ultra-long-term forecasting on ETTh1 dataset. The best results are bolded.

Methods |  MSH-LLM |  S?IPLLM |  Time-LLM | FPT
Metic | MSEMAE | MSEMAE | MSEMAE | MSEMAE
0% 0.360 0.388 / 0.366 0.396 / 0.3830.410/ 0379 0.402 /
5% | 0.3680.3.933.511 | 038504033479 | 03920416 1.907 | 0.3920.4315307
10% | 0.4090.42111.058 | 0.432 0.447 15.456 | 0.451 0.449 13.633 | 0.478 0.483 22.704

From Table[3T] we can obtain the following tendencies: 1) Existing LLM-based methods show little
performance degradation with 5% missing data. The reason may be that LLM4TS methods can
leverage transferable knowledge learned from large-scale corpora of sequences, thereby enhancing
their abilities in understanding and reasoning time series. 2) MSH-LLM performs better than other
LLMA4TS methods, the reason is that the hyperedging mechanism can capture group-wise interactions,
which increase the robustness of LLM in forecasting with missing data. 3) When the missing data
ratio reaches about 10%, the PDR value of MSH-LLM is greater than 10%, indicating that the
robustness boundary of MSH-LLM is near 10% missing data.
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J.4 COMPUTATION COST ANALYSIS

We compare MSH-LLM with three LLM4TS methods (i.e., SQIP-LLM, Time-LLM, and FPT) on
ETThl1 datasets with the input length of 512 and output length of 720 using a batch size of 32. It is
worth noting that FPT uses GPT-2 (Radford et al., 2019)) as the base LLM, while Time-LLM employs
two types of base LLMs (i.e., LLaMA and GPT-2). For a fair comparison, we use GPT-2 as the
base LLM and rerun baselines under unified settings to evaluate the computational complexity. The
experimental results are shown in Table[32] We can observe that FPT has the fewest parameters and
runs faster than other LLM4TS methods, but it gets the worst forecasting results. Compared with S2IP-
LLM and Time-LLM, although MSH-LLM has a larger number of parameters, it runs fastest due to
the matrix sparsity strategy in the model and the optimization of hypergraph computation provided by
torch_geometry [2021). Overall, considering both the forecasting performance improvement
and the computation cost, MSH-LLM demonstrates its superiority over existing methods.

Table 32: Computation cost.
Methods | Training Time | # Parameters | GPU Occupation | MSE results

MSH-LLM 0.104s 75,852,238 7,872MB 0.451
S2IP-LLM 0.442s 63,636,512 9,991MB 0.459
Time-LLM 0.116s 53,441,968 5,403MB 0.460
FPT 0.015s 36,209,616 2,632MB 0.463

Table 33: Results compared with simple methods on ETTh1 dataset. The best results are bolded.

Methods | DHR-ARIMA | Repeat | PAtn | MSH-LLM
Metric | MSEMAE | MSEMAE | MSEMAE | MSE MAE
96 0.894 0.613 1.2940.713 | 0.3830.411 | 0.360 0.388
192 0.872 0.624 1.3250.733 | 0.429 0.438 | 0.398 0.411
336 0.957 0.638 1.3300.746 | 0.4250.443 | 0.4150.432

J.5 BROADER BENCHMARK COMPARISON

Comparison With Other Cross-Modality Alignment (CMA) Method. It is known that TimeCMA
also uses the CMA mechanism. We need to clarify that despite the shared
nomenclature, the implementation and operational mechanisms of the cross-modality alignment
(CMA) modules in MSH-LLM and TimeCMA are fundamentally different. Specifically, the CMA
mechanism in TimeCMA operates primarily as a retrieval mechanism. Its goal is to query and
extract time-series-related representations from a set of predefined, hand-crafted textual prompts.
This process can be seen as a form of feature selection, where the most relevant linguistic cues
are retrieved to augment the time series embeddings. In contrast, the CMA module in MSH-LLM
operates primarily as an alignment and fusion mechanism. Its designed to align the multi-scale
hyperedges features with multi-scale text prototypes generated from the token embeddings of LLMs.
This process aims to align the modality between natural language and time series. In addition, we
have included TimCMA for comparison. Note that due to its fixed prompt templates and restrictions
on LLM selection, we failed to rerun TimeCMA under the unified settings. For a fair comparison, we
reran MSH-LLM using the same settings as TimCMA. The experimental results on ETTh1 dataset
with the input length T=96 are shown in Table [34]

From Table[34] we can observe that MSH-LLM performs better than TimeCMA in almost all cases,
demonstrating the effectiveness of CMA mechanism used in MSH-LLM.

Comparison With Simple Methods. Recent studies have questioned the effectiveness of previous
LLM-based methods for time series analysis (Tan et al.| [2024). Some studies even show that a
simple attention layer or non-neural methods (Hewamalage et al [2023)) can achieve comparable
performance. To further evaluate the performance of MSH-LLM against simple methods, we add
three simple methods, i.e., PAtnn 2024), DHR-ARIMA (Hewamalage et all [2023)), and
Repeat (used in DLinear [2022)) for comparison. All experiments are run under unified
settings. The experimental results on ETTh1 dataset are shown in Table [33]
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Table 34: Results compared with simple methods on ETTh1 dataset. The best results are bolded.
Methods | TimeCMA | MSH-LLM
Metric ‘ MSE MAE ‘ MSE MAE

96 0.373 0.391 | 0.362 0.393
192 0.4270.421 | 0.417 0.416
336 0.458 0.448 | 0.420 0.423

From Table[33] we can observe that MSH-LLM performs better than simple methods in most cases.
Specifically, MSH-LLM reduces the MSE errors by 56.89%, 70.31%, and 5.20% compared to DHR-
ARIMA, Repeat, and PAtnn, respectively. The experimental results demonstrate the effectiveness of
MSH-LLM over simple methods.

Here, we attribute the limited effectiveness of previous LLM-based methods for time series analysis
to three key factors: Firstly, the semantic spaces of natural language and time series are inherently
different. Existing methods (e.g., FPT (Zhou et al.| [2023a))) directly leverage off-the-shelf LL.Ms for
time series analysis without proper alignment, making it difficult for LLMs to understand and process
temporal features. Secondly, we found that some of these methods (e.g., CALF (Liu et al., [2025b)
and FPT) do not even use prompts for LLMs, despite prompts being proven crucial for activating
the reasoning capabilities of LLMs. The third and most important factor is that existing LLM-based
methods directly segment the input time series into patches and feed them into LLMs. However,
simple partitioning of patches may introduce noise interference and negatively impact the ability of
LLMs to understand and process temporal information.

In contrast, our proposed method incorporate hyperedging mechanism, CMA module, and MoP
mechanism, all of which are designed to better aligning LL.Ms for time series analysis. Ablation
studies in Section [5.6|and Appendix [H] confirm that these components can enhance the ability of
LLMs to understand and process temporal information. Experimental results in Appendix [J.3] further
validate the effectiveness of our method in both utilizing LLMs and addressing concerns about the
performance ceiling of previous methods.

K PROOF

In our numerical experiments and visualization analysis, we find that different hyperedge representa-
tions capture distinct semantic information and can enhance the ability of LLMs in reasoning time
series data. To further explore, we use the following theorem to characterize this behavior.

Theorem 1 (Informal). Consider the self-attention mechanism for the [-th query token. Assume
that the input tokens X; (z = 1,2, ...,n) have a bounded mean p. Under mild conditions, with high
probability, the output value token X, with high probability converges to pW; at a rate of O(n’l/ 2),
where W, is the parameter matrix used to compute the value token.

This indicates that the self-attention mechanism used in LLMs can efficiently converge the output
token representations to a stable mean (i.e., the representative semantic center). For time series
analysis, if there are translation-invariant structures or patterns (e.g., periodicity and trend), the
self-attention can help identify those invariant structures more effectively by comparing a given token
with others. This phenomenon is especially important in few-shot forecasting or high-noise scenarios
as it helps avoid overfitting to noise and improves generalization.

However, raw time series data suffer from two main limitations: 1) Individual time points contain
limited semantic information, making it difficult to reflect structural patterns (e.g., periodicity and
trend). 2) The raw sequence is often corrupted by noise, resulting in a low signal-to-noise ratio.
To address these issues, we introduce multi-scale hypergraph structures, which adaptively connect
multiple time points through learnable hyperedges at different scales. This method can enhance the
multi-scale semantic information of time series while reducing irrelevant information interference. It
provides the self-attention mechanism in LLMs with more structured input, enabling self-attention to
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distinguish between temporal patterns and noise. As a result, the generalization and robustness of
LLMs are improved.

We denote the i-th element of vector X as x;, the element in the i-th row and j-th column of matrix
W as W;;, and the j-th row of matrix W as W .. Furthermore, we denote the i-th hyperedge
representation (token) of the input as x;, where x; = X;. Following existing work
, before given the formal statement of the Theorem E.1, we first show the following three
assumptions.

1. Each token x; is a sub-Gaussian random vector with mean p; and covariance matrix (02 /d)I, for
1=1,2,...,n.

2. The mean vector u follows a discrete distribution over a finite set V. Furthermore, there exist
constants 0 < v1 and 0 < v5 < vy such that:

a) ||l =1,
b) p; WoW i € [vo, v4] forall 4, and [ WoW jpuj| < v forall p; # pj € V.

3. The matrices Wy, and WQW} are element-wise bounded by v5 and vg, respectively. That is,
|[Wv]”| < s and HWQWI—;}Z” < g for all i,j S [d]

In the above assumptions, we ensure that for a given query hyperedging representation, the difference
between the clustering center and noises are large enough to be distinguished. Then, we give the
formal statement of Theorem 1 as follows:

Theorem 2 (formal statement of Theorem 1). Let each hyperedge representation x; be a o-
subgaussian random vector with mean p;, and suppose all n hyperedge representations share the
same query cluster center. Under the aforementioned assumptions, if 4 > 3(¢(d,d) + va + v4),
then with probability at least 1 — 59, we have:

i exp (ﬁXiWQW}X?> x; Wy

> i1 €xp (ﬁijQW}xlT)

<4dexp (w(\(j’ad)> ovs %bg (2;)

L7 [exp ( - ”45/’(5’ d>) - 1] Wy,

where ¥ (9, d) = 2011164 /2 log (%) + 20215 log (%)
Proof. See the proof of Lemma 2 in 2022) with k1 = k = n.

- Wy

oo

L LIMITATIONS AND FUTURE WORK

In the future, we will extend our work in the following directions. Firstly, due to our CMA module
perform multi-scale alignment in a fully learnable manner, it is interesting to introduce a constraint
mechanism to further enhance the alignment between multi-scale temporal features and multi-scale
text prototypes. Secondly, compared to natural language processing and computer vision, time series
analysis has access to fewer datasets, which may limit the expressive power of the models. Therefore,
in the future, we plan to compile larger datasets to validate the generalization capabilities of our
models on more extensive data.

M USE OF LLMs

The authors use LLM solely as a general-purpose assistive tool for grammar and format refine-
ment. LLM does not contribute to research ideation or experimental design. The authors take full
responsibility for the content of this paper.
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