
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MULTI-SCALE HYPERGRAPH MEETS LLMS: ALIGN-
ING LARGE LANGUAGE MODELS FOR TIME SERIES
ANALYSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, there has been great success in leveraging pre-trained large language mod-
els (LLMs) for time series analysis. The core idea lies in effectively aligning the
modality between natural language and time series. However, the multi-scale struc-
tures of natural language and time series have not been fully considered, resulting
in insufficient utilization of LLMs capabilities. To this end, we propose MSH-
LLM, a Multi-Scale Hypergraph method that aligns Large Language Models
for time series analysis. Specifically, a hyperedging mechanism is designed to
enhance the multi-scale semantic information of time series semantic space. Then,
a cross-modality alignment (CMA) module is introduced to align the modality
between natural language and time series at different scales. In addition, a mixture
of prompts (MoP) mechanism is introduced to provide contextual information
and enhance the ability of LLMs to understand the multi-scale temporal patterns
of time series. Experimental results on 27 real-world datasets across 5 different
applications demonstrate that MSH-LLM achieves the state-of-the-art results. Code
is available at: https://anonymous.4open.science/r/MSH-LLM-1E9B.

1 INTRODUCTION

Time series analysis is a critical ingredient in a myriad of real-world applications, e.g., forecasting (Liu
et al., 2023b; Wan et al., 2024; Shang et al., 2024a), imputation (Wang et al., 2024a), and classification
(Chen et al., 2024b; Wang et al., 2024c), which is applied across diverse domains, including retail,
transportation, economics, meteorology, healthcare, etc. In these real-world applications, the task-
specific models usually require domain knowledge and custom designs (Chen et al., 2024a; Zhou
et al., 2023a). This contrasts with the demand of time series foundation models, which are designed
to perform well in diverse applications, including few-shot learning and zero-shot learning, where
minimal and no training data is provided.

Recently, pre-trained foundation models, especially large language models (LLMs), have achieved
great success across many fields, e.g., natural language processing (NLP) (Touvron et al., 2023;
Achiam et al., 2023; Radford et al., 2021) and computer vision (CV) (Wang et al., 2024b; Pi et al.,
2024). Although the lack of large pre-training datasets and a consensus unsupervised objective makes
it difficult to train foundation models for time series analysis from scratch (Sun et al., 2024; Jin et al.,
2024; Pan et al., 2024), the fundamental commonalities between natural language and time series
in sequential structure and contextual dependency provide an avenue to apply LLMs for time series
analysis. The core idea lies in the effective alignment of the modality between natural language and
time series, either by reprogramming the input time series (Xue & Salim, 2023; Cao et al., 2024) or
by introducing prompts to provide contextual information for the input time series (Sun et al., 2024;
Kamarthi & Prakash, 2023; Jin et al., 2024).

In the process of aligning LLMs for time series analysis, we observe that both natural language
and time series present multi-scale structures. In natural language, multi-scale structures typically
manifest as semantic structures at different scales (Yang et al., 2024b), e.g., words, phrases, and
sentences. In time series, the multi-scale structures often demonstrate as multi-scale temporal patterns
(Wen et al., 2021; Liu et al., 2021; Shang et al., 2024a). For example, due to periodic human
activities, traffic occupation and electricity consumption show clear daily patterns (e.g., afternoon
or evening) and weekly patterns (e.g., weekday or weekend). Considering multi-scale alignment

1

https://anonymous.4open.science/r/MSH-LLM-1E9B

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

between natural language and time series enables models to learn richer representations and enhance
their cross-modality learning abilities. However, we argue that performing multi-scale alignment is a
non-trivial task, as two notable problems need to be addressed.

The first problem lies in the disparity between the multi-scale semantic space of natural language
and that of time series. The multi-scale semantic space of natural language is both distinctive and
informative (Pan et al., 2024), while the multi-scale semantic space of time series faces the semantic
information sparsity problem due to an individual time point containing less semantic information
(Shang et al., 2024b; Chang et al., 2024). This disparity makes it difficult to leverage off-the-shelf
LLMs for time series analysis. To tackle this, most existing works employ patch-based methods
(Nie et al., 2022; Jin et al., 2024) to capture group-wise interactions and enhance the semantic
information of time series semantic space. However, simple partitioning of patches may introduce
noise interference and make it hard to discover implicit interactions.

The second problem when performing multi-scale alignment lies in the knowledge and reasoning
capabilities to interpret temporal patterns are not naturally present within the pre-trained LLMs.
To unlock the knowledge within LLMs and activate their reasoning capabilities for time series
analysis, existing methods introduce prefix prompts (Jin et al., 2024; Liu et al., 2024) or self-prompt
mechanisms (Sun et al., 2024) to provide task instruction and enrich the input contextual information.
While these methods are intuitive and straightforward, they struggle to understand temporal patterns
due to their failure to leverage multi-scale temporal features. Therefore, it is still an open challenge
to design prompts that are accurate, data-correlated, and task-specific.

Motivated by the above, we propose MSH-LLM, a Multi-Scale Hypergraph method that aligns
Large Language Models for time series analysis. To the best of our knowledge, MSH-LLM is the
first multi-scale alignment work for time series analysis, which leverages the hyperedging mechanism
to enhance the multi-scale semantic information of time series and employs the mixture of prompts
mechanism to enhance the ability of LLMs in understanding multi-scale temporal patterns. The main
contributions of this paper are summarized as follows:

• We introduce a hyperedging mechanism that leverages learnable hyperedges to extract
hyperedge features with group-wise information from multi-scale temporal features, which
can enhance the multi-scale semantic information of time series semantic space while
reducing irrelevant information interference.

• We design a cross-modality alignment module to perform multi-scale alignment based
on the multi-scale prototypes and hyperedge features, which goes beyond relying solely
on single-scale alignment and obtains richer representations. In addition, we propose a
mixture of prompts (MoP) mechanism, which augments the input contextual information
with different prompts to enhance the reasoning ability of LLMs for time series analysis.

• We conduct experiments on 27 real-world datasets across 5 different applications. The
experimental results demonstrate that MSH-LLM achieves the state-of-the-art (SOTA)
performance, highlighting its effectiveness in activating the capability of LLMs for time
series analysis.

2 RELATED WORK

In-Modality Learning Methods. Recent studies in NLP (Devlin, 2018; Radford et al., 2019; Brown,
2020; Touvron et al., 2023) and CV (Touvron et al., 2021; Wang et al., 2023; Bao et al., 2022) have
shown that pre-trained foundation models can be fine-tuned for various downstream tasks within the
same modality, significantly reducing the need for costly training from scratch while maintaining
high performance. BERT (Devlin, 2018) uses bidirectional encoder representations from transformers
to recover the random masked tokens of the sentences. GPT3 (Brown, 2020) trains a transformer
decoder on a large language corpus with much more parameters, which can be utilized for diverse
applications. BEiT (Bao et al., 2022) designs a masked image modeling task to pretrain vision
transformers. Motivated by the above, recent time series pre-trained models use different strategies,
e.g., supervised learning methods (Fawaz et al., 2018) or self-supervised learning methods (Chen
et al., 2025; Woo et al., 2022a), to learn representations across diverse domains and then fine-tune on
similar applications to perform specific tasks. However, due to the lack of large pre-training datasets
and a consensus unsupervised objective, it is difficult to train foundation models for general-purpose
time series analysis that covers diverse applications.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Cross-Modality Learning Methods. Due to the fundamental commonalities between natural
language and time series in sequential structure and contextual dependency, recent works have
explored cross-modality learning by applying LLMs for time series analysis (Bian et al., 2024; Zhou
et al., 2023a; Liu et al., 2024; Jin et al., 2024). FPT (Zhou et al., 2023a) is the pilot work that
fine-tunes the key parameters of LLMs and transforms them into a unified framework for time series
analysis. aLLM4TS (Bian et al., 2024) introduces a two-stage pre-training strategy that first performs
causal next-patch training and then enacts a fine-tuning strategy for downstream tasks. However, fine-
tuning LLMs for training and inference can sometimes be resource-consuming due to the immense
size of LLMs (Liu et al., 2024). Some recent works have explored the alignment of frozen LLMs
for time series analysis, either by reprogramming the input time series or introducing prompts to
provide contextual information for the input time series. Time-LLM (Jin et al., 2024) introduces
a reprogramming mechanism to align the input time series with text prototypes before feeding it
into the frozen LLMs. AutoTimes (Liu et al., 2024) repurposes frozen LLMs as autoregressive time
series forecasters and introduces relevant time series prompts to enhance forecasting. Although these
methods achieve promising results, they overlook the multi-scale structures of natural language and
time series.

Multi-Scale Time Series Analysis Methods. Existing multi-scale time series analysis methods
are aimed at modeling temporal pattern interactions at different scales (Chen et al., 2021; Shang
et al., 2024b; Chen et al., 2023). TAMS-RNNs (Chen et al., 2021) disentangles input series into
multi-scale representations and uses different update frequencies to model multi-scale temporal
pattern interactions. Benefiting from the attention mechanism, transformers achieve promising results
in time series analysis. Pyraformer (Liu et al., 2021) treats multi-scale features as nodes and leverages
pyramidal attention to model interactions between nodes at different scales. To solve the problem
of semantic information sparsity, Pathformer (Chen et al., 2023) divides time series into multiple
resolutions using patches of different sizes and uses the dual attention to capture group-wise pattern
interactions at different scales. MSHyper (Shang et al., 2024b) combines transformer with multi-scale
hypergraphs to model group-wise pattern interactions at different scales. However, fixed segments or
pre-defined rules cannot capture implicit pattern interactions and may introduce noise interference.

In this paper, we find that both natural language and time series present multi-scale structures.
Therefore, we propose a multi-scale hypergraph method that aligns large language models (LLMs)
for time series analysis. Specifically, a hyperedging mechanism is introduced to enhance the multi-
scale semantic information of time series semantic space and reduce noise interference. Then, a
cross-modality alignment (CMA) module is introduced to perform multi-scale alignment. In addition,
a mixture of prompts (MoP) mechanism is designed to enhance the reasoning capabilities of LLMs
towards the multi-scale temporal patterns.

3 PRELIMINARIES

Hypergraph. A hypergraph can be represented as G = {V, E}, where V = {v1, . . . , vn, . . . , vN}
denotes the node set and E = {e1, . . . , em, . . . , eM} denotes the hyperedge set. Each hyperedge
represents group-wise interactions by connecting a set of nodes {v1, v2, . . . , vn} ⊆ V . The topology
of the hypergraph can be represented by the incidence matrix H ∈ RN×M , where Hnm = 1 if the nth
node connected to the mth hyperedge, otherwise Hnm = 0. The degree of the nth node is defined as
d(vn) =

∑M
m=1 Hnm and the degree of the mth hyperedge is defined as d(vm) =

∑N
n=1 Hnm. The

node degrees and hyperedge degrees are sorted in diagonal matrices Dv ∈ RN×N and De ∈ RM×M ,
respectively. More descriptions of hypergraph learning are provided in Appendix C.

Problem Definition. The proposed MSH-LLM is designed to align frozen LLMs for time series
analysis, which covers different applications across various domains. For a given specific application
that consists the input time series XI

1:T ∈ RT×D with T time steps and D dimensions, the goal of
time series analysis is to predict important properties of the time series. For example, the forecasting
task aims at predicting the future H steps XO

T+1:T+H ∈ RH×D, while the classification task aims at
predicting the class labels of the given time series.

4 METHODOLOGY

As depicted in Figure 1, MSH-LLM focuses on reprogramming an embedding-visible large language
model, e.g., LLaMA (Touvron et al., 2023) and GPT-2 (Radford et al., 2019), for general time
series analysis, while accounting for the multi-scale structures of natural language and time series.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Multi-Scale
Temporal Features

Instance Norm

Multi-Scale
Extraction Module

Hyperedging Mechaism

Cross-Modality
Alignment Module

Aligned Features

Word Token
Embeddings

Multi-Scale
Extraction Module

Multi-Head
Attention

Hyperedgeing
Mechanism

Prompt
Embedder

Pre-Trained LLM
(Body)

Multi-Head Attention

Add & Layer Norm

Feed Forward

Add & Layer Norm
Final Outputs

Output
Embeddings

Linear

Instance Denorm

Frozen Training Prompts Embeddings Aligned Features

concat

Prompt Input

Pre-Trained LLM
(Embedder)

Tokenizer
Learnable

Embeddings
<Learnable Prompt>
embeddings: *******
<Data-Correlated Prompt>
data description
task introduction
data statistics
<Capability-Enhancing Prompt>
logical think
emotional manipulation
time series reasoning

...
...

...

......

...

...

...

...

...

...

...

hyperedge
 embeddings

no
de

em
be

dd
in

gs

aggregationlearning & sparsityinitialized

...

...
...

...
...

...

...

hyperedge features

Temporal Features

...

Linear MappingInstance Norm

Scale1

Scale2

Scale3

Text Prototypes

Embed.

Hyperedging Mechanism

Multi-Scale Temporal Features Extraction Multi-Scale Text Prototypes Extraction(a)

(c)

(b)

Outputs

Figure 1: The framework of MSH-LLM. (a) and (b) provide detailed delineation of the multi-scale
extraction module, while (c) elaborates on the hyperedging mechanism.

In doing so, we first map the time series data and word token embeddings (based on pre-trained
LLMs) into multi-scale temporal features and text prototypes, respectively. Then, a hyperedging
mechanism is designed to enhance the multi-scale semantic information of time series semantic space
and a cross-modality alignment (CMA) module is introduced to align the modality between natural
language and time series. In addition, a mixture of prompts (MoP) mechanism is introduced to
provide multi-scale contextual information and enhance the ability of LLMs in understand multi-scale
temporal patterns of time series.

4.1 MULTI-SCALE EXTRACTION (ME) MODULE

The ME module is designed to extract the multi-scale features, which includes multi-scale temporal
features extraction and multi-scale text prototypes extraction.

Multi-Scale Temporal Features Extraction. As shown in Figure 1(a), given input time series
X1 = XI

1:T , we first normalize it through reversible instance normalization (Kim et al., 2021). Then,
we perform multi-scale temporal features extraction, which can be formulated as follows:

Xs = Agg(Xs−1; θs−1) ∈ RNs×D, s ≥ 2, (1)

where Xs = {xs
t |xs

t ∈ RD, t ∈ [1, Ns]} denotes the sub-sequence at scale s, s = 2, ..., S denotes
the scale index, and S is the total number of scales. Agg is the aggregation function, e.g., 1D
convolution or average pooling. θs−1 denotes the learnable parameters of the aggregation function
at scale s − 1, Ns =

⌊
Ns−1

ls−1

⌋
is the sequence length at scale s, and ls−1 denotes the size of the

aggregation window at scale s− 1.

Multi-Scale Text Prototypes Extraction. The multi-scale text prototypes extraction aims to map
word token embeddings in natural language to multi-scale structures, e.g., words, phrases, and
sentences, for alignment with multi-scale temporal features. As shown in Figure 1(b), given the word
token embeddings based on pre-trained LLMs U ∈ RV×P , where V is the vocabulary size and P
is the hidden dimension of LLMs. We first transform them to a small collection of text prototypes
through linear mapping, which can be represented as U1 ∈ RV ′×P , where V ′ ≪ V . This approach is
efficient and can capture key linguistic signals related to time series. Then, we can obtain multi-scale
text prototypes through linear mapping, which is formulated as follows:

Us = Linear(Us−1;λs−1) ∈ RV s×P , s ≥ 2, (2)

where Linear denotes the linear mapping function, Us represents the text prototypes at scale s, and
λs−1 denotes the learnable parameters of the linear mapping function at scale s− 1. After mapping,
we aim for the multi-scale text prototypes to capture the linguistic signals that describe multi-scale
temporal patterns. Experimental results in Appendix H validate the effectiveness of the multi-scale
text prototype extraction compared to manually selected approaches.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.2 HYPEREDGING MECHANISM

After obtaining the multi-scale temporal features and text prototypes, a straight way to align LLMs for
time series analysis is to perform cross-modality alignment at different scales. However, the semantic
space disparity poses a significant challenge, making it difficult to leverage the off-the-shelf LLMs
for time series analysis. To tackle this, some recent studies (Jin et al., 2024; Shang et al., 2024a)
show that group-wise interactions can help enrich the semantic information of time series semantic
space, thereby enhancing its consistency with the semantic space of natural language. Therefore,
we introduce a hyperedging mechanism that utilizes learnable hyperedges to capture group-wise
interactions at different scales.

As depicted in Figure 1(c), we first treat multi-scale temporal features as nodes and initialize two
kinds of learnable embeddings at scale s, i.e., hyperedge embeddings Es

hyper ∈ RMs×D and node
embeddings Es

node ∈ RNs×D, where Ms is a hyperparameter that defines the number of hyperedges
at scale s. Then, the similarity calculation is performed to construct the scale-specific incidence
matrix Hs, which can be formulated as follows:

U s
1 = tanh(Es

nodesβ),

U s
2 = tanh(Es

hyperφ),

Hs = Linear(ReLU(U s
1 (U

s
2)

T)),

(3)

where β ∈ R1×1 and φ ∈ R1×1 are learnable parameters. The tanh activation function is used to
perform nonlinear transformations and the ReLU activation function is applied to eliminate weak
connections. To enhance the robustness of the model, reduce the computation cost of subsequent
operations, and mitigate the impact of noise, we introduce a sparsity strategy to make Hs sparse,
which can be formulated as follows:

Hs
nm =

{
1, Hs

nm ∈ TopK(Hs
n∗, η)

0, Hs
nm /∈ TopK(Hs

n∗, η)
(4)

where η is the threshold of TopK function and denotes the max number of neighboring hyper-
edges connected to a node. The final scale-specific incidence matrices can be represented as
{H1, · · · ,Hs, · · · ,HS} and the hyperedge features of the ith hyperedge esi ∈ Es based on the
scale-specific incidence matrix at scale s is formulated as follows:

esi = Avg(
∑

xs
j∈N (esi)

xs
j)∈ RD, (5)

where Avg is the average operation, N (esi) is the neighboring nodes connected by esi at scale s, and
xs
j ∈ Xs represents the jth node features at scale s. The final hyperedge feature set at different scales

can be represented as {E1, · · · ,Es, · · · ,ES}.

Compared with other methods, our hyperedging mechanism is novel in two aspects. Firstly, our
methods can capture implicit group-wise interactions at different scales in a learnable manner, while
most existing methods (Nie et al., 2022; Zhou et al., 2023a; Shang et al., 2024b) rely on pre-defined
rules to model group-wise interactions at a single scale. Secondly, although some methods (Shang
et al., 2024a; Jiang et al., 2019) learn from hypergraphs, they focus on constraints or clustering-based
approaches to learn the hypergraph structures. In contrast, our method learns the hypergraph structures
in a data-driven manner by incorporating learnable parameters and nonlinear transformations, which
is more flexible and can learn more complex hypergraph structures.

4.3 CROSS-MODALITY ALIGNMENT (CMA) MODULE

The CMA module is designed to align the modality between natural language and time series based on
the multi-scale hyperedge features and text prototypes. To achieve this, a multi-head cross-attention
is used to perform alignment at different scales. Specifically, for the given text prototpyes Us and
hyperedge features Es at scale s, we first transform it into query Qs

ȷ = EsWs
q,ȷ, key Ks

ȷ = UsWs
k,ȷ,

and value Vs
ȷ = UsWs

v,ȷ, respectively, where ȷ = 1, ...,J denotes the head index. Ws
q,ȷ ∈ RD×d,

Ws
k,ȷ ∈ RP×d, and Ws

v,ȷ ∈ RP×d are learnable weight matrices at scale s, d =
⌊
D
J
⌋
. Then, the

multi-head cross-attention is applied to align the hyperedging features with text prototypes, which

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

can be formulated as follows:

Zs
ȷ = Attn(Qs

ȷ ,K
s
ȷ ,V

s
ȷ) = softmax(

Qs
ȷ (K

s
ȷ)

⊤
√
d

)Vs
ȷ . (6)

Then, we aggregate Zs
k in every head to obtain the output of multi-head attention Zs ∈ RMs×D at

scale s. The final aligned features at different scales can be represented as {Z1, · · · ,Zs, · · · ,ZS}.

4.4 MIXTURE OF PROMPTS (MOP) MECHANISM

The performance of LLMs depends significantly on the design of the prompts used to steer the model
capabilities (Pan et al., 2024; Zhou et al., 2023b). To enhance the reasoning capabilities of LLMs,
most existing methods focus on prefix prompts (Jin et al., 2024; Liu et al., 2024) or self-prompt
mechanisms (Sun et al., 2024; Lester et al., 2021) to provide task instructions and enrich the input
contextual information. However the prompts affecting the reasoning capabilities of LLMs are
multifaceted. Relying on a single type of prompt cannot fully activate the reasoning capabilities of
LLMs. Therefore, we propose a MoP mechanism, which augments the input contextual information
with different prompts (i.e., learnable prompts, data-correlated prompts, and capability-enhancing
prompts) and enhances the reasoning capabilities of LLMs towards multi-scale temporal patterns.

Learnable Prompts. Learnable or soft prompts show great effectiveness across many fields by
utilizing learnable embeddings, which are learned from the supervised loss between the output of
the model and the ground truth. However, existing learnable prompts cannot capture the temporal
dynamics from multi-scale temporal patterns. Therefore, we introduce multi-scale learnable prompts
Cl = {P1, ...,Ps, ...,PS}, where Ps ∈ RLs×D is the scale-specific prompts and Ls is the prompt
length at scale s. Cl learns from the loss between the output of LLMs and task-specific ground truth.

Data-Correlated Prompts. As shown in Figure 2(a), we introduce three components to construct
data-correlated prompts Cd, i.e., data description (π), task introduction (τ), and data statistics (µ).
The data description provides LLMs with essential background information about the input time
series, the task introduction is used to guide LLMs in understanding and performing specific tasks,
and the data statistics provide time series statistics that include both input sequence and sub-sequences
at different scales. The final data-correlated prompts can be formulated as follows:

Cd = LLMs(tokenizer(π, τ, µ)). (7)

[Data Description]: The Electricity Transformer

 Temperature (ETT) datasets are from xxxx

[Task Instruction]: Given the previous <T> ste-

ps, the task is to predict the next <H> steps,

[Data statistics]: The number of scale is <a>, t-

he max value is <m>, the min value is <n>,....

: Think it step by step

: Considering ARIMA (AutoRegressive

Intergrated Moving Average)

(b) Capability-Enhancing Prompt(a) Data-Correlated Prompt

: That's really important for me😀

🚀

📈

Figure 2: Prompt example. <> and <> are task-
specific configurations and input statistic informa-
tion, respectively.

Capability-Enhancing Prompts. Some recent
studies in NLP (Kojima et al., 2022) and CV
(Ge et al., 2023) have shown that prompt en-
gineering, e.g., template and chain-of-thought
prompts can significantly enhance the reason-
ing abilities of LLMs, especially for few-shot or
zero-shot learning. We have observed the sim-
ilar rules when aligning LLMs for time series
analysis. Therefore, as shown in Figure 2(b), we
design three components to construct capability-
enhancing prompts Cc, i.e., logical thinking (ϕ),
emotional manipulation (φ), and time series reasoning correlated prompts (ψ). The logical thinking
prompts guide LLMs to solve problems in a step-by-step manner, which may enhance the multi-step
reasoning abilities of LLMs; The emotional manipulation prompts mimic the impact of emotions on
human decision-making, using “emotional blackmail” to make the model focus more on the current
task; The time series reasoning correlated prompts provide specific methodologies that help LLMs to
deal with temporal features. The final capability-enhancing prompts are formulated as follows:

Cc = LLMs(tokenizer(ϕ, φ, ψ)). (8)

4.5 OUTPUT PROJECTION

After obtaining the MoP, we first concatenate the learnable prompts with the aligned features at
different scales, then concatenate it with data-correlated prompts and capability-enhancing prompts
and put them into LLMs to get the output representations, which can be formulated as follows:

O = LLMs([Cd,Cc, [P1,Z1], ..., [PS ,ZS]]). (9)
where [., .] denotes the concatenation operation. Then, we obtain the final results through linear
mapping and instance denormalization.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS

Experimental Settings. We conduct experiments on 27 real-world datasets across 5 different appli-
cations to verify the effectiveness of MSH-LLM, including long/short-term time series forecasting,
classification, few-shot learning, and zero-shot learning. Overall, MSH-LLM achieves state-of-the-art
results in a range of critical time series analysis tasks against 19 adavanced baselines. More details
about baselines, datasets, and experiment settings are given in Appendix B, D, and E, respectively.

5.1 LONG-TERM FORECASTING

Setups. For long-term time series forecasting, we evaluate the performance of MSH-LLM on 7
commonly used datasets, including ETT (i.e., ETTh1, ETTh2, ETTm1, and ETTm2), Weather, Traffic,
and Electricity datasets. More details about the datasets are given in Appendix D. Following existing
works (Jin et al., 2024; Zhou et al., 2023a; Pan et al., 2024), we set the input length T = 512 and the
forecasting lengths H ∈ {96, 192, 336, 720}. The mean square error (MSE) and mean absolute error
(MAE) are set as the evaluation metrics.

Table 1: Long-term time series forecasting results. Results are averaged from all forecasting lengths.
Lower values mean better performance. The best results are bolded and the second best results are
underlined. Full results are listed in Appendix G.1, Table 11.

Methods MSH-LLM
(Ours)

S2IP-LLM
(ICML 2024)

Time-LLM
(ICLR 2024)

AutoTimes
(NeurIPS 2024)

FPT
(NeurIPS 2023)

AMD
(AAAI 2025)

ASHyper
(NeurIPS 2024)

iTransformer
(ICLR 2024)

MSHyper
(arXiv 2024)

DLinear
(AAAI 2023)

TimesNet
(ICLR 2023)

FEDformer
(ICML 2022)

Metirc MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather 0.217 0.254 0.223 0.259 0.231 0.269 0.233 0.279 0.237 0.271 0.225 0.265 0.254 0.283 0.305 0.335 0.243 0.271 0.249 0.300 0.259 0.287 0.309 0.360

Electricity 0.159 0.253 0.163 0.258 0.165 0.261 0.162 0.261 0.167 0.263 0.162 0.257 0.162 0.253 0.203 0.298 0.176 0.276 0.166 0.264 0.193 0.295 0.214 0.327

Traffic 0.381 0.283 0.406 0.287 0.408 0.291 0.397 0.289 0.414 0.295 0.412 0.289 0.391 0.289 0.384 0.295 0.393 0.317 0.434 0.295 0.620 0.336 0.610 0.376

ETTh1 0.402 0.420 0.405 0.426 0.414 0.435 0.405 0.437 0.418 0.431 0.412 0.428 0.416 0.428 0.451 0.462 0.429 0.437 0.419 0.439 0.520 0.503 0.440 0.460

ETTh2 0.342 0.383 0.348 0.392 0.355 0.398 0.358 0.387 0.367 0.402 0.366 0.407 0.351 0.392 0.382 0.414 0.367 0.393 0.502 0.481 0.425 0.451 0.437 0.449

ETTm1 0.340 0.371 0.343 0.380 0.350 0.383 0.355 0.380 0.355 0.386 0.352 0.378 0.355 0.381 0.370 0.399 0.388 0.385 0.357 0.380 0.400 0.418 0.448 0.452

ETTm2 0.252 0.311 0.257 0.319 0.272 0.332 0.258 0.347 0.264 0.328 0.254 0.315 0.263 0.322 0.272 0.331 0.277 0.326 0.276 0.341 0.305 0.355 0.305 0.349

Results. Table 1 summarizes the results of long-term time series forecasting. We can observe
that: (1) MSH-LLM achieves the SOTA results in all datasets. Specifically, MSH-LLM achieves
an average error reduction of 4.10% and 3.72% compared to LLM4TS methods (i.e., S2IP-LLM,
AutoTimes, Time-LLM, and FPT), 8.54% and 6.45% compared to latest Transformer-based methods
(i.e., ASHyper, iTransformer, and MSHyper), and 7.48% and 5.58% compared to the Linear-based
methods (i.e., AMD and DLinear) in MSE and MAE, respectively. (2) By considering group-wise
interactions, Ada-MSHyper, MSHyper, and PatchTST achieve competitive performance. (3) Based
on this, LLM4TS methods (e.g., S2IP-LLM and Time-LLM) introduce group-wise interactions into
LLMs and generally outperform better than other methods. However, they overlook the multi-scale
structures of natural language and time series. (4) By considering the multi-scale structures of natural
language and time series, MSH-LLM outperforms other LLM4TS methods in almost all cases.

5.2 SHORT-TERM FORECASTING

Setups. To fully evaluate the performance of MSH-LLM, we also conduct short-term forecasting
experiments on M4 datasets, which contain marketing data with different sampling frequencies. More
details about M4 dataset are given in Appendix D. The forecasting lengths are set between 6 and 48,
which are significantly shorter than those in long-term time series forecasting. Following existing
works (Zhou et al., 2023a; Jin et al., 2024; Pan et al., 2024), we set the input length to be twice the
forecasting length. The symmetric mean absolute percentage error (SMAPE), mean absolute scaled
error (MASE), and overall weighted average (OWA) are used as the evaluation metrics.

Table 2: The average results of short-term time series forecasting on M4 datasets. Lower values
mean better performance. The best results are bolded and the second best results are underlined. Full
results are listed in Appendix G.2, Table 12.

Methods MSH-LLM
(Ours)

AutoTimes
(NeurIPS 2024)

S2IP-LLM
(ICML 2024)

Time-LLM
(ICLR 2024)

FPT
(NeurIPS 2023)

iTransformer
(ICLR 2024)

DLinear
(AAAI 2023)

PatchTST
(ICLR 2023)

N-HiTS
(AAAI 2023)

N-BEATS
(ICLR 2020)

TimesNet
(ICLR 2023)

Avg.
SMAPE 11.659 11.831 12.021 12.494 12.690 12.142 13.639 12.059 12.035 12.25 12.88
MASE 1.557 1.585 1.612 1.731 1.808 1.631 2.095 1.623 1.625 1.698 1.836
OWA 0.837 0.850 0.857 0.913 0.940 0.874 1.051 0.869 0.869 0.896 0.955

Results. Table 2 gives the short-term time series forecasting results. We can see that: (1) MSH-
LLM performs slightly better than AutoTimes and substantially exceeds other baseline methods.
(2) By leveraging LLMs and Patch mechanisms, AutoTimes and PatchTST achieve competitive
results than other baseline methods. (3) Compared to AutoTimes and PatchTST, MSH-LLM achieves

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

superior performance, the reason may be that the hyperedging mechanism can enhance the multi-scale
semantic information of time series semantic space while reducing irrelevant information interference.

5.3 TIME SERIES CLASSIFICATION

60 62 64 66 68 70 72 74 76
Average Accuracy (%)

MSH-LLM
FPT

TimesNet
Flowformer

Stationary
Rocket

Informer
Transformer

LSTNet
Reformer

Autofomer
ETSformer

LSSL
Pyraformer
FEDformer

LightTS
TCN

DLinear
XGBoost

75.38
74.00

73.60
73.00

72.70
72.50

72.10
71.90
71.80

71.50
71.10
71.00
70.90
70.80
70.70

70.40
70.30

67.50
66.00

Figure 3: Time series classification results. The re-
sults are averaged from 10 subsets of UEA. Higher
values mean better performance. Full results are
given in Appendix G.3.

Setups. We also perform the time series classi-
fication task to verify the generalization abil-
ity of the model. Following existing works
(Zhou et al., 2023a; Wu et al., 2022), we use
10 multivariate UEA time series classification
datasets for evaluation, which cover different do-
mains (e.g., gesture, medical diagnosis, and au-
dio recognition). More details about the datasets
are given in Appendix G.3. Accuracy is used as
the evaluation metric.

Results. Figure 3 shows time series classifica-
tion results. MSH-LLM achieves an average
accuracy of 75.38%, surpassing all baselines in-
cluding advanced LLM4TS methods FPT (74%).
It is also notable that other methods considering
multi-scale structures (e.g., TimesNet and Flow-
former) can also achieve better performance.
The reason is that the time series classification is a sequence-level task, and multi-scale structures
help models learn hierarchical representations. However, MSH-LLM still performs better than those
methods, the reason may be that MSH-LLM leverages MoP mechanism to enhance the reasoning
capabilities of LLMs, thereby promoting LLMs to learn more comprehensive representations of
multi-scale temporal patterns.

5.4 FEW-SHOT LEARNING

Setups. LLMs have shown impressive capabilities for few-shot learning (Liu et al., 2023a). Following
existing works (Jin et al., 2024; Zhou et al., 2023a), we use limited training data (i.e., 5% and 10% of
the training data) on 7 commonly used datasets to evaluate the few-short learning performance.

Table 3: Few-shot learning results under 5% training data. Results are averaged from all forecasting
lengths. The best results are bolded and the second best results are underlined. Full results are listed
in Appendix G.4, Table 16.

Methods MSH-LLM
(Ours)

S2IP-LLM
(ICML 2024)

Time-LLM
(ICLR 2024)

FPT
(NeurIPS 2023)

iTransformer
(ICLR 2024)

PatchTST
(ICLR 2023)

TimesNet
(ICLR 2023)

FEDformer
(ICML 2022)

NSFormer
(NeurIPS 2022)

ETSformer
(arXiv 2022)

Autoformer
(NeurIPS 2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather 0.247 0.281 0.260 0.297 0.264 0.301 0.263 0.301 0.309 0.339 0.269 0.303 0.298 0.318 0.309 0.353 0.310 0.353 0.327 0.328 0.333 0.371

Electricity 0.174 0.269 0.179 0.275 0.181 0.279 0.178 0.273 0.201 0.296 0.181 0.277 0.402 0.453 0.266 0.353 0.346 0.404 0.627 0.603 0.800 0.685

Traffic 0.413 0.292 0.420 0.299 0.423 0.302 0.434 0.305 0.450 0.324 0.418 0.296 0.867 0.493 0.676 0.423 0.833 0.502 1.526 0.839 1.859 0.927

ETT(Avg) 0.421 0.423 0.445 0.438 0.580 0.497 0.465 0.447 0.675 0.542 0.590 0.503 0.606 0.507 0.558 0.503 0.587 0.527 0.676 0.526 0.914 0.712

Results. Table 3 summarizes the few-shot learning results under 5% training data. We can see that
LLM4TS methods (i.e., MSH-LLM, S2IP-LLM, and Time-LLM) outperform all other baselines by a
large margin. The reason may be that other baseline methods, which are trained from scratch, have
limited training data under this scenario. In contrast, LLM4TS methods can apply/align pre-trained
knowledge for time series analysis, thereby enhancing its ability to understand and reason time series.
Notably, MSH-LLM achieves SOTA results in almost all cases, reducing the prediction error by
an average of 10.47% and 6.74% over other LLM4TS methods (i.e., S2IP-LLM and Time-LLM)
in terms of MSE and MAE, respectively. This may attribute to that MSH-LLM can consider the
multi-scale structures of natural language and time series, while leveraging the MoP mechanism to
unlock the knowledge within LLMs to understand multi-scale patterns. The few-shot learning results
under 10% training data are given in Appendix 5.4.

5.5 ZERO-SHOT LEARNING

Setups. Except for few-shot learning, LLMs have shown remarkable generalization ability for
zero-shot learning. In this section, we evaluate the performance of MSH-LLM for few-shot learning,
where no training sample of the target domain is available. Specifically, we adhere to the benchmark
established by (Zhou et al., 2023a; Liu et al., 2024) and evaluate the cross-dataset adaptation

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

performance (i.e., how well the model performance on dataset A when trained on dataset B). M3 and
M4 datasets are used to evaluate the zero-shot learning performance.

Table 4: Zero-shot learning results in terms of averaged SMAPE. M4→M3 means training on M4
datasets and testing on M3 datasets, and vice versa. The best results are bolded and the second best
results are underlined. Full results are listed in Appendix G.5, Table 17.

Methods MSH-LLM
(Ours)

AutoTimes
(NeurIPS 2024)

FPT
(NeurIPS 2023)

DLinear
(AAAI 2023)

PatchTST
(ICLR 2023)

TimesNet
(ICLR 2023)

NSformer
(NeurIPS 2022)

FEDformer
(ICML 2022)

Informer
(AAAI 2021)

Reformer
(ICLR 2019)

M4→M3 12.469 12.750 13.060 14.030 13.390 14.170 15.290 13.530 15.820 13.370

M3→M4 12.968 13.036 13.125 15.337 13.228 14.553 14.327 15.047 19.047 14.092

Results. Table 4 provides the zero-short learning results. It is notable that both M3 and M4 datasets
contain complex multi-scale temporal patterns and show different data distributions. MSH-LLM
still achieves the best performance, which may be due to its ability to better leverage the reasoning
capabilities of LLMs for interpreting multi-scale temporal patterns. Specifically, MSH-LLM achieves
an average of 10.23% SMAPE error reductions across all baselines on average.

5.6 ABLATION STUDIES

LLMs Selection. Scaling law is an essential characteristic that extends from small models to large
foundation models. To investigate the impact of backbone model size, we design the following three
variants: (1) Using the first 12 Transformer layers of LLaMA-7B (L.12). (2) Replacing LLaMA-7B
with GPT-2 Small (G.12). (3) Replacing LLaMA-7B with the first 6 Transformer layers of GPT-2
Small (G.6). The experimental results on Traffic dataset are shown in Table 5. We can observe that
MSH-LLM (Default 32) performs better than L.12, G.12, and G.6, which indicate that the scaling
law also applies to cross-modalities alignment with frozen LLMs.

Table 5: Results of different LLMs selection and MoP mechanism. The best results are bolded.
Methods L.12 G.12 G.6 -w/o Cl -w/o Cd -w/o Cc -w/o MoP MSH-LLM (Default:32)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.370 0.274 0.377 0.281 0.393 0.295 0.373 0.272 0.368 0.273 0.375 0.272 0.399 0.283 0.365 0.270
192 0.375 0.283 0.385 0.290 0.404 0.297 0.379 0.289 0.383 0.286 0.392 0.282 0.403 0.290 0.372 0.281
336 0.393 0.286 0.397 0.289 0.411 0.316 0.400 0.293 0.405 0.292 0.391 0.284 0.409 0.295 0.385 0.279

MoP Mechanism. To investigate the impact of MoP mechanism, we design three variants: (1)
Removing the learnable prompts (-w/o Cl). (2) Removing the data-correlated prompts (-w/o Cd). (3)
Removing the capability-enhancing prompts (-w/o Cc). (3) Removing the MoP mechanism (-w/o
MoP). The experimental results on Traffic dataset are shown in Table 5, from which we can observe
that MSH-LLM performs better than -w/o Cl, -w/o Cd, and -w/o Cc, showing the effectiveness
of learnable prompts, data-correlated prompts, and capability-enhancing prompts, respectively. In
addition, -w/o MoP achieves the worst performance, demonstrating the effectiveness of the MoP
mechanism. More ablation experiments on the MoP mechanism, hyperedging mechanism, ME
module, and CMA module are shown in Appendix H and I.

5.7 PARAMETER STUDIES

2 3 4 5
k-hop

0.35

0.40

0.45

M
SE

H=96
H=192
H=336
H=720

(a) Number of Hyperedges

M
SE

1 2 3 4
scale

0.35

0.40

0.45

M
SE

H=96
H=192
H=336
H=720

(b) Number of Scales

M
SE

Figure 4: The impact of different hyperparameters.

We perform parameter studies on Traffic
datasets to evaluate the impact of the max num-
ber of hyperedges connected to a node (η) and
the number of scales (# scales). The experimen-
tal results are shown in Figure 4, from which
we can observe that: (1) The best performance
can be obtained when η = 4. The reason is that
smaller values of η fail to capture group-wise
interactions, while large values of η may intro-
duce noise interference. (2) The optimal # scales is 3. The reason is that smaller # scales limit the
expressive ability of MSH-LLM, while large # scales may introduce excessive parameters and cause
overfitting problems.

5.8 VISUALIZATION

Visualization of the MoP Mechanism. We perform qualitative analysis to investigate how prompts
can guide LLMs in time series analysis. The t-SNE visualization results on Traffic dataset are provided

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

in Figure 5. We can observe that the output of pre-trained LLMs with the MoP mechanism (Figure
5(a)) shows distinct clusters, while the output of pre-trained LLMs without the MoP mechanism
(Figure 5(e)) reveals a more spread-out and lacks clear clustering. The experimental results show
the effectiveness of the MoP mechanism in activating the abilities of LLMs to capture multi-scale
temporal patterns. In addition, we observe that Figures 5(a) and Figure 5(b) (-w/o Cd) share similar
clusters, while Figures 5(c) (-w/o Cl) and Figure 5(d) (-w/o Cc) show less distinct clusters compared
to Figure 5(a), suggesting that Cd has a relatively minor influence compared Cl and Cc on Traffic
dataset for long-term forecasting. However, this does not imply that Cd is unimportant, as removing
Cd leads to a performance degradation. The qualitative analysis also aligns with the experimental
results in Table 5.

(a) MSH-LLM (b) -w/o Cd (c) -w/o Cc (d) -w/o Cl (e) -w/o MoP

Figure 1: The t-SNE visualization of the output generated by pre-trained LLMs
under different prompts.

1

Figure 5: The t-SNE visualization of the output generated by pre-trained LLMs under different
prompts.

Visualization of the hyperedge embeddings. We perform qualitative analysis to investigate the
training-time trajectories of the hyperedge embeddings. The t-SNE visualization results of hyperedge
embeddings on ETTh1 dataset are given in Figure 6. From Figure 6, we can discern the following
tendencies: 1) As training progresses, hyperedge embeddings at different scales form distinct clusters.
This indicates that MSH-LLM is able to distinguish and capture multi-scale temporal patterns. In
addition, even within the same scale, different hyperedge embeddings reside in distinct clusters,
indicating the ability of MSH-LLM in capturing diverse temporal patterns within the same scale.
2) From Figure 6(a) to Figure 6(c), we can observe that embeddings of large-scale hyperedges
form distinct clusters earlier during training, while embeddings of small-scale hyperedges gradually
separate from the large-scale clusters over time. This suggests that during the early stages of training,
the model is more focused on capturing coarse-grained temporal patterns (e.g., weekly patterns), and
later shifts its focus to learning finer-grained temporal patterns(e.g., hourly and daily patterns).

(a) Initial embeddings (b) Embeddings at epoch 1 (c) Embeddings at epoch 3

Figure 6: The t-SNE visualization of hyperedge embeddings at different epochs.

6 CONCLUSIONS

In this paper, we propose MSH-LLM, a multi-scale hypergraph framework that aligns pre-trained
large language models for time series analysis. Empowered by the hyperedging mechanism and
cross-modality alignment (CMA) module, MSH-LLM can perform alignment at different scales,
addressing the problem of multi-scale semantic space disparity between natural language and time
series. In addition, a mixture of prompts (MoP) mechanism is introduced to enhance the reasoning
capabilities of LLMs towards multi-scale temporal patterns. Experimental results on 27 real-world
datasets across 5 different applications justify the effectiveness of MSH-LLM.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

Our work focuses solely on scientific problems and does not involve human subjects, animals, or
environmentally sensitive materials. We foresee no ethical risks or conflicts of interest.

8 REPRODUCIBILITY STATEMENT

We have rigorously formalized the model architecture, loss functions, and evaluation metrics through
illustrations, equations, and descriptions in the main text. We provide the reproducibility details in the
Appendix, including dataset descriptions (Appendix D), experimental details (Appendix E), ablation
studies (Appendix H), and visualization (Appendix I). We provide our source code in an anonymous
link: https://anonymous.4open.science/r/MSH-LLM-1E9B, which will be publicly available upon
acceptance.

REFERENCES

Ahmed Abdulaal, Zhuanghua Liu, and Tomer Lancewicki. Practical approach to asynchronous
multivariate time series anomaly detection and localization. In Proceedings of the 27th ACM
SIGKDD conference on knowledge discovery & data mining, pp. 2485–2494, 2021.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul
Southam, and Eamonn Keogh. The UEA multivariate time series classification archive, 2018.
arXiv preprint arXiv:1811.00075, 2018.

Song Bai, Feihu Zhang, and Philip HS Torr. Hypergraph convolution and hypergraph attention.
Pattern Recognition, 110:1–30, 2021.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEiT: BERT pre-training of image transformers.
In Proceedings of the International Conference on Learning Representations, 2022.

Yuxuan Bian, Xuan Ju, Jiangtong Li, Zhijian Xu, Dawei Cheng, and Qiang Xu. Multi-patch prediction:
Adapting LLMs for time series representation learning. arXiv preprint arXiv:2402.04852, 2024.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Defu Cao, Furong Jia, Sercan O Arik, Tomas Pfister, Yixiang Zheng, Wen Ye, and Yan Liu. TEMPO:
Prompt-based generative pre-trained transformer for time series forecasting. In Proceedings of the
International Conference on Learning Representations, 2024.

Cristian Challu, Kin G Olivares, Boris N Oreshkin, Federico Garza Ramirez, Max Mergenthaler
Canseco, and Artur Dubrawski. NHiTS: Neural hierarchical interpolation for time series forecasting.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 6989–6997, 2023.

Ching Chang, Wen-Chih Peng, and Tien-Fu Chen. LLM4TS: Two-stage fine-tuning for time-series
forecasting with pre-trained LLMs. arXiv preprint arXiv:2308.08469, 2024.

Donghui Chen, Ling Chen, Zongjiang Shang, Youdong Zhang, Bo Wen, and Chenghu Yang. Scale-
aware neural architecture search for multivariate time series forecasting. ACM Transactions on
Knowledge Discovery from Data, 1:1–22, 2024a.

Junru Chen, Tianyu Cao, Jing Xu, Jiahe Li, Zhilong Chen, Tao Xiao, and Yang Yang. Con4m:
Context-aware consistency learning framework for segmented time series classification. arXiv
preprint arXiv:2408.00041, 2024b.

Peng Chen, Yingying ZHANG, Yunyao Cheng, Yang Shu, Yihang Wang, Qingsong Wen, Bin Yang,
and Chenjuan Guo. Pathformer: Multi-scale transformers with adaptive pathways for time series
forecasting. In Proceedings of the International Conference on Learning Representations, 2023.

11

https://anonymous.4open.science/r/MSH-LLM-1E9B

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Peng Chen, Yingying ZHANG, Yunyao Cheng, Yang Shu, Yihang Wang, Qingsong Wen, Bin Yang,
and Chenjuan Guo. Time-MoE: Billion-scale time series foundation models with mixture of
experts. In Proceedings of the International Conference on Learning Representations, 2025.

Zipeng Chen, Qianli Ma, and Zhenxi Lin. Time-aware multi-scale RNNs for time series modeling. In
Proceedings of the International Joint Conference on Artificial Intelligence, pp. 2285–2291, 2021.

Jacob Devlin. BERT: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain
Muller. Transfer learning for time series classification. In IEEE International Conference on Big
Data, pp. 1367–1376, 2018.

Jiaxin Ge, Hongyin Luo, Siyuan Qian, Yulu Gan, Jie Fu, and Shanghang Zhang. Chain of thought
prompt tuning in vision language models. arXiv preprint arXiv:2304.07919, 2023.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The LLaMA 3 herd
of models. arXiv e-prints arXiv: 2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-R1: Incentivizing reasoning capability in LLMs
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Hansika Hewamalage, Klaus Ackermann, and Christoph Bergmeir. Forecast evaluation for data
scientists: Common pitfalls and best practices. Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining, 37(2):788–832, 2023.

Yifan Hu, Peiyuan Liu, Peng Zhu, Dawei Cheng, and Tao Dai. Adaptive multi-scale decomposition
framework for time series forecasting. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39, pp. 17359–17367, 2025.

Yuchi Huang, Qingshan Liu, and Dimitris Metaxas. Video object segmentation by hypergraph cut.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
1738–1745, 2009.

Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom Soderstrom. De-
tecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In Proceedings
of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
387–395, 2018.

Jianwen Jiang, Yuxuan Wei, Yifan Feng, Jingxuan Cao, and Yue Gao. Dynamic hypergraph neural
networks. In Proceedings of the International Joint Conference on Artificial Intelligence, pp.
2635–2641, 2019.

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu Chen,
Yuxuan Liang, Yuan-Fang Li, Shirui Pan, et al. Time-LLM: Time series forecasting by repro-
gramming large language models. In Proceedings of the International Conference on Learning
Representations, 2024.

Harshavardhan Kamarthi and B Aditya Prakash. Large pre-trained time series models for cross-
domain time series analysis tasks. arXiv preprint arXiv:2311.11413, 2023.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Reversible
instance normalization for accurate time-series forecasting against distribution shift. In Proceedings
of the International Conference on Learning Representations, 2021.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
Proceedings of the International Conference on Learning Representations, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in Neural Information Processing Systems, 35:
22199–22213, 2022.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 3045–3059, 2021.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023.

Chenxi Liu, Qianxiong Xu, Hao Miao, Sun Yang, Lingzheng Zhang, Cheng Long, Ziyue Li, and Rui
Zhao. Timecma: Towards llm-empowered multivariate time series forecasting via cross-modality
alignment. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp.
18780–18788, 2025a.

Peiyuan Liu, Hang Guo, Tao Dai, Naiqi Li, Jigang Bao, Xudong Ren, Yong Jiang, and Shu-Tao Xia.
CALF: Aligning LLMs for time series forecasting via cross-modal fine-tuning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 39, pp. 18915–18923, 2025b.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dust-
dar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and
forecasting. In Proceedings of the International Conference on Learning Representations, 2021.

Xin Liu, Daniel McDuff, Geza Kovacs, Isaac Galatzer-Levy, Jacob Sunshine, Jiening Zhan, Ming-
Zher Poh, Shun Liao, Paolo Di Achille, and Shwetak Patel. Large language models are few-shot
health learners. arXiv preprint arXiv:2305.15525, 2023a.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
the stationarity in time series forecasting. Advances in Neural Information Processing Systems, 35:
9881–9893, 2022.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
iTransformer: Inverted transformers are effective for time series forecasting. In Proceedings of the
International Conference on Learning Representations, 2023b.

Yong Liu, Guo Qin, Xiangdong Huang, Jianmin Wang, and Mingsheng Long. Autotimes: Autoregres-
sive time series forecasters via large language models. Advances in Neural Information Processing
Systems, 37:122154–122184, 2024.

Aditya P Mathur and Nils Ole Tippenhauer. Swat: A water treatment testbed for research and training
on ics security. In 2016 international workshop on cyber-physical systems for smart water networks
(CySWater), pp. 31–36. IEEE, 2016.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. In Proceedings of the International Conference
on Learning Representations, 2022.

Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-BEATS: Neural basis
expansion analysis for interpretable time series forecasting. In Proceedings of the International
Conference on Learning Representations, 2020.

Zijie Pan, Yushan Jiang, Sahil Garg, Anderson Schneider, Yuriy Nevmyvaka, and Dongjin Song.
S2IP-LLM: Semantic space informed prompt learning with LLM for time series forecasting. In
Proceedings of the International Conference on Machine Learning, pp. 39135–39153, 2024.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in Neural Information Processing Systems, 32:
1–12, 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Renjie Pi, Lewei Yao, Jiahui Gao, Jipeng Zhang, and Tong Zhang. PerceptionGPT: Effectively fusing
visual perception into LLM. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 27124–27133, 2024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In Proceedings of the International Conference on
Machine Learning, pp. 8748–8763, 2021.

Ramit Sawhney, Shivam Agarwal, Arnav Wadhwa, Tyler Derr, and Rajiv Ratn Shah. Stock selection
via spatiotemporal hypergraph attention network: A learning to rank approach. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35, pp. 497–504, 2021.

Zongjiang Shang, Ling Chen, Binqing Wu, and Dongliang Cui. Ada-MSHyper: Adaptive multi-scale
hypergraph transformer for time series forecasting. Advances in Neural Information Processing
Systems, 37:33310–33337, 2024a.

Zongjiang Shang, Ling Chen, Binqing Wu, and Liangcui Dong. MSHyper: Multi-scale hypergraph
transformer for long-range time series forecasting. arXiv preprint arXiv:2401.09261, 2024b.

Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust anomaly detection for
multivariate time series through stochastic recurrent neural network. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining, pp. 2828–2837,
2019.

Chenxi Sun, Hongyan Li, Yaliang Li, and Shenda Hong. TEST: Text prototype aligned embedding to
activate LLM’s ability for time series. In Proceedings of the International Conference on Learning
Representations, 2024.

Mingtian Tan, Mike Merrill, Vinayak Gupta, Tim Althoff, and Tom Hartvigsen. Are language models
actually useful for time series forecasting? Advances in Neural Information Processing Systems,
37:60162–60191, 2024.

Xing Tang, Ling Chen, Hongyu Shi, and Dandan Lyu. DHyper: A recurrent dual hypergraph neural
network for event prediction in temporal knowledge graphs. ACM Transactions on Information
Systems, 2024.

Changyuan Tian, Zhicong Lu, Zequn Zhang, Heming Yang, Wei Cao, Zhi Guo, Xian Sun, and Li Jin.
HyperMixer: Specializable hypergraph channel mixing for long-term multivariate time series
forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp.
20885–20893, 2025.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In Proceedings
of the International Conference on Machine Learning, pp. 10347–10357, 2021.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. LLaMA: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Guancheng Wan, Zewen Liu, Max SY Lau, B Aditya Prakash, and Wei Jin. Epidemiology-aware
neural ode with continuous disease transmission graph. arXiv preprint arXiv:2410.00049, 2024.

Jun Wang, Wenjie Du, Wei Cao, Keli Zhang, Wenjia Wang, Yuxuan Liang, and Qingsong Wen.
Deep learning for multivariate time series imputation: A survey. arXiv preprint arXiv:2402.04059,
2024a.

Pichao Wang, Xue Wang, Fan Wang, Ming Lin, Shuning Chang, Hao Li, and Rong Jin. Kvt: k-
nn attention for boosting vision transformers. In European conference on computer vision, pp.
285–302. Springer, 2022.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Wenhai Wang, Jifeng Dai, Zhe Chen, Zhenhang Huang, Zhiqi Li, Xizhou Zhu, Xiaowei Hu, Tong Lu,
Lewei Lu, Hongsheng Li, et al. Internimage: Exploring large-scale vision foundation models with
deformable convolutions. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 14408–14419, 2023.

Wenhai Wang, Zhe Chen, Xiaokang Chen, Jiannan Wu, Xizhou Zhu, Gang Zeng, Ping Luo, Tong
Lu, Jie Zhou, Yu Qiao, et al. VisionLLM: Large language model is also an open-ended decoder
for vision-centric tasks. Advances in Neural Information Processing Systems, 36:61501–61513,
2024b.

Yihe Wang, Nan Huang, Taida Li, Yujun Yan, and Xiang Zhang. Medformer: A multi-granularity
patching transformer for medical time-series classification. arXiv preprint arXiv:2405.19363,
2024c.

Qingsong Wen, Kai He, Liang Sun, Yingying Zhang, Min Ke, and Huan Xu. RobustPeriod: Robust
time-frequency mining for multiple periodicity detection. In Proceedings of the International
Monference on Management of Data, pp. 2328–2337, 2021.

Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. CoST: Contrastive
learning of disentangled seasonal-trend representations for time series forecasting. In Proceedings
of the International Conference on Learning Representations, 2022a.

Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. ETSformer: Exponential
smoothing transformers for time-series forecasting. arXiv preprint arXiv:2202.01381, 2022b.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with auto-correlation for long-term series forecasting. Advances in Neural Information Processing
Systems, pp. 22419–22430, 2021.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. TimesNet: Tem-
poral 2d-variation modeling for general time series analysis. In Proceedings of the International
Conference on Learning Representations, 2022.

Chenxin Xu, Maosen Li, Zhenyang Ni, Ya Zhang, and Siheng Chen. GroupNet: Multiscale hyper-
graph neural networks for trajectory prediction with relational reasoning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6498–6507, 2022.

Hao Xue and Flora D Salim. Promptcast: A new prompt-based learning paradigm for time series
forecasting. IEEE Transactions on Knowledge and Data Engineering, 36(11):6851–6864, 2023.

Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and Partha
Talukdar. HyperGCN: A new method for training graph convolutional networks on hypergraphs.
Advances in Neural Information Processing Systems, 32:1511–1522, 2019.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024a.

Rui Yang, Shuang Wang, Yingping Han, Yuanheng Li, Dong Zhao, Dou Quan, Yanhe Guo, Licheng
Jiao, and Zhi Yang. Transcending fusion: A multi-scale alignment method for remote sensing
image-text retrieval. IEEE Transactions on Geoscience and Remote Sensing, 2024b.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? arXiv preprint arXiv:2205.13504, 2022.

George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty, and Carsten Eickhoff.
A transformer-based framework for multivariate time series representation learning. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2114–2124,
2021.

Yusheng Zhao, Xiao Luo, Wei Ju, Chong Chen, Xian-Sheng Hua, and Ming Zhang. Dynamic
hypergraph structure learning for traffic flow forecasting. In IEEE International Conference on
Data Engineering, pp. 2303–2316, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, pp. 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: Fre-
quency enhanced decomposed transformer for long-term series forecasting. In Proceedings of the
International Conference on Machine Learning, pp. 27268–27286, 2022.

Tian Zhou, Peisong Niu, Liang Sun, Rong Jin, et al. One fits all: Power general time series analysis
by pretrained LM. Advances in Neural Information Processing Systems, 36:43322–43355, 2023a.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. Large language models are human-level prompt engineers. In Proceedings of the
International Conference on Learning Representations, 2023b.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A DESCRIPTION OF NOTATIONS

To help understand the symbols used throughout the paper, we provide a detailed list of the key
notations in Table 6.

Table 6: Description of the key notations.
Notation Descriptions

G Hypergraph

E Hyperedge set

V Node set

Ns Number of nodes at scale s

Ms Number of hyperedges at scale s

T Input length

H Output length

D Temporal feature dimension

s Scale index

S Number of temporal scales

XI
1:T Input time series

Xs Sub-sequence at scale s

θs−1 Learnable parameters of the aggregation function at scale s− 1

xt Values at time step t

U Word token embeddings of pre-trained LLMs

V Vocabulary size

P Hidden dimension size of LLMs

Us Prototypes at scale s

λs−1 Learnable parameters of the linear mapping function at scale s− 1

Es
node ∈ RNs×D Node embeddings at scale s

Es
hyper ∈ RMs×D Hyperedge embeddings at scale s

esi ith hyperedge at scale s

xsi ith node at scale s

es
i ith hyperedge feature representation at scale s

xs
i ith node feature representation at scale s

η Threshold of TopK function

Es Hyperedge feature set at scale s

Hs Incidence matrix at scale s

β ∈ R1×1 Learnable parameters

φ ∈ R1×1 Learnable parameters

ls−1 Size of the aggregation window at scale s− 1

N (esi) Nodes connected by esi

Qs
ȷ , Ks

ȷ , Vs
ȷ Queries, keys, and values of the ȷ head at scale s

ȷ Head index

J Number of heads

Zs Cross-modality aligned features

Cl Learnable prompts

Ps Scale-specific prompts

Ls Length of learnable prompts at scale s

Cd Data-correlated prompts

π, τ , µ Dataset description, task introduction, and dataset statistics prompts

ϕ, φ, ψ Logical thinking, emotional manipulation, and time series reasoning prompts

Cc Capability-enhancing prompts

[., .] Concatenation operation

O Output representation

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B DESCRIPTION OF BASELINES

We compare MSH-LLM with 19 competitive baselines. Below are brief descriptions of the baselines:

AutoTimes (Liu et al., 2024): AutoTimes repurposes frozen LLMs as autoregressive time series
forecasters and introduces time series-related prompts to enhance forecasting.

Time-LLM (Jin et al., 2024): Time-LLM introduces a patch reprogramming mechanism to align the
input time series with text prototypes, and then feeds the aligned features into frozen LLMs to get the
output results.

FPT (Zhou et al., 2023a): FPT fine-tunes the key parameters of LLMs and transforms the LLMs into
a unified framework for time series analysis.

S2IP-LLM (Pan et al., 2024): S2IP-LLM aligns the semantic space of LLMs with that of time series
and performs time series forecasting based on learned prompts from the joint space.

DLinear (Zeng et al., 2022): DLinear decomposes the input time series into seasonal and trend
components, and employs a linear layer for each component to model temporal dependencies.

N-HiTS (Challu et al., 2023): N-HiTS proposes a novel hierarchical interpolation and multi-rate data
sampling techniques to model multi-scale temporal patterns.

N-BEATS (Oreshkin et al., 2020): N-BEATS employs a deep stack of fully-connected layers based
on backward and forward residual connections to model temporal dependencies.

AMD (Hu et al., 2025): AMD decomposes time series into distinct temporal patterns at different
scales and leverages the multi-scale decomposable mixing block to dissect and aggregate these
patterns in a residual manner.

Ada-MSHyper (Shang et al., 2024a): Ada-MSHyper utilizes an adaptive hypergraph to capture
group-wise interactions at different scales and introduces a constraint mechanism to address the
problem of temporal variations entanglement.

iTransformer (Liu et al., 2023b): iTransformer embeds individual time points of time series into
variate tokens, then applies the attention mechanism and feed-forward network to capture variate
correlations and learn nonlinear representations, respectively.

PatchTST (Nie et al., 2022): PatchTST segments time series into subsequence-level patches and
treats them as input tokens to model temporal dependencies in a channel-independent manner.

TimesNet (Wu et al., 2022): TimesNet transforms 1D time series into a set of 2D tensors by
multi-periodicity analysis to model complex temporal variations from a 2D perspective.

MSHyper (Shang et al., 2024b): MSHyper constructs multi-scale hypergraphs in a rule-based manner
and combines them with a tri-stage message passing mechanism to model group-wise interactions
between multi-scale temporal patterns.

Autoformer (Wu et al., 2021): Autoformer utilizes a decomposition architecture with an auto-
correlation mechanism to discover the long-range dependencies.

NSFormer (Liu et al., 2022): NSFormer introduces a series stationarization module and a de-
stationary attention module to improve the predictability of time series and address the over-
stationarization problem, respectively.

FEDformer (Zhou et al., 2022): FEDformer utilizes a decomposition method to capture the global
information of time series and a frequency-enhanced block to capture important structures.

ETSformer (Woo et al., 2022b): ETSformer incorporates the principles of exponential smoothing by
replacing traditional self-attention with exponential smoothing attention and frequency attention for
time series forecasting.

Reformer (Kitaev et al., 2019): Reformer approximates the attention value through local-sensitive
hashing (LSH) and leverages reversible residual layers to reduce the computation cost.

Informer (Zhou et al., 2021): Informer selects dominant query by calculating KL-divergence to
reduce computational complexity and utilizes a generative style decoder to accelerate inference speed.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C DESCRIPTION OF HYPERGRAPH LEARNING

Compared to Graph Neural Networks (GNNs), which model pairwise interactions by operating
on graphs where each edge connects exactly two nodes, Hypergraph Neural Networks (HGNNs)
generalize this paradigm to capture group-wise interactions through hyperedges that can connect an
arbitrary number of nodes. As shown in Figure 7, the graph is represented using the adjacency matrix,
in which each edge connects two nodes. In contrast, the hypergraph is represented by the incidence
matrix, which can capture group-wise interaction using its degree-free hyperedges.

Graph:

Adjacency matrix Graph structure Hypergraph structureIncidence matrix

Hypergraph:

Figure 7: The comparison between graph and hypergraph.
Recently, HGNNs have been applied in different fields, e.g., video object segmentation (Huang et al.,
2009), stock selection (Sawhney et al., 2021), temporal knowledge graphs (Tang et al., 2024), and
time series forecasting (Shang et al., 2024a;b; Zhao et al., 2023; Tian et al., 2025). HyperGCN
(Yadati et al., 2019) is the first work to incorporate convolutional operations into hypergraphs,
demonstrating the superiority of HGNNs over ordinary GNNs in capturing group-wise interactions.
STHAN-SR (Sawhney et al., 2021) reformulates stock prediction as a learning-to-rank task and
utilizes hypergraphs to capture group-wise interactions between stocks. GroupNet (Xu et al., 2022)
employs multi-scale hypergraphs for trajectory prediction, which combines relational reasoning
with hypergraph structures to capture group-wise pattern interactions among multiple agents. In the
context of time series forecasting, MSHyper (Shang et al., 2024b) is the first work to incorporate
hypergraphs into long-term time series forecasting, which leverages predefined hypergraphs and
the tri-stage message passing mechanism to capture multi-scale pattern interactions. Building on
this, Ada-MSHyper (Shang et al., 2024a) introduces adaptive hypergraph modeling, which combines
adaptive hypergraphs with the node and hyperedge constraint mechanism to capture abundant and
implicit group-wise temporal pattern interactions.

In this paper, we represent temporal features of different scales as nodes and use learnable hyperedges
in the hypergraph to capture group-wise interactions, thereby enhancing the semantic information of
time series semantic space. We formulate this process as the hyperedging mechanism. As mentioned
above, our hyperedging mechanism differs from previous methods in two aspects. Firstly, our
methods can capture implicit group-wise interactions at different scales in a learnable manner, while
most existing methods (Nie et al., 2022; Zhou et al., 2023a; Shang et al., 2024b) rely on pre-defined
rules to model group-wise interactions at a single scale. Secondly, although some methods (Shang
et al., 2024a; Jiang et al., 2019) learn from hypergraphs, they focus on constraints or clustering-based
approaches to learn the hypergraph structures. In contrast, our method learns the hypergraph structures
in a pure data-driven manner by incorporating learnable parameters and nonlinear transformations,
which is more flexible and can learn more complex hypergraph structures.

D DESCRIPTION OF DATASETS

Datasets for Long-Term Forecasting and Few-Shot Learning. For long-term time series forecasting
and few-shot learning, we conduct experiments on 7 commonly used datasets, including Electricity
Transformers Temperature (ETT), Traffic1, Electricity2, and Weather3 datasets following existing
works (Zhou et al., 2023a; Pan et al., 2024; Jin et al., 2024). ETT datasets include data from
two counties in China. The datasets are further divided into four subsets with different sampling

1http://pems.dot.ca.gov
2https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
3https://www.bgc-jena.mpg.de/wetter/

19

http://pems.dot.ca.gov
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
 https://www.bgc-jena.mpg.de/wetter/

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

frequencies: ETTm1 and ETTm2, which are sampled every 15 minutes, and ETTh1 and ETTh2,
which are sampled hourly. Each subset contains seven variables, including the target variable ‘oil
temperature’ and six power load variables. Traffic dataset provides hourly road occupancy rates, which
are sampled from 821 freeway sensors across the state of California. Electricity dataset comprises
hourly electricity consumption data of 321 clients. Weather dataset records 21 meteorological
indicators collected every 10 minutes from weather stations in Germany. The detailed descriptions of
the datasets are given in Table 7.

Table 7: Dataset descriptions for long-term time series forecasting and few-shot learning.
Dataset Variates Forecasting Length Frequency Information

ETTh1, ETTh2 7 (96, 192, 336, 720) Hourly Temperature

ETTm1, ETTm2 7 (96, 192, 336, 720) 15 mins Temperature

Electricity 321 (96, 192, 336, 720) Hourly Electricity

Traffic 862 (96, 192, 336, 720) Hourly Transportation

Weather 21 (96, 192, 336, 720) 10 mins Weather

We follow the same data processing and training-validation-testing split protocol as in existing works
(Zhou et al., 2023a; Jin et al., 2024; Pan et al., 2024). Each dataset is split into training, validation,
and testing sets based on chronological order. For ETT datasets (i.e., ETTh1, ETTh2, ETTm1, and
ETTm2), the split ratio of training-validation-testing sets is 6:2:2. For Traffic, Electricity, and Weather
datasets, the split ratio is 7:2:1. For the few-shot learning task, only a portion (5% or 10%) of training
data is used, while the validation and testing sets remain unchanged.

Datasets for Short-Term Forecasting and Zero-Shot Learning. Following existing works (Liu
et al., 2024; Zhou et al., 2023a), we leverage M4 dataset for short-term forecasting and use both M3
and M4 datasets for zero-shot learning. M4 dataset is a large dataset that covers different domains
(e.g., demographic, financial, and industry) and has been divided into six subsets based on different
sampling frequencies that range from hourly to yearly. M3 dataset is smaller than M4 but also
contains time series with different sampling frequencies. The detailed descriptions of M3 and M4
datasets are outlined in Table 8.

Table 8: Dataset descriptions for short-term time series forecasting and zero-shot learning. The
dataset size is organized in (training, validation, and testing).

Dataset Forecasting Length Dataset Size Frequency Information Mapping

M3 Yearly 6 (645, 0, 645) Yearly Demographic M4 Yearly

M3 Quarterly 8 (756, 0, 756) Quarterly Finance M4 Quarterly

M3 Monthly 18 (1428, 0, 1428) Monthly Industry M4 Monthly

M3 Others 8 (174, 0, 174) Weekly Macro M4 Quarterly

M4 Yearly 6 (23000, 0, 23000) Yearly Demographic M3 Yearly

M4 Quarterly 8 (24000, 0, 24000) Quarterly Finance M3 Quarterly

M4 Monthly 18 (48000, 0, 48000) Monthly Industry M3 Monthly

M4 Weekly 13 (359, 0, 359) Weekly Macro M3 Monthly

M4 Daily 14 (4227, 0, 4227) Daily Micro M3 Monthly

M4 Hourly 48 (414, 0, 414) Hourly Other M3 Monthly

Datasets for Time Series Classification. Following existing works (Zhou et al., 2023a; Wu et al.,
2022), we use 10 multivariate datasets selected from the UEA time series classification Archive
(Bagnall et al., 2018; Zerveas et al., 2021) for time series classification. These datasets are complex,
which cover different domains (e.g., gesture, medical diagnosis, and audio recognition) and exhibit
diverse characteristics in terms of sample size, dimensionality, and number of classes. The detailed
descriptions of the datasets are provided in Table 9.

E EXPERIMENTAL SETTINGS

MSH-LLM is implemented in PyTorch (Paszke et al., 2019), with all experiments conducted on
NVIDIA A100-80 GPUs and NVIDIA GeForce RTX 3090 GPUs. We use LLaMA-7B (Touvron
et al., 2023) as the default base LLM unless specified otherwise. We repeat all experiments 3 times
and use the mean as the final results. Adam (Kingma, 2014) is used as the optimizer with the initial

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 9: Dataset descriptions for time series classification. The dataset size is organized in (training,
validation, and testing).

Dataset Dataset size Variates Classes Information

EthanolConcentration (261, 0, 263) 3 4 Biomedical

FaceDetection (5890, 0, 3524) 144 2 Computer Vision

Handwriting (150, 0, 850) 3 26 Pattern Recognition

Heartbeat (204, 0, 205) 61 2 Medical Recognition

JapaneseVowels (270, 0, 370) 12 9 Audio Recognition

PEMS-SF (267, 0, 173) 963 7 Transportation

SelfRegulationSCP1 (268, 0, 293) 6 2 Psychology

SelfRegulationSCP2 (200, 0, 180) 7 2 Psychology

SpokenArabicDigits (6599, 0, 2199) 13 10 Speech Recognition

UWaveGestureLibrary (120, 0, 320) 3 8 Gesture

learning rate chosen from {10−3, 5 × 10−3, 10−4}. The total number of scales S is set to 3. We
use 1D convolution as our aggregation function. For other key hyperparameters, unlike existing
works that use grid search over tunable hyperparameters, we leverage Neural Network Intelligence
(NNI) 4 toolkit to automatically search for the best hyperparameters. The detailed search space of
key hyperparameters is given in Table 10. Following existing works (Zhou et al., 2023a; Wu et al.,
2022), we adopt MSE as the objective function for long-term time series forecasting and few-shot
learning tasks. For short-term time series forecasting and zero-shot learning, we use SMAPE as the
objective function. It is notable that some baselines cannot be used directly due to different choices of
input and output lengths. For a fair comparison, we primarily adopt the results from existing papers
(Jin et al., 2024; Zhou et al., 2023a; Pan et al., 2024). For other results, we utilize their official code
while adjusting the input and out lengths. The source code of MSH-LLM is released on Anonymous
GitHub 5.

Table 10: The search space of hyperparameters.
Parameters Choise

Batch size {8, 16, 32, 64, 128, 256}
Number of hyperedges at scale 1 {5, 10, 20, 30, 50}
Number of hyperedges at scale 2 {2, 5, 10, 15, 20}
Number of hyperedges at scale 3 {1, 2, 4, 5, 8, 12}

Number of text prototypes at scale 1 {20, 50, 100, 200, 500, 1000}
Number of text prototypes at scale 1 {10, 25, 50, 100, 200, 500}
Number of text prototypes at scale 1 {4, 5, 10, 25, 50, 100}
Aggregation window size at scale 1 {2, 4, 8}
Aggregation window size at scale 2 {2, 4}

η {2, 3, 4, 5, 10, 15, 20}

F EVALUATION METRICS

For long-term time series forecasting and few-shot learning, we employ the Mean Squared Error
(MSE) and Mean Absolute Error (MAE) as our evaluation metrics, which can be formulated as
follows:

MSE =
1

H

∥∥∥X̂O
T+1:T+H −XO

T+1:T+H

∥∥∥2
2
, MAE =

1

H

∣∣X̂O
T+1:T+H −XO

T+1:T+H

∣∣, (10)

where T and H are the input and output lengths, X̂O
T+1:T+H and XO

T+1:T+H are the forecasting
results and ground truth, respectively.

For short-term time series forecasting and zero-shot learning on M4 benchmark, we adopt the
Symmetric Mean Absolute Percentage Error (SMAPE), Mean Absolute Scaled Error (MASE), and

4https://nni.readthedocs.io/en/latest/
5https://anonymous.4open.science/r/MSH-LLM-1E9B

21

https://nni.readthedocs.io/en/latest/
https://anonymous.4open.science/r/MSH-LLM-1E9B

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Overall Weighted Average (OWA) as our evaluation metrics, which can be formulated as follows:

SMAPE =
200

H

H∑
h=1

|X̂O
T+1:T+H −XO

T+1:T+H |
|XO

T+1:T+H |
, (11)

MASE =
1

H

H∑
h=1

|X̂O
T+1:T+H −XO

T+1:T+H |
1

H−s

∑H
j=s+1 |XO

T+1:T+H −XO
T+1:T+H−1|

, (12)

OWA =
1

2

[
SMAPE

SMAPENaive2
+

MASE

MASENaive2

]
, (13)

Notably, the OWA metric is a specific metric that is only used for short-term time series forecasting.

G FULL RESULTS

We compare MSH-LLM with 19 baselines that cover five different applications: Long-term time
series forecasting, short-term time series forecasting, time series classification, few-shot learning,
and zero-shot learning. For a fair comparison, we follow the unified experimental settings used in
existing works (Zhou et al., 2023a; Pan et al., 2024; Jin et al., 2024). The average results refer to the
mean of results under different forecasting results, where the best results are bolded and the second
best results are underlined. * indicates that some results do not meet the unified settings, thus we
rerun their official code under unified settings and fine-tune their key hyperparameters.

G.1 LONG-TERM TIME SERIES FORECASTING

Table 11 summarizes the full results of long-term time series forecasting. We can observe that
MSH-LLM achieves the SOTA results in 54 out of 70 cases across 7 time series datasets. Specifically,
on the well-studied Traffic datast, MSH-LLM achieves an average error reduction of 11.54% and
6.71% across all baselines. On the challenging Weather dataset, MSH-LLM achieves an average
error reduction of 12.78% and 11.26% across all baselines.

Table 11: Full results of long-term time series forecasting. The input length is set to 512, and the
forecasting lengths are set to 96, 192, 336, and 720. Lower values mean better performance. The best
results are bolded and the second best results are underlined.

Methods MSH-LLM
(Ours)

S2IP-LLM
(ICLR 2024)

Time-LLM
(ICLR 2024)

AutoTimes*
(NeurIPS 2024)

FPT
(NeurIPS 2023)

AMD*
(AAAI 2025)

ASHyper*
(NeurIPS 2024)

iTransformer
(ICLR 2024)

MSHyper*
(arXiv 2024)

DLinear
(AAAI 2023)

TimesNet
(ICLR 2023)

FEDformer
(ICML 2022)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather

96 0.138 0.187 0.145 0.195 0.158 0.210 0.161 0.216 0.162 0.212 0.148 0.203 0.169 0.228 0.253 0.304 0.171 0.212 0.176 0.237 0.172 0.220 0.217 0.296
192 0.187 0.230 0.190 0.235 0.197 0.245 0.205 0.253 0.204 0.248 0.193 0.243 0.235 0.288 0.280 0.319 0.214 0.250 0.220 0.282 0.219 0.261 0.276 0.336
336 0.237 0.282 0.243 0.280 0.248 0.285 0.251 0.289 0.254 0.286 0.242 0.281 0.275 0.287 0.321 0.344 0.260 0.287 0.265 0.319 0.280 0.306 0.339 0.380
720 0.305 0.315 0.312 0.326 0.319 0.334 0.314 0.356 0.326 0.337 0.315 0.332 0.335 0.327 0.364 0.374 0.327 0.336 0.333 0.362 0.365 0.359 0.403 0.428
Avg. 0.217 0.254 0.223 0.259 0.231 0.269 0.233 0.279 0.237 0.271 0.225 0.265 0.254 0.283 0.305 0.335 0.243 0.271 0.249 0.300 0.259 0.287 0.309 0.360

Electricity

96 0.127 0.231 0.135 0.230 0.137 0.237 0.134 0.233 0.139 0.238 0.131 0.228 0.129 0.234 0.147 0.248 0.147 0.251 0.140 0.237 0.168 0.272 0.193 0.308
192 0.150 0.242 0.149 0.247 0.150 0.249 0.150 0.247 0.153 0.251 0.151 0.244 0.154 0.227 0.165 0.267 0.167 0.269 0.153 0.249 0.184 0.289 0.201 0.315
336 0.162 0.258 0.167 0.266 0.168 0.266 0.165 0.264 0.169 0.266 0.167 0.262 0.165 0.262 0.178 0.279 0.174 0.275 0.169 0.267 0.198 0.300 0.214 0.329
720 0.198 0.279 0.200 0.287 0.203 0.293 0.199 0.298 0.206 0.297 0.200 0.292 0.201 0.290 0.322 0.398 0.216 0.308 0.203 0.301 0.220 0.320 0.246 0.355
Avg. 0.159 0.253 0.163 0.258 0.165 0.261 0.162 0.261 0.167 0.263 0.162 0.257 0.162 0.253 0.203 0.298 0.176 0.276 0.166 0.264 0.193 0.295 0.214 0.327

Traffic

96 0.365 0.270 0.379 0.274 0.380 0.277 0.366 0.279 0.388 0.282 0.387 0.278 0.368 0.277 0.367 0.288 0.394 0.389 0.410 0.282 0.593 0.321 0.587 0.366
192 0.372 0.281 0.397 0.282 0.399 0.288 0.395 0.287 0.407 0.290 0.402 0.282 0.379 0.288 0.378 0.293 0.375 0.289 0.423 0.287 0.617 0.336 0.604 0.373
336 0.385 0.279 0.407 0.289 0.408 0.290 0.406 0.283 0.412 0.294 0.413 0.288 0.397 0.292 0.389 0.294 0.395 0.283 0.436 0.296 0.629 0.336 0.621 0.383
720 0.402 0.303 0.440 0.301 0.445 0.308 0.421 0.305 0.450 0.312 0.444 0.306 0.421 0.298 0.401 0.304 0.407 0.308 0.466 0.315 0.640 0.350 0.626 0.382
Avg. 0.381 0.283 0.406 0.287 0.408 0.291 0.397 0.289 0.414 0.295 0.412 0.289 0.391 0.289 0.384 0.295 0.393 0.317 0.434 0.295 0.620 0.336 0.610 0.376

ETTh1

96 0.360 0.388 0.366 0.396 0.383 0.410 0.368 0.395 0.379 0.402 0.371 0.399 0.368 0.391 0.395 0.420 0.372 0.417 0.367 0.396 0.468 0.475 0.376 0.419
192 0.398 0.411 0.401 0.420 0.419 0.435 0.404 0.415 0.415 0.424 0.403 0.420 0.429 0.417 0.427 0.441 0.418 0.432 0.401 0.419 0.484 0.485 0.420 0.448
336 0.415 0.432 0.412 0.431 0.426 0.440 0.408 0.435 0.435 0.440 0.423 0.432 0.419 0.438 0.445 0.457 0.451 0.440 0.434 0.449 0.536 0.516 0.459 0.465
720 0.436 0.447 0.440 0.458 0.428 0.456 0.439 0.503 0.441 0.459 0.452 0.461 0.446 0.465 0.537 0.530 0.476 0.458 0.472 0.493 0.593 0.537 0.506 0.507
Avg. 0.402 0.420 0.405 0.426 0.414 0.435 0.405 0.437 0.418 0.431 0.412 0.428 0.416 0.428 0.451 0.462 0.429 0.437 0.419 0.439 0.520 0.503 0.440 0.460

ETTh2

96 0.273 0.331 0.278 0.340 0.297 0.357 0.282 0.329 0.289 0.347 0.279 0.343 0.274 0.335 0.304 0.360 0.287 0.331 0.301 0.367 0.376 0.415 0.358 0.397
192 0.335 0.372 0.346 0.385 0.349 0.390 0.352 0.391 0.358 0.392 0.363 0.397 0.352 0.377 0.377 0.403 0.372 0.389 0.394 0.427 0.409 0.440 0.429 0.439
336 0.363 0.400 0.367 0.406 0.373 0.408 0.382 0.403 0.383 0.414 0.381 0.419 0.369 0.427 0.405 0.429 0.407 0.423 0.506 0.495 0.425 0.455 0.496 0.487
720 0.396 0.428 0.400 0.436 0.400 0.436 0.417 0.425 0.438 0.456 0.442 0.467 0.407 0.430 0.443 0.464 0.400 0.428 0.805 0.635 0.488 0.494 0.463 0.474
Avg. 0.342 0.383 0.348 0.392 0.355 0.398 0.358 0.387 0.367 0.402 0.366 0.407 0.351 0.392 0.382 0.414 0.367 0.393 0.502 0.481 0.425 0.451 0.437 0.449

ETTm1

96 0.285 0.340 0.288 0.346 0.291 0.346 0.301 0.347 0.296 0.353 0.289 0.343 0.297 0.338 0.312 0.366 0.323 0.348 0.304 0.348 0.329 0.377 0.379 0.419
192 0.313 0.358 0.323 0.365 0.336 0.373 0.331 0.371 0.335 0.373 0.329 0.366 0.333 0.367 0.347 0.385 0.368 0.369 0.336 0.367 0.371 0.401 0.426 0.441
336 0.355 0.377 0.359 0.390 0.362 0.390 0.365 0.380 0.369 0.394 0.365 0.386 0.365 0.388 0.379 0.404 0.392 0.390 0.368 0.387 0.417 0.428 0.445 0.459
720 0.405 0.410 0.403 0.418 0.410 0.421 0.423 0.422 0.418 0.424 0.423 0.417 0.425 0.431 0.441 0.442 0.469 0.433 0.421 0.418 0.483 0.464 0.543 0.490
Avg. 0.340 0.371 0.343 0.380 0.350 0.383 0.355 0.380 0.355 0.386 0.352 0.378 0.355 0.381 0.370 0.399 0.388 0.385 0.357 0.380 0.400 0.418 0.448 0.452

ETTm2

96 0.161 0.246 0.165 0.257 0.184 0.275 0.167 0.261 0.170 0.264 0.168 0.258 0.168 0.256 0.179 0.271 0.168 0.254 0.168 0.263 0.201 0.286 0.203 0.287
192 0.218 0.284 0.222 0.299 0.238 0.310 0.214 0.311 0.231 0.306 0.221 0.295 0.229 0.301 0.242 0.313 0.243 0.311 0.229 0.310 0.260 0.329 0.269 0.328
336 0.271 0.320 0.277 0.330 0.286 0.340 0.284 0.325 0.280 0.339 0.271 0.327 0.281 0.334 0.288 0.344 0.299 0.338 0.289 0.352 0.331 0.376 0.325 0.366
720 0.358 0.392 0.363 0.390 0.379 0.403 0.367 0.492 0.373 0.402 0.355 0.381 0.372 0.397 0.378 0.397 0.397 0.399 0.416 0.437 0.428 0.430 0.421 0.415
Avg. 0.252 0.311 0.257 0.319 0.272 0.332 0.258 0.347 0.264 0.328 0.254 0.315 0.263 0.322 0.272 0.331 0.277 0.326 0.276 0.341 0.305 0.355 0.305 0.349

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

G.2 SHORT-TERM TIME SERIES FORECASTING

Table 12 summarizes the full results of short-term time series forecasting. We can observe that
MSH-LLM achieves the SOTA results on almost all datasets. Specifically, MSH-LLM performs
slightly better than AutoTimes and S2IP-LLM (i.e., 1.45% and 3.01% average SMAPE improvement),
outperforming other latest baselines by a large margin (e.g., 6.68% and 8.13% average SMAPE
improvement over Time-LLM and FPT, respectively).

Table 12: Full results of short-term time series forecasting. We follow the protocol of existing work
(Pan et al., 2024) and set the input length to twice the output length. Lower values mean better
performance. The best results are bolded and the second best results are underlined.

Methods MSH-LLM
(Ours)

AutoTimes*
(NeurIPS 2024)

S2IP-LLM
(ICML 2024)

Time-LLM
(ICLR 2024)

FPT
(NeurIPS 2023)

iTransformer
(ICLR 2024)

DLinear
(AAAI 2023)

PatchTST
(ICLR 2023)

N-HiTS
(AAAI 2023)

N-BEATS
(ICLR 2020)

TimesNet
(ICLR 2023)

Year.
SMAPE 13.305 13.319 13.413 13.750 15.110 13.652 16.965 13.477 13.422 13.487 15.378
MASE 2.995 2.993 3.024 3.055 3.565 3.095 4.283 3.019 3.056 3.036 3.554
OWA 0.784 0.784 0.792 0.805 0.911 0.807 1.058 0.792 0.795 0.795 0.918

Quart.
SMAPE 10.024 10.101 10.352 10.671 10.597 10.353 12.145 10.380 10.185 10.564 10.465
MASE 1.146 1.182 1.228 1.276 1.253 1.209 1.520 1.233 1.180 1.252 1.227
OWA 0.873 0.890 0.922 0.950 0.938 0.911 1.106 0.921 0.893 0.936 0.923

Month.
SMAPE 12.410 12.710 12.995 13.416 13.258 13.079 13.514 12.959 13.059 13.089 13.513
MASE 0.912 0.934 0.970 1.045 1.003 0.974 1.037 0.970 1.013 0.996 1.039
OWA 0.859 0.880 0.910 0.957 0.931 0.911 0.956 0.905 0.929 0.922 0.957

Others.
SMAPE 4.721 4.843 4.805 4.973 6.124 4.780 6.709 4.952 4.711 6.599 6.913
MASE 3.105 3.277 3.247 3.412 4.116 3.231 4.953 3.347 3.054 4.43 4.507
OWA 0.986 1.026 1.017 1.053 1.259 1.012 1.487 1.049 0.977 1.393 1.438

Avg.
SMAPE 11.659 11.831 12.021 12.494 12.690 12.142 13.639 12.059 12.035 12.25 12.88
MASE 1.557 1.585 1.612 1.731 1.808 1.631 2.095 1.623 1.625 1.698 1.836
OWA 0.837 0.850 0.857 0.913 0.940 0.874 1.051 0.869 0.869 0.896 0.955

G.3 TIME SERIES CLASSIFICATION

Table 13 summarizes the full results of time series classification. The baseline results are from
existing works (Zhou et al., 2023a; Wu et al., 2022). From Table 13, we can observe that MSH-LLM
achieves an average accuracy of 75.38%, surpassing all baselines including the best baseline FPT
(74%) and TimesNet (73.6%).

Table 13: Full results of time series classification. We follow the protocol of existing work (Zhou et al.,
2023a). The results are averaged from 10 subsets of UEA and higher values mean better performance.
The best results are bolded and the second best results are underlined. # in the Transformers means
the name of #former.

Methods
LLM4TS Transformers CNN MLP RNN Classical methods

MSH-LLM FPT Trans# Re# In# Pyra# Auto# Station# FED# ETS# Flow# TimesNet TCN DLinear LightTS. LSTNet LSSL XGBoost Rocket

EthanolConcentration 36.2 34.2 32.7 31.9 31.6 30.8 31.6 32.7 31.2 28.1 33.8 35.7 28.9 32.6 29.7 39.9 31.1 43.7 45.2
FaceDetection 69.7 69.2 67.3 68.6 67 65.7 68.4 68 66 66.3 67.6 68.6 52.8 68 67.5 65.7 66.7 63.3 64.7

Handwriting 33.5 32.7 32 27.4 32.8 29.4 36.7 31.6 28 32.5 33.8 32.1 53.3 27 26.1 25.8 24.6 15.8 58.8
Heartbeat 80.9 77.2 76.1 77.1 80.5 75.6 74.6 73.7 73.7 71.2 77.6 78 75.6 75.1 75.1 77.1 72.7 73.2 75.6

JapaneseVowels 97.3 98.6 98.7 97.8 98.9 98.4 96.2 99.2 98.4 95.9 98.9 98.4 98.9 96.2 96.2 98.1 98.4 86.5 96.2

PEMS-SF 91.2 87.9 82.1 82.7 81.5 83.2 82.7 87.3 80.9 86 83.8 89.6 68.8 75.1 88.4 86.7 86.1 98.3 75.1

SelfRegulationSCP1 93.5 93.2 92.2 90.4 90.1 88.1 84 89.4 88.7 89.6 92.5 91.8 84.6 87.3 89.8 84 90.8 84.6 90.8

SelfRegulationSCP2 59.8 59.4 53.9 56.7 53.3 53.3 50.6 57.2 54.4 55 56.1 57.2 55.6 50.5 51.1 52.8 52.2 48.9 53.3

SpokenArabicDigits 99 99.2 98.4 97 100 99.6 100 100 100 100 98.8 99 95.6 81.4 100 100 100 69.6 71.2

UWaveGestureLibrary 92.7 88.1 85.6 85.6 85.6 83.4 85.9 87.5 85.3 85 86.6 85.3 88.4 82.1 80.3 87.8 85.9 75.9 94.4
Average 75.38 74 71.9 71.5 72.1 70.8 71.1 72.7 70.7 71 73 73.6 70.3 67.5 70.4 71.8 70.9 66 72.5

G.4 FEW-SHOT LEARNING

Table 14 and Table 15 summarize the results of few-shot learning under 10% training data. In the
scope of 10% few-shot learning, MSH-LLM achieves SOTA results in almost all cases. Specifically,
MSH-LLM achieves an average error reduction of 7.32% and 3.95% compared to LLM4TS methods
(i.e., S2IP-LLM and Time-LLM) in MSE and MAE, respectively, and outperforms the latest training
from scratch method iTransformer by 24.85% and 20.03% in MSE and MAE, respectively. Table
16 summarizes the average results and full results of few-shot learning under 5% training data. We
can observe that MSH-LLM still achieves SOTA results even with fewer training data. Specifically,
MSH-LLM achieves an average error reduction of 10.47% and 6.74% compared to LLM4TS methods
(i.e., S2IP-LLM and Time-LLM) in MSE and MAE, respectively.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 14: Few-shot learning results under 10% training data setting. Results are averaged from all
forecasting lengths. The best results are bolded and the second best results are underlined. Full
results are listed in Appendix G.4, Table15.

Methods MSH-LLM
(Ours)

S2IP-LLM
(ICML 2024)

Time-LLM
(ICLR 2024)

FPT
(NeurIPS 2023)

iTransformer
(ICLR 2024)

PatchTST
(ICLR 2023)

TimesNet
(ICLR 2023)

FEDformer
(ICML 2022)

NSFormer
(NeurIPS 2022)

ETSformer
(arXiv 2022)

Autoformer
(NeurIPS 2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather 0.230 0.267 0.233 0.272 0.237 0.275 0.238 0.275 0.308 0.338 0.242 0.279 0.279 0.301 0.284 0.324 0.318 0.323 0.318 0.360 0.300 0.342

Electricity 0.167 0.260 0.175 0.271 0.177 0.273 0.176 0.269 0.196 0.293 0.180 0.273 0.323 0.392 0.346 0.427 0.444 0.480 0.660 0.617 0.431 0.478

Traffic 0.423 0.296 0.427 0.307 0.429 0.307 0.440 0.310 0.495 0.361 0.430 0.305 0.951 0.535 0.663 0.425 1.453 0.815 1.914 0.936 0.749 0.446

ETTh1 0.563 0.514 0.593 0.529 0.785 0.553 0.590 0.525 0.910 0.860 0.633 0.542 0.869 0.628 0.639 0.561 0.915 0.639 1.180 0.834 0.702 0.596

ETTh2 0.392 0.423 0.419 0.439 0.424 0.441 0.397 0.421 0.489 0.483 0.415 0.431 0.479 0.465 0.466 0.475 0.462 0.455 0.894 0.713 0.488 0.499

ETTm1 0.403 0.424 0.455 0.435 0.487 0.461 0.464 0.441 0.728 0.565 0.501 0.466 0.677 0.537 0.722 0.605 0.797 0.578 0.980 0.714 0.802 0.628

ETTm2 0.280 0.327 0.284 0.332 0.305 0.344 0.293 0.335 0.336 0.373 0.296 0.343 0.320 0.353 0.463 0.488 0.332 0.366 0.447 0.487 1.342 0.930

Table 15: Full results of few-shot learning under 10% training data. We follow the same protocol of
existing work (Pan et al., 2024). The input length is set to 512, and the forecasting lengths are set to
96, 192, 336, and 720. Lower values mean better performance. The best results are bolded and the
second best results are underlined.

Methods MSH-LLM
(Ours)

S2IP-LLM
(ICML 2024)

Time-LLM
(ICLR 2024)

FPT
(NeurIPS 2023)

iTransformer
(ICLR 2024)

PatchTST
(ICLR 2024)

TimesNet
(ICLR 2023)

FEDformer
(ICML 2022)

NSFormer
(NeurIPS 2022)

ETSformer
(arXiv 2022)

Autoformer
(NeurIPS 2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather

96 0.152 0.208 0.159 0.210 0.160 0.213 0.163 0.215 0.253 0.307 0.165 0.215 0.184 0.230 0.188 0.253 0.192 0.234 0.199 0.272 0.221 0.297
192 0.206 0.248 0.200 0.251 0.204 0.254 0.210 0.254 0.292 0.328 0.210 0.257 0.245 0.283 0.250 0.304 0.269 0.295 0.279 0.332 0.270 0.322
336 0.252 0.286 0.257 0.293 0.255 0.291 0.256 0.292 0.322 0.346 0.259 0.297 0.305 0.321 0.312 0.346 0.370 0.357 0.356 0.386 0.320 0.351
720 0.311 0.326 0.317 0.335 0.329 0.345 0.321 0.339 0.365 0.374 0.332 0.346 0.381 0.371 0.387 0.393 0.441 0.405 0.437 0.448 0.390 0.396
Avg 0.230 0.267 0.233 0.272 0.237 0.275 0.238 0.275 0.308 0.338 0.242 0.279 0.279 0.301 0.284 0.324 0.318 0.323 0.318 0.360 0.300 0.342

Electricity

96 0.139 0.235 0.143 0.243 0.137 0.240 0.139 0.237 0.154 0.257 0.140 0.238 0.299 0.373 0.231 0.323 0.420 0.466 0.599 0.587 0.261 0.348
192 0.153 0.248 0.159 0.258 0.159 0.258 0.156 0.252 0.171 0.272 0.160 0.255 0.305 0.379 0.261 0.356 0.411 0.459 0.620 0.598 0.338 0.406
336 0.169 0.263 0.170 0.269 0.181 0.278 0.175 0.270 0.196 0.295 0.180 0.276 0.319 0.391 0.360 0.445 0.434 0.473 0.662 0.619 0.410 0.474
720 0.207 0.295 0.230 0.315 0.232 0.317 0.233 0.317 0.263 0.348 0.241 0.323 0.369 0.426 0.530 0.585 0.510 0.521 0.757 0.664 0.715 0.685
Avg 0.167 0.260 0.175 0.271 0.177 0.273 0.176 0.269 0.196 0.293 0.180 0.273 0.323 0.392 0.346 0.427 0.444 0.480 0.660 0.617 0.431 0.478

Traffic

96 0.405 0.286 0.403 0.293 0.406 0.295 0.414 0.297 0.448 0.329 0.403 0.289 0.719 0.416 0.639 0.400 1.412 0.802 1.643 0.855 0.672 0.405
192 0.415 0.286 0.412 0.295 0.416 0.300 0.426 0.301 0.487 0.360 0.415 0.296 0.748 0.428 0.637 0.416 1.419 0.806 1.641 0.854 0.727 0.424
336 0.417 0.293 0.427 0.316 0.430 0.309 0.434 0.303 0.514 0.372 0.426 0.304 0.853 0.471 0.655 0.427 1.443 0.815 1.711 0.878 0.749 0.454
720 0.453 0.319 0.469 0.325 0.467 0.324 0.487 0.337 0.532 0.383 0.474 0.331 1.485 0.825 0.722 0.456 1.539 0.837 2.660 1.157 0.847 0.499
Avg 0.423 0.296 0.427 0.307 0.429 0.307 0.440 0.310 0.495 0.361 0.430 0.305 0.951 0.535 0.663 0.425 1.453 0.815 1.914 0.936 0.749 0.446

ETTh1

96 0.460 0.450 0.481 0.474 0.720 0.533 0.458 0.456 0.790 0.586 0.516 0.485 0.861 0.628 0.512 0.499 0.918 0.639 1.112 0.806 0.613 0.552
192 0.516 0.488 0.518 0.491 0.747 0.545 0.570 0.516 0.837 0.609 0.598 0.524 0.797 0.593 0.624 0.555 0.915 0.629 1.155 0.823 0.722 0.598
336 0.594 0.537 0.664 0.570 0.793 0.551 0.608 0.535 0.780 0.575 0.657 0.550 0.941 0.648 0.691 0.574 0.939 0.644 1.179 0.832 0.750 0.619
720 0.680 0.581 0.711 0.584 0.880 0.584 0.725 0.591 1.234 0.811 0.762 0.610 0.877 0.641 0.728 0.614 0.887 0.645 1.273 0.874 0.721 0.616
Avg 0.563 0.514 0.593 0.529 0.785 0.553 0.590 0.525 0.910 0.860 0.633 0.542 0.869 0.628 0.639 0.561 0.915 0.639 1.180 0.834 0.702 0.596

ETTh2

96 0.331 0.366 0.354 0.400 0.334 0.381 0.331 0.374 0.404 0.435 0.353 0.389 0.378 0.409 0.382 0.416 0.389 0.411 0.678 0.619 0.413 0.451
192 0.374 0.414 0.401 0.423 0.430 0.438 0.402 0.411 0.470 0.474 0.403 0.414 0.490 0.467 0.478 0.474 0.473 0.455 0.785 0.666 0.474 0.477
336 0.396 0.432 0.442 0.450 0.449 0.458 0.406 0.433 0.489 0.485 0.426 0.441 0.537 0.494 0.504 0.501 0.477 0.472 0.839 0.694 0.547 0.543
720 0.465 0.478 0.480 0.486 0.485 0.490 0.449 0.464 0.593 0.538 0.477 0.480 0.510 0.491 0.499 0.509 0.507 0.480 1.273 0.874 0.516 0.523
Avg 0.392 0.423 0.419 0.439 0.424 0.441 0.397 0.421 0.489 0.483 0.415 0.431 0.479 0.465 0.466 0.475 0.462 0.455 0.894 0.713 0.488 0.499

ETTm1

96 0.349 0.383 0.388 0.401 0.412 0.422 0.390 0.404 0.709 0.556 0.410 0.419 0.583 0.501 0.578 0.518 0.761 0.568 0.911 0.688 0.774 0.614
192 0.377 0.410 0.422 0.421 0.447 0.438 0.429 0.423 0.717 0.548 0.437 0.434 0.630 0.528 0.617 0.546 0.781 0.574 0.955 0.703 0.754 0.592
336 0.405 0.434 0.456 0.430 0.497 0.465 0.469 0.439 0.735 0.575 0.476 0.454 0.725 0.568 0.998 0.775 0.803 0.587 0.991 0.719 0.869 0.677
720 0.482 0.468 0.554 0.490 0.594 0.521 0.569 0.498 0.752 0.584 0.681 0.556 0.769 0.549 0.693 0.579 0.844 0.581 1.062 0.747 0.810 0.630
Avg 0.403 0.424 0.455 0.435 0.487 0.461 0.464 0.441 0.728 0.565 0.501 0.466 0.677 0.537 0.722 0.605 0.797 0.578 0.980 0.714 0.802 0.628

ETTm2

96 0.178 0.261 0.192 0.274 0.224 0.296 0.188 0.269 0.245 0.322 0.191 0.274 0.212 0.285 0.291 0.399 0.229 0.308 0.331 0.430 0.352 0.454
192 0.238 0.304 0.246 0.313 0.260 0.317 0.251 0.309 0.274 0.338 0.252 0.317 0.270 0.323 0.307 0.379 0.291 0.343 0.400 0.464 0.694 0.691
336 0.299 0.341 0.301 0.340 0.312 0.349 0.307 0.346 0.361 0.394 0.306 0.353 0.323 0.353 0.543 0.559 0.348 0.376 0.469 0.498 2.408 1.407
720 0.403 0.401 0.400 0.403 0.424 0.416 0.426 0.417 0.467 0.442 0.433 0.427 0.474 0.449 0.712 0.614 0.461 0.438 0.589 0.557 1.913 1.166
Avg 0.280 0.327 0.284 0.332 0.305 0.344 0.293 0.335 0.336 0.373 0.296 0.343 0.320 0.353 0.463 0.488 0.332 0.366 0.447 0.487 1.342 0.930

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 16: Full results of few-shot learning under 5% training data. We follow the same protocol of
existing work (Pan et al., 2024). The input length is set to 512, and the forecasting lengths are set to
96, 192, 336, and 720. ‘- -’ indicates 5% training data is insufficient to constitute a training set. The
best results are bolded and the second best results are underlined.

Methods MSH-LLM
(Ours)

S2IP-LLM
(ICML 2024)

Time-LLM
(ICLR 2024)

FPT
(NeurIPS 2023)

iTransformer
(ICLR 2024)

PatchTST
(ICLR 2024)

TimesNet
(ICLR 2023)

FEDformer
(ICML 2022)

NSFormer
(NeurIPS 2022)

ETSformer
(arXiv 2022)

Autoformer
(NeurIPS 2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather

96 0.170 0.214 0.175 0.228 0.176 0.230 0.175 0.230 0.264 0.307 0.171 0.224 0.207 0.253 0.229 0.309 0.215 0.252 0.218 0.295 0.227 0.299
192 0.213 0.253 0.225 0.271 0.226 0.275 0.227 0.276 0.284 0.326 0.230 0.277 0.272 0.307 0.265 0.317 0.290 0.307 0.294 0.331 0.278 0.333
336 0.259 0.289 0.282 0.321 0.292 0.325 0.286 0.322 0.323 0.349 0.294 0.326 0.313 0.328 0.353 0.392 0.353 0.348 0.359 0.398 0.351 0.393
720 0.346 0.367 0.361 0.371 0.364 0.375 0.366 0.379 0.366 0.375 0.384 0.387 0.400 0.385 0.391 0.394 0.452 0.407 0.461 0.461 0.387 0.389
Avg 0.247 0.281 0.260 0.297 0.264 0.301 0.263 0.301 0.309 0.339 0.269 0.303 0.298 0.318 0.309 0.353 0.327 0.328 0.333 0.371 0.310 0.353

Electricity

96 0.144 0.243 0.148 0.248 0.148 0.248 0.143 0.241 0.162 0.264 0.145 0.244 0.315 0.389 0.235 0.322 0.484 0.518 0.697 0.638 0.297 0.367
192 0.158 0.255 0.159 0.255 0.160 0.257 0.159 0.255 0.180 0.278 0.163 0.260 0.318 0.396 0.247 0.341 0.501 0.531 0.718 0.648 0.308 0.375
336 0.177 0.272 0.175 0.271 0.183 0.282 0.179 0.274 0.207 0.305 0.183 0.281 0.340 0.415 0.267 0.356 0.574 0.578 0.758 0.667 0.354 0.411
720 0.217 0.304 0.235 0.326 0.236 0.329 0.233 0.323 0.258 0.339 0.233 0.323 0.635 0.613 0.318 0.394 0.952 0.786 1.028 0.788 0.426 0.466
Avg 0.174 0.269 0.179 0.275 0.181 0.279 0.178 0.273 0.201 0.296 0.181 0.277 0.402 0.453 0.266 0.353 0.627 0.603 0.800 0.685 0.346 0.404

Traffic

96 0.405 0.273 0.410 0.288 0.414 0.293 0.419 0.298 0.431 0.312 0.404 0.286 0.854 0.492 0.670 0.421 1.468 0.821 1.643 0.855 0.795 0.481
192 0.405 0.291 0.416 0.298 0.419 0.300 0.434 0.305 0.456 0.326 0.412 0.294 0.894 0.517 0.653 0.405 1.509 0.838 1.856 0.928 0.837 0.503
336 0.428 0.312 0.435 0.313 0.438 0.315 0.449 0.313 0.465 0.334 0.439 0.310 0.853 0.471 0.707 0.445 1.602 0.860 2.080 0.999 0.867 0.523
720 -
Avg 0.413 0.292 0.420 0.299 0.423 0.302 0.434 0.305 0.450 0.324 0.418 0.296 0.867 0.493 0.676 0.423 1.526 0.839 1.859 0.927 0.833 0.502

ETTh1

96 0.489 0.475 0.500 0.493 0.732 0.556 0.543 0.506 0.808 0.610 0.557 0.519 0.892 0.625 0.593 0.529 0.952 0.650 1.169 0.832 0.681 0.570
192 0.658 0.535 0.690 0.539 0.872 0.604 0.748 0.580 0.928 0.658 0.711 0.570 0.940 0.665 0.652 0.563 0.943 0.645 1.221 0.853 0.725 0.602
336 0.738 0.600 0.761 0.620 1.071 0.721 0.754 0.595 1.475 0.861 0.816 0.619 0.945 0.653 0.731 0.594 0.935 0.644 1.179 0.832 0.761 0.624
720 -
Avg 0.628 0.537 0.650 0.550 0.891 0.627 0.681 0.560 1.070 0.710 0.694 0.569 0.925 0.647 0.658 0.562 0.943 0.646 1.189 0.839 0.722 0.598

ETTh2

96 0.342 0.389 0.363 0.409 0.399 0.420 0.376 0.421 0.397 0.427 0.401 0.421 0.409 0.420 0.390 0.424 0.408 0.423 0.678 0.619 0.428 0.468
192 0.375 0.412 0.375 0.411 0.487 0.479 0.418 0.441 0.438 0.445 0.452 0.455 0.483 0.464 0.457 0.465 0.497 0.468 0.845 0.697 0.496 0.504
336 0.401 0.419 0.403 0.421 0.858 0.660 0.408 0.439 0.631 0.553 0.464 0.469 0.499 0.479 0.477 0.483 0.507 0.481 0.905 0.727 0.486 0.496
720 -
Avg 0.373 0.407 0.380 0.413 0.581 0.519 0.400 0.433 0.488 0.475 0.827 0.615 0.439 0.448 0.463 0.454 0.470 0.489 0.809 0.681 0.441 0.457

ETTm1

96 0.328 0.365 0.357 0.390 0.422 0.424 0.386 0.405 0.589 0.510 0.399 0.414 0.606 0.518 0.628 0.544 0.823 0.587 1.031 0.747 0.726 0.578
192 0.353 0.395 0.432 0.434 0.448 0.440 0.440 0.438 0.703 0.565 0.441 0.436 0.681 0.539 0.666 0.566 0.844 0.591 1.087 0.766 0.750 0.591
336 0.394 0.412 0.440 0.442 0.519 0.482 0.485 0.459 0.898 0.641 0.499 0.467 0.786 0.597 0.807 0.628 0.870 0.603 1.138 0.787 0.851 0.659
720 0.518 0.483 0.593 0.521 0.708 0.573 0.577 0.499 0.948 0.671 0.767 0.587 0.796 0.593 0.822 0.633 0.893 0.611 1.245 0.831 0.857 0.655
Avg 0.398 0.414 0.455 0.446 0.524 0.479 0.472 0.450 0.784 0.596 0.526 0.476 0.717 0.561 0.730 0.592 0.857 0.598 1.125 0.782 0.796 0.620

ETTm2

96 0.179 0.264 0.197 0.278 0.225 0.300 0.199 0.280 0.265 0.339 0.206 0.288 0.220 0.299 0.229 0.320 0.238 0.316 0.404 0.485 0.232 0.322
192 0.242 0.309 0.254 0.322 0.275 0.334 0.256 0.316 0.310 0.362 0.264 0.324 0.311 0.361 0.394 0.361 0.298 0.349 0.479 0.521 0.291 0.357
336 0.300 0.344 0.315 0.350 0.339 0.371 0.318 0.353 0.373 0.399 0.334 0.367 0.338 0.366 0.378 0.427 0.353 0.380 0.552 0.555 0.478 0.517
720 0.411 0.414 0.421 0.421 0.464 0.441 0.460 0.436 0.478 0.454 0.454 0.432 0.509 0.465 0.523 0.510 0.475 0.445 0.701 0.627 0.553 0.538
Avg 0.283 0.333 0.296 0.342 0.325 0.361 0.308 0.346 0.356 0.388 0.314 0.352 0.344 0.372 0.381 0.404 0.341 0.372 0.534 0.547 0.388 0.433

G.5 ZERO-SHOT LEARNING

The zero-shot learning experiment is conducted on two distinct datasets, i.e., the source dataset and
the target dataset, where the model is trained on the source dataset and tested on the target dataset
without fine-tuning. Following existing works (Zhou et al., 2023a; Liu et al., 2024), we use M3 and
M4 datasets to evaluate the zero-shot capabilities of the models.

For M4 → M3, which means training on M4 dataset and testing on M3 dataset, we directly utilize
the M4 model trained in short-term forecasting experiments. Due to the varying forecasting lengths
across different subsets, we use models trained on the corresponding subsets of M4 to test on M3
Yearly, M3 Quarterly, and M3 Monthly. For M3 Others, we use the model trained on M4 Quarterly to
maintain the same forecasting lengths.

For M3 → M4, similarly, for M4 Yearly, M4 Quarterly, and M4 Monthly, we directly employ models
trained on corresponding subsets of M3 for testing. For the remaining subsets, M4 Weekly, M4 Daily,
and M4 Hourly, we perform inference using the model trained on M3 Monthly, following the settings
of existing works (Zhou et al., 2023a; Liu et al., 2024).

Table 17: Full results of zero-shot learning. We adopt the same protocol of existing work (Pan et al.,
2024). M4→M3 means training on M4 datasets and testing on M3 datasets, and vice versa. Lower
SMAPE means better performance. The best results are bolded and the second best results are
underlined.

Method MSH-LLM
(Ours)

AutoTimes
(NeurIPS 2024)

FPT
(NeurIPS 2023)

DLinear
(AAAI 2023)

PatchTST
(ICLR 2023)

TimesNet
(ICLR 2023)

NSformer
(NeurIPS 2022)

FEDformer
(ICML 2022)

Informer
(AAAI 2021)

Reformer
(ICLR 2019)

M
4
→

M
3 Yearly 15.650 15.710 16.420 17.430 15.990 18.750 17.050 16.000 19.700 16.030

Quarterly 9.240 9.350 10.130 9.740 9.620 12.260 12.560 9.480 13.000 9.760
Monthly 13.570 14.060 14.100 15.650 14.710 14.010 16.820 15.120 15.910 14.800
Others 5.663 5.790 4.810 6.810 9.440 6.880 8.130 8.940 13.030 7.530

Average 12.469 12.750 13.060 14.030 13.390 14.170 15.290 13.530 15.820 13.370

M
3
→

M
4 Yearly 13.645 13.728 13.740 14.193 13.966 15.655 14.988 13.887 18.542 15.652

Quarterly 10.703 10.742 10.787 18.856 10.929 11.877 11.686 11.513 16.907 11.051
Monthly 14.489 14.558 14.630 14.765 14.664 16.165 16.098 18.154 23.454 15.604
Others 6.132 6.259 7.081 9.194 7.087 6.863 6.977 7.529 7.348 7.001

Average 12.968 13.036 13.125 15.337 13.228 14.553 14.327 15.047 19.047 14.092

Table 17 summarizes the full results of zero-shot learning. MSH-LLM remarkably surpasses all
other baselines in zero-shot learning. Specifically, we observe over 10.23% SMAPE error reductions
across all baselines on average. Our improvements are consistently significant on typical scenarios

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

(e.g., M4→M3 Others and M3→M4 Others), with over 23.04% and 14.72% average SMAPE error
reductions, respectively. We attribute this to the successful utilization of transfer learning capabilities
in LLMs.

H ABLATION STUDIES

Multi-Scale Extraction (ME) Module. To investigate the effectiveness of the ME module, we
conduct an ablation study by carefully designing the following variant:

-w/o ME: Removing the multi-scale extraction module and only performs alignment between input
time series and text prototypes.

Table 18: The results of different ME module and hyperedging mechanism on ETTh1 dataset. The
best results are bolded.

Methods -w/o ME -w/o HM -PM MSH-LLM

Metirc MSE MAE MSE MAE MSE MAE MSE MAE

96 0.412 0.400 0.693 0.560 0.380 0.392 0.360 0.388
192 0.413 0.412 0.751 0.513 0.405 0.424 0.398 0.411
336 0.421 0.436 0.756 0.596 0.423 0.443 0.415 0.432

The experimental results on ETTh1 dataset are shown in Table 18. We can observe that MSH-LLM
performs better than -w/o ME, showing the effectiveness of the ME module. The reason is that the
ME module can provide richer representations than relying solely on single-scale alignment.

Hyperedging Mechanism. To investigate the effect of the hyperedging mechanism, we conduct an
ablation study by carefully designing the following two variants:

-w/o HM: Removing the hyperedging mechanism and directly performing alignment between temporal
features and text prototypes at different scales.

-PM: Replacing the hyperedging mechanism with the patching mechanism.

The experimental results on ETTh1 dataset are shown in Table 18. We can observe that MSH-
LLM performs better than -w/o HM and -PM, demonstrating the effectiveness of our hyperedging
mechanism in enhancing the semantic information of time series semantic space. In addition, we can
observe that -w/o HM achieves the worst performance, the reason is that the individual time point
or temporal feature contains less semantic information, making it hard to align with the informative
semantic space of natural language.

Multi-Scale Text Prototypes Extraction. To investigate the impact of different multi-scale text
prototypes extraction, we conduct an ablation study by designing the following two variants:

R.1: Replacing word token embeddings based on pre-trained LLMs with word token embeddings
generated from manually select word and phrase descriptions (e.g., small, big, rapid increase, and
steady decrease).

R.2: Replacing word token embeddings based on pre-trained LLMs with word token embeddings
generated from randomly selected word and phrase descriptions (e.g., increase, happy, can, and white
noise).

Table 19: The results of different multi-scale text prototypes extraction and CMA module on ETTh1
dataset. The best results are bolded.

Methods R.1 R.2 R.3 P.1 -ASO MSH-LLM

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.467 0.467 0.441 0.447 0.697 0.561 0.363 0.390 0.396 0.413 0.360 0.388
192 0.497 0.483 0.475 0.467 0.760 0.600 0.405 0.417 0.417 0.428 0.398 0.411
336 0.517 0.496 0.514 0.489 0.787 0.609 0.417 0.424 0.433 0.442 0.415 0.432

The experimental results on ETTh1 dataset are shown in Table 19, from which we can observe that
MSH-LLM performs better than R.1 and R.2 by a large margin, which indicates the effectiveness

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

of our multi-scale text prototype extraction than approaches of manually selecting. In addition,
it is notable that we initially assumed that aligning multi-scale temporal features with relevant
natural language descriptions (e.g., small, big, rapid increase, and steady decrease) can offer better
performance. However, the experimental results show that word token embeddings generated from
randomly selected word and phrase descriptions achieve better performance than R.1. The reason is
that the aligned word token embeddings may not be fully related to time series. Actually, LLMs can
function as pattern recognition machines (Sun et al., 2024; Zhou et al., 2023a), and we believe the
text prototypes matched by LLMs can better match temporal patterns, even they may not be fully
related to time series.

CMA Module. To investigate the effectiveness of the cross-modality alignment module, we conduct
an ablation study by designing the following two variants:

R.3: Removing the CMA module and directly concatenating the hyperedge features with MoP before
feeding them into LLMs to obtain the output representations.

P.1: Performing detailed cross-modality alignment across all scales.

The experimental results on ETTh1 dataset are shown in Table 19, from which we can observe that
MSH-LLM performs significantly better than R.3, showing the effectiveness of the CMA module.
The reason is that the CMA module can help align the semantic space of natural language and that
of time series. In addition, we can observe that MSH-LLM outperforms P.1 in most cases. This
is because performing detailed alignment across all scales may introduce redundant information
interference.

In addition, it has been shown that treating cross-modality alignment as an independent task (Li et al.,
2023) can help the model focus more on the alignment objective and may potentially improve model
performance. To investigate the impact of different cross-modality alignment strategy, we conduct
ablation studies on the ETTh1 dataset by carefully designing the following variant:

-ASO: This approach treats cross-modality alignment as a standalone objective and employs a two-
stage training strategy for time series analysis. The detailed design of the objective function are
formulated as follows:

Specifically, for the given hyperedge feature esj and text prototypes us
j at scale s, we first we first

compute both the cosine similarity and the Euclidean distance between them. The cosine similarity
can be formulated as follows:

τi,j =
esi (e

s
j)

T

∥esi∥2
∥∥esj∥∥2 , (14)

where . denotes the dot product and ||.||2 represents the L2 norm. The Euclidean distance can be
defined as:

Di,j = ∥esi − us
j∥2 =

√∑D

d=1
((esi)

d − (us
j)

d)2 (15)

Then, the loss function Ls
aso at scale s based on the correlation weight and Euclidean distance can be

formulated as follows:

Ls
aso =

1

(Ms)2

∑Ms

i=1

∑Ms

j=1
(τi,jDi,j + (1− τi,j)max(γ −Di,j , 0)) , (16)

where γ > 0 denotes the threshold. Notably, when τi,j = 1, indicating that esi and usk are deemed
similar, the loss turns to Laso = 1

(Ms)2

∑Ms

i=1

∑Ms

j=1 τi,jDi,j , where the loss will increase if Di,j

becomes large. Conversely, when αi,j = 0, meaning ei and ek are regarded as dissimilar, the loss
turns to Laso = 1

(Ms)2

∑Ms

i=1

∑Ms

j=1(1− τi,j)max(γ −Di,j , 0), where the loss will increase if Di,j

falls below the threshold and turns smaller. Other cases lie between the above circumstances. The
final loss function can be formulated as follows:

L =
∑S

s=1
Ls
aso, (17)

The experimental results are shown in Table 19. We can observe that MSH-LLM performs better
than -ASO in most cases. We attribute the performance drop to the following two aspects: 1) Treating

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

cross-modality alignment as a standalone objective, the model may lack supervision signals from
the primary time series analysis task, thereby missing the potential synergy with the main task. 2)
Unlike CV or NLP, time series datasets often contain limited training samples, which may result in
insufficient generalization capability when cross-modality alignment is trained independently as a
standalone objective. The experimental results show the effectiveness of our CMA module.

LLM backbones. To investigate the effectiveness of LLM backbones for time series analysis, we
conduct an ablation study by designing the following two variants:

-w/o LLM: Removing the LLM backbones and directly feeding the connected multi-scale temporal
features into the linear mapping layer.

-LLM2Attn: Replacing the LLM backbones with a single multi-head attention layer.

Table 20: The results of LLM backbone variants on ETTh1 dataset. The best results are bolded.
Methods -w/o LLM -LLM2Attn MSH-LLM

Metric MSE MAE MSE MAE MSE MAE

96 0.401 0.437 0.381 0.405 0.360 0.388
192 0.435 0.447 0.415 0.423 0.398 0.411
336 0.441 0.453 0.421 0.437 0.415 0.432

The experimental results on ETTh1 dataset are shown in Table 20, from which we can observe that
MSH-LLM performs better than -w/o LLM and -LLM2Attn, demonstrating the effectiveness of LLM
backbones for time series analysis.

Data-Correlated Prompts. To quantify the impact of endogenous data-correlated prompts on
the final performance, we have newly added ablation studies by carefully designing the following
variants:

-TV: It replaces the data-correlated prompts with the prompt template used in Time-LLM.

-SD1: It incorporates more data statistics (e.g., trends, lags, means, and standard deviation) into the
data-correlated prompts.

-SD2: It selects a few key statistical metrics to include as data statistics in the data-correlated prompts.

-TG: It incorporates different temporal granularity information into the data-correlated prompts.

Table 21: The results of different multi-scale text prototypes extraction and CMA module on ETTh1
dataset. The best results are bolded.

Methods -TV -SD1 -SD2 -TG MSH-LLM

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.363 0.389 0.360 0.389 0.358 0.388 0.359 0.390 0.360 0.388
192 0.398 0.413 0.400 0.411 0.397 0.413 0.398 0.413 0.398 0.411
336 0.417 0.435 0.415 0.433 0.414 0.431 0.413 0.432 0.415 0.432

The experimental results are shown in Table 21. From Table 21, we can obtain the following
tendencies: 1) MSH-LLM performs better than -TV in most cases, showing the effectiveness of our
prompt template. 2) -SD2 outperforms both -SD1 and MSH-LLM, suggesting that more statistical
features do not necessarily lead to better performance, and carefully selected statistical metrics may
yield superior results. 3) MSH-LLM achieves comparable performance to these variants. The reason
is that we design the mixture of prompts (MoP) mechanism, which mitigates the impact of relying on
a single prompt or specific statistical features. The experimental results demonstrate the robustness
of our MoP mechanism.

Capability-Enhancing Prompts. To investigate the impact of the logical thinking prompt and time
series reasoning correlated prompt used in capability-enhancing prompts, we conduct ablation studies
by carefully designing the following variants:

-w/o LR: It removes the logical thinking prompt used in the MoP mechanism.

-w/o TSR: It removes the time series reasoning correlated prompt used in the MoP mechanism.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 22: The results of different capability-enhancing prompts. The best results are bolded.
Methods -w/o LR -w/o TSR MSH-LLM

Metric MSE MAE MSE MAE MSE MAE

96 0.372 0.274 0.370 0.268 0.365 0.270
192 0.389 0.287 0.383 0.283 0.372 0.281
336 0.390 0.282 0.379 0.280 0.385 0.279

The experimental results on Traffic dataset are shown in Table 22. From Table 22, we can observe
that -w/o LR performs better than -w/o TSR, indicating that the logical reasoning prompt plays a
more critical role than the time series reasoning correlated prompt. In addition, -w/o LR and -w/o
TSR perform worse than MSH-LLM, showing the effectiveness of the logical reasoning prompts and
time series reasoning correlated prompts, respectively.

Table 23: The results of different logical thinking prompts.
No. Category Template MAE Results

1
Instructive

Think it step by step. 0.450
2 Predict the outcome step by step. 0.452

3
Misleading

Use your imagination to think the results. 0.462
4 Don’t think, just feel. 0.464

5
Irrelevant

She is beautiful. 0.456
6 I am hungry. 0.453

Logical Thinking Prompts. It has been shown that logical thinking prompts can significantly
enhance the reasoning abilities of LLMs (Zhou et al., 2023b), especially for zero-shot and few-shot
learning. To investigate the effect of different logical thinking prompts, we design seven different
logical thinking prompts with three categories, i.e., instructive, misleading, and irrelevant categories.
The experimental results for few-shot learning with 10% training data are shown in Table 23. The
experiment is conducted on ETTh1 dataset with the forecasting length H = 96. The experimental
results indicate that the performance is improved if we let LLMs think in a step-by-step manner. In
contrast, the prompts that belong to misleading or irrelevant categories can decrease the performance
of LLMs. It remains an open question how to automatically create better prompts for time series
analysis.

I VISUALIZATION

Visualization of The Weight Between Text Prototypes and Word Embeddings. To investigate
whether different text prototypes possess explicit semantic meanings, we conduct qualitative analysis
by visualizing the similarity scores between 10 randomly selected text prototypes and word embed-
dings derived from 3 different word sets. The visualization results on ETTh1 dataset are given in
Figure 8. From Figure 8, we can discern the following tendencies: 1) Prototypes 2, 3, 7, and 8 exhibit
strong associations with word set 1 (noun-like time series descriptions), while prototypes 0, 1, and
4 show strong correlations with word set 2 (adjective-like time series descriptions). This suggests
that the prototypes capture different semantic roles, indicating explicit semantic differentiation. 2)
Although both word set 1 and word set 3 consist of noun-like descriptions, almost all prototypes show
weak correlations with word set 3 (name-related words). The reason may be that the text prototypes
encode time-series-specific, context-specific semantic information. The experimental results show
that the text prototypes possess explicit meaning.

J METHOD ANALYSIS

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Pr
ot

ot
yp

es

Pr
ot

ot
yp

es

Pr
ot

ot
yp

es

Word Set 1 Word Set 2 Word Set 3

Word Set 1: {'peak', 'trough', 'irregularity', ...}

Word Set 2: {'cyclical', 'rising', 'smooth', ...}

Word Set 3: {'cat', 'dog', 'table', 'desk', ...}

Figure 8: The visualization of the weight between text prototypes and word embeddings.

J.1 GENERALITY ANALYSIS ON DIFFERENT TASKS.

To further investigate the generalization ability of MSH-LLM across different tasks, we compare
MSH-LLM with baselines in anomaly detection. Following existing works (Zhou et al., 2023a; Wu
et al., 2022), we choose five commonly used datasets for comparison, including SMD (Su et al.,
2019), MSL (Hundman et al., 2018), SMAP (Hundman et al., 2018), SWaT(Mathur & Tippenhauer,
2016), and PSMAbdulaal et al. (2021). The experimental seetings follow those in existing works
(e.g., FPT and TimesNet). The experimental results are given in Table 24.

Table 24: The results of time series anomaly detection. We follow the protocol of existing work
(Zhou et al., 2023a). The best results are bolded. # in the Transformers means the name of #former.

Methods MSH-LLM FPT TimesNet PatchTS# ETS# FED# LightTS DLinear Stationary Auto# Pyra# In# Re# LogTrans# Trans#

SMD 88.12 86.89 84.61 84.62 83.13 85.08 82.53 77.10 84.72 85.11 83.04 81.65 75.32 76.21 79.56

MSL 84.33 82.45 81.84 78.70 85.03 78.57 78.95 84.88 77.50 79.05 84.86 84.06 84.40 79.57 78.68

SMAP 75.93 72.88 69.39 68.82 69.50 70.76 69.21 69.26 71.09 71.12 71.09 69.92 70.40 69.97 69.70

SWaT 94.58 94.23 93.02 85.72 84.91 93.19 93.33 87.52 79.88 92.74 91.78 81.43 82.80 80.52 80.37

PSM 97.45 97.13 97.34 96.08 91.76 97.23 97.15 93.55 97.29 93.29 82.08 77.10 73.61 76.74 76.07

Average 88.08 86.72 85.24 82.79 82.87 84.97 84.23 82.46 82.08 84.26 82.57 78.83 77.31 76.60 76.88

As shown in Table 24, MSH-LLM achieves an average F1-score of 88.08%, outperforming all baseline
methods and highlighting its effectiveness in time series anomaly detection. The experimental results
indicate that MSH-LLM is capable of detecting infrequent anomalies in time series, which can be
attributed to the multi-scale hypergraph structure that enhances the reasoning capabilities of LLMs
for modeling multi-scale temporal patterns.

J.2 GENERALITY ANALYSIS ON DIFFERENT LLM BACKBONES.

For a fair comparison, following existing works (Liu et al., 2024; Pan et al., 2024), we use LLaMA-7B
as the default LLM backbone. However, MSH-LLM is designed to enhance the general ability of
LLMs to understand and process time series data, rather than being tailored to specific LLMs (e.g.,
LLaMA-7B). To evaluate the performance and generality of existing methods, we evaluate MSH-LLM
with other baseline methods on more advanced LLMs. We adopt LLaMA-3.1-8B (Grattafiori et al.,
2024) (-w L-8B), Qwen2.5-7B (Yang et al., 2024a) (-w Q-7B), and DeepSeek-R1-Distill-LLaMA-8B
(Guo et al., 2025) (-w D-8B) for comparison. The experimental results on the ETTh1 dataset with
input length T=512 and output length H=96 are presented in Table 25.

Table 25: The results of different LLM backbones on ETTh1 dataset. The best results are bolded.
Methods -w L-8B -w Q-7B -w D-8B LLaMA-7B (Default)

Metric MSE MAE MSE MAE MSE MAE MSE MAE

S2IP-LLM 0.350 0.393 0.364 0.395 0.362 0.395 0.366 0.396
Time-LLM 0.378 0.403 0.379 0.413 0.378 0.408 0.383 0.410
MSH-LLM 0.350 0.377 0.352 0.383 0.348 0.365 0.360 0.388

From Table 25, we can observe that existing LLM4TS methods (i.e., MSH-LLM S2IP-LLM, and
Time-LLM) achieve better performance on more advanced LLMs, demonstrating the significance of
the choice of LLM backbones for time series analysis. In addition, we can observe that MSH-LLM
shows a more significant improvement compared to other methods when using more advanced LLM

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

backbones. This indicates the effectiveness of the framework design, rather than being merely
influenced by the LLM backbones.

J.3 ROBUSTNESS ANALYSIS

All experimental results reported in the main text and appendix are averaged over three runs with
different random seeds: 2021, 2022, and 2023. To evaluate the robustness of MSH-LLM to the
choice of random seeds, we report the standard deviation of MSH-LLM under long-term time series
forecasting settings. The experimental results are shown in Table 26 and 27. We can observe that the
variances are considerably small, which indicates the robustness of MSH-LLM against the choice of
random seeds.

Table 26: The standard deviation results of MSH-LLM on Weather, Electricity, and Traffic datasets.
Results are averaged from three random seeds.

Dataset Weather Electricity Traffic

Horizon MSE MAE MSE MAE MSE MAE

96 0.138±0.0005 0.187±0.0007 0.127±0.0012 0.231±0.0005 0.365±0.0000 0.270±0.0003
192 0.187±0.0010 0.230±0.0009 0.150±0.0006 0.242±0.0003 0.372±0.0005 0.281±0.0002
336 0.237±0.0007 0.282±0.0003 0.162±0.0001 0.258±0.0000 0.385±0.0000 0.279±0.0003
720 0.305±0.0002 0.315±0.0001 0.198±0.0005 0.279±0.0003 0.402±0.0006 0.303±0.0009

Table 27: The standard deviation results of MSH-LLM on ETT dataset. Results are averaged from
three random seeds.

Dataset ETTh1 ETTh2 ETTm1 ETTm2

Horizon MSE MAE MSE MAE MSE MAE MSE MAE

96 0.360±0.0007 0.388±0.0005 0.273±0.0009 0.331±0.0004 0.285±0.0031 0.340±0.0011 0.161±0.0001 0.246±0.0005
192 0.398±0.0014 0.411±0.0003 0.335±0.0005 0.372±0.0003 0.313±0.0016 0.358±0.0017 0.218±0.0008 0.284±0.0003
336 0.415±0.0010 0.432±0.0007 0.363±0.0007 0.400±0.0000 0.355±0.0068 0.377±0.0024 0.271±0.0005 0.320±0.0003
720 0.436±0.0003 0.447±0.0006 0.396±0.0015 0.428±0.0009 0.405±0.0121 0.410±0.0062 0.358±0.0007 0.392±0.0004

In addition, it is notable that achieving significant performance improvement across all well-studied
datasets is inherently challenging. To rule out the influence of experimental errors, instead of just
showing the MSE and MAE results, we repeat all experiments 3 times and report the standard
deviation and statistical significance level (T-test) of MSH-LLM and the and the second-best baseline
(i.e., S2IP-LLM). The experimental results are shown in Table 28.

Table 28: The standard deviation and T-test results of MSH-LLM and the second-best baseline.
Results are averaged from three random seeds.

Dataset MSH-LLM S2IP-LLM Confidence Interval

Horizon MSE MAE MSE MAE Percent

96 0.217±0.0006 0.254±0.0005 0.223±0.0007 0.259±0.0005 99%
192 0.159±0.0006 0.253±0.0003 0.163±0.0006 0.258±0.0005 99%
336 0.381±0.0003 0.283±0.0004 0.406±0.0003 0.287±0.0004 99%
720 0.334±0.0020 0.371±0.0010 0.338±0.0014 0.379±0.0010 95%

From Table 28, we can observe that all the statistical significance reaches 95%, indicating that the
performance improvements achieved by MSH-LLM are substantial and consistent across all datasets.

To evaluate the robustness of the proposed method, we compare MSH-LLM with baselines (i.e.,
S2IP-LLM, Time-LLM, and FPT) across three challenging scenarios: forecasting with anomaly
injection, ultra-long forecasting, and forecasting with missing data.The corresponding results are
presented below.Note that to quantify robustness, we compute the performance drop rate (PDR) as:

PDR =
Γ− Γ̂

Γ
(18)

where Γ and Γ̂ are forecasting results and forecasting results under challenging scenarios, respectively.
Higher PDR values indicate lower robustness. The reported PDR is averaged across the MSE and
MAE metrics to provide a comprehensive evaluation.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Forecasting With Anomaly Injection. We conduct experiments by injecting randomly generated
anomalies in the training data. The anomaly rate varies from 10% to 20%. The experiments are
conducted on ETTh1 dataset with the input length set to 512 and output length set to 96. Table 1
summarizes the results of forecasting with anomaly injection.

Table 29: Forecasting results with anomaly injection on ETTh1 dataset. The best results are bolded.
Methods MSH-LLM S2IP-LLM Time-LLM FPT

Metric MSE MAE PDR MSE MAE PDR MSE MAE PDR MSE MAE PDR

0% 0.360 0.388 / 0.366 0.396 / 0.383 0.410 / 0.379 0.402 /
10% 0.374 0.393 2.589 0.712 0.574 69.743 0.398 0.419 3.056 0.410 0.393 2.970
15% 0.425 0.427 14.053 0.723 0.578 71.750 0.443 0.435 10.812 0.741 1.103 134.946
20% 0.773 0.598 81.106 0.773 0.598 81.106 0.751 0.589 69.871 0.935 1.421 200.092

From Table 29, we can obtain the following tendencies: 1) MSH-LLM achieves the best performance
in almost all cases, showing its superior ability in time series forecasting even under scenarios
with anomaly injection. 2) Although the performance of all methods declines as the anomaly ratio
increases, MSH-LLM exhibits a slower performance degradation compared to the other methods,
demonstrating its robustness for forecasting with anomaly injection. 3) When the anomaly ratio
reaches about 20%, the PDR value of MSH-LLM is greater than 20%, indicating that the robustness
boundary of MSH-LLM is near 20% anomaly injection.

Ultra-Long-Term Forecasting. We conduct ultra-long-term time series forecasting by taking a fixed
input length (T=512) to predict ultra-long horizons (H={1008, 1440, 1800}). Table 30 summarizes
the results of ultra-long-term time series forecasting.

Table 30: Ultra-long-term forecasting on ETTh1 dataset. The best results are bolded.
Methods MSH-LLM S2IP-LLM Time-LLM FPT

Metric MSE MAE MSE MAE MSE MAE MSE MAE

1008 0.463 0.498 0.543 0.520 0.478 0.475 0.527 0.576
1440 0.516 0.513 0.806 0.642 0.547 0.521 0.594 0.716
1800 0.648 0.557 0.940 0.725 0.683 0.5587 0.660 0.886

From Table 30, we can observe that MSH-LLM achieves SOTA results on almost all cases, showing
the effectiveness of MSH-LLM for ultra-long-term time series forecasting. In addition, although all
baselines suffer from performance drops when increasing forecasting horizons, MSH-LLM declines
more gradually. The reason may be that the multi-scale hypergraph structure enhances the ability of
LLMs in understanding and processing ultra-long-term time series.

Forecasting With Missing Data.We conduct forecasting with missing data by randomly masking
the training data. The experiments are conducted on Electricity dataset with the input length set to
512 and output length set to 96. Table 31 summarizes the results of forecasting with missing data.

Table 31: Ultra-long-term forecasting on ETTh1 dataset. The best results are bolded.
Methods MSH-LLM S2IP-LLM Time-LLM FPT

Metric MSE MAE MSE MAE MSE MAE MSE MAE

0% 0.360 0.388 / 0.366 0.396 / 0.383 0.410 / 0.379 0.402 /
5% 0.368 0.3.93 3.511 0.385 0.403 3.479 0.392 0.416 1.907 0.392 0.431 5.307

10% 0.409 0.421 11.058 0.432 0.447 15.456 0.451 0.449 13.633 0.478 0.483 22.704

From Table 31, we can obtain the following tendencies: 1) Existing LLM-based methods show little
performance degradation with 5% missing data. The reason may be that LLM4TS methods can
leverage transferable knowledge learned from large-scale corpora of sequences, thereby enhancing
their abilities in understanding and reasoning time series. 2) MSH-LLM performs better than other
LLM4TS methods, the reason is that the hyperedging mechanism can capture group-wise interactions,
which increase the robustness of LLM in forecasting with missing data. 3) When the missing data
ratio reaches about 10%, the PDR value of MSH-LLM is greater than 10%, indicating that the
robustness boundary of MSH-LLM is near 10% missing data.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

J.4 COMPUTATION COST ANALYSIS

We compare MSH-LLM with three LLM4TS methods (i.e., S2IP-LLM, Time-LLM, and FPT) on
ETTh1 datasets with the input length of 512 and output length of 720 using a batch size of 32. It is
worth noting that FPT uses GPT-2 (Radford et al., 2019) as the base LLM, while Time-LLM employs
two types of base LLMs (i.e., LLaMA and GPT-2). For a fair comparison, we use GPT-2 as the
base LLM and rerun baselines under unified settings to evaluate the computational complexity. The
experimental results are shown in Table 32. We can observe that FPT has the fewest parameters and
runs faster than other LLM4TS methods, but it gets the worst forecasting results. Compared with S2IP-
LLM and Time-LLM, although MSH-LLM has a larger number of parameters, it runs fastest due to
the matrix sparsity strategy in the model and the optimization of hypergraph computation provided by
torch geometry (Bai et al., 2021). Overall, considering both the forecasting performance improvement
and the computation cost, MSH-LLM demonstrates its superiority over existing methods.

Table 32: Computation cost.
Methods Training Time # Parameters GPU Occupation MSE results

MSH-LLM 0.104s 75,852,238 7,872MB 0.451
S2IP-LLM 0.442s 63,636,512 9,991MB 0.459
Time-LLM 0.116s 53,441,968 5,403MB 0.460
FPT 0.015s 36,209,616 2,632MB 0.463

Table 33: Results compared with simple methods on ETTh1 dataset. The best results are bolded.
Methods DHR-ARIMA Repeat PAtnn MSH-LLM

Metric MSE MAE MSE MAE MSE MAE MSE MAE

96 0.894 0.613 1.294 0.713 0.383 0.411 0.360 0.388
192 0.872 0.624 1.325 0.733 0.429 0.438 0.398 0.411
336 0.957 0.638 1.330 0.746 0.425 0.443 0.415 0.432

J.5 BROADER BENCHMARK COMPARISON

Comparison With Other Cross-Modality Alignment (CMA) Method. It is known that TimeCMA
(Liu et al., 2025a) also uses the CMA mechanism. We need to clarify that despite the shared
nomenclature, the implementation and operational mechanisms of the cross-modality alignment
(CMA) modules in MSH-LLM and TimeCMA are fundamentally different. Specifically, the CMA
mechanism in TimeCMA operates primarily as a retrieval mechanism. Its goal is to query and
extract time-series-related representations from a set of predefined, hand-crafted textual prompts.
This process can be seen as a form of feature selection, where the most relevant linguistic cues
are retrieved to augment the time series embeddings. In contrast, the CMA module in MSH-LLM
operates primarily as an alignment and fusion mechanism. Its designed to align the multi-scale
hyperedges features with multi-scale text prototypes generated from the token embeddings of LLMs.
This process aims to align the modality between natural language and time series. In addition, we
have included TimCMA for comparison. Note that due to its fixed prompt templates and restrictions
on LLM selection, we failed to rerun TimeCMA under the unified settings. For a fair comparison, we
reran MSH-LLM using the same settings as TimCMA. The experimental results on ETTh1 dataset
with the input length T=96 are shown in Table 34.

From Table 34, we can observe that MSH-LLM performs better than TimeCMA in almost all cases,
demonstrating the effectiveness of CMA mechanism used in MSH-LLM.

Comparison With Simple Methods. Recent studies have questioned the effectiveness of previous
LLM-based methods for time series analysis (Tan et al., 2024). Some studies even show that a
simple attention layer or non-neural methods (Hewamalage et al., 2023) can achieve comparable
performance. To further evaluate the performance of MSH-LLM against simple methods, we add
three simple methods, i.e., PAtnn (Tan et al., 2024), DHR-ARIMA (Hewamalage et al., 2023), and
Repeat (used in DLinear (Zeng et al., 2022)) for comparison. All experiments are run under unified
settings. The experimental results on ETTh1 dataset are shown in Table 33.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table 34: Results compared with simple methods on ETTh1 dataset. The best results are bolded.

Methods TimeCMA MSH-LLM

Metric MSE MAE MSE MAE

96 0.373 0.391 0.362 0.393
192 0.427 0.421 0.417 0.416
336 0.458 0.448 0.420 0.423

From Table 33, we can observe that MSH-LLM performs better than simple methods in most cases.
Specifically, MSH-LLM reduces the MSE errors by 56.89%, 70.31%, and 5.20% compared to DHR-
ARIMA, Repeat, and PAtnn, respectively. The experimental results demonstrate the effectiveness of
MSH-LLM over simple methods.

Here, we attribute the limited effectiveness of previous LLM-based methods for time series analysis
to three key factors: Firstly, the semantic spaces of natural language and time series are inherently
different. Existing methods (e.g., FPT (Zhou et al., 2023a)) directly leverage off-the-shelf LLMs for
time series analysis without proper alignment, making it difficult for LLMs to understand and process
temporal features. Secondly, we found that some of these methods (e.g., CALF (Liu et al., 2025b)
and FPT) do not even use prompts for LLMs, despite prompts being proven crucial for activating
the reasoning capabilities of LLMs. The third and most important factor is that existing LLM-based
methods directly segment the input time series into patches and feed them into LLMs. However,
simple partitioning of patches may introduce noise interference and negatively impact the ability of
LLMs to understand and process temporal information.

In contrast, our proposed method incorporate hyperedging mechanism, CMA module, and MoP
mechanism, all of which are designed to better aligning LLMs for time series analysis. Ablation
studies in Section 5.6 and Appendix H confirm that these components can enhance the ability of
LLMs to understand and process temporal information. Experimental results in Appendix J.3 further
validate the effectiveness of our method in both utilizing LLMs and addressing concerns about the
performance ceiling of previous methods.

K PROOF

In our numerical experiments and visualization analysis, we find that different hyperedge representa-
tions capture distinct semantic information and can enhance the ability of LLMs in reasoning time
series data. To further explore, we use the following theorem to characterize this behavior.

Theorem 1 (Informal). Consider the self-attention mechanism for the l-th query token. Assume
that the input tokens Xi (i = 1, 2, . . . , n) have a bounded mean µ. Under mild conditions, with high
probability, the output value token X̂i with high probability converges to µWi at a rate of O(n−1/2),
where Wi is the parameter matrix used to compute the value token.

This indicates that the self-attention mechanism used in LLMs can efficiently converge the output
token representations to a stable mean (i.e., the representative semantic center). For time series
analysis, if there are translation-invariant structures or patterns (e.g., periodicity and trend), the
self-attention can help identify those invariant structures more effectively by comparing a given token
with others. This phenomenon is especially important in few-shot forecasting or high-noise scenarios
as it helps avoid overfitting to noise and improves generalization.

However, raw time series data suffer from two main limitations: 1) Individual time points contain
limited semantic information, making it difficult to reflect structural patterns (e.g., periodicity and
trend). 2) The raw sequence is often corrupted by noise, resulting in a low signal-to-noise ratio.
To address these issues, we introduce multi-scale hypergraph structures, which adaptively connect
multiple time points through learnable hyperedges at different scales. This method can enhance the
multi-scale semantic information of time series while reducing irrelevant information interference. It
provides the self-attention mechanism in LLMs with more structured input, enabling self-attention to

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

distinguish between temporal patterns and noise. As a result, the generalization and robustness of
LLMs are improved.

We denote the i-th element of vector X as xi, the element in the i-th row and j-th column of matrix
W as Wij , and the j-th row of matrix W as Wj:. Furthermore, we denote the i-th hyperedge
representation (token) of the input as xi, where xi = Xi. Following existing work (Zhou et al.,
2023a), before given the formal statement of the Theorem E.1, we first show the following three
assumptions.

1. Each token xi is a sub-Gaussian random vector with mean µi and covariance matrix (σ2/d)I, for
i = 1, 2, . . . , n.

2. The mean vector µ follows a discrete distribution over a finite set V . Furthermore, there exist
constants 0 < ν1 and 0 < ν2 < ν4 such that:

a) ∥µi∥ = ν1,
b) µ⊤

i WQW
⊤
Kµi ∈ [ν2, ν4] for all i, and |µ⊤

i WQW
⊤
Kµj | ≤ ν2 for all µi ̸= µj ∈ V .

3. The matrices WV and WQW
⊤
K are element-wise bounded by ν5 and ν6, respectively. That is,

|[WV]ij | ≤ ν5 and |[WQW
⊤
K]ij | ≤ ν6 for all i, j ∈ [d].

In the above assumptions, we ensure that for a given query hyperedging representation, the difference
between the clustering center and noises are large enough to be distinguished. Then, we give the
formal statement of Theorem 1 as follows:

Theorem 2 (formal statement of Theorem 1). Let each hyperedge representation xi be a σ-
subgaussian random vector with mean µi, and suppose all n hyperedge representations share the
same query cluster center. Under the aforementioned assumptions, if ν1 > 3(ψ(δ, d) + ν2 + ν4),
then with probability at least 1− 5δ, we have:

∥∥∥∥∥∥
∑n

i=1 exp
(

1√
d
xiWQW

⊤
Kx⊤

l

)
xiWV∑n

j=1 exp
(

1√
d
xjWQW⊤

Kx⊤
l

) − µlWV

∥∥∥∥∥∥
∞

≤ 4 exp

(
ψ(δ, d)√

d

)
σν5

√
2

dn
log

(
2d

δ

)
+ 7

[
exp

(
ν2 − ν4 + ψ(δ, d)√

d

)
− 1

]
∥µlWV ∥∞,

where ψ(δ, d) = 2σν1ν6

√
2 log

(
1
δ

)
+ 2σ2ν6 log

(
d
δ

)
.

Proof. See the proof of Lemma 2 in (Wang et al., 2022) with k1 = k = n.

L LIMITATIONS AND FUTURE WORK

In the future, we will extend our work in the following directions. Firstly, due to our CMA module
perform multi-scale alignment in a fully learnable manner, it is interesting to introduce a constraint
mechanism to further enhance the alignment between multi-scale temporal features and multi-scale
text prototypes. Secondly, compared to natural language processing and computer vision, time series
analysis has access to fewer datasets, which may limit the expressive power of the models. Therefore,
in the future, we plan to compile larger datasets to validate the generalization capabilities of our
models on more extensive data.

M USE OF LLMS

The authors use LLM solely as a general-purpose assistive tool for grammar and format refine-
ment. LLM does not contribute to research ideation or experimental design. The authors take full
responsibility for the content of this paper.

35

	Introduction
	Related Work
	Preliminaries
	Methodology
	Multi-Scale Extraction (ME) Module
	Hyperedging Mechanism
	Cross-Modality Alignment (CMA) Module
	Mixture of Prompts (MoP) Mechanism
	Output Projection

	Experiments
	Long-Term Forecasting
	Short-Term Forecasting
	Time Series Classification
	Few-Shot Learning
	Zero-Shot Learning
	Ablation Studies
	Parameter Studies
	Visualization

	Conclusions
	Ethics Statement
	Reproducibility Statement
	Description of Notations
	Description of Baselines
	Description of Hypergraph Learning
	Description of Datasets
	Experimental Settings
	Evaluation Metrics
	Full Results
	Long-Term Time Series Forecasting
	Short-Term Time Series Forecasting
	Time Series Classification
	Few-Shot Learning
	Zero-Shot Learning

	Ablation Studies
	Visualization
	Method Analysis
	Generality Analysis on Different Tasks.
	Generality Analysis on Different LLM Backbones.
	Robustness Analysis
	Computation Cost Analysis
	Broader Benchmark Comparison

	Proof
	Limitations and Future Work
	Use of LLMs

