
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

MIXTURE OF COMPLEMENTARY AGENTS FOR ROBUST
LLM ENSEMBLE

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-AI collaboration—such as ensembling or debating large language models
(LLMs)—is a promising paradigm for aggregating information and boosting per-
formance. A foundational step in these pipelines is to feed the responses of sev-
eral proposer LLMs into a summarizer LLM, which synthesizes a better answer.
However, choosing which proposers to include is non-trivial. Existing approaches
primarily focus either on accuracy (picking the strongest models) or diversity (en-
suring variety), and often overlook the interactions among proposers and with
the summarizer. We introduce complementary-MoA, a principled framework for
proposer selection built on the notion of complementarity: the value of a pro-
poser lies not only in its individual performance, but in how it improves the joint
performance of the ensemble. Leveraging a small training set with ground truth
answers, we propose several greedy-based algorithms that explicitly optimize for
complementarity while offering accuracy–efficiency trade-offs for proposer selec-
tion. Empirically, we demonstrate why accuracy- and diversity-seeking heuristics
are fundamentally flawed in LLM ensembles, and validate the robustness and su-
periority of our complementarity-based methods.

1 INTRODUCTION

As today’s Large language model (LLM) ecosystem fragments into numerous models with diverse
expertise, collaboration among LLMs has become promising and sometimes necessary for tackling
emerging tasks such as mathematical reasoning (Du et al., 2023), code generation (Mahmud et al.,
2025), and complex decision-making (Wu et al., 2023). A convenient instantiation is ensemble
after inference, which aggregates the LLM outputs after the generation of full responses. This
includes well-studied frameworks such as LLM debating (Du et al., 2023; Estornell & Liu, 2024;
Chan et al., 2023), in which multiple models iteratively exchange arguments before a final decision
is reached, and mixture-of-agents (MoA) (Wang et al., 2024; Li et al., 2025), which uses layered and
summarization schemes to combine diverse model outputs.

A fundamental step in the ensemble framework is inputting N LLM responses—the proposers—into
an aggregating LLM—the summarizer—which synthesizes a potentially better answer. Selecting
which proposers to include is therefore critical: for a large proposer pool, it is impractical and
inefficient to input responses from every available model due to context-window limits and the
degraded inference ability (Liu et al., 2023). Existing methods often choose a small set of proposers
based on their independent performance, following two heuristics: (i) accuracy-seeking—prioritize
high-accuracy proposers or even a single top model with multiple samples (Li et al., 2025; Jiang
et al., 2023), and (ii) diversity-seeking—explicitly mix heterogeneous outputs or prompts to avoid
reinforcing similar mistakes (Lau et al., 2024; Wang et al., 2024).

However, both heuristics overlook team effects, a key determinant of LLM ensemble performance.
In particular, accuracy-seeking methods rank proposers only by their individual performance, while
diversity-seeking methods reward variance regardless of quality. We instead propose mixture-of-
complementary-agents (complementary-MoA)—a framework that selects proposers for how well
they work together as a team and with the summarizer. The importance of complementarity can
be observed from Fig. 1, which compares summarizer accuracy when inputting (i) the individually
most accurate proposer versus (ii) the proposer that most complements the summarizer. In this
example, we consistently observe a nontrivial gap between the two choices, and furthermore, the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: Summarizer accuracies on AIME (dolbokostya, 2025) when inputting the most accu-
rate proposer vs. the most complementary proposer. For each summarizer s, the proposer pool
is {Qwen3-32B, Sky-T1-32B-Preview, Aya-expanse-32B, Gemini-1.5-Pro, Llama-3.3-70B-Instruct,
AceReason-Nemotron, and GPT-4o}, excluding s itself.

most-complementary proposer is often weak on its own. The upshot is both promise and challenge:
as the ensemble size k (the number of proposers selected for input) grows, complementarity-based
selection can yield substantial gains, yet it also complicates the search, since optimal teams cannot
be inferred from individual performance alone.

In this paper, we seek efficient algorithms that select complementary proposers for better ensem-
bling, using multiple-choice QA as an example. Exhaustively searching over all proposer combina-
tions is often infeasible, especially considering the earlier observation that inputting responses from
the same LLM under multiple prompts can boost performance (Li et al., 2025; Lau et al., 2024). To
incorporate both intra-model and cross-model diversity, we pair each LLM with multiple instruction
prompts and treat each model–prompt pair as a proposer. Formally, given a small labeled validation
set, an LLM summarizer (oracle), and a target ensemble size k, our goal is to select k out of N
proposers that maximize the ensemble accuracy while minimizing sample complexity, measured by
summarizer calls.

Motivated by the analogy to feature selection with a black-box objective Acc(S) (the ensemble
accuracy given selected proposer set S), we develop proposer-selection algorithms that navigate the
accuracy-efficiency trade-offs. First, we introduce a wrapper-style method that keeps the summarizer
in the loop, called the model-first greedy. At each step, we first select the model whose prompt
variants have the largest marginal contribution to Acc(S) on average, and then add the best prompt
instance from that model to S. Model-first greedy reduces sample complexity by prioritizing the
selection of the most complementary model, rather than the model-prompt pair. To further reduce
sample complexity, we propose two algorithms that consider label-level complementarity. Truth-
prediction greedy selects proposers based on how well their reported labels help predict the ground
truth; oracle-surrogate greedy first fits a simple surrogate of the oracle and then selects proposers
based on their marginal contributions measured by the surrogate model. Both methods rely only on
label-level statistics and therefore require no—or only light—summarizer calls.

We run extensive experiments across two task families (a multi-choice math dataset (dolbokostya,
2025) and a binary-choice causal-reasoning dataset (Jin et al., 2023)), spanning multiple proposer
pools (a dominating-LLM regime and a mixed-crowd regime), various summarizers and ensemble
sizes k. Our results confirm the fundamental limitations of the discussed baselines—for each base-
line, we find settings where it performs poorly. In contrast, our complementarity-guided methods,
including the truth-prediction greedy which requires no summarizer call, are consistently robust
across all scenarios. Moreover, we frequently observe substantial gains from model-first greedy
over the strongest baseline, underscoring that explicitly optimizing for complementarity is crucial in
ensemble frameworks.

In summary, our main contributions are threefold:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

• We identify complementarity as a key, yet overlooked objective in agent-level LLM ensem-
bles and propose a more principled proposer-selection framework, called complementary-
MoA, that explicitly optimizes it.

• We instantiate complementary-MoA for multiple-choice QA with three algorithms that real-
ize different accuracy–efficiency trade-offs. Depending on task needs and computation bud-
gets, these methods offer practical options for building more trustworthy and robust multi-AI
collaboration systems.

• We validate the framework through extensive experiments on various datasets, proposer
pools, summarizers, and ensemble sizes against a rich set of baselines. The results clar-
ify when and why baseline heuristics succeed or fail, and demonstrate the robustness and
effectiveness of our proposed methods across all tested settings.

2 PROBLEM STATEMENT

We consider a dataset of multiple-choice questions Q, and each question q ∈ Q has a ground-truth
label Yq ∈ Y . We assume true labels are available on a validation subsetQT ⊂ Q of size m = |QT |,
while the remaining questions require inference (test data).

There are N proposers. Proposer i provides for question q a response Ri,q = (Xi,q, Zi,q), where
Xi,q ∈ Y is a proposed label and Zi,q is textual supporting reasoning (e.g., chain-of-thought rea-
soning). In our setting, we permit multiple proposers to originate from a single LLM by vary-
ing the prompt. This is inspired by prior studies (Li et al., 2025; Lau et al., 2024), showing that
feeding multiple responses from the same model to the summarizer can benefit the ensemble. Let
nprompt and nLLM be the number of prompts and models; the total number of proposers is then
N = nprompt · nLLM.

To improve accuracy, a summarizer aggregates multiple proposer responses, and outputs a poten-
tially more accurate label. Due to practical constraints (e.g., LLMs often have strict input con-
text limits), we aim to select a (small) subset of proposers for the ensemble. Formally, given the
ensemble size k and a subset S ⊆ [N] with |S| = k, the summarizer outputs f(RS,q), where
RS,q = (Ri,q)i∈S . Both proposer and summarizer outputs are stochastic, and the key design choice
is which proposers to select as input to the summarizer.

We evaluate a selection S by the summarizer accuracy test data:

Accf (S) =
1

|Q\QT |
∑

q∈Q\QT

Pr [f(RS,q) = Yq] .

The central problem is to choose k out of N proposers to maximize accuracy, given summarizer f :

S∗ = arg max
S⊆[N],|S|=k

Accf (S). (1)

We study the trade-offs introduced by the choice of k, though for clarity, most of our analysis
proceeds while supposing k is fixed.

2.1 PREVIOUS IDEAS

Label-only aggregation. The simplest approach aggregates only the discrete answers and ignores
textual rationales. A common choice is (weighted) majority voting over all proposers or a selected
subset. When proposers are conditionally independent with known accuracies, decision theory im-
plies that a weighted majority rule (with weights proportional to log-odds of correctness) is optimal
(Nitzan & Paroush, 1982). Our setting departs from these assumptions: LLM proposers exhibit
strong dependencies, and their rationales carry additional signal. Empirically, aggregation schemes
that leverage an LLM summarizer to use rationales outperform simple majority vote on labels alone
(Lau et al., 2024; Tekin et al., 2024). Our experiments further confirm this point (see Appendix B.1).

Accuracy-seeking aggregation. A widely used heuristic in LLM ensembling is to select proposers
by their estimated individual accuracy, where the intuition is that proposers with higher accuracy
contribute more reliable evidence on new instances. For example, one idea, called the self-MoA, is

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

to sample multiple diverse responses from the single best model and feed them to a summarizer (Li
et al., 2025).

Diversity-seeking aggregation. A parallel line in the LLM ensemble literature argues that accuracy
alone is insufficient: ensembles can benefit from diverse views. This intuition inspired several sug-
gestions that explicitly encourage diversity or strike an accuracy–diversity trade-off (e.g., maximize
diversity conditioned on an accuracy bar) (Lau et al., 2024; Tekin et al., 2024; Wang et al., 2024).
However, for LLM ensembles, such diversity-first strategies can be counterproductive: by admitting
weak proposers in the name of variety, they often introduce low-quality or correlated errors that
depress the final aggregation performance.

3 METHODS

Our central idea is to select proposers based on their collaborative performance with each other and
with the summarizer—the selected proposers should complement their teammates. In principle, one
could exhaustively evaluate all size-k teams and pick the subset that maximizes summarizer accu-
racy. In practice, searching over all

(
N
k

)
subsets is typically infeasible—e.g., even with N = 20 and

k = 5 there are 15,504 candidate teams—especially given the high inference cost of summarizing
multi-rationale inputs.

An immediate idea is a greedy algorithm: we can iteratively find the proposer with the largest
marginal contribution to the summarizer accuracy until we find k proposers. In particular, we ini-
tialize S0 = ∅, and for t = 1, . . . , k, choose

it ∈ arg max
i∈[N]\St−1

[Acc(St−1 ∪ {i})−Acc(St−1)] ,

then update St = St−1 ∪ {it}.
The performance of the greedy algorithm depends on the submodularity of the accuracy function,
which in turn depends on the summarizer. It turns out that for LLM summarizers, the accuracy
function is not even monotone (and thus not submodelar)—including a low-accuracy proposer in
the pool can actually reduce overall summarization performance. This observation is supported by
prior work (Li et al., 2025) and our experiments in Appendix B.2. Therefore, in principle, the greedy
algorithm can be far from the optimum in the worst case. However, as we will see, the empirical
performance of the (simplified versions of) the greedy algorithm is generally robust and significantly
outperforms the baselines.

A more detailed discussion of related work is deferred to Appendix A.

Although the greedy algorithm is conceptually simple, it can be computationally demanding: it
requires evaluating the accuracy function O(kN) times, which entails O(kNm) calls to the sum-
marizer. It is thus important to explore the trade-off between ensemble accuracy and efficiency via
some heuristic variants. In our experiments, we implement only the simplified methods rather than
the full greedy algorithm.

3.1 MODEL-FIRST GREEDY

Recall that a model and an instruction prompt determines a proposer. However, responses generated
by different prompts of the same model are typically more similar than responses generated by dif-
ferent models under the same prompt (see Appendix B.1). Inspired by hierarchical feature selection
(Ristoski & Paulheim, 2014), we introduce a simplification called model-first greedy. Unlike stan-
dard greedy—which estimates the marginal gain of every proposer using all m questions at each
iteration —model-first greedy scores all nprompt proposers from the same model using the common
set of m questions, then chooses a proposer only within the best model. Concretely, in iteration t:

1. For each model i ∈ [nLLM], estimate its average accuracy by randomly assigning each question
in QT to one of its associated proposers and averaging over m questions.

2. Select the model with the highest average accuracy, then pick the proposer associated with this
model with the highest estimated accuracy in the previous step.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Intuitively, the procedure prioritizes model selection while allowing more randomness in proposer
selection. This reduces summarizer calls per iteration from N ·m to nLLM ·m.

3.2 LABEL-LEVEL COMPLEMENTARITY

Model-first greedy estimates each proposer’s marginal contribution via direct calls to the summa-
rizer. However, the proposers’ labels themselves carry predictive signals: the summarizer is more
likely to answer correctly when it receives more correct inputs. This motivates the idea of selecting
proposers based on their label-level information, which can improve scalability by avoiding exten-
sive calls to the summarizer oracle. This idea is related to filter-based feature selection methods,
e.g. (Peng et al., 2005; Urbanowicz et al., 2018), which remove likely weak features without re-
training the predictor based on correlations between features. In particular, we use an alternative
set function Âcc, defined with respect to a label-based summarizer g, and use it to guide proposer
selection. This yields the following two methods.

Truth-Prediction Greedy Built on the intuition that labels from a set of complementary proposers
can predict the true label more accurately, we can train a light-weight machine learning model to
predict Yq , and use it to select informative proposers. Given a set of proposers S and a family of
models parametrized by θ ∈ Θ, we compute a value Âccgθ (S) using the following procedure:

1. Partition QT into a training set Qtr
T and a validation set Qval

T for cross validation.

2. Fit gθ. Use the data in the training set, ((Xi,q)i∈S , Yq)q∈Qtr
T

to fit a model gθ that maps |S|
labels on a question to a (hard) prediction of the ground truth label. Here, proposers’ generated
labels are viewed as features.

3. Score proposer set S. On the validation set, evaluate the accuracy of gθ using responses from
S and return Âccgθ (S).

Next, we select proposers using a variant of the greedy algorithm, called the k-greedy (Alg. 1),
using Accgθ as the set function. We first initialize a set of proposers S0 = ∅. Then, in round
t ∈ {1, . . . , k}, unlike standard greedy—which estimates a candidate’s marginal gain relative to the
current selected set St−1—k-greedy’s estimation always conditions on a set of k proposers. The
intuition is that LLM summarizers are non-monotone, so an element that looks promising early can
hurt performance at the final team size k. Concretely, given St−1, we randomly select k − t + 1
proposers, to form a team of size k, denoted as L. Then, we measure candidate i’s contribution
(i /∈ St−1) as the accuracy difference with and without i (replacing one randomly chosen proposer
in L). Averaging this difference over several random completions yields a more faithful estimate of
i’s value at the final team size. We refer to this method as truth-prediction greedy, which applies the
k-greedy algorithm to the set function Âccgθ. We emphasize that truth-prediction greedy relies on a
lightweight ML model to guide proposer selection, but the final ensemble is still formed by feeding
the chosen proposers into the summarizer.

Oracle-Surrogate Greedy Proposer selection under truth-prediction greedy does not depend on
the summarizer, so it may diverge from the ensemble’s true test performance. As an alternative
approach, we propose oracle-surrogate greedy, where the idea is to fit a simple surrogate model to
simulate the summarizer’s behavior using a small number of oracle queries on the training set, then
use the surrogate to score and select proposers. Although this method requires some summarizer
calls for training, the surrogate model is kept simple as we only focus on label-level information,
making it more sample-efficient than model-first greedy in practice.

We consider a surrogate model g̃ based on the assumption that the summarizer’s accuracy depends
primarily on how many of the k input labels are correct. Specifically, g̃ : {0, . . . , k} → [0, 1] maps
a count c of correct labels to the expected summarizer accuracy when exactly c out of k inputs
are correct. This implies that our surrogate model greatly reduces the sample complexity by not
distinguishing the proposer ID. Given a set of proposers S, the following procedure returns a value
Âccg̃(S) for set S:

1. Partition QT into a training set Qtr
T and a validation set Qval

T for cross validation.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Algorithm 1: k-Greedy Proposer Selection w.r.t. Acc

Input: ground set [N], target size k, set function Acc, repetitions M
Output: selected set Sk

S0 = ∅ ; // initialize the set of selected proposers
for t = 1 to k do

for i ∈ [N] \ St−1 do
∆i = 0;
for τ = 1 to M do

Sample L ⊆ [N] \ (St−1 ∪ {i}) uniformly with |L| = k − |St−1|;
Pick j ∈ L uniformly at random and set L′ ← (L \ {j}) ∪ {i};
∆i += Acc(St−1 ∪ L′)−Acc(St−1 ∪ L);

∆̂i(St−1) = ∆i/M ; // estimated marginal via random completions

Choose i⋆ ∈ argmaxi∈[N]\St−1
∆̂i(St−1);

St = St−1 ∪ {i⋆};
return Sk;

2. Fit g̃. For each c ∈ {0, . . . , k}, repeat Tg̃ times: (i) sample a question from Qtr
T and a size-k

set of proposers whose responses contain exactly c correct labels; (ii) query the summarizer on
these k responses. Define g̃(c) as the empirical accuracy—i.e., the average correctness of the
summarizer across the Tg̃ queries.

3. Score proposer set S. For each q ∈ Qval
T , compute cq(S), the number of correct labels in S,

and assign Âccg̃(S) =
1

|Qval
T |

∑
q∈Qval

T
g̃(cq(S)).

Next, we select a set of k agents by calling Alg. 1 with Âccg̃(S) as the set function.

4 EXPERIMENTS

In this section, we first introduce the experimental setups, then we validate the proposed
complementary-MoA framework, diagnose the failure modes of baseline selectors, quantify effi-
ciency–accuracy trade-offs, and finally study prompting strategies for the summarizer that yield
stronger ensembles.

4.1 EXPERIMENT SETUPS

Dataset We look for datasets with multi-choice reasoning questions. We choose two popular rea-
soning datasets: AIME (dolbokostya, 2025) and CLadder (Jin et al., 2023). AIME comprises about
1,600 curated mathematical problems and their answers sourced from prestigious competitions such
as the American Invitational Mathematics Examination (AIME) and the International Mathematical
Olympiad (IMO). The dataset was originally open-ended, with all true answers being integers. For
each question, we randomly pick four integers between 0 and 1,000 to serve as additional incorrect
answers, resulting in a five-choice QA dataset. CLadder contains 10k causal reasoning questions
that translate queries from causal graphs into natural-language yes/no questions spanning associa-
tion, intervention, and counterfactual levels. We sample 500 questions from AIME and 1k questions
from CLadder for our experiments.

Models We consider a diverse set of LLMs: QwQ-32B (Team, 2025b), Qwen3-32B (Team,
2025c), Sky-T1-32B-Preview (Team, 2025a), aya-expanse-32B (et al., 2024b), Gemini1.5-Pro
(et al., 2024a), Llama-3.3-70B-Instruct (Dubey et al., 2024), AceReason-Nemotron (Chen et al.,
2025a), GPT-4o (et al., 2024c). Each model is operated with a default temperature of 0.7. For each
of the LLMs, we consider nprompt = 5 different prompts which are presented in Appendix C, and
each model-prompt pair is viewed as a proposer.

We evaluate ensemble performance across four factors—dataset, proposer pool, summarizer, and
ensemble size k—using two datasets (CLadder, AIME), two pools (with/without QwQ), multiple

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

summarizers, and several choices of k ≤ 5. Because QwQ typically has dominant performance, we
use the “with QwQ” setting to simulate a dictator-style scenario, while the “without QwQ” reflects
a mixed field. For example, “(AIME, with QwQ, Aya, k = 3)” denotes the AIME dataset, a pool
including QwQ, Aya as summarizer, and selecting three proposers. We limit k to 5 because larger
ensembles show diminishing returns (Lau et al., 2024), while the cost of searching for the optimal
team grows quickly.

4.2 A COMPARISON OF PROPOSER SELECTION METHODS

Based on previous ideas in Section 2.1, we consider the following baselines:

• Input-all: input all N proposers.1

• Best-model: identify the most accurate model and select all proposers associated with it, in
line with (Li et al., 2025).

• Top-accuracy: select the most accurate k proposers overall.

• MoA (per-model top-1): for each model, select the single most accurate proposer, inspired by
the original mixture-of-agents framework (Wang et al., 2024).

• Conditioned-diversity: start with the most accurate proposer, then greedily add the proposer
that maximizes average disagreement with the selected set, subject to an accuracy threshold τ .
This is inspired by (Lau et al., 2024).

We randomly select m = 400 questions for proposer selection and use the remaining questions for
accuracy computing. For each LLM, we iteratively use nprompt = 5 prompts to solicit responses
for all the sampled questions, which returns N = 40 proposers’ responses for each question. We
randomize proposer order and include their individual accuracies in the instructions while inputting
into the summarizer. For methods that require training, we feed the m proposer-selection data into
the selection algorithm, which returns a set of k proposers that are evaluated on the test data. To
further reduce the variance of the ensemble accuracy (due to the randomness caused by the default
temperature of LLMs), we repeatedly call the summarizer ten times for each question and take the
average.

Table 1 and 2 compare two settings with and without QwQ as proposers. The former reflects a
“dictator” scenario in which QwQ dominates; the latter represents a mixed field with comparable
proposers. For each method, we also report per-model selection counts, indicating the number of
proposers selected from each model. We defer the results for other settings to the appendix.

Importance of Complementarity First, our results suggest that the accuracy-seeking or diversity-
seeking baselines are not robust. On AIME, accuracy-seeking methods (Top-accuracy, Best-model)
perform well when a single proposer is both the most accurate and the best collaborator with the
summarizer (e.g., QwQ with Aya); their performance greatly drops when QwQ is removed from
the proposer pool (Table 2). On the other hand, diversity-seeking methods (MoA, Conditioned-
diversity) degrade when there is a dominant collaborator with the summarizer, as in Table 1.

In contrast, the label-level, complementarity-aware methods, Truth-prediction Greedy and Oracle-
surrogate Greedy, while not always the top performers, deliver consistently strong performance
across all settings. Furthermore, Model-first Greedy yields particularly large gains over all base-
lines—with almost 10% accuracy gain compared with the best baseline. These findings provide
strong evidence that selecting proposers while explicitly considering complementarity is crucial for
effective LLM ensembles.

What explains this performance discrimination? Figure 2 presents the empirical distributions of
the number of correct labels c ∈ {0, . . . , k} obtained by the selected proposers under three repre-
sentative methods in the setting without QwQ as proposers. The overlaid curve shows the summa-
rizer accuracy conditioned on c correct labels.2 Clear patterns emerge: accuracy-seeking baselines,
such as Best-model, induce a U-shaped distribution of c, while diversity-seeking baselines, such as

1To fit the token limit, we truncate the responses from each proposer before summarizing.
2To reduce variance, we pool samples from all proposers to estimate the conditioned accuracy. Hence, the

curve is identical across methods within the same setting.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 1: A comparison of methods in the (AIME, with QwQ, Aya, k = 5) setting.

Method Average counts of selected proposers Accuracy
QwQ Qwen Llama Gemini GPT Sky Aya Ace

Input-all 5 5 5 5 5 5 5 5 0.746
Best-model 5 — — — — — — — 0.742
Top-accuracy 3 1 — 1 — — — — 0.729
MoA 1 1 1 1 1 1 1 1 0.635
Conditioned-diversity 1 — 1 — — — 1 2 0.546
Truth-prediction Greedy 2 2 — 1 — — — — 0.715
Oracle-surrogate Greedy 2 1 — 1 — — — 1 0.702
Model-first Greedy 2 1 — — — — — 2 0.830

Table 2: A comparison of methods in the (AIME, without QwQ, Aya, k = 5) setting.

Method Average counts of selected proposers Accuracy
Qwen Llama Gemini GPT Sky Aya Ace

Input-all 5 5 5 5 5 5 5 0.722
Best-model — — 5 — — — — 0.369
Top-accuracy 1 — — — 1 2 1 0.614
MoA (mixed) 1 1 1 1 1 1 1 0.616
Conditioned-diversity 1 1 — — 1 2 — 0.662
Truth-prediction Greedy 3 — 1 1 — — — 0.637
Oracle-surrogate Greedy 1 1 1 — 1 — 1 0.685
Model-first Greedy 3 — — — — — 2 0.815

Conditioned-diversity, exhibit a bell-shaped distribution. This indicates that Best-model tends to se-
lect proposers who make similar mistakes, which can be problematic when the summarizer accuracy
curve is concave—i.e., when the marginal benefit of additional correct answers diminishes. How-
ever, Conditioned-diversity concentrates mass around c = ⌊k/2⌋ by seeking different proposers,
which can be suboptimal when the summarizer requires a strong majority to achieve a significant
accuracy boost. In contrast, complementarity-based methods yield distributions that lie between
these two extremes, illustrating their robustness across different summarizer behaviors. Analogous
figures for other methods are deferred to the appendix.

0 1 2 3 4 5
Number of correct answers (c)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
/ A

cc
ur

ac
y

Accf(c)
(c)

(a) Best-model

0 1 2 3 4 5
Number of correct answers (c)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
/ A

cc
ur

ac
y

Accf(c)
(c)

(b) Conditioned-diversity

0 1 2 3 4 5
Number of correct answers (c)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
/ A

cc
ur

ac
y

Accf(c)
(c)

(c) Model-first Greedy

Figure 2: Distribution of the number of correct answers (bars) and summarizer accuracy Accf (c)
(line) for three exemplary methods in the (AIME, without QwQ, Aya, k = 5) setting.

We report additional results on the binary-answer dataset CLadder in the appendix. Across methods,
performance is largely similar—there are about 20% questions that no aggregation method is able
to answer—with Model-free Greedy yielding only a marginal improvement. This reflects a regime
where ensembling offers limited upside and underscores the need for robustness: while simple base-
lines may sometimes perform well, we demand methods that perform reliably across all settings.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 3: Sample complexity of considered
methods, measured as the number of sum-
marizer queries during proposer-selection.

Method Complexity

All baselines 0
Truth-Prediction Greedy 0
Oracle-Surrogate Greedy (k + 1)Tg̃

Model-First Greedy nLLM mk

Efficiency-Accuracy Tradeoff We quantify the ef-
ficiency of each method based on the number of sum-
marizer calls made during proposer selection (i.e.,
the sample complexity). All baselines, as well as
Truth-Prediction Greedy, rely on proposers’ individ-
ual reported labels and thus incur zero summarizer
calls. Oracle-Surrogate Greedy approximates the sum-
marizer’s accuracy using a training set and requires
(k+1)Tf̂ calls, where k+1 indexes the possible counts
of correct inputs and Tg̃ denotes the number of Monte
Carlo samples per case; in our experiments Tg̃ = 200, this leads to 1,200 calls in total. Model-
First Greedy queries calling the summarizer in each round to iterate all models, which scales as
nLLM ·m · k; in our experiments, this leads to 8 · 400 · 5 = 16,000 calls.

4.3 PROMPTING SUMMARIZER

In this subsection, we evaluate how (i) the order of proposer inputs and (ii) whether we include their
individual accuracies influence the summarizer accuracy.

We pick five proposers with relatively large accuracy differences, and input their responses to a sum-
marizer based on ascending, descending, and randomized order in their individual accuracies. For
each case, we further distinguish two settings depending on whether the accuracy of each proposer
is input to the summarizer as a part of the prompt.

Table 4 presents an example with two key takeaways. First, inputting accuracy matters. Providing
per-proposer accuracies affects performance in opposite ways across datasets—improving on AIME
yet degrading on CLadder. This suggests that the LLM summarizer can respond to the “reliability”
information, but the net effect is heavily context-dependent. Second, ordering matters. Placing
stronger proposers later in the prompt—i.e., using ascending accuracy order—outperforms descend-
ing order. This pattern is consistent with recency bias in long-context LLM inference (Peysakhovich
& Lerer, 2023): earlier content tends to receive less attention relative to later content. These findings
help clarify why our main experiments adopted a randomized ordering with per-proposer accuracies.

Table 4: Summarizer accuracies under different proposer orderings and whether individual accu-
racies are input in the (AIME or CLadder, ·, Ace, k = 5) setting with proposers: QwQ, Gemini,
Llama, GPT, Aya, under instruction prompt 1 (Appendix C).

AIME CLadder

Ordering Without accuracy With accuracy Without accuracy With accuracy

Ascending 0.524 0.526 0.806 0.773
Descending 0.500 0.496 0.792 0.759
Randomized 0.498 0.538 0.798 0.774

5 CONCLUSION AND DISCUSSION

In this paper, we propose complementary-MoA—a proposer-selection framework for post-
inference LLM ensembles that explicitly optimizes team effects between proposers and the sum-
marizer. Focusing on multiple-choice QA, we connect the problem to feature selection over a black-
box objective and instantiate three algorithms that realize different accuracy–efficiency trade-offs.
Experiments confirm the robustness of our methods, clarify when and why accuracy- or diversity-
based baselines fail, and suggest prompting strategies that further strengthen multi-AI collabora-
tion. Nonetheless, we acknowledge several limitations and future directions. First, our label-level
complementary algorithms work under multiple-choice scenarios, while the framework extends to
open-ended tasks whenever a reliable evaluation metric is available. Second, the efficiency–accuracy
frontier is not yet fully charted—hybrid designs (e.g., carefully choosing the first k′ < k proposers,
then filling the remainder by accuracy) may further reduce sample complexity.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

ETHICS STATEMENT

Our study evaluates post-inference LLM ensembling on public, non-personal benchmarks and in-
volves no human subjects or sensitive data; IRB approval was not required. Potential risks of the
ensemble framework include amplifying biases present in base proposer models and misuse of en-
sembles; we mitigate these by explaining the mechanisms behind various methods, avoiding sensi-
tive deployment claims, and providing new methods with significant improvements in robustness.
The authors report no conflicts of interest or sponsorship that could inappropriately influence this
work.

REPRODUCIBILITY STATEMENT

We commit to enabling independent verification and the reproducibility of our experiments. In the
paper, we specify the objective and detailed procedures for every proposed method, and all LLM
usage, datasets, and experiment setups are included. In terms of the computation environment, all
experiments run on non-proprietary models used 4x Nvidia RTX 4500 Ada GPUs or 1x Nvidia RTX
4500 Ada GPU and 3x Nvidia A100 Ampere.

REFERENCES

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu, Wei Xue, Shanghang Zhang, Jie Fu, and
Zhiyuan Liu. Chateval: Towards better LLM-based evaluators through multi-agent debate. arXiv
preprint arXiv:2308.07201, 2023.

Lingjiao Chen, Matei Zaharia, and James Zou. FrugalGPT: how to use large language models while
reducing cost and improving performance. arXiv preprint arXiv:2305.05176, 2023.

Yang Chen, Zhuolin Yang, Zihan Liu, Chankyu Lee, Peng Xu, Mohammad Shoeybi, Bryan Catan-
zaro, and Wei Ping. Acereason-nemotron: Advancing math and code reasoning through rein-
forcement learning. arXiv preprint arXiv:2505.16400, 2025a. URL https://arxiv.org/
abs/2505.16400.

Zhijun Chen, Jingzheng Li, Pengpeng Chen, Zhuoran Li, Kai Sun, Yuankai Luo, Qianren Mao,
Dingqi Yang, Hailong Sun, and Philip S. Yu. Harnessing multiple large language models: A
survey on LLM ensemble, 2025b.

dolbokostya. Math problems with answers (AIME, IMO). https://www.kaggle.com/
datasets/dolbokostya/math-problems-with-answers-aime-imo, 2025.
Kaggle dataset; accessed 2025-09-23.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving fac-
tuality and reasoning in language models through multiagent debate. In Forty-first International
Conference on Machine Learning, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Andrew Estornell and Yang Liu. Multi-LLM debate: Framework, principals, and interventions.
Advances in Neural Information Processing Systems, 37:28938–28964, 2024.

Gemini Team et al. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of
context. arXiv preprint arXiv:2403.05530, 2024a. URL https://arXiv.org/abs/2403.
05530.

John Dang et al. Aya expanse: Combining research breakthroughs for a new multilingual frontier.
arXiv preprint arXiv:2412.04261, 2024b. URL https://arxiv.org/abs/2412.04261.

OpenAI et al. Gpt-4o system card, 2024c. URL https://arxiv.org/abs/2410.21276.

10

https://arxiv.org/abs/2505.16400
https://arxiv.org/abs/2505.16400
https://www.kaggle.com/datasets/dolbokostya/math-problems-with-answers-aime-imo
https://www.kaggle.com/datasets/dolbokostya/math-problems-with-answers-aime-imo
https://arXiv.org/abs/2403.05530
https://arXiv.org/abs/2403.05530
https://arxiv.org/abs/2412.04261
https://arxiv.org/abs/2410.21276

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. LLM-Blender: Ensembling large language models
with pairwise ranking and generative fusion, 2023.

Zhijing Jin, Yuen Chen, Felix Leeb, Luigi Gresele, Ojasv Kamal, Zhiheng Lyu, Kevin Blin, Fer-
nando Gonzalez Adauto, Max Kleiman-Weiner, Mrinmaya Sachan, and Bernhard Schölkopf.
Cladder: Assessing causal reasoning in language models, 2023.

Ron Kohavi and George H John. The wrapper approach. In Feature Extraction, Construction and
Selection: a data mining perspective, pp. 33–50. Springer, 1998.

J. Zico Kolter and Andrew Y. Ng. Regularization and feature selection in least-squares tempo-
ral difference learning. In Proceedings of the 26th Annual International Conference on Ma-
chine Learning, ICML ’09, pp. 521–528, New York, NY, USA, 2009. Association for Com-
puting Machinery. ISBN 9781605585161. doi: 10.1145/1553374.1553442. URL https:
//doi.org/10.1145/1553374.1553442.

Gregory Kang Ruey Lau, Wenyang Hu, Diwen Liu, Jizhuo Chen, See-Kiong Ng, and Bryan
Kian Hsiang Low. Dipper: Diversity in prompts for producing large language model ensembles
in reasoning tasks, 2024. URL https://arxiv.org/abs/2412.15238.

Wenzhe Li, Yong Lin, Mengzhou Xia, and Chi Jin. Rethinking mixture-of-agents: Is mixing dif-
ferent large language models beneficial?, 2025. URL https://arxiv.org/abs/2502.
00674.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts, 2023.

Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin, Zheng Yuan, Chang Zhou, and Jingren Zhou.
Routing to the expert: Efficient reward-guided ensemble of large language models, 2023. URL
https://arxiv.org/abs/2311.08692.

Tarek Mahmud, Bin Duan, Corina Pasareanu, and Guowei Yang. Enhancing LLM code generation
with ensembles: A similarity-based selection approach. arXiv preprint arXiv:2503.15838, 2025.

Shmuel Nitzan and Jacob Paroush. Optimal decision rules in uncertain dichotomous choice situa-
tions. International Economic Review, pp. 289–297, 1982.

Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based on mutual information criteria
of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on pattern analysis
and machine intelligence, 27(8):1226–1238, 2005.

Alexander Peysakhovich and Adam Lerer. Attention sorting combats recency bias in long context
language models, 2023.

Petar Ristoski and Heiko Paulheim. Feature selection in hierarchical feature spaces. In International
conference on discovery science, pp. 288–300. Springer, 2014.

NovaSky Team. Sky-T1: fully open-source reasoning model with o1-preview performance in $450
budget. https://novasky-ai.github.io/posts/sky-t1, 2025a. Accessed: 2025-
01-09.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, 2025b.

Qwen Team. Qwen3 technical report, 2025c. URL https://arxiv.org/abs/2505.09388.

Selim Furkan Tekin, Fatih Ilhan, Tiansheng Huang, Sihao Hu, and Ling Liu. LLM-TOPLA: Efficient
LLM ensemble by maximising diversity. arXiv preprint arXiv:2410.03953, 2024.

Robert Tibshirani. Regression shrinkage and selection via the LASSO. Journal of the Royal Statis-
tical Society Series B: Statistical Methodology, 58(1):267–288, 1996.

Ryan J Urbanowicz, Melissa Meeker, William La Cava, Randal S Olson, and Jason H Moore. Relief-
based feature selection: Introduction and review. Journal of biomedical informatics, 85:189–203,
2018.

11

https://doi.org/10.1145/1553374.1553442
https://doi.org/10.1145/1553374.1553442
https://arxiv.org/abs/2412.15238
https://arxiv.org/abs/2502.00674
https://arxiv.org/abs/2502.00674
https://arxiv.org/abs/2311.08692
https://novasky-ai.github.io/posts/sky-t1
https://arxiv.org/abs/2505.09388

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Boshi Wang, Xiang Yue, and Huan Sun. Can ChatGPT defend its belief in truth? evaluating LLM
reasoning via debate, 2023a. URL https://arxiv.org/abs/2305.13160.

Hongyi Wang, Felipe Maia Polo, Yuekai Sun, Souvik Kundu, Eric Xing, and Mikhail Yurochkin.
Fusing models with complementary expertise. arXiv preprint arXiv:2310.01542, 2023b.

Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents enhances
large language model capabilities. arXiv preprint arXiv:2406.04692, 2024.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and
Chi Wang. AutoGen: Enabling next-gen LLM applications via multi-agent conversation, 2023.

A ADDITIONAL RELATED WORK

Agent-Level Ensemble. LLM ensembles can be constructed at multiple stages of the inference
pipeline (Chen et al., 2025b). We focus on agent-level ensembling, which treats each LLM as a
black box. A closely related paradigm is mixture-of-agents (MoA) (Wang et al., 2024), a layered
collaboration scheme in which, at a given layer, multiple proposers submit responses that are then
aggregated by a summarizer. Wang et al. (2024) show that MoA effectively aggregates complemen-
tary signals, often yielding more reliable outputs than a single stronger model. A follow-up study
challenges this design by demonstrating that repeatedly querying a single powerful LLM can also
boost MoA-style performance (Li et al., 2025). Another line of related work is LLM debate (Du
et al., 2023; Estornell & Liu, 2024; Chan et al., 2023; Wang et al., 2023a), where multiple models
iteratively critique and refine one another’s that can often result in a consensus outperforming a sin-
gle model. However, as Estornell & Liu (2024) point out, sharing all agents’ responses is not always
optimal, where they observe that select a subset of LLMs that maximizes the mutual information
between agents can be more effective. Our work targets the foundational step in the above frame-
works—the N → 1 summarization—with particular emphasis on proposing a more principled way
to decide which proposers to select for the summarizer.

Training-Based Ensemble. Prior literature has also explored the idea of training parametric meta-
models to decide, per query, which LLM (or which LLM’s output) to trust. For example, fusion
methods train a small network on features from multiple LLMs—e.g., concatenated probabilities or
last-layer embeddings—to predict the true label (Jiang et al., 2023; Wang et al., 2023b). Routing
methods learn a delegator that selects the most suitable agents for various tasks, e.g., RouteLLM uses
human preference data to bette trade off cost and quality (Lu et al., 2023), and ZOOTER learns a
router based on distilling rewards on training queries Lu et al. (2023). Similarly, cost-aware cascades
like FrugalGPT focus on learning when to use stronger but more expensive models (Chen et al.,
2023). Unlike prior training-based ensembles, our framework avoids substantial supervised datasets:
a few hundred examples suffice to learn the summarizer’s behavior for better proposer selection.
This light training also makes it compatible with closed-source LLM summarizers, whereas past
work either does not use an LLM summarizer or requires open-source access (e.g., logits/weights).

Feature-Selection. Our problem is naturally relevant to feature selection, where the goal is to
select a small subset of features that optimize the performance of an ML model. One of the most
classic example is Wrapper (Kohavi & John, 1998), which evaluates features by repeatedly training
a model—using forward/backward search. The selection of features can also be implemented by
inducing sparsity during training, with examples like LASSO (Tibshirani, 1996) and LARS (Kolter
& Ng, 2009). Furthermore, it is often beneficial to filter likely weak features without retraining a
predictor based on information-theoretic (e.g., mRMR (Peng et al., 2005)) or neighborhood criteria
(e.g., Relief (Urbanowicz et al., 2018)). However, two challenges limit applicability to our setting.
First, wrapper-style methods demand extensive retraining, while filter/embedded approaches operate
only at the label level and thus ignore the LLM summarizer’s error-correcting behavior.3 Second, the
summarizer’s performance is often non-monotone in the set of agents, making standard marginal-
gain scoring unreliable; this motivates new evaluation metrics for agent contribution—e.g., our k-
greedy algorithm in Section 3.2.

3That said, in Section 4.2 we show that even label-level selection can produce more robust ensembles than
existing baselines.

12

https://arxiv.org/abs/2305.13160

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

B ADDITIONAL RESULTS

B.1 LABEL-LEVEL AGGREGATION

In Table 5 and 6, we first present the accuracy of each proposer while answering the questions
independently. As we can see, QwQ is an outstanding model in comparison to others; Aya is a weak
model as a proposer, while we observe that it is a fast and accurate summarizer.

Table 5: Independent accuracy for each proposer with rows indicating models, columns indicating
prompt IDs on the AIME dataset.

Model 1 2 3 4 5

GPT-4o 0.424 0.418 0.366 0.390 0.436
AceReason-Nemotron-14B 0.444 0.482 0.468 0.452 0.442
Llama-3.3-70B-Instruct 0.484 0.476 0.460 0.466 0.450
QwQ-32B 0.500 0.502 0.480 0.536 0.578
Qwen3-32B 0.452 0.506 0.460 0.468 0.494
Sky-T1-32B-Preview 0.408 0.430 0.420 0.410 0.416
aya-expanse-32b 0.236 0.264 0.252 0.242 0.266
Gemini1.5-pro 0.488 0.480 0.490 0.496 0.490

Table 6: Independent accuracy for each proposer with rows indicating models, columns indicating
prompt IDs on the CLadder dataset.

Model 1 2 3 4 5

GPT-4o 0.681 0.680 0.682 0.677 0.685
AceReason-Nemotron-14B 0.708 0.726 0.692 0.707 0.726
Llama-3.3-70B-Instruct 0.507 0.595 0.502 0.538 0.532
QwQ-32B 0.775 0.789 0.803 0.802 0.797
Qwen3-32B 0.678 0.717 0.710 0.707 0.742
Sky-T1-32B-Preview 0.599 0.587 0.591 0.583 0.575
aya-expanse-32b 0.526 0.548 0.527 0.511 0.519
Gemini1.5-pro 0.707 0.704 0.718 0.734 0.748

We further test label-level aggregators against LLM summarizer aggregation, aiming to show that
leveraging proposers’ textual reasoning can boost accuracy. We evaluate three majority-vote vari-
ants: (i) over all proposers, (ii) over the best prompt per model, and (iii) over the best model per
prompt. We also include weighted majority vote, using the classic log-odds weights wi ∝ log pi

1−pi

derived for independent binary voters by Nitzan & Paroush (1982). Although our setting involves
multiclass labels and correlated voters, we adopt this weighting as a heuristic baseline. Finally, we
consider a learning-based baseline that trains a decision tree on the N proposers’ labels (features) to
predict the ground truth, and report test accuracy.

As shown in Tables 7 and 8, majority-vote baselines perform competitively with the LLM summa-
rizers on the binary CLadder dataset (a setting that prefers simple majority vote), yet they are sub-
stantially outperformed by LLM summarizers on the multichoice AIME dataset. The decision-tree
baseline is dominated by majority voting on both datasets. These results underscore the importance
of incorporating textual evidence from proposers’ reasoning, rather than relying solely on label-level
aggregation.

B.2 COMPARING PROPOSER SELECTION METHODS (CONTINUED)

Here, we present the comparison of methods in other settings, aiming to show the robustness of our
methods. To be consistent, we present all results in the same format as Table 1 and 2.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Table 7: Label-level aggregation baselines on CLadder.

Method
Accuracy

Unweighted Weighted

Majority 0.795 0.814
Majority (best prompt per model) 0.816 0.816
Majority (best model per prompt) 0.793 0.805
Decision Tree 0.737

Table 8: Label-level aggregation baselines on AIME.

Method
Accuracy

Unweighted Weighted

Majority 0.726 0.734
Majority (best prompt per model) 0.632 0.628
Majority (best model per prompt) 0.67 0.676
Decision Tree 0.612

Ensemble Size Table 10 and 9 report results for the (AIME, with QwQ, Aya) setting at k ∈
{3, 4} settings. Note that the results for Input-all, Best-model, and MoA remain the same, as their
performance does not depend on k. Our results confirm the robustness of our complementary-MoA
framework, as it remains competitive with the strongest baselines; the only notable exception is that
Top-accuracy is unusually strong at k = 3. Overall, we do not observe a monotonic improvement
in summarizer accuracy as the ensemble size increases.

Table 9: A comparison of methods in the (AIME, with QwQ, Aya, k = 3) setting.

Method Average counts of selected proposers Accuracy
QwQ Qwen Llama Gemini GPT Sky Aya Ace

Input-all 5 5 5 5 5 5 5 5 0.746
Best-model 5 — — — — — — — 0.766
Top-accuracy 2 1 — — — — — — 0.792
MoA 1 1 1 1 1 1 1 1 70.0
Conditioned-diversity 1 — — — — 1 1 — 0.519
Truth-prediction Greedy 1 2 — — — — — — 0.714
Oracle-surrogate Greedy 1 — 1 — 1 — — — 0.728
Model-first Greedy 2 1 — — — — — — 0.744

Summarizer and Dataset Here, we present the analogous results on the binary QA dataset CLad-
der, with Ace being the summarizer. In addition to proving the robustness of our methods, we
highlight the following observations. First, as we have seen in the main body, Input-all has been
a baseline that works well with Aya being the summarizer. However, our results with AceReason
being the summarizer challenge its robustness (see Table 11). We further emphasize that Input-all
requires significantly long-context inputs, and thus requires much longer inference time.

Second, as discussed in the main text, all methods perform similarly on the Cladder dataset, so
seeking complementary proposer teams yields only modest gains. Two factors likely explain this:
(i) the binary label space leaves little room for error correction, and (ii) roughly 20% of questions are
difficult and are missed by most of the proposers, which caps the potential benefit of aggregation.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Table 10: A comparison of methods in the (AIME, with QwQ, Aya, k = 4) setting.

Method Average counts of selected proposers Accuracy
QwQ Qwen Llama Gemini GPT Sky Aya Ace

Input-all 5 5 5 5 5 5 5 5 0.746
Best-model 5 — — — — — — — 0.766
Top-accuracy 3 1 — — — — — — 0.740
MoA 1 1 1 1 1 1 1 1 0.660
Conditioned-diversity 1 — 1 — 1 1 — — 0.620
Truth-prediction Greedy 2 2 — — — — — — 0.740
Oracle-surrogate Greedy 2 1 — 1 — — — — 0.728
Model-first Greedy 1 1 — — — — — 2 0.796

Table 11: A comparison of methods in the (AIME, with QwQ, Ace summarizer, k = 5) setting.

Method Average counts of selected proposers Accuracy
QwQ Qwen Llama Gemini GPT Sky Aya Ace

Input-all 5 5 5 5 5 5 5 5 0.339
Best-model 5 — — — — — — — 0.540
Top-accuracy 3 1 — 1 — — — — 0.559
MoA 1 1 1 1 1 1 1 1 0.481
Conditioned-diversity 1 — 1 — — 1 2 — 0.507
Truth-prediction Greedy 1 3 — — — 1 — — 0.542
Oracle-surrogate Greedy 2 1 1 — — 1 — — 0.561
Model-first Greedy — — 2 — — — — 3 0.553

Table 12: A comparison of methods in the (AIME, without QwQ, Ace summarizer, k = 5) setting.

Method Average counts of selected proposers Accuracy
Qwen Llama Gemini GPT Sky Aya Ace

Input-all 5 5 5 5 5 5 5 0.399
Best-model — — 5 — — — — 0.564
Top-accuracy 1 1 2 — — — — 0.508
MoA 1 1 1 1 1 1 1 0.452
Conditioned-diversity 1 1 — — 1 2 — 0.522
Truth-prediction Greedy 3 — 1 1 — — — 0.534
Oracle-surrogate Greedy 1 1 2 — — — 1 0.564
Model-first Greedy — 1 2 — — — 2 0.594

Distribution of Correct Answers Figure 3 presents the analogous illustrative example for the
remaining methods.

B.3 PROMPTING SUMMARIZERS

Here, we present the results analogous to Table 4 with Aya being the summarizer. As we can observe,
the same patterns hold.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Table 13: A comparison of methods in the (Cladder, with QwQ, Ace, k = 5) setting.

Method Average counts of selected proposers Accuracy
QwQ Qwen Llama Gemini GPT Sky Aya Ace

Input-all 5 5 5 5 5 5 5 5 0.804
Best-model 5 — — — — — — — 0.736
Top-accuracy 3 — — — — — — — 0.739
MoA 1 1 1 1 1 1 1 1 0.766
Conditioned-diversity 1 — — — — — 2 — 0.742
Truth-prediction Greedy 3 — — — — — — — 0.734
Oracle-surrogate Greedy 3 — — — — — — — 0.742
Model-first Greedy — — — 3 2 — — — 0.811

Table 14: A comparison of methods in the (Cladder, without QwQ, Ace, k = 5) setting.

Method Average counts of selected proposers Accuracy
Qwen Llama Gemini GPT Sky Aya Ace

Input-all 5 5 5 5 5 5 5 0.792
Best-model — — 5 — — — — 0.796
Top-accuracy 1 — 2 — — — 2 0.718
MoA 1 1 1 1 1 1 1 0.772
Conditioned-diversity — 1 1 — — — 1 0.760
Truth-prediction Greedy — 1 1 — 1 — — 0.756
Oracle-surrogate Greedy 1 — 1 — — — 1 0.763
Model-first Greedy — — 3 2 — — — 0.792

0 1 2 3 4 5
Number of correct answers (c)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
/ A

cc
ur

ac
y

Accf(c)
(c)

(a) Top-accuracy

0 1 2 3 4 5
Number of correct answers (c)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
/ A

cc
ur

ac
y

Accf(c)
(c)

(b) Truth-prediction Greedy

0 1 2 3 4 5
Number of correct answers (c)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
/ A

cc
ur

ac
y

Accf(c)
(c)

(c) Oracle-surrogate Greedy

Figure 3: Distribution of the number of correct answers (bars) and summarizer accuracy Accf (c)
(line) for the remaining methods, complementing Fig. 2, in the (AIME, without QwQ, Aya, k = 5)
setting.

Table 15: Summarizer accuracies under different proposer orderings and whether individual ac-
curacies are input in the (AIME or CLadder, ·, Aya, k = 5) setting under instruction prompt 1
(Appendix C).

AIME CLadder

Ordering of proposers Without accuracy With accuracy Without accuracy With accuracy

Ascending 0.574 0.618 0.693 0.605
Descending 0.578 0.596 0.658 0.591
Randomized 0.526 0.568 0.683 0.587

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

C PROMPTS

Multi-choice — Proposer Prompt

You will solve a multiple choice question. Format your answer to include:
1. A full response
2. A concise step-by-step reasoning
3. The single letter choice

Binary-choice — Proposer Prompt

You will answer a yes or no question. Format your answer to include:
1. A full response
2. A concise step-by-step reasoning
3. The yes or no answer

Multi-choice — Summarizer Prompt

I will give you a multiple choice question and potential solutions that may be correct or incor-
rect. Your task is to analyze the reasoning of the potential solutions step by step.
If there are any errors, correct them and update your answer.
If there are no errors, answer the question matching those solutions.
Your answer must be in the format of a full response, then a letter choice.

Binary-choice — Summarizer Prompt

I will give you a yes or no question and multiple potential solutions that may be correct or
incorrect. Your task is to analyze the reasoning of the potential solutions step by step.
If there are any errors, correct them and update your answer.
If there are no errors, answer the question matching those solutions.
Your answer must be in the format of a full response, then a yes or no answer.

Instruction Prompt 1

Divide the question into smaller, manageable parts and tackle each part individually before
synthesizing the overall answer.

Instruction Prompt 2

Use mathematical principles and logic to solve the problem, even if it’s not a math question.

Instruction Prompt 3

Relate the question to a familiar concept or situation to better understand and solve it.

Instruction Prompt 4

Think about what the answer would be if the opposite were true, to gain a different perspective.

Instruction Prompt 5

Eliminate the obviously incorrect answers first and then choose the most likely correct answer.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

D LLM USAGE

Large language models (LLMs) were used in this paper only as a general-purpose writing assistant.
Specifically, they supported adjusting phrasing for clarity, polishing grammar, shortening sentences,
and reformatting text. LLMs were also used to generate and refine tables (e.g., aligning multi-
column headers and converting between LaTeX table styles). At no point did LLMs contribute to
research ideas, conceptual framing, or experimental design. All substantive intellectual contributions
are solely those of the authors.

18

	Introduction
	Problem Statement
	Previous Ideas

	Methods
	Model-First Greedy
	Label-level Complementarity

	Experiments
	Experiment Setups
	A Comparison of Proposer Selection Methods
	Prompting Summarizer

	Conclusion and Discussion
	Additional Related Work
	Additional Results
	Label-level Aggregation
	Comparing Proposer Selection Methods (Continued)
	Prompting Summarizers

	Prompts
	LLM Usage

