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ABSTRACT

Language is one of the primary means by which we describe the 3D world around
us. While rapid progress has been made in text-to-2D-image synthesis, similar
progress in text-to-3D-shape synthesis has been hindered by the lack of paired
(text, shape) data. Moreover, extant methods for text-to-shape generation have
limited shape diversity and fidelity. We introduce TextCraft, a method to address
these limitations by producing high-fidelity and diverse 3D shapes without the
need for (text, shape) pairs for training. TextCraft achieves this by using CLIP
and using a multi-resolution approach by first generating in a low-dimensional
latent space and then upscaling to a higher resolution, improving the fidelity of
the generated shape. To improve shape diversity, we use a discrete latent space
which is modelled using a bidirectional transformer conditioned on the inter-
changeable image-text embedding space induced by CLIP. Moreover, we present
a novel variant of classifier-free guidance, which further improves the accuracy-
diversity trade-off. Finally, we perform extensive experiments that demonstrate
that TextCraft outperforms state-of-the-art baselines.

“a baseball cap” “a skateboard” “a motor bike” “a formula one car” “a round guitar” “a bathtub”

Figure 1: We propose a new zero-shot text-to-shape generation method called TextCraft. The gener-
ated shapes are high-quality and can reflect the semantic meaning from the text input in ShapeNet55.

1 INTRODUCTION

In recent years, there has been rapid progress in generating images from natural language
prompts (Ramesh et al., 2021; 2022; Rombach et al., 2022a), driven by large databases of paired
(text, image) data. These natural-language-based image synthesizers have had broad impact in do-
mains ranging from human–robot interaction (Shridhar et al., 2021) to visual creativity, for instance
allowing high-fidelity image creation and manipulation (Ramesh et al., 2022). Natural language in-
terfaces could also be valuable in other hitherto unexplored domains such as 3D modeling which has
a high skill barrier to entry. Unfortunately, developing text-based 3D shape generators is challenging
because of the difficulty of obtaining paired (text, 3D shape) data at large scale. Some prior work
has attempted to address this problem (Chen et al., 2018; Liu et al., 2022; Mittal et al., 2022; Fu
et al., 2022), but have been limited to a small number of categories for which such data is available.

A promising way around this data bottleneck is to use weak supervision from large-scale vi-
sion/language models such as CLIP (Radford et al., 2021). One instantiation of this approach is
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to directly optimize a 3D representation such that (differentiable) renderings of it are similar to an
input text prompt when projected into CLIP space. Prior work has applied this approach for styl-
izing 3D meshes (Michel et al., 2022) and for creating abstract, “dreamlike” objects represented as
neural radiance fields (Jain et al., 2022). Neither produces realistic object geometry, and both re-
quire expensive optimization to generate a new 3D output. Another approach, more in line with the
text-to-image generators (Ramesh et al., 2021; 2022), is to train a text-conditional generative model.
The CLIP-Forge system (Sanghi et al., 2022) builds such a model without paired (text,shape) data
by using rendered images of shapes at training time and leveraging the CLIP embedding space to
bridge the gap between images and text at test time. It demonstrates compelling zero-shot generation
abilities but produces low-fidelity shapes (323 occupancy grids) that do not capture the full diversity
of shapes in the training data distribution.

In this paper, we address the limitations of previous work: needing (text, shape) pairs or produc-
ing low-fidelity outputs that lack shape diversity. Our method, TextCraft, is a text-conditional
3D shape generative model that outputs diverse and high-fidelity 3D shapes using only CLIP as
supervision. To learn without (text,shape) pairs TextCraft learns to produce 3D shapes of common
object categories by leveraging CLIP embeddings of prompts and rendered images of the shapes. To
achieve high-fidelity outputs, TextCraft adopts a multi-resolution approach: it first generates a low-
resolution latent grid representation and then upscales it to higher resolution before decoding final
geometry. To achieve diversity, these latent representations are discrete: they are obtained using a
vector quantization scheme that avoids posterior collapse. TextCraft generates these latent grids via
a masked transformer architecture, whose output quality and diversity is further improved by a novel
annealed variant of classifier-free guidance (Ho & Salimans, 2022). We demonstrate both quantita-
tively and qualitatively that TextCraft outperforms other methods on standard metrics of generative
model quality and diversity. To sum up, we contribute:

• TextCraft, a multi-resolution text-conditional shape generative model that achieves both
high quality and diversity without the need for (text,shape) pairs.

• A novel variant of classifier-free guidance for conditional generative models, using an an-
nealed guidance schedule to achieve better quality for a given diversity level.

2 RELATED WORK

Neural Discrete Representation. Discrete latent spaces for deep generative models(Oord et al.,
2017) were first proposed for image generation as a method to address the“posterior collapse” prob-
lem while improving image quality for variational autoencoders. For images, the latent space is
structured as 2D grids of discrete latent variables. Further works introduced multi-scale hierarchical
versions (Razavi et al., 2019; Dhariwal et al., 2020) which further improved generative capabilities.
Recently, within the 3D domain as well, models have adopted neural discrete representations (Yan
et al., 2022; Mittal et al., 2022) such as discretized voxel and implicit grids. In this work, we take
inspiration from hierarchical VQ-VAEs (Razavi et al., 2019; Dhariwal et al., 2020) and propose an
architecture capable of generating hierarchical discrete representations for high quality 3D shapes.

Latent Generative Models. Generating high quality 3D shapes requires intensive computing re-
sources. In recent years, latent generative models have been widely adopted, because these models
can generate low-dimensional latent representations more effectively. These latent representations
can be used to efficiently generate images and shapes, as shown in many works (Chen & Zhang,
2019; Ibing et al., 2021) which use GANs. However, one disadvantage of GANs is that they tend
to suffer from training instability and mode collapse. Other types of models like flow-based models
(Yang et al., 2019; Sanghi et al., 2022) have been proposed, but they yield low sample quality which
is inferior to GAN-based models. Recent works use diffusion (Gu et al., 2022; Rombach et al.,
2022b) or masking models (Chang et al., 2022) on the latent space which increase the inference
efficiency while giving quality outputs. Building on these works, we propose a hierarchical latent
generative model that can further improve the quality and diversity of shape generations.

Text-to-Shape Generation. Text-to-shape generation has gained momentum in recent years. Recent
works(Chen et al., 2018; Liu et al., 2022; Mittal et al., 2022; Fu et al., 2022) use supervised text-
shape pairs to generate shapes effectively using natural language. However, a major drawback is
the availability of text-shape paired datasets, forcing these methods to only generate shapes from a
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few categories. To solve this, several recent works have successfully leveraged the prior knowledge
in image-text latent space of CLIP (Radford et al., 2021) by converting the shapes into image. One
line of work uses differentiable renderers (Michel et al., 2022; Jain et al., 2022) and the other learns
a mapping from image to shape space (Sanghi et al., 2022). Although these methods are effective,
they suffer from the long optimization time and poor quality of generated shapes. Our method is
able to generate more diverse shapes of higher quality within a relatively short inference time.

3 METHOD

Our goal is to generate 3D shapes which conform to a natural language input prompt, and to do this
without relying on text labels for 3D shapes at training time. In lieu of text labels training shapes,
we will instead use the prior knowledge embedded in the CLIP vision/language model (Radford
et al., 2021). For each shape in our training set (D), we assume we have a set of images {Ir|r ∈ R}
of the shape rendered from a set of views R. We also assume two volumetric occupancy grid
representations of the shape, V32 and V64, voxelized at resolutions of 323 and 643, respectively.

Figure 2 illustrates the components of our TextCraft model. Training the model involves three
stages (Figure 2 top). In the first stage, we train two vector-quantized variational autoencoders
(VQ-VAEs), one to model the coarse-resolution voxel grid V32 and the other to model the fine-
resolution voxel grid V64. The encoders of these VQ-VAEs produce discrete latent grids E32 and
E64, respectively. In the second stage, we train a coarse transformer model Tc(.) which takes as input
a masked quantized latent grid E32 and predicts the original unmasked version. This transformer is
conditioned on the CLIP image embeddings for the rendered images {Ir}. Finally, in the third stage,
we train a fine transformer model (Tf (.)) takes a masked quantized latent grid E64 and predicts the
original unmasked version; this network is conditioned on the corresponding coarse latent grid E32

via cross attention.

During inference (Figure 2 bottom), TextCraft starts with a fully-masked coarse latent grid E32 and
uses the coarse transformer Tc to produce an unmasked version via confidence-based iterative decod-
ing scheme (Chang et al., 2022). While this network was conditioned on CLIP image embeddings
of the target shape at training time, we can leverage the interchangeability of text and image embed-
dings in CLIP space to instead condition it on the CLIP text embedding of the input text prompt.
This unmasked coarse latent grid is then used to condition the fine transformer Tf , which takes a
fully-masked fine latent grid E64 as input and produces an unmasked version via confidence-based
iterative sampling. Finally, this unmasked fine latent grid is passed to the 643 VQ-VAE decoder to
produce output geometry in the form of a 643 volumetric occupancy grid.

3.1 TRAINING STAGE 1: VOXEL VQ-VAES

The goal of the first training stage is to learn a low dimensional latent space which can effectively
reconstruct shapes but also excel at generating novel ones. For this, we use a vector-quantized for-
mulation of the variational autoencoder (VQ-VAE) (Oord et al., 2017), because (a) it has been shown
to capture more modes of the data distribution (i.e. to avoid “posterior collapse”), and (b) its discrete
representation is amenable to modeling with transformers in the later stages of our architecture. We
train two separate VQ-VAEs for the 323 and 643 resolution voxel representations of our training
shapes. For both autoencoders, we use ResNet-based (He et al., 2016) volumetric CNN encoders
and a vector quantization layer which maps down-sampled volumes into a discrete space (E32 and
E64 for the two resolution levels, respectively) by indexing into an embedding codebook. The de-
coders first map the indices in E32 and E64 to their respective embeddings in the codebook and then
uses ResNet-based 3D convolutions to decode the output shape. We train the network using the
mean squared error loss (MSE) with the commitment loss as specified in (Oord et al., 2017). How-
ever, we replace the codebook loss from (Oord et al., 2017) with a moving average of the encoder
output to update the codebook embeddings. It has been found that using moving averages allows
the network to converge faster instead of using codebook loss (Razavi et al., 2019; Łańcucki et al.,
2020).
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Figure 2: The TextCraft architecture during training (top) and inference (bottom). TextCraft is
trained in three stages. In Stage 1, we train two separate VQ-VAE models for 323 and 643 resolution
voxel grids. In Stage 2 we train a coarse transformer to generate low resolution VQ-VAE latent
grids E32 conditioned on a CLIP embedding. In Stage 3, we train a fine transformer to perform
super resolution on these latent grids. During inference, a text prompt is passed through the CLIP
text encoder and used to condition the coarse transformer to generate a coarse latent grid E32. This
coarse grid is then used to condition the fine transformer to generate a fine latent grid E64 that is
then used to generate the output shape using the 643 VQ-VAE decoder from Training Stage 1.

3.2 TRAINING STAGE 2: COARSE TRANSFORMER

In this stage, our goal is to train a transformer Tc that can generate a coarse quantized latent grid E32

from an input text prompt. Inspired by the recent success of masking approaches (Chang et al., 2022)
and diffusion models (Nichol et al., 2021; Gu et al., 2022; Rombach et al., 2022b), we formulate this
task as a conditional unmasking task: given an input masked latent grid and a conditioning vector,
the transformer should produce an unmasked latent grid.

The conditioning vector c is the mechanism by which the input text prompt influences the generative
process. Since we assume no text labels for our training shapes, we leverage the interchangeability
of text and images in the CLIP embedding space: training on CLIP embeddings produced from
image (which we can obtain by rendering a training shape) while testing on CLIP embeddings
produced from text prompts. For training, we compute the condition vector c for a given training
shape by passing one of its renderings Ir through the ViT-based (Dosovitskiy et al., 2020) CLIP
image encoder fI(·) (whose weights are frozen). As the goal is to eventually use text embeddings
instead of image embeddings during inference, we add Gaussian noise to better align the text and
image embeddings (Zhou et al., 2021):

ĉ = fI(Ir) + γ · ϵ · ∥fI(Ir)∥2/∥ϵ∥2, where ϵ ∼ N (0, 1) (1)

In the above equation, γ controls the level of perturbation. To obtain the final condition vector, c,
we divide ĉ by its norm (ĉ/∥ĉ∥2). The condition vector is then passed through a common mapping
network which is a multi-layer perceptron (MLP) to obtain c̃. The condition vector c influences the
transformer by predicting the affine transform parameters of each transformer block’s layernorm.
This is an important design choice which we investigate in an ablation study (Section 4). We also
drop the condition vector (i.e. replace with the null embedding c = 0) with a p% probability during
training for classifier-free guidance (Ho & Salimans, 2022).
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To train the coarse transformer Tc, we first select a masking ratio ρ ∈ [0, 1] and randomly replace
ρ% of the indices in E32 with special “mask” tokens to obtain Y32. The training objective is then
to minimize the negative log-likelihood of the coarse grid given the masked grid and the condition
vector c. However, we find that using this objective does not solve the issue of accumulation of
error during inference-time sampling (i.e. autoregressive drift), since the network sees only ground
truth tokens (and not its own predicted samples) during training. To alleviate this issue, we take
inspiration from the NLP literature (Savinov et al., 2021a) and propose using a similar two-step
unrolled training loss:

L = − E
E32∈D

[
N∑
i

(
log p(Ei

32|Y32, c) + log p(Ei
32|Ỹ32, c)

)]
(2)

In the above equation, Ỹ32 is calculated by masking a sample from Tc(·|Y32, c), i.e. the network’s
own prediction. Note that this differs from Savinov et al. (2021a), as we predict the entire unmasked
grid at each time step.

3.3 TRAINING STAGE 3: FINE TRANSFORMER

The goal of the fine transformer Tf is to take an unmasked coarse latent grid and produce a higher-
resolution latent grid—essentially, it performs super-resolution in the discrete latent space. As with
the coarse transformer Tc, we formulate this transformer’s learning task as unmasking the masked
indices of E64. Where Tc is conditioned on a CLIP embedding via layer norm parameters, Tf

is instead conditioned on the unmasked coarse grid E32 via cross attention. Empirically, we find
that this network performs best when this conditioning comes from the predictions of the coarse
transformer instead of the ground-truth coarse latent grid, i.e. using Ê32 ∼ Tc(·|Y32, c) instead of
E32. This intuitively makes sense as we use the actual results observed during sampling. Moreover,
we find that additionally conditioning on CLIP image features hurts performance, indicating most
of the relevant information is already present in the coarse latent grid.

3.4 INFERENCE

At inference time, we first convert a given input text prompt into a CLIP text embedding using the
CLIP text encoder fT . We exploit the interchangeability property of the CLIP embedding space
(Sanghi et al., 2022), using the output of fT in place of the output of the CLIP image encoder fI in
the computation of the coarse transformer’s condition vector c (Equation 1). The initial input to the
coarse transformer is a completely masked latent grid E32. We use the iterative decoding scheme
(Chang et al., 2022) to slowly unmask the grid over a sequence of T steps. At each time step t,
we condition the coarse transformer with c and the predicted output latent grid from the previous
time step. We then take the output from the coarse transformer and mask all other tokens except the
previously predicted tokens and the most confident token predictions at this time step by looking at
their probability outputs. We repeat this process until the process unmasks all the tokens, which is
ensured by a cosine masking schedule (Chang et al., 2022).

During this iterative decoding scheme, we apply a new variant of classifier-free guidance (Ho &
Salimans, 2022). Classifier-free guidance extrapolates an unconditional sample in the direction of a
conditional sample, where the amount of extrapolation is controlled by a guidance scale parameter.
Varying this parameter results in varying the tradeoff between fidelity to the conditioning vector
and sample diversity. As proposed in the original paper, the guidance scale is kept constant for all
time steps. To improve the accuracy/diversity tradeoff, we propose instead to vary the guidance
scale over time according to an annealing schedule. The intuition is that during the initial steps of
sampling (when the input to the coarse transformer is mostly masked indices), a larger guidance
scale is important to keep the network “on task”; later on in the sampling process, a lower guidance
scale can help produce more sample diversity. The overall equation is given below:

p̂(Et
32|Et−1

32 , c) = p(Et
32|Et−1

32 ,0) + a(t)(p(Et
32|Et−1

32 , c)− p(Et
32|Et−1

32 ,0)) (3)

Here, a(t) is the guidance scale annealing schedule, which is continuous and monotonically de-
creasing. We can recover the original classifier-free guidance scheme by setting a(t) = k for some
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constant k. In this paper, we experimentally evaluate several annealing schedules (Chang et al.
(2022)), including linear, cosine, and square root functions.

Finally, the unmasked coarse latent grid E32 is used to condition the fine transformer Tf , which
uses the iterative decoding scheme to unmask an initially fully-masked fine latent grid E64. The
unmasked fine grid is then passed to the 643 VQ-VAE decoder to obtain the final voxelized output
shape.

4 EXPERIMENTS

In this section, we report experimental results to evaluate the generation quality, diversity, and class
accuracy of TextCraft. We provide the details for the hyperparameters and experimental details in
the Appendix. We run the experiments 3 times for each of the below sections and report the mean
in each case, except the final comparisons with Clip-Forge where we use the best seed. Additional
results can also be found in the Appendix.

Dataset. We conduct our experiments on two subsets of the ShapeNet(v2) dataset (Chang et al.,
2015). The first subset, ShapeNet13, contains 13 categories from ShapeNet as used in (Choy
et al., 2016; Mescheder et al., 2019). We use the same train/test split as specified in (Mescheder
et al., 2019). Our second subset is ShapeNet55 which contains all 55 ShapeNet categories. For
ShapeNet55, we render images as described in (Choy et al., 2016) and the training dataset contains
51784 datapoints whereas the test set contains 6101 datapoints.

Evaluation Metrics. We use Mean Square Error (MSE) and Intersection over Union (IoU) as
metrics for reconstruction accuracy to compare different hyperparameters in Stage 1. We calculate
MSE and IoU on the ShapeNet(v2) test set at 323 voxel resolution as in Mescheder et al. (2019). For
generative capabilities, we use Fréchet Inception Distance (FID) (Heusel et al. (2017)) to evaluate
diversity and Classifier Accuracy (Acc) to evaluate how well the generated shapes match a given
text query. These metrics follow (Sanghi et al., 2022) where they first generate single mean shapes
for 234 predetermined text queries and then pass all shapes through a classifier to measure Acc. The
latent space of this classifier is also used for FID.

Baseline. We compare the performance of our method against CLIP-Forge (Sanghi et al., 2022)
and DreamFields (Jain et al., 2022), which are currently state of the art for zero-shot text-to-shape
generation. In CLIP-Forge, they only report results on single shape generation for the predetermined
234 text queries which we refer to as CF-MS. The single shape is generated using the mean of the
prior which is the Gaussian distribution. Note that this does not capture the diversity of multiple
shapes generated given a text query. To capture results on more shape generations, we sample
32 shapes instead of one using either a Gaussian (CF-G), truncated Gaussian (CF-TG) or clipped
Gaussian (CF-CG) distribution. We follow the same protocol for our method as we do not have the
ability to generate single mean shape. We only compare qualitatively with DreamFields as it does
not use prior knowledge from the shape dataset and it would be unfair to report those results.

4.1 EVALUATING SHAPE DIVERSITY AND ACCURACY

In this section, we first quantitatively evaluate diversity and accuracy of a given shape matching a
given text query on the ShapeNet13 dataset. We compare with CLIP-Forge using the Acc metric
and FID metric. The results are shown in Table 1. The first four columns represent CLIP-Forge and
different sampling techniques. The other columns represent our method with different annealing
scale strategies. Two major things can be observed. First, all variants of our method outperform
CLIP-Forge significantly. This indicates that the method produces more diverse and higher fidelity
shapes of increasing accuracy. Second, it can be seen that annealing strategies for guidance scale
gives a better accuracy versus diversity trade-off then constant scale guidance. This is discussed
more below.

We qualitatively also compare our method to CLIP-Forge and DreamFields. The results are shown
in Figure 3. It can be observed that our method generates higher quality shapes (view ”a machine
gun”), with more detail (view ”an office chair”) and higher diversity (view ”a jet”). Clip-Forge
usually produces the same shape with small variations (view ”a rectangular table”). We also note
that DreamFields produces very abstract results which might not be useful in many applications.
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Table 1: Comparisons of CLIP-Forge(CF) baseline (across different sampling strategies) with
TextCraft (TC) on Accuracy(ACC) and FID. Accuracy is based on the match between the prediction
of a pretrained voxel classifier and the category label.

Method CF-MS CF-G CF-TG CF-CG TC-const. TC-sqrt TC-linear TC-cosine

FID ↓ 2425.25 2233.48 2141.61 2100.67 1821.78 1480.11 1629.51 1725.63
ACC ↑ 83.33 62.81 68.71 71.11 86.59 87.08 87.50 87.27

Table 2: Left Table: Effect of varying the Noise parameter . Center Table: Effect of varying number
of layers (L) in the mapping network . Right Table: Comparison with baselines on super resolution

γ FID↓ Acc↑
× 1720.02 64.87
0.5 1764.98 75.73
0.8 1484.61 77.41
1.0 1703.38 79.09
1.2 1447.91 79.63
1.5 1478.17 78.47

L FID↓ Acc↑
0 2874.87 62.72
1 1716.73 78.70
2 1518.97 79.17
3 1447.91 79.63
4 1532.50 77.16
5 1424.46 76.09

Method FID↓ Acc↑
3D-UNet 2056.92 86.65
TT-Net 2196.96 77.92

TextCraft 1910.28 86.85

Finally, we also show results on ShapeNet55 in the last row of Figure 3. We could not get CLIP-
Forge to produce sensible shapes for most text queries on ShapeNet55 which we attribute to the data
imbalance issue of ShapeNet55 whereas our method produces high quality shapes.

4.2 MAJOR COMPONENTS OF STAGE 2 TRAINING

Effect of Noise Parameter. We investigate the effects of different noise levels(γ) added to the
image condition vector during training. The results are shown in Table 2, left. The first row has
no noise added whereas the remaining rows show varying levels of noise. We keep the number of
mapping layers fixed in this experiment. We observe that adding Gaussian noise drastically improves
both the diversity and accuracy of generation with the optimal noise parameter being around 1.2.
These results indicate that adding noise during training helps with the alignment between the text
features observed during inference and the image features observed during training.

Size of Mapping Network. We next probe the importance of the mapping network. We show the
results in the center table of Table 2, where L represents the number of layer of the mapping function.
For 0 layers we directly project conditional embeddings to the layernorm parameters using a linear
layer. We make two observations from the results: 1) A common mapping network improves both
the accuracy and FID. 2) Increasing the number of mapping network layers beyond a certain number
decreases accuracy.

Classifier-Free Guidance. We next explore the relationship between dropping out image condi-
tioning at ρ% during training and using classifier-free guidance during generation. In Table 3, the
columns indicate the variation in scale parameter. It can be seen that with the increase in scale,
accuracy typically increases whereas there is a decrease in FID. This indicates the method is giving
more accurate results on a given text query while sacrificing diversity. Moreover, a low dropout rate
(5-15%) gives a good trade-off between accuracy and diversity.

Step-Unrolled Training (SUT). Finally, to further improve the accuracy we investigate the use of
step-unrolled training (Savinov et al., 2021b). The results are shown in the last row of Table 3. From
the table it can be observed that step unroll training enables higher accuracy across all scales. This
indicates that the model learns to unmask samples it would encounter during sample time.

4.3 ANNEALING STRATEGY FOR GUIDANCE SCALE PARAMETER

An important idea we propose in this paper is a scale annealing technique for classifier-free guid-
ance. We employ classifier-free guidance to identify a better accuracy versus diversity trade-off with
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TextCraft CLIP-Forge DreamField

"a machine gun"

"a table lamp"

"a truck"

"a jet"

"an office chair"

"a round table"

"a rectangular table"

"a motor bike"

Figure 3: Qualitative comparison among TextCraft (rendered in purple), CLIP-Forge (Sanghi et al.,
2022)(rendered in green), and DreamField (Jain et al., 2022) on text-conditioned generation.

different annealing schedules: constant, linear, cosine and square root. A constant schedule refers to
the use of the same scale value across all time steps as proposed in Ho & Salimans (2022); Nichol
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Table 3: Classifier-Free Guidance and Step-Unrolled Training (SUT) experiment results. p repre-
sents the dropout of conditioning. SUT indicates the use of Step-Unrolled Training. The remaining
columns indicate the variation in scale parameter.

ρ% SUT 3 2.5 2 1.5 1
FID↓ Acc↑ FID↓ Acc↑ FID↓ Acc↑ FID↓ Acc↑ FID↓ Acc↑

5 × 2059.0 85.73 1970.1 85.47 1790.9 85.43 1536.5 83.98 1227.5 79.17
10 × 1893.2 84.46 1821.2 84.50 1684.3 83.41 1522.4 82.34 1348.4 77.76
15 × 2086.9 85.03 1964.7 84.99 1851.9 84.36 1660.9 83.14 1485.5 78.19
20 × 2062.5 83.39 1972.3 82.95 1892.9 82.74 1733.3 81.13 1566.6 75.94
5 ✓ 2039.8 87.69 2011.1 87.39 1811.8 87.40 1678.6 86.24 1517.9 82.18

Figure 4: FID and Acc results with different classifier-free guidance scale annealing strategies (con-
stant, cosine, square root, linear) across three different runs (different seeds) of the TextCraft Stage
2 Transformer.

et al. (2021). To determine which annealing technique works the best, we fix the FID values and
plotted the accuracy at each fixed FID value (Figure 4). As different scale parameters give different
FID values, we conducted an extensive grid search over the starting scale parameter. Note that find-
ing the exact FID is not always feasible, so we pick the closest FID. Figure 4 shows results of FID
versus accuracy on three different runs of the Stage 2 Transformer. We find that across all three runs
the accuracy is typically lower for a given FID in the case of a constant schedule, when compared
to other schedules. This is especially the case at the lower range of FID values. The results indicate
that having a large scale at the beginning of sampling is more important than later stages especially
in use cases where diversity is paramount.

4.4 SUPER-RESOLUTION

Finally, we investigate the importance of hierarchy based super-resolution. We compare our method
with 2 baselines. In the first baseline, we directly use the 323 resolution results from coarse trans-
former and use a 3D U-NET (Ronneberger et al., 2015) based super-resolution network to translate
from 323 to 643. For the second baseline, we train a transformer directly on 643 VQ-VAE which is
conditioned on text features instead of coarse resolution grid. We refer to this as TT-Net. The results
are shown in Table 2, right. It can be seen from the table that indeed latent based super-resolution
outperforms the baselines in both accuracy and diversity.

5 CONCLUSION

We present TextCraft, a text-to-3D-shape generation method that is capable of producing shapes of
high fidelity and diversity without the need for (text, shape) pairs during training. To achieve this,
TextCraft leverages CLIP and implements super-resolution in a discrete latent space with a hierarchi-
cal architecture and a novel annealed variant of classifier-free guidance on a mask-based model. We
validate TextCraft by comparing it with a number of baselines in terms of FID and accuracy, finding
that TextCraft is the new state of the art for this problem. In experimenting with different guidance
scale scheduling, we find that constant scale scheduling did not always work the best, an important
finding for the diffusion modeling community that may improve generation quality. Our paper takes
an step in diversifying and improving the quality of 3D text-to-shape generation outcomes.
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