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Abstract

We study the design of computationally efficient online learning algorithms under
smoothed analysis. In this setting, at every step an adversary generates a sample
from an adaptively chosen distribution whose density is upper bounded by 1/�
times the uniform density. Given access to an offline optimization (ERM) oracle,
we give the first computationally efficient online algorithms whose sublinear regret
depends only on the pseudo/VC dimension d of the class and the smoothness pa-
rameter �. In particular, we achieve oracle-efficient regret bounds of O(

p

Td��1)

for learning real-valued functions and O(
p
Td��

1
2 ) for learning binary-valued

functions. Our results establish that online learning is computationally as easy
as offline learning, under the smoothed analysis framework. This contrasts the
computational separation between online learning with worst-case adversaries and
offline learning established by [HK16].
Our algorithms also achieve improved bounds for some settings with binary-valued
functions and worst-case adversaries. These include an oracle-efficient algorithm
with O(

p
T (d|X |)1/2) regret that refines the earlier O(

p
T |X |) bound of [DS16]

for finite domains, and an oracle-efficient algorithm with O(T 3/4d1/2) regret for
the transductive setting.

1 Introduction

Adversarial online learning is a cornerstone of modern machine learning and has led to significant
advances in computer science broadly. A recent line of work on “beyond the worst-case analysis” of
online learning has brought into light the overly pessimistic nature of standard characterizations of
online learnability [RST11, GR17, HRS20, HRS22]. This is exemplified by the results of [HRS22]
showing that adversarial online learnability is statistically as easy as PAC learnability, in presence
of noise. That is, under smoothed analysis, online and offline learnability are both characterized by
the finiteness of the VC dimension of a hypothesis class as opposed to the much larger Littlestone
dimension that characterizes online learnability in the worst-case [BDPSS09]. However, to fully
deliver on the promise revealed by these statistical insights, there needs to be an algorithmic framework
for realizing this connection between online and offline learnability. In this paper, we ask

whether efficient offline learning algorithms lead to efficient online learning algo-
rithms with comparable regret guarantees, under smoothed analysis?

In more detail, smoothed analysis is a perspective on algorithm design, introduced by [ST04] and
formalized for online learning by [RST11, HRS20], in which the adversary is restricted to generating
an instance at every round from a distribution that is not overly concentrated, i.e., a distribution whose
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Method Reference
Binary eO

⇣p
dT log(��1)

⌘
[HRS22, Thm 3.1]

Real-values eO
⇣p

dT log(��1)
⌘

Thm F.1

Binary eO
⇣p

dT��1/2
⌘

Thm 3.2

eO
⇣p

dT��1
⌘

Thm 3.1

Alg-independent ⌦
⇣p

T (d/�)1/2
⌘

Thm 5.1

Algorithms 1 and 2 ⌦
⇣p

dT��1/2
⌘

Thm E.1

Small-domain O
⇣p

T (d|X |)1/2
⌘

Cor 3.3

Transductive learning O
⇣
T 3/4d1/4

⌘
Cor 3.3

Regret Bound

Statistical
Upper Bound

Prob. Coupling
and ✏-Net

Computational
Upper Bound

FTPL with Poissonization
1 oracle call per round

Real/Binary-valued Relax-and-Randomize
2 oracle calls per round

Lower Bound

Construction for
runtime o(

p
d/�)

Classical Settings FTPL with Poissonization

Table 1: In the above table, d represents the pseudo dimension or VC dimension of the hypothesis class H, � is
the smoothness parameter, and T is the number of time steps.

density is upper bounded by 1/� times that of the uniform distribution1. The smoothness of the
adversary’s actions captures the noise and imprecision inherent in the real world. As 1/� decreases,
so does the uncertainty of the learner about the distribution of future instances. This gracefully
captures the expressivity of worst-case instances while circumventing the overly pessimistic nature of
the worst-case analysis.

The question of whether offline learning algorithms can lead to online learning algorithms is naturally
captured by the oracle-efficiency framework (e.g., [DHL+20, KV05, HK16]). In this setting, we have
access to an offline learning algorithm or equivalently an empirical risk minimization (ERM) oracle
which can compute an optimal hypothesis given any history of the actions of the adversary, using
O(1) computation. Efficient algorithms must then be designed to tap into the existing ERM oracle,
using polynomial number of calls and computation.

We aim to design oracle-efficient online algorithms whose regret resemble the statistically optimal
regret as much as possible. In particular, under smoothed analysis, these bounds must be characterized
by offline statistical complexity measures, such as the VC dimension or pseudo dimension of a
hypothesis class. Interestingly, [HK16] showed that such computationally algorithms cannot exist for
fully worst-case adversaries. Therefore, designing oracle-efficient online algorithms for adversaries
who are not fully worst-case, must simultaneously overcome both statistical and computational
impossibilities. Designing algorithms that achieve this is the main contribution of this paper.

1.1 Main Results

We consider online learning under smoothed analysis and give the first oracle-efficient online learning
algorithms whose regret is characterized by the statistical offline complexity measures. In particular,
we show that there are efficient algorithms, given access to an ERM oracle, that achieve sublinear
regret that depends only on the pseudo- (or VC) dimension of a class of hypotheses, as well as a
parameter that captures the power of the adversary, i.e., �. We study both the real-valued and binary
valued losses and achieve nearly tight upper and lower bound for these settings. We summarize our
main results in Table 1.

Upper bounds and Algorithms. For the general real-valued case, we design an algorithm based
on the Relax-and-Randomize principle of [RSS12] that achieves a regret bound of O(

p

Td��1) for
smoothed online learning, where d is the pseudo-dimension of the hypothesis class. This algorithm
uses 2 oracle calls per round. We improve these regret bounds for the binary classification setting
under smoothed analysis and achieve regret of O(

p

Td��1/2). The algorithm that achieves these
improved bounds is a variant of FTPL that uses Poisson random variables in the design of its
perturbations. This algorithm uses 1 oracle call per round. The improved regret in the binary setting
crucially leverages the fact that smoothness over the instance domain X also implies smoothness over
the instance-label pairs X ⇥ Y , when the label set is binary (or constant in size).

1While we use the uniform distribution as the base measure for ease of exposition, our results also generalize
to arbitrary known base measures.
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While these bounds demonstrate sublinear regret that only depends on d and �, their dependence on
� does not match the (non-efficient) statistically optimal regret bound of eO(

p
Td ln(1/�). For the

case of binary classification under smoothed analysis, the statistically optimal regret bound is due to
[HRS22]. For the other settings, we provide the optimal statistical rates in Appendix F.

Lower bounds. We further investigate the gap between the computational and statistical regret
upper bounds. We present an algorithm-independent lower bound for the setting of smoothed online
learning that shows that any algorithm with runtime o(

p
d/�) will incur a ⌦(

p
T (d/�)1/2) regret.

We note that this lower bound demonstrates the same dependence on 1/� as our upper bound (for the
binary classification setting under smoothed analysis). We also provide algorithm-dependent regret
lower bounds that demonstrate improved dependence on parameter d, and apply to all relax-and-
randomize and FTPL-style algorithms.

Improved Bounds for the Classical Settings. In addition to constrained adversaries, our algo-
rithms and analysis also imply improved regret bounds for two classical settings, namely, online
learning in bounded domains with worst-case adversaries and traditional online transductive learn-
ing. For worst-case adversaries in binary classification with domain size|X |, we achieve a regret of
O(
p
T (d|X |)1/2), improving upon the O(

p
T |X |) bound of [DS16]. For online transductive binary

classification we achieve a regret bound of O(T 3/4d1/4), improving upon the O(T 3/4d1/2) bound in
[KK05]. Both improvements are enabled by our novel Poissonized FTPL analysis and techniques
which achieve stronger regret bounds in the binary classification setting.

1.2 Technical Overview

Random Playout for Beyond Worst-Case Adversaries. Our algorithms are based on the random
playout design principles, including the admissible relaxation framework of [RSS12] and the Follow-
the-Perturbed-Leader framework of [KV05]. We show that this framework is useful for analyzing
online learning algorithms in the beyond worst-case setting, especially in smoothed analysis. In
this setting, smoothness captures a level of predictability about the future. This is made formal
by a technique from [HRS22] that shows that any sequence of T instances generated by adaptive
smoothed adversaries can be seen as a subset of T/� uniformly random instances from X with high
probability. We implement this algorithmically by self-generating random instances and labels as a
stand-in for the future. While the self-generated samples may not include adversary’s next choice
with some probability, these frameworks can be used to account for the uncertainty in each step.
Furthermore, we show that the inclusion of additional self-generated samples has a small impact
on the achievable regret by proving that the regularized Rademacher complexity (which acts as an
admissible relaxation) is monotone in the set of generated samples (Lemma 4.1). This monotonicity
property leads to regret bounds that gracefully degrade as a small function of 1/�.

Stability, Poissonization and Generalization. To obtain even stronger regret bounds for the binary
setting, our analysis builds on the notion of stability, i.e., how little the distribution of learner’s actions
changes across time steps. A crucial ingredient in controlling stability is our novel Poissonization
technique that randomly sets the number of samples, which are to be self-generated, from an
appropriately chosen Poisson distribution. This allows us an additional degree of independence that
is essential for controlling the loss from one step to the next using information theoretic techniques.

The stability analysis of the algorithm also depends crucially on a modified generalization error of the
ERM, when it is trained on uniformly generated training samples and tested on smoothly distributed
fresh instances. To bound this, we show a strong conditional independence property satisfied by the
coupling from [HRS22]. This is instrumental for bounding the generalization error by allowing us to
extract smooth variables from a set of uniform variables, which can then be used for symmetrization.
We expect that this approach will be of independent interest for future work.

1.3 Related works

Our work relates to several paradigms and approaches to online learnability.

Oracle-Efficient Online Learning. Since the seminal work of [KV05] there has been a long line
of work elucidating the computational aspects of online learning. [KV05] proposed the influential
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follow-the-perturbed-leader algorithm. [KKL07] consider linear functions and study notions of
regret when the learner is given access to an approximate optimization oracle. [KK05] study the
transductive learning setting where instances (but not labels) are known in advance and give an oracle-
efficient online algorithm. [RSS12] propose a general relaxation framework to develop efficient
algorithms based on the upper bound of the value of the game. [DHL+20] present the oracle-efficient
Generalized-FTPL algorithm that is no-regret for a wide range of combinatorial and economics
settings. On the flip size, [HK16] show that an ⌦(

p
N) lower bound is unavoidable in general in

order to obtain nontrivial regret where the N is the number of actions of the learner. This suggests
that one needs to look beyond the worst-case in order to get truly efficient online algorithms.

Beyond Worst-case Approaches to Online Learning. Various notion of beyond worst-case
behavior of online learning has been studied in the literature [RST11, HRS20, RS13b, DHJ+17,
BCKP20]. Most closely related are [RST11, HRS20, HRS22]. [RST11] studied smoothed analysis
of online learning but only gave explicit regret bounds for simple classes such as thresholds. [HRS20,
HRS22] both study the notion of smoothed analysis with adaptive adversary and show that statistically
the regret is bounded by O(

p
Td log(1/�)) but do not provide efficient algorithms.

Concurrent Work. In a concurrent and independent work, [BDGR22] also gives oracle-efficient
algorithms for smoothed online learning. In the binary classification setting, [BDGR22] obtains a re-
gret bound of eO(

p

Td��1) using an FTPL-based algorithm. In comparison, our result (Theorem 3.2)
demonstrates a regret bound of eO(

p
Td��

1
2 ) with strictly better dependence on �. Our regret

bound’s improved dependence on parameter � can be attributed to our novel technical innovations,
including the introduction and careful analysis of modified generalization error and stability via a new
coupling-based argument, and a Poissonization approach for self-generating samples that can leverage
information theoretic arguments. For the case of real-valued functions with pseudo-dimension d,
[BDGR22] achieve regret eO(��1

p
Td) with eO(

p
T ) calls to the oracle per round. In our paper, we

obtain better regret of order eO(
p

Td��1) using only 2 oracle calls per round 2. Our stronger regret
bounds are due to the fact that their algorithm is constrained to self-generating T -long sequences
as a stand-in for the future, while we are generating substantially longer sequences that allow us
to leverage the monotonicity of Rademacher complexity. Importantly, these novel techniques for
achieving improved dependence on � also enable us to improve on the small-domain result of [DS16]
and the transductive learning result of [KK05].

2 Preliminaries

2.1 Smoothed Online Learning

Let X be the space of instances, Y = [�1, 1] be the space of labels, and H : X ! Y be the
hypothesis class with pseudo dimension d (See definition B.1 or [AB99] for the definition of pseudo
dimension). Let l : Y ⇥ Y ! [0, 1] be a convex loss function with Lipschitz constant G in its first
component. We also consider the special case where Y = {�1,+1} is binary and the hypothesis
class H has VC dimension d. In this case, we consider the classification loss l(by, y) = 1{by 6= y}.

We work with the smoothed adaptive online adversarial setting from [HRS22]. We will consider
�-smooth adversaries, where a distribution is �-smooth if its density is upper bounded by 1/� times
the density of the uniform distribution over the same domain. We remark that all of our results
generalize to arbitrary known base distributions as well.
Definition 2.1 (�-smoothness). Let X be a domain that supports a uniform distribution U . A measure
µ on X is �-smooth if for all measurable subsets A ✓ X , µ(A)  U(A)

� . The set of all �-smooth
distributions on domain X is denoted by ��(X ).

In online learning with adaptive smoothed adversaries, the learner and the adversary plays a repeated
game for T time steps. At each time step t 2 [T ], the adversary chooses a �-smooth distribution
D

X

t 2 �(X ). A random instance xt ⇠ D
X

t is then drawn and presented to the learner. After receiving
xt, the learner predicts its label to be byt 2 Y , while the adversary simultaneously chooses yt 2 Y

2Subsequent to when the first versions of both papers were made available online, [BDGR22] improved their
relaxation technique to achieve the same regret bound as ours, while still using more oracle calls.
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as its true label. The learner then suffers loss l(byt, yt). The above protocol is equivalent to a setting
where the adversary chooses a distribution Dt 2 �(X ⇥ Y) over labeled instances st = (xt, yt)
whose marginal on X is �-smooth, and the learner simultaneously chooses a classifier ht 2 Y

X . It is
not hard to see that this equivalence holds for both randomized and deterministic interactions, see
[RS14, Section 7.6] for a more detailed discussion. We will abbreviate D

X

t to Dt when it is clear
from the context.

We allow the adversary to be adaptive, i.e., the choice of Dt can depend on the realization of previous
instances {(xi, yi)}

t�1
i=1 as well as the learner’s previous predictions. We denote with D� the adaptive

sequence of �-smooth distributions D1, · · · ,DT on the instances. Accordingly, let Qt 2 �(Y)
denote the learner’s prediction rule on instance xt, and let Q denote the adaptive sequence of
distributions Q1, · · · ,QT . We denote the expected regret of a learner with prediction rules Q on the
adaptive sequence D� by

E[REGRET(T,D�,Q)] = E
D�,Q

2

4
TX

t=1

l(byt, yt)� inf
h2H

TX

t=1

l(h(xt), yt)

3

5 .

We remove D� and Q from this notation when they are clear from the context.

An important property of smoothness is that it implies a probability coupling between uniform and
adaptive smooth processes as first observed by [HRS22]. We will describe these in more details in
Section 3 and 4.3. We use both the original result of [HRS22] (stated in Lemma B.1) and introduce a
slightly strengthened version (in Lemma C.6).

2.2 Offline Optimization Oracle

We consider computationally efficient algorithms given access to an offline optimization oracle. For
the case of binary classification, the oracle outputs the solution of empirical risk minimization on the
input data.
Definition 2.2 (ERM Oracle). For a hypothesis class H and a loss function l, the oracle OPT (opt)
takes a set 3 of inputs S = {(xi, yi)}i2[I] where (xi, yi) 2 X ⇥ Y for all i 2 [I] and returns

OPTH,l(S) = min
h2H

IX

i=1

l(h(xi), yi) and opt
H,l(S) 2 argmin

h2H

IX

i=1

l(h(xi), yi).

For the case of real-valued functions, we consider an oracle that can minimize a mixture of binary
and real-valued loss values defined below.
Definition 2.3 (Real-valued optimization oracle). For a hypothesis class H and two loss functions lr
and lb, the oracle OPT takes two sets of inputs S and S0 over X ⇥ Y and returns

OPTH,lr,lb(S;S
0) = min

h2H

⇣ X

(x,y)2S

lr(h(x), y) +
X

(x0,y0)2S0

lb(h(x0), y0)
⌘
.

We remark that these oracles are used in most previous works, including [RSS12]. They constitute
a special form of regularized loss minimization oracles, where the regularization is given directly
by a random process. For the binary setting where Y = {±1} and lr = lb = 1{by 6= y}, the above
optimization oracle is equivalent to ERM oracles.

We consider each call to the offline optimization oracle as having unit cost plus the additional runtime
needed for creating and inputting the set of inputs that is linear in the length of the said histories.
We note that our approach and results directly extend to using ERM oracles with (arbitrarily small)
additive approximation error, such as those guaranteed by FPTAS optimization algorithms, using
standard techniques presented by [DHL+20, Section 6].
Remark 1. Though the oracles as defined above are required to work on arbitrary inputs, both
Algorithms 1 and 2 from our work only call the optimization oracle on instances from the smoothed
distributions or the uniform distribution. Thus, it suffices to have oracles that work for average-case
instances. This makes the design of such oracles easier both from theoretical and practical points of
view.

3The inputs to the oracle are multisets. Unless specified otherwise, all the sets in this paper refer to multisets.
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3 Oracle-Efficient Online Learning
3.1 Learning with Real-Valued Functions
In this section, we propose an oracle-efficient algorithm for real-valued functions with regret
eO(
p
dT/�). We consider the optimization oracle defined in Definition 2.3 with the loss functions

specified by lr(ŷ, y) = 1
2G l(ŷ, y) and lb(ŷ, y) = 1{by 6= y}� 1

2 .

We begin by describing our algorithm. At each time step t 2 [T ], the algorithm draws eO
⇣

T�t
�

⌘

fresh new instances from the uniform distribution, denoted with V (t), together with their random
labels E(t) that are drawn i.i.d. from the Rademacher distribution, and treat them as hints for the
future. Let S(t) denote the set of labeled instances (V (t), E(t)). Our algorithm then applies the offline
optimization oracle to two input sequences: one where the real history s1:t�1 is mixed with two
copies4 of S(t) and the current instance is labeled +1, and another, where the current label is labeled
�1. Formally, we consider

byt =OPT

⇣
s1:t�1;S

(t)
[ S(t)

[ {(xt,�1)}
⌘
� OPT

⇣
s1:t�1;S

(t)
[ S(t)

[ {(xt,+1)}
⌘
. (1)

Since the two input sequences to the optimization oracle only disagree on one label, the difference in
the optimal errors is always within [�1,+1], thus guarantees byt 2 Y . Intuitively, ŷt accounts for the
gap between the errors of these two optimal classifiers so as to hedge the algorithm’s bets against
which instances will be played next. A formal description of the algorithm is given in Algorithm 1.

The main motivation for the algorithm is the coupling lemma of [HRS22]. It states that a sample
from any �-smooth distribution can be thought of as generated by first sampling O

�
��1

�
samples

from the uniform distribution and then selecting one of them. The algorithm thus can be thought of
as generating samples from the uniform distribution to account for the uncertainty in the adversary’s
choice. We will discuss this intuition and the proof of the following theorem in Section 4.3.
Theorem 3.1 (Regret Upper Bound). For any �-smooth adversary D�, Algorithm 1 has expected
regret upper bounded by eO(G

p
Td/�), where eO hides factors that are polynomial in log(T ) and

log(1/�). Here G is the Lipschitz constant of the loss and d is the pseudo-dimension of the class.
Furthermore, the algorithm is oracle-efficient: at every round t, this algorithm uses two oracle calls
with histories of length eO(T/�).

Algorithm 1: Oracle-Efficient Smoothed Online Learning for Real-valued Functions
Input: T,�

1 K  100 log T/�.
2 for t 1 to T do
3 Receive xt.
4 for i = t+1, · · · , T ; k = 1, · · · ,K do
5 Draw new v(t)i,k ⇠ U(X ).
6 Draw new ✏(t)i,k ⇠ U({�1,+1}).
7 end
8 S(t)

 

n
(v(t)i,k, ✏

(t)
i,k)
o

i=t+1:T
k=1:K

.

9 byt  OPT

⇣
s1:t�1;S(t)

[ S(t)
[ {(xt,�1)}

⌘
� OPT

⇣
s1:t�1;S(t)

[ S(t)
[ {(xt,+1)}

⌘
.

10 Receive yt, suffer loss l(byt, yt).
11 end

3.2 Improved Bounds for Binary Classification

In this section, we focus on the important special case where the labels are binary and the loss function
is the classification loss 1{by 6= y}. We present Algorithm 2 that achieves regret eO(

p

Td��1/2) with
better dependence on the smoothness parameter � compared to Algorithm 1.

4We use two copies to scale the loss appropriately.
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Theorem 3.2 (Regret Bound for Efficient Smoothed Online Learning). In the setting of binary
classification with �-smoothed adversaries, Algorithm 2 has expected regret that is at most

eO
 
min

⇢p
Td��1/2,

q
T (d|X |)1/2

�!
.

Furthermore, Algorithm 2 is a proper learning oracle-efficient algorithm: at every round t, this
algorithm uses a single ERM oracle call on a history that is of length t + O(T/

p
�) with high

probability.

Unlike the algorithm for the real-valued case, the improved algorithm uses the FTPL framework. The
algorithm itself is easy to describe: the algorithm generates a random number N from the Poisson
distribution with an appropriately chosen parameter, generates N uniformly random points along
with random labels and then predicts using the hypothesis that has the lowest error on the past data
appended with the newly sampled data. On the surface, this algorithm seems similar to Algorithm 1.
But there are two key differences: unlike Algorithm 1 which uses the difference in value of two
optimizations, Algorithm 2 follows the prediction of the hypothesis with the lowest error. This
makes Algorithm 2 a proper online learning algorithm. Secondly, unlike Algorithm 1 which uses a
decreasing number of random examples over time, Algorithm 2 has the number of samples distributed
according to a Poisson (with the same parameter in each step). The fact that the number of hints is
drawn from the Poisson distribution is crucial for our analysis of the stability of the algorithm. We
sketch the proof of the regret bounds in Section 4.4.

Algorithm 2: Smoothed Online Learning based on Poisson Number of Hints
Input: time horizon T , smoothness parameter �, VC dimension d

1 n min{T/
p
�, T

p
|X |/d};

2 for t 1 to T do
3 generate N (t)

⇠ Poi(n) fresh hallucinated samples (ex(t)
1 , ey(t)1 ), · · · , (ex(t)

N , ey(t)N ), which are
i.i.d. conditioned on N with ex(t)

i ⇠ U(X ) and ey(t)i ⇠ U({±1});
4 call the ERM oracle to compute ht  opt

H,l

⇣
{(ex(t)

i , ey(t)i )}i2[N(t)] [ {x⌧ , y⌧}⌧2[t�1]

⌘
;

5 observe xt, predict byt = ht(xt), and receive yt.
6 end

While our main interest is on beyond the worst-case adversaries, our results improve upon existing
results for worst-case analysis of online learning as well. For finite domain and binary-valued loss
settings where worst-case adversaries are vacuously �-smooth for 1/� = |X |, Theorem 3.2 also
achieves an oracle-efficient regret bound of O(

p
T (d|X |)1/2), which is a refinement of O(

p
T |X |)

bound of [DS16], because VC dimension d is at most X , and is usually much smaller. Similarly,
our bound can be instantiated in the setting of transductive learning with|X | = T , which improves
O(T 3/4

p
d) bound of [KK05] to O(T 3/4d1/4).

Corollary 3.3 (Regret for Small Domain and Transductive Learning). There is an oracle-efficient
algorithm for online learning with binary labels (in the worst-case) that achieves an expected regret
of O(

p
T (d|X |)1/2) for any hypothesis class with VC dimension d on domain X . For transductive

learning with binary labels, there is an oracle-efficient algorithm, with expected regret O
⇣
T 3/4d1/4

⌘
.

Remark 2. Both Algorithms 1 and 2 can be adapted to deal with unknown �. In particular, the regret
bounds hold for any approximation e� that is a lower bound of the real � up to constant multiplicative
factors. This corresponds to settings where the world is more smooth than we give it credit. Even
when we have extremely poor upper and lower bounds, we can use hedging to still get non-trivial
regret with only a minor blow up in computation. We will provide more details in Appendix D about
working with knowledge of approximate e�.

4 Proof Sketches for Main Regret Bounds

Before discussing the proof sketches for the main regret bounds, we will first introduce two frame-
works for designing efficient algorithms for online learning.
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4.1 Relaxations and Admissibility

The proof of Theorem 3.1 relies on the admissible relaxation framework proposed in [RSS12]. A
relaxation RelT is a sequence of functions RelT (H|s1:t) for each t 2 [T ], which map the history of
the play to real values that upper bounds the conditional value of the game. We will make use of an
important algorithmic aspect of the relaxation framework, which states that whenever an algorithm is
admissible with respect to some relaxation, its expected regret can be upper bounded in terms of the
value of the relaxation at the beginning of the game.
Definition 4.1 (Admissibility). In the smoothed online learning setting, let Q be an algorithm that
gives rise to a sequence of distributions Q1, · · · ,QT on the predicted labels. We say Q is admissible
with respect to a relaxation {RelT (H | s1:t)}Tt=0, if for any sequence of instances s1:T ,

1. For all t 2 [T ],

sup
Dt2��(X )

E
xt⇠Dt

sup
yt2Y

⇢
E

byt⇠Qt

[l(byt, yt)]+RelT (H | s1:t�1[(xt, yt))

�
RelT (H | s1:t�1),

where ��(X ) is the set of �-smooth distributions on X ;
2. The final value satisfies RelT (H | s1:T ) � � infh2H L(h, s1:T ).

The following proposition is the analog of the results of [RSS12] when the adversary is smooth. The
full proof is presented in Appendix G.
Proposition 4.1 (Regret Bound via Admissibility). In the smoothed online learning setting, let
Q = (Q1, · · · ,QT ) be an algorithm that is admissible with respect to relaxations RelT (H), then
the following bound on the expected regret holds regardless of the strategies D� of the adversary:

E[REGRET(T,Q,D�)]  RelT (H | ;) +O(
p

T ).

4.2 Follow the Perturbed Leader

When the labels are binary, Algorithm 2 achieves an improved regret using the Follow the Perturbed
Leader (FTPL) principle [KV05]. An FTPL algorithm makes predictions by applying ERM oracle to
the perturbed histories of the play. At every time step t 2 [T ], the algorithm chooses a distribution
over labeled instances, from which it draws N random instances (ex(t)

1 , ey(t)1 ), · · · , (ex(t)
N , ey(t)N ). The

predicted label is then given by byt = ht(xt), where

ht  opt
H,l

⇣
s1:t�1 [ {(ex(t)

i , ey(t)i )}i2[N ]

⌘
.

The standard analysis of FTPL bounds the expected regret as follows:

E[REGRET]  E

2

4
TX

t=1

l
�
ht(xt), yt

�
� l
�
ht+1(xt), yt

�
3

5

| {z }
Stability

+E

2

4sup
h2H

NX

i=1

l(h(exi), eyi)�
NX

i=1

l(h⇤(exi), eyi)

3

5

| {z }
Perturbation

,

where h⇤ = arg infh2H

PT
t=1 l(h(xt), yt).

Note that the perturbation term is already well-understood from statistical learning theory since it is
essentially the Rademacher complexity of H for sample size N . Therefore, we will focus on bounding
the stability term by designing perturbations that can leverage the anti-concentration property of
smoothed adversaries.

4.3 Proof Sketch of Theorem 3.1

Elaborating on the intuition laid out in Section 3, we will use the coupling technique introduced
by [HRS22] (see Lemma B.1 for a complete description) to replace the sequence of T random
inputs {x1, · · · , xT } generated by the adaptive adversary with TK inputs {zt,k}t2[T ],k2[K] that are
generated i.i.d. from the uniform distribution over X , such that with high probability {x1, · · · , xT } ✓

{zt,k}t2[T ],k2[K]. This implies that, up to a small probability of failure, it is sufficient to consider a
simpler setting where the adversary is promised to pick future instances from a larger set of uniformly
distributed samples (which we call the set of hints). This setting differs from the standard transductive
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learning setting [KK05, CbS11] in two significant ways: 1) The set of hints is not revealed to the
learner beforehand; 2) the hint set is larger, by a multiplicative factor of K ⇡ 1/�, than the set of
realized instances.

It turns out that both issues can be handled elegantly in the admissible relaxations framework of
[RSS12]. For the first issue, note that the Algorithm 1 can be seen as self-generating hints and
although they do not necessarily correspond to the adversary’s sample, the relaxation-based argument
guarantees that matching the randomness of hints at a distribution level suffices to bound the regret of
the algorithm (see Appendix B.7 for more details). For the second issue, our relaxation will be based
on a characterization of the uncertainty in the future that is monotone in the set of hints, which we
call regularized Rademacher complexity. Formally, for a set of unlabeled instances Z = {zi}Ii=1 and
a function � : H! R, the Rademacher complexity for set Z regularized by � is defined as

R(�, Z) = E
✏1:I

iid
⇠U(±1)

h
sup
h2H

nX

iI

✏ih(zi) + �(h)
oi

.

We show that regularized Rademacher complexity is monotone as a function of the dataset. See
Appendix B.2 for a proof of Lemma 4.1.
Lemma 4.1 (Monotonicity of Regularized Rademacher Complexity). For any dataset z1:m 2 X

m

and any additional data point x 2 X , we have R(�, z1:m)  R(�, z1:m [ {x}).

This monotonicity ensures that using the hint set, which is a superset of possible instances, will still
lead to a no-regret algorithm.

Finally, the relaxation we use to analyze Algorithm 1 is the expected Rademacher complexity of the
union of future hints, regularized by the past total loss, i.e.,

RelT (H | s1:t) = 2G E
V (t) iid

⇠U(X )

h
R(�Lr(·, s1:t), V

(t))
i
+ 2G�(T � t),

where Lr(h, s1:t) =
Pt

i=1 l
r(h(xi), yi) for h 2 H. Here � = 10TK(1� �)K 2 o(1/T ) represents

the penalty caused by the failure of coupling. Once admissibility is established, we will obtain a
regret bound using Proposition 4.1. See Appendix B for a complete proof of the theorem. We remark
that the final regret bound can also be stated in terms of the Rademacher complexity which is data
dependent and adapts readily to benign structures of the instance domain.

4.4 Proof Sketch of Theorem 3.2

Let Qt be the distribution of the learner’s action ht 2 H in Algorithm 2 and Dt denote the distribution
of the adversary at time t. The main quantity we will use to analyze the algorithm is the stability

Stability = E
st⇠Dt

( E
ht⇠Qt

[L(ht, st)]� E
ht+1⇠Qt+1

[L(ht+1, st)]).

We analyze this expression by breaking it down into a sum of two quantities:

Stability  TV(Qt, E
st⇠Dt

[Qt+1]) + E
st,s0t⇠Dt;R(t+1)

[L(ht+1, s
0

t)� L(ht+1, st)]

| {z }
Modified generalization error

.

Here, R(t) is the fresh randomness generated by the algorithm at the beginning of time t.
In order to see where this expression comes from, note that the first term itself would be an upper
bound on the stability, if neither of Qt and Qt+1 depend on the new observation st = (xt, yt) at time
t. However, while Qt is independent of st, Qt+1 does depend on st because ht+1 is trained on st. To
overcome this dependence, we introduce a ghost sample s0t that allows us to decouple ht+1 ⇠ Qt+1

and the new observation. This gives rise to the second term which we call modified generalization
error. We formally discuss this decomposition in Appendix C.2.

The first term is the total variation (TV) distance between Qt and the mixture distribution
Est⇠Dt [Qt+1]. In order to bound this term, we closely use the independence properties of the
Poisson distribution which allows us to write an explicit expression for the total variation distance
which we can then bound using the Ingster–Suslina method. We formally prove this in Lemma C.4.
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The intuitive idea behind bounding the second term is as follows. Consider the simpler setting of
t = 1 (i.e. no history) and Dt = U(X ⇥ {±1}) (i.e. the new observation st follows the same
distribution as the self-generated samples). In this case, the generalization error is precisely the
difference between the test error and the training error with N + 1 iid training data, and classical
Rademacher complexity gives an upper bound O(

p
d/N). For general �-smooth Dt, we establish a

strong conditional independence property of the coupling argument from [HRS22]. This states that
there exists a coupling between uniform and adaptive smooth processes, such that when the inclusion
property is satisfied, the distribution of the realized uniform variables conditional on the unrealized
uniform variables is also identical to the smooth distributions given by the adversary. This will be
instrumental for bounding the generalization error by allowing us to extract smooth variables from a
set of uniform variables, which can then be used to for the purpose of symmetrization. We formally
prove the upper bound on the modified generalization in Lemma C.5.

Using this bound on stability, we can get a bound on the regret of the algorithm using analysis
techniques for FTPL. For a full proof, see Appendix C.
Remark 3. The proof for the modified generalization needs the smoothness of both the covariates x
and labels y. This can be ensured with a loss of a constant in the binary (and generally the finite label
space) setting. This is the main reason that this proof does not generalize to the real valued setting.

5 Discussion, Additional Results, and Open Problems

Computational Lower Bounds. Our main contribution is oracle-efficient online learning algo-
rithms in the smoothed setting that achieve an O(

p

dT��1) regret upper bound in the real-valued
case, and an O(

p

dT��1/2) upper bound for binary classification. However, neither of these upper
bounds is statistically optimal; the statistically optimal regret here is e⇥(

p
dT log(1/�)) [HRS22].

We ask the following question: is the above discrepancy an artifact of our regret analysis, or an
intrinsic limitation of our or all oracle-efficient algorithms.

We show in Theorem E.1 that the regret of our current family of algorithms cannot be improved by
tuning parameters. In addition, we also show the following general lower bound for computationally
efficient algorithms. See Appendix E for the proofs and more details.
Theorem 5.1 (Computational Lower Bound for Smoothed Online Learning). For 1/� �

d, any proper algorithm which only has access to the ERM oracle and achieves a regret
o(min{T,

p
T (d/�)1/2}) for any �-smoothed online learning problem must have an !(

p
d/�)

total running time. Here, the total running time refers to the total number of operations performed by
our algorithm, in which each oracle call takes unit time, and maintaining each element in the input to
the oracle also takes unit time.

Theorem 5.1 implies an exponential statistical-computational gap in smoothed online learning: for
exponentially small �, achieving the statistical regret eO(

p
Td log(1/�)) requires an exponential

running time. However, Theorem 5.1 still exhibits gaps to our computational upper bounds. We
discuss this further in the appendix and present the following open problem.

Open Question. For d/� � T 2 in the smoothed setting, does any algorithm achieving o(T ) regret
require ⌦(poly(T, 2d, 1/�)) computational time given access to the ERM oracle?

Other Constrained Adversary Models Online learning in presence of constrained adversaries is
an active research area with several parallel proposed models. While the main focus of our work is on
the smoothed analysis framework, our techniques extend to several other frameworks and establish a
connection between existing lines of work. In particular, our application of the probability coupling
technique to hallucinate a superset of future instances relates to an extension of the framework of
transductive learning (and the literature on hints) to a setting where the learner has access to K hints
per time step in the future. We call this the K-hints transductive framework and formally address it in
Appendix H. More broadly, smoothed analysis also related to a line of work on predictable sequences
as it enforces a notion of similarity between future instances that holds at the stochastic level. We
believe exploring the connections between these various models of constrained and predictable
adversaries in online learning is an important research direction for the future.

10



Acknowledgments and Disclosure of Funding

This work was supported in part by the National Science Foundation under grant CCF-2145898, a
C3.AI Digital Transformation Institute grant, and Berkeley AI Research Commons grants. This work
was partially done while authors were visitors at the Simons Institute for the Theory of Computing.

References
[AB99] Martin Anthony and Peter L Bartlett. Neural network learning: Theoretical foundations,

volume 9. cambridge university press Cambridge, 1999.

[Bar06] Peter Bartlett. Lecture notes in statistical learning theory, Spring 2006.

[BCKP20] Aditya Bhaskara, Ashok Cutkosky, Ravi Kumar, and Manish Purohit. Online learning
with imperfect hints. In Proceedings of the International Conference on Machine
Learning (ICML), pages 822–831. PMLR, 2020.

[BDGR22] Adam Block, Yuval Dagan, Noah Golowich, and Alexander Rakhlin. Smoothed online
learning is as easy as statistical learning. In Proceedings of the Conference on Learning
Theory (COLT), pages 1716–1786. PMLR, 2022.

[BDPSS09] Shai Ben-David, Dávid Pál, and Shai Shalev-Shwartz. Agnostic online learning. In
Proceedings of the Conference on Learning Theory (COLT), 2009.

[BKP97] Peter L Bartlett, Sanjeev R Kulkarni, and S Eli Posner. Covering numbers for real-valued
function classes. IEEE transactions on information theory, 43(5):1721–1724, 1997.

[CAK17] Vincent Cohen-Addad and Varun Kanade. Online Optimization of Smoothed Piecewise
Constant Functions. In Proceedings of International Conference on Artificial Intelligence
and Statistics (AISTATS), pages 412–420, 2017.

[CbS11] Nicolò Cesa-bianchi and Ohad Shamir. Efficient online learning via randomized round-
ing. Advances in Neural Information Processing Systems, 24:343–351, 2011.

[DHJ+17] Ofer Dekel, Nika Haghtalab, Patrick Jaillet, et al. Online learning with a hint. Advances
in Neural Information Processing Systems, 30:5299–5308, 2017.

[DHL+20] Miroslav Dudík, Nika Haghtalab, Haipeng Luo, Robert E Schapire, Vasilis Syrgkanis,
and Jennifer Wortman Vaughan. Oracle-efficient online learning and auction design.
Journal of the ACM (JACM), 67(5):1–57, 2020.

[DS16] Constantinos Daskalakis and Vasilis Syrgkanis. Learning in auctions: Regret is hard,
envy is easy. In Proceedings of the Annual Symposium on Foundations of Computer
Science (FOCS), pages 219–228, 2016.

[GK06] Evarist Giné and Vladimir Koltchinskii. Concentration inequalities and asymptotic
results for ratio type empirical processes. The Annals of Probability, 34(3):1143–1216,
2006.

[GR17] Rishi Gupta and Tim Roughgarden. A PAC approach to application-specific algorithm
selection. SIAM Journal on Computing, 46(3):992–1017, 2017.

[HK10] Elad Hazan and Satyen Kale. Extracting certainty from uncertainty: Regret bounded by
variation in costs. Machine learning, 80(2):165–188, 2010.

[HK16] Elad Hazan and Tomer Koren. The computational power of optimization in online
learning. In Proceedings of the Annual ACM Symposium on Theory of Computing
(STOC), page 128–141, 2016.

[HM07] Elad Hazan and Nimrod Megiddo. Online learning with prior knowledge. In Proceedings
of the Conference on Learning Theory (COLT), pages 499–513, 2007.

11



[HRS20] Nika Haghtalab, Tim Roughgarden, and Abhishek Shetty. Smoothed analysis of online
and differentially private learning. Advances in Neural Information Processing Systems,
33:9203–9215, 2020.

[HRS22] Nika Haghtalab, Tim Roughgarden, and Abhishek Shetty. Smoothed analysis with
adaptive adversaries. In Proceedings of the Annual Symposium on Foundations of
Computer Science (FOCS), pages 942–953, 2022.

[IS03] Yuri I. Ingster and Irina A. Suslina. Nonparametric goodness-of-fit testing under
Gaussian models, volume 169. Springer Science & Business Media, 2003.

[KAH+19] Akshay Krishnamurthy, Alekh Agarwal, Tzu-Kuo Huang, Hal Daumé III, and John
Langford. Active learning for cost-sensitive classification. J. Mach. Learn. Res., 20:65:1–
65:50, 2019.

[KK05] Sham Kakade and Adam T Kalai. From batch to transductive online learning. Advances
in Neural Information Processing Systems, 18, 2005.

[KKL07] Sham M. Kakade, Adam Tauman Kalai, and Katrina Ligett. Playing games with
approximation algorithms. In Proceedings of the Annual ACM Symposium on Theory of
Computing (STOC), page 546–555, 2007.

[KV05] Adam Tauman Kalai and Santosh Vempala. Efficient algorithms for online decision
problems. Journal of Computer and System Sciences, 71(3):291 – 307, 2005.

[MY16] Mehryar Mohri and Scott Yang. Accelerating online convex optimization via adaptive
prediction. In Artificial Intelligence and Statistics, pages 848–856. PMLR, 2016.

[RS13a] Alexander Rakhlin and Karthik Sridharan. Online learning with predictable sequences.
In Proceedings of the Conference on Learning Theory (COLT), pages 993–1019. PMLR,
2013.

[RS13b] Sasha Rakhlin and Karthik Sridharan. Optimization, learning, and games with pre-
dictable sequences. Advances in Neural Information Processing Systems, 26, 2013.

[RS14] Alexander Rakhlin and Karthik Sridharan. Statistical learning and sequential prediction,
September 2014.

[RSS12] Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Relax and randomize: From
value to algorithms. Advances in Neural Information Processing Systems, 25:2141–2149,
2012.

[RST11] Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari. Online learning: Stochastic,
constrained, and smoothed adversaries. Advances in neural information processing
systems, 24, 2011.

[SL14] Jacob Steinhardt and Percy Liang. Adaptivity and optimism: An improved exponentiated
gradient algorithm. In Proceedings of the International Conference on Machine Learning
(ICML), pages 1593–1601. PMLR, 2014.

[ST04] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time. Journal of the ACM, 51(3):385–463,
May 2004.

[Tsy09] A. Tsybakov. Introduction to Nonparametric Estimation. Springer-Verlag, 2009.

6 Check List
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]

12



(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [N/A]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [N/A]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [N/A]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13


	Introduction
	Main Results
	Technical Overview
	Related works

	Preliminaries
	Smoothed Online Learning
	Offline Optimization Oracle

	Oracle-Efficient Online Learning
	Learning with Real-Valued Functions
	Improved Bounds for Binary Classification

	Proof Sketches for Main Regret Bounds
	Relaxations and Admissibility
	Follow the Perturbed Leader
	Proof Sketch of thm:regret-real
	Proof Sketch of thm:FTPL

	Discussion, Additional Results, and Open Problems
	Check List
	Additional Related Work
	 Oracle-Efficient Learning with Real-valued Functions
	Coupling Lemma
	Monotonicity of the Regularized Rademacher Complexity
	Notions for Real-Valued Functions
	Proof of thm:regret-real
	Admissibility of the Relaxation
	Upper and Lower Bounds on the Relaxation
	Remark on the Requirement of Fresh Dataset

	 Oracle-Efficient Online Binary Classification
	Information Theoretic Lemmas
	Proof of thm:FTPL
	Proof of lemma:stabilityadmiss
	Upper Bounding TV Distance: Proof of lemma:stability
	Upper Bounding Generalization Error: Proof of lemma:generror
	Proof of thm:FTPL for Small Domain
	Proof of lemma:couplingstrong

	Unknown Smoothness Parameters
	Proof of Lower Bounds (thm:lowerbound and thm:complowerbound)
	Proof of thm:lowerbound
	Lower Bound Analysis for alg:FTPL
	Lower Bound Analysis for alg:real-valued

	Proof of thm:complowerbound
	The case d=1.
	General d.


	Statistical Upper Bound for Real-valued Labels
	Proof of the Admissible Relaxation Framework
	Transductive Learning with K Hints
	Model
	Efficient Algorithm for Transductive Online Learning with K Hints


