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Abstract

We propose a framework grounded in gradient flow theory and informed by geomet-
ric structure that provides multiple diverse solutions for a given task, ensuring col-
laborative results that enhance performance and adaptability across different tasks.
This framework enables flexibility, allowing for efficient task-specific fine-tuning
while preserving the knowledge of the pre-trained foundation models. Extensive
experiments across transfer learning, few-shot learning, and domain generalization
show that our proposed approach consistently outperforms existing Bayesian meth-
ods, delivering strong performance with affordable computational overhead and
offering a practical solution by updating only a small subset of parameters. The
code for our method is at/|https://github.com/anh-ntv/GAC-MSO|

1 Introduction

The rapid growth of foundation models, particularly Transformers [41] based architecture, has
fundamentally transformed the field of artificial intelligence. Pre-trained on massive datasets, these
models have demonstrated extraordinary capabilities to learn rich, contextualized representations
has led to state-of-the-art performance across a wide range of applications from natural language
processing [[14} 16} 143} 150] to computer vision [15} 139, 29,7, 156l

While these models are powerful, adapting them to specific downstream tasks remains challenging
due to their enormous size and computational demands. Moreover, in many real-world scenarios,
generating multiple diverse solutions for a task can improve robustness, adaptability, and ensemble
performance. However, directly optimizing multiple instances of such large models is computationally
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infeasible. A practical and efficient way to overcome this problem is to optimize a set of compact
auxiliary modules that integrate into the foundation model, while keeping most of the original
pretrained parameters unchanged and shared across all solutions.

Multiple compact auxiliary modules have been proposed for parameter-efficient fine-tuning (PEFT)
frameworks to effectively adapt foundation models to new tasks by tuning only a small fraction
of parameters. Initially, full fine-tuning of these models, which often contain millions or billions
of parameters, is computationally expensive, memory-intensive, and impractical when multiple
tasks are involved. Additionally, limited task-specific data might require careful regularization to
prevent overfitting. To address these challenges, pioneering PEFT techniques such as Adapter [20],
prompt tuning [22], LoRA [21]], SCT [55]], and BitFit [52]] have demonstrated promising results by
maintaining most pre-trained parameters fixed, thus enhancing both computational efficiency and
performance.

Building on the efficiency of PEFT, we propose a framework that generates multiple diverse solutions
by optimizing lightweight modules while reusing a shared backbone. This design enables collab-
orative, robust predictions with minimal overhead, preserving the generalization capability of the
pre-trained model. We initiate this process by guiding the posterior toward the target distribution using
gradient-based updates. A common approach is Stein Variational Gradient Descent (SVGD) [27]],
which balances high predictive performance with solution diversity through repulsive interactions in
parameter space. However, SVGD ignores the geometric relationships among solutions—specifically,
how they align in output space or interact within the loss landscape.

To overcome these limitations, we propose the Geometry-Aware Collaborative Multi-Solution Op-
timizer (GAC-MSO), a theoretically grounded and tractable framework for generating diverse,
high-collaborative solutions. Unlike SVGD, which promotes diversity solely in parameter space
via kernel-based repulsion, GAC-MSO also integrates geometric structure [3] and enforces output-
space diversity through a divergence term. This leads to efficient solution space exploration while
maintaining strong predictive accuracy and calibration, even with limited computational resources.

To summarize, our key contributions in this paper include:

* We propose the Geometry-Aware Collaborative Multi-Solution Optimizer (GAC-MSO),
a framework grounded in gradient flow theory [3]] over the probability space of models.
This formulation enables the incorporation of geometric structure [1, 2] and promotes the
generation of diverse yet collaborative solutions.

* We conduct extensive experiments on PEFT across various settings, including model fine-
tuning for transfer learning, few-shot learning, and domain generalization. The results
demonstrate that our GAC-MSO consistently outperforms baseline methods by a significant
margin, highlighting the effectiveness of incorporating geometric structure and promoting
diverse yet collaborative solutions.

2 Related works

Parameter Efficiency Parameter Tuning. Parameter-efficient fine-tuning (PEFT) has gained
attention for adapting large pre-trained models to downstream tasks by minimizing computational
costs. Several methods have been developed to achieve this.

— Adapter tuning. These methods adapt Transformer-based models by inserting lightweight neural
modules into each layer and fine-tuning only these modules, while keeping the core model parameters
frozen. These adapters typically adopt a bottleneck architecture comprising two small fully connected
(FC) layers [20] and an activation function [9]. In the context of vision tasks, certain methods [51]]
extend the adapter design by incorporating convolutional layers or Normalizing Flows [46] to better
capture spatial patterns and complex feature distributions.

— Prompt Tuning. These methods adapt models to new tasks by introducing additional learnable
visual prompts, which are either inserted into the backbone or applied as perturbations to existing
weights. VPT-Shallow [22] inserts prompts only before the first encoder layer, while VPT-Deep [22]
places prompts at each encoder layer for deeper integration.

— LoRA Tuning. These methods introduce additional parameters during training or fine-tune specific
subsets of the model, while ensuring that these modifications are efficiently integrated into the



backbone architecture to minimize inference overhead. A pioneering approach in this category is
LoRA [21], which inserts low-rank decomposition matrices into attention layers and merges them
with the original weights at inference time, maintaining both computational efficiency and strong
performance. Building on LoRA, several variants have been proposed to further enhance its flexibility
and effectiveness. AdaLLoRA [54] dynamically adjusts the rank of LoRA modules during training
based on their importance, improving parameter efficiency. LoRA-Drop [57] introduces dropout
within LoRA modules to regularize training and prevent overfitting, particularly in low-resource
scenarios.

Variational Gradient Descent Approach. This strategy enables sampling multiple models from
the posterior distribution, a central technique in neural network inference often realized through
Hamiltonian Monte Carlo (HMC) [31]. Although HMC is effective, it is computationally intensive
due to its reliance on full gradient evaluations. To improve scalability, Stochastic Gradient HMC
(SGHMC) [10] uses noisy gradient estimates, facilitating efficient exploration of the solution space.
Similarly, Stochastic Gradient Langevin Dynamics (SGLD) [47] incorporates Langevin dynamics
into a stochastic gradient framework. In contrast, Stein Variational Gradient Descent (SVGD) [27]]
approximates the posterior using a set of interacting particles. Building on this, [44] enhances
SVGD with nonlinear transformations that encourage greater particle diversity, addressing SVGD’s
tendency to collapse in multimodal settings and improving its ability to learn complex mixture models.
Complementarily, [L1] proposes a repulsive mechanism for deep ensembles that fosters diverse yet
plausible members, resulting in a more faithful approximation of the Bayesian posterior.

3 Background

3.1 Gradient Flow in Probability Space

Problem Setting. We start with the problem setting used throughout this paper. Consider the target
distribution p () o exp {—3¥ (8)} over RY, where V¥ (-) is the energy function, we need to find
efficient ways of sampling from this target distribution. It should be noted that this setting can be

directly applied to Bayesian inference where the energy function is the empirical loss L5 (8) over a

training set S = {(z;,y;)}Y,, which is defined as

1 N
L5(0) =5 21 (%i50),3),

where f (xz;;0) is the prediction output of the model with the model parameter 6 and [ is a loss
function.

It is evident that p () is the solution of the following optimization problem:

min {]:(p) ::ﬁ/\lldp—l—/logpdp}, )]

pEP(RY)
where P(R?) is the space of distributions over R¢ with the Wasserstein distance [3].

The gradient flow of F in the Wasserstein space [3]] is described by:

O0sps + div (psva}-) =0,
Ips

where % is the first variation (functional derivative) of F and div is the divergence operator.

3.2 Stein Variational Gradient Descent

Given the current distribution p; as the time step ¢, our aim is to find the velocity field v; = ¢d 4 nuy
using the steepest descent direction:

. d .
uy = argmin, —F ((id + nu)#p¢) |n=o0, 2)

“dn

where # is the transport operator, ¢d is the identity function, and n > 0 is the step size.



The next distribution solution p;+1 = vi#p; where v, = id + nuy. Moreover, by restricting the
velocity u € H%, where H ¢ is the Reproducing Kernel Hilbert Space (RKHS) corresponding to the
positive semi-definite kernel K (6,80’) : © x © — R, Stein Variational Gradient Descent (SVGD)
[27] reaches the closed-form solution for the optimal velocity v; as

" (é) =0+ 1nEo-,, [—K (9, é) Vol () + VoK (9,[9')} .

4 Collaborative Multi-Solution Optimizers

Given the current solution py, to find the next solution p;, 1, we use the proximal operator as follows:

pergi(ﬁd){f (p) +d(p, pe)}, (©)

where d (p, pt) is a proximal operator, which is defined below.

4.1 Proximal Operator
We define the divergence d (p, p;) as

d(p,pt) =Eoopomp, [Ba [KL(f (2:0"),f(2:0)) + KL(f (x;0), f (x;0")]],
where K L is the Kullback-Leibler (KL) divergence.

In the following lemma, we approximate d(p, p;), exposing the geometry around the current solution
pt. All proof in our theory development can be found in Appendix B in the supplementary material.

Lemma 4.1. The divergence d(p, p;) in Eq. can be approximated as
T
d(pv pt) ~ E9’~p,9~ﬂt [(9/ - 9) H (0) (01 - 0)] )

where H (0) = E, []Ey [V@ log f, (z;0) Vg log f, (x; O)TH and f, (x; 0) is the y-th prediction
output in the prediction probability vector f (x; 0).

4.2 Theory Development

We denote the gradient flow of the optimization problem (OP) in (3) as (ps),~., that satisfies the
continuity equation [38] (Chapter 4, Page 110): B

8sps + div (psvs) =0,Vs >,
where div is the divergence operator and v, is the velocity field.

Let f € T,, M with M = P (R?) be the perturbation function (i.e., describing how p; changes over
time) on the tangent space T),, M such that

f + div (pt’Ut) = 0, (5)
which further implies f = 0, p;.

Thus, for a small step size > 0, it follows f = W, which leads to p¢1,, = p; +1f. We further
derive

F (ptan) — F (pr) = F (pe +nf) — F (pt) = <nf7 agg)t) > (6)
0 [ 21 0)j@)a0 © — [ L1 (0)aiv o 0100 a0 1)
@, / <v9 afaﬁf” ), v, (0>> o1 (8) 6. ®)

where O is due to Eq. and o) is due to the integral by part.



Noting that v;#p; ~ p;4, by the definition of the velocity field, and relating this to the proximal
operator in (3), we arrive at

minvt {‘F(vt#pt) - ‘F(pt) + d(pv pt)} )
which can be reformulated into due to (8) and Lemma[4.1]

min {n / <v3];£ft) 0), v, (9)> P (0)d6 + Eg,, [MTH () Ae} } . )

where AO = v;(0) — 0.

Moreover, Theorem [4.2] characterizes the optimal solution of OP in (9), which involves the geometry
of the particles sampled from p;,.

Theorem 4.2. The OP in ({9) receives the following optimal solution

v (é) =6 —nH (é)_l vagi(’”) (é) , (10)

Pt
where H (é) =E,; {Ey |:V9 log fy (:c; é) Vo log f, (:r,; é) T”

It should be noted that although the update formula in Theorem .2 has a closed form, it is intractable
because Vaf(p*) (é) = VU (é) + V log p; (é) is intractable due to the term V log p; (é) In
what follows, we present how to estimate this term to obtain a tractable solution.

Tractable Solution. To develop a tractable solution, we first notice that v (é) = 0 -
nvag—fﬁf) (é) = 6 + nar(0) is the velocity so that Pi+n = UF #p, minimizes F(p) — F(p;)
in a vicinity of p;. To find the optimal increment i, (0) = fv"’%’t) (5) , we seek the steepest

descent direction as in Eq. . To this end, we strengthen F(p) by adding the divergence term and
then replacing [ log pdp by a similar term using the convolution operation inspired by [8].

Inspired by [8]], to make smooth the entropy function, we redefine F(p) as
p)=ﬁ/\Pdp+/log(K*p)dp, (11)
where K % p(0) = [ K (6,0") p(8') d6' is the convolution operation using the kernel K, which

aims to make the entropy function smooth.

Moreover, given the current solution p; and the velocity v, = ¢d + nt,, we define the divergence
term as

Laiv (i) = / lav (614 ﬁ dpl™! (657") (12)

m=1

= /ldiv ([9m + 0y (Orm)],,— 1) H pt (Om) dO1.r,

where 4, (61.2s) is the loss that encourages the particles 8.5, more diverge and p[f’f] = Uy #p;.
Conceptually, by minimizing Lg;, (¢, 1) in (12)), we aim to learn a velocity ¢; = id + na, in such a

way that 0[‘”] ~ plP = ,#p, are encouraged to diverge. Eventually, given the current solution p,
we learn the velocity Uy = id + N, to minimize

G (iw,m) = F (o) + oL (i) (13)

where o > 0 is a trade-off parameter and pl%! = &, #p,.

In particular, we aim to find an optimal velocity 9, that simultaneously minimizes F (p) and pushes
the diverge particles. In the following theorem, we characterize the steepest descent direction.



Theorem 4.3. The steepest descent direction has the following form: ¥V, G (U, n) |p=0= (h, ),
where (., .) is the dot product on H% and

h(-) = Eonp, [BV‘I’ @)K (8,.)— Eorp, [K(6,6") VK (0, )]]

Egrp, [K(6,0")]

+ aE@l;M’VPt

M
> Vo, lav (01:01) K (6, J} :

m=1

Furthermore, using the first-order Taylor expansion, we obtain

G (e, 1) = G (1, 0) +nVG (1, 1) [n=0 +O(1?).
Therefore, by restricting @, in the ball of radius (h, h) inside H%, we yield @ = —h, hence
0} = id + nu; = id — nh. Finally, referring to (10), we reach

i (8) =61 (8) VP71 () ~6-+uar (6) " ; (0)

=G (8) 1 (6).

Practical Method. In what follows, we present the practical implementation of our method. Similar
to SVGD [27], we maintain a set of M particle models, denoted by 8. ,;. F0~r implementation conve-

nience, we use the same number of particles as in Eq. (12). To estimate H (0)~!, we approximate it
using only its diagonal elements. Furthermore, we compute this estimate using a moving average of

H (0) accumulated from past to current iterations.

- - N\ T -
my (0) = ~diag (IE(w’y)NBt [Vg log fy <m; 0) Vglog fy (:c; 0) ]) + (1 =5)mi_ (0) ,
where 7y € [0;1] is a momentum decay and By is the current mini-batch of (z,y) at the current
iteration.
Moreover, each particle 8" (i.e., 8}.,,) is updated as follows:
M

t+1 _ pt n . t t pt
ot =0 +—[mt(9t)+e]MmZ:1[ BV (6;,) K (6),,,6°) +

,[K (6t ,6t ) VK (6!, 6" M
Zm [Z( ’n’E}( E’;t) gt ()] )] _ % Z vemldiv (eiM) K (0;“0t) , (]4)
m/ m? 7 m/ m=1

where 0" represents a particle model at the ¢-th iteration. The training algorithm is presented in
Supplementary.

Divergence Term. Our framework facilitates the integration of diverse computational terms to
promote both collaboration and diversity among particle models. To illustrate its effectiveness,
we introduce a specific term designed to encourage the particle models to generate diverse output
predictions, ultimately enhancing the performance of the final ensemble.

We now describe the formulation of the divergence loss l4iy(61.as; @, y). For a given data point
(x,y) € S, let f(x; 0;) denote the predicted probability distribution produced by the particle model
0;. Define f_,(x;0;) (abbreviated as f% ., when context permits) as the non-maximal prediction
vector obtained by removing the ground-truth class y from the prediction. Following the approach in
[35], we encourage the non-maximal predictions fiy (fori=1,...,C, where C' is the number of
classes) to be mutually dissimilar, while simultaneously promoting the confidence in the ground-truth
predictions f; Drawing inspiration from Determinantal Point Processes (DPP) theory [25], we define
the ensemble diversity as:

Laiv (01:M§ f&y) = —log (det({ﬁy}:e[c} {fiy]ie[(l])) ,



where f1 = H;zﬁ and {fiyLe[C] € R(E=D*K where {C} = {1,...,0}.

Moreover, according to the matrix theory [4],

det( {fiy} ;[c} [fz”} ie[C]) = Vol ( [fz—u} ie[c]) ’

where Vol( [ fiy} z‘e[C]> specifies the volume spanned the vectors in [ fiy] el indicating that we

aim to maximize the diversity of the non-maximal predictions by maximally increasing their spanned
volume.

Model Fine-tuning with Parameter Efficiency. We focus on the fine-tuning problem, where a
pre-trained model, denoted as ®, is provided, and the goal is to identify the optimal parameters
6 = & + A, with A representing an additional component. Various parameter-efficient fine-tuning
(PEFT) methods, such as LoRA [21]], Adapters [20], or prompt-tuning [22] have been developed to
achieve this objective and have demonstrated remarkable performance compared to the conventional
full fine-tuning. Since A is typically a much smaller component than the complete model in PEFT
methods, we can conveniently maintain and learn an empirical distribution over several light-weight
components A, making our approach feasible.

S Experiments

In this section, we conduct extensive experiments across various settings to validate the effectiveness
of our proposed method: Image classification Benchmark, Domain generalization setting, and Few-
shot Learning. Each experiment is repeated with three random seeds, and the mean accuracy is
reported.

Detail of the experimental setting is presented in Appendix A, which includes the backbone, how to
set up multiple particles, the kernel function, and trade-off parameters.

5.1 Image classification

VTAB-1k dataset [53] consists of 19 distinct datasets, which are grouped into three categories:
Natural, Specialized, and Structured. Each dataset contains only 1,000 images for training, making
the task challenging due to the limited amount of data. Additionally, the images show significant
variation in data distribution across the datasets, further complicating the learning process.

We conduct experiments using four particles for our GAC-MSO and all baselines, except full fine-
tuning (FFT), AdamW, and SAM, for which we use a single particle consistent with standard
LoRA-based fine-tuning of foundation models. Each particle is randomly initialized at the start.

It’s important to note that using four particles increases the total number of trainable parameters by a
factor of four compared to single-particle methods. However, more parameters do not necessarily lead
to improved performance and can sometimes even degrade it. As shown in Table [T} most baseline
methods with multi-solution settings perform worse compared to the single-solution setting methods.
This may be due to inefficient model scaling or the trade-off between learning diverse solutions and
optimizing individual performance. Despite these challenges, our GAC-MSO method outperforms all
baselines, achieving the highest average accuracy with a notable 2.3% improvement.

Additionally, we evaluate all methods using the Expected Calibration Error (ECE), which measures
how well the predicted probabilities align with actual outcomes. The results, presented in Table
show that GAC-MSO achieves a comparable ECE score to SAM under single-particle settings and
outperforms other SAM-based methods, such as SADA-JEM [49]] and SA-BNN [32]], in the multi-
particle scenario. SAM-based approaches are known for producing solutions that lie in flatter regions
of the loss landscape, correlating with better generalization. Additionally, our method achieves better
ECE performance compared to SVGD [28]], which records the best ECE score among the other
multi-solution baselines.

FGVC dataset. The FGVC benchmark comprises five fine-grained datasets for visual classification
tasks: CUB-100-2011 [42], NABirds [40], Oxford Flowers [34]], Stanford Dogs [12]], and Stanford
Cars [17]. Each dataset contains between 1,000 and 21,000 images for training, offering a diverse



Table 1: VTAB-1K results evaluated on Top-1 accuracy. All methods are applied to finetune the same
set of LoRA parameters on ViT-B/16 pre-trained with ImageNet-21K dataset.

Natural | Specialized | Structured
— = € B L}
8 a £ 5 5 ]
=1 S S 5 >} [T} = 2 2 2 = < o
% 3 5 z 5|5 3 3 £|/9 9 § =z 4 <9 & %
£ 2 e P, E 2)F % . 2l: : 2 E L LB B
Method S 8§ a & & 5 4|8 A& & &£ |0 T A ¥ 8 % Z % |ac
Single solution setting
FFT [22 689 877 643 972 869 874 388|797 957 842 739|563 586 417 655 575 467 257 29.1 | 65.6
AdamW [21 67.1 90.7 689 98.1 90.1 845 542|841 949 844 736|829 692 498 785 757 47.1 31.0 44.0 | 72.0
SAM [16 7277 903 714 99.0 90.2 844 524|820 926 841 740|767 683 479 743 71.6 434 269 39.1 | 705
Multi-solution setting
DeepEns [26 69.1 889 677 989 90.7 851 545|826 948 827 753|466 47.1 474 682 71.1 36.6 30.1 356 67.0
BayesTune [23. 672 91.7 695 99.0 90.7 864 547|849 953 84.1 75.1 | 828 689 497 793 743 46.6 303 428 | 722
SGLD [48 687 910 670 986 893 830 51.6|81.2 937 832 764|800 70.1 482 762 71.1 393 312 384 | 704
SADA-JEM [49 703 919 702 982 912 856 547|843 941 834 77.0 | 799 721 51.6 794 70.7 453 29.6 401 | 72.1
SA-BNN |32 65.1 91.5 71.0 989 894 893 552|832 945 864 752|614 632 400 713 645 345 272 312 | 68.1
SVGD |28 713 902 71.0 987 902 843 527|834 932 867 751|758 707 496 799 69.1 412 30.6 33.1| 709
GAC-MSO (Ours) 737 949 72,6 994 91.6 858 583|862 962 869 740|790 638 51.0 799 844 583 334 464 | 745

Table 2: VTAB-1K results evaluated on the Expected Calibration Error (ECE) metric. All methods are
applied to fine-tune the same set of LORA parameters on ViT-B/16 pre-trained with ImageNet-21K
dataset.

Natural | Specialized | Structured
— > | & )
2 S a g = H % < m
s z 3 . 5|5 £ % E|S 8 & _ 8 &8 3 2
£ 2 2 : 4, E 2|8 e £ £ s ¢ 4 E 3 L &% B
= = = 2 3 > S E = 3 g 3] 3] = = g & 2 2
Method Q 8} [a] [ ~ 2] 7] o m ~ ~ O O =) ¥ S S} & Z | AVG
Single solution setting
FFT [22] 029 023 020 0.13 027 0.19 045|021 0.13 0.18 0.17 | 041 044 042 022 0.14 023 024 040 | 0.26
AdamW |21 038 0.19 0.18 005 0.09 0.10 014 |0.11 009 0.12 011|012 0.19 034 0.18 0.14 021 0.18 031 | 0.17
SAM [16 021 025 020 0.1 012 0.15 0.14|0.17 0.16 0.14 0.09 | 0.12 0.17 024 0.16 021 019 0.13 0.16 | 0.16
Multi-solution setting
DeepEns [26 024 0.12 022 0.04 0.10 013 023 ]0.16 0.07 015 021|031 032 036 0.3 032 031 0.16 029 | 0.20
BayesTune [23 032 0.08 020 003 085 012 0.22]0.13 0.07 013 022|012 023 030 024 028 028 031 026 | 0.23
SGLD [48 026 020 0.17 005 0.18 0.4 023 |0.18 009 0.12 032]026 029 021 026 042 039 011 024 | 0.22
SADA-JEM [49 022 0.1 020 005 013 016 0.18 |0.15 021 023 026 |0.19 020 025 027 035 020 0.14 0.13 | 0.19
SA-BNN [32 022 0.08 019 0.15 012 0.12 024 |0.13 006 0.12 0.18 | 0.14 021 022 024 025 041 046 034 | 020
SVGD [28 020 0.13 0.19 004 0.16 0.09 020 |0.15 011 0.3 012 ]0.17 021 030 0.18 021 025 0.14 026 | 0.18

GAC-MSO (Ours) 0.14 0.03 0.16 0.00 0.06 0.11 0.15 ‘ 0.12 0.03 0.08 0.18 ‘ 0.16 029 038 0.05 0.09 025 041 038 ‘ 0.16

range of challenges for fine-grained image recognition. Detailed results and experimental setup are
placed in Appendix A.

The results demonstrate that our GAC-MSO method achieves notable improvements in both accuracy
and ECE score. In particular, GAC-MSO significantly outperforms the SVGD approach on calibration,
achieving an ECE score of 0.05 compared to 0.14 on SVGD. This highlights the effectiveness of our
approach not only in enhancing predictive performance but also in improving model confidence and
trustworthiness in fine-grained classification tasks.

5.2 Few-shot learning

In this section, we extend our analysis to a few-shot learning setting by varying the number of
training samples (shots) per class across 1, 2, 4, 8, and 16. We evaluate performance on five fine-
grained datasets: FGVC-Aircraft [30]], Oxford-Pets [36], Food-101 [3]], Stanford Cars [24], and
Oxford-Flowers102 [33]].

We adopt the same experimental setup as described in Section 2 for standard image classification,
using four particles for GAC-MSO, SVGD [28]], and Deep Ensemble methods, and a single particle
for AdamW. The results for each dataset are shown in Figure 1, where our GAC-MSO achieves
the highest accuracy across most of the shot settings compared to the baselines. The detailed
results, including accuracy and ECE scores, are provided in Appendix A. Overall, GAC-MSO also
demonstrates a notable improvement in calibration performance, achieving lower ECE scores than
competing methods.



AdamW === Deep-ensemble == SVGD e GAC-MSO

FGVC-Aircraft Flower102 Food101 OxfordPets Standford-Cars

Figure 1: Accuracy on the few-shot benchmark FGVC. The x-axis represents the number of shots
(training samples per class) in this setting. Evaluation of ECE scores is provided in Appendix.

Table 3: Top-1 accuracy on domain generalization experiments. All models are fine-tuned with a
subset ImageNet-1K dataset and tested on five datasets.

Accuracy \ ECE

Method Source Target \ Source Target

ImageNet -Sketch -V2 -A  -R | ImageNet -Sketch -V2 -A -R
Single-solution setting
AdamW [21] 70.8 20.0 593 69 233 | - - - - -
Multi-solution setting
Deep-ensemble [26] 79.4 36.2 689 17.6 339 0.069 0.028 0.041 0.130 0.034
SVGD [28] 77.4 36.6 673 17.1 35.1 0.500 0253 0435 0.088 0.232
GAC-MSO (Ours) 79.6 373 691 19.6 358 0.058 0.049  0.044 0.123 0.049

5.3 Domain generalization

We analyze the robustness of our method in practical scenarios where domain shift [58]] is unavoidable.
In this setting, the model is fine-tuned on a subset of the ImageNet-1K dataset [[13]], which includes
16 samples per class. After fine-tuning, we test the model on three widely used validation sets derived
from ImageNet-1K: the original ImageNet-1K validation set, ImageNet-V2 [37], and ImageNet-
Sketch [45]. Additionally, we also include two challenging benchmarks: ImageNet-A [19], which
consists of naturally adversarial samples, and ImageNet-R [18]], which contains artistic and abstract
renditions of ImageNet classes. As shown in Table 3] our GAC-MSO method consistently achieves
higher accuracy than all baseline methods across all test sets, including both mild (Sketch and V2)
and extreme (Adversarial and Rendition) domain shifts. The improvement gap is notable on the
more challenging ImageNet-A and ImageNet-R datasets. Additionally, GAC-MSO maintains a
comparable or better ECE score, indicating that the predictions remain well-calibrated even under
out-of-distribution conditions.

5.4 Effectiveness of geometry-aware and divergency term

In this section, we analyze the effectiveness of two key components: the geometry term, which
encourages diversity in the model space by leveraging geometric structure, and the divergence term,
which promotes diversity in predictions within the output space. Results are presented in Table 4]
Incorporating the geometry term leads to a significant performance improvement compared to models
without it, highlighting the benefit of modeling relationships in parameter space. Furthermore, adding
the divergence term provides additional gains, demonstrating its effectiveness in enhancing ensemble
diversity and improving predictive performance.

5.5 Additional experiments on trade-off « of divergence term and number of particles

Detailed experiments and results are presented in the Supplementary.



Table 4: Results on the VTAB-1K Dataset. We report the average performance across the three task
groups: natural, specialized, and structured.

Geometry Divergence Natural Specialized Structured Average

79.717 84.60 56.25 73.54
X 82.13 85.73 60.96 76.27
X X 82.32 85.83 62.03 76.72

6 Conclusion and Limitation

In this work, we have addressed the challenges of adapting large foundation models to downstream
tasks, particularly when diverse solutions are needed for improved robustness and ensemble perfor-
mance. We introduced the Geometry-Aware Collaborative Multi-Solution Optimizer (GAC-MSO), a
novel framework that leverages parameter-efficient fine-tuning (PEFT) by optimizing lightweight
modules while sharing a common backbone. Grounded in gradient flow theory and geometric struc-
ture, GAC-MSO promotes diversity not only in parameter space but also in output behavior. Our
extensive experimental evaluation across transfer learning, few-shot learning, and domain generaliza-
tion demonstrates that GAC-MSO significantly outperforms existing baseline methods, providing
strong predictive performance with affordable computational cost. These results highlight the poten-
tial of GAC-MSO for efficient and effective adaptation of foundation models in resource-constrained
settings.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: our claims match theoretical and experimental results. The overall setting
could apply to other PEFT methods.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [NA]
Justification: There is no limitation discussed.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

15



Justification: the proof of theories are presented in the Appendix and Supprementary.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide details of the experimental setup and full code to reproduce the
results.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide the link and the code with detailed instructions for setting up the
dataset and hyperparameters to reproduce the experiments.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer:[Yes]

Justification: We provide detailed settings for each experiment along with the code to
reproduce.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined, or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experiments are repeated at least 3 times with different random seeds. We
report the mean accuracy to save space.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:
Justification: We do not include discussion of the resource.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We reviewed and followed the Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our research poses no risks for misuse.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite every dataset and baseline we mentioned and used in this paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

19


paperswithcode.com/datasets

13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Our paper does not release new assets
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research involves deep neural networks
in general.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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