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ABSTRACT

The evolution of speech technology has been spurred by the rapid increase in
dataset sizes. Traditional speech models generally depend on a large amount
of labeled training data, which is scarce for low-resource languages. This paper
presents GigaSpeech 2, a large-scale, multi-domain, multilingual speech recogni-
tion corpus. It is designed for low-resource languages and does not rely on paired
speech and text data. GigaSpeech 2 comprises about 30,000 hours of automat-
ically transcribed speech, including Thai, Indonesian, and Vietnamese, gathered
from unlabeled YouTube videos. We also introduce an automated pipeline for
data crawling, transcription, and label refinement. Specifically, this pipeline uses
Whisper for initial transcription and TorchAudio for forced alignment, combined
with multi-dimensional filtering for data quality assurance. A modified Noisy Stu-
dent Training is developed to further refine flawed pseudo labels iteratively, thus
enhancing model performance. Experimental results on our manually transcribed
evaluation set and two public test sets from Common Voice and FLEURS confirm
our corpus’s high quality and broad applicability. Notably, ASR models trained on
GigaSpeech 2 can reduce the word error rate for Thai, Indonesian, and Vietnamese
on our challenging and realistic YouTube test set by 25% to 40% compared to the
Whisper large-v3 model, with merely 10% model parameters. Furthermore, our
ASR models trained on GigaSpeech 2 yield superior performance compared to
commercial services. We believe that our newly introduced corpus and pipeline
will open a new avenue for low-resource speech recognition and significantly fa-
cilitate research in this area.

1 INTRODUCTION

In recent years, the scaling of model parameters and data size has prevailed and proven effective
in a range of areas, including language Kaplan et al. (2020); Hoffmann et al. (2022), vision Betker
et al. (2023); Dehghani et al. (2023), as well as speech processing Pratap et al. (2024); Zhang et al.
(2023); Radford et al. (2023). Consequently, pursuing superior AI models is now closely associ-
ated with expanding model size and leveraging larger, high-quality datasets. In the realm of Au-
tomatic Speech Recognition (ASR), several large-scale open-source labeled speech datasets Chen
et al. (2021); Kang et al. (2024); Zhang et al. (2022); Galvez et al. (2021); Pratap et al. (2020b);
Ardila et al. (2020) have been proposed. However, these extensive datasets are only available for
several mainstream languages, such as English and Mandarin, hindering speech recognition devel-
opment for low-resource languages. Moreover, traditional ASR corpus Ardila et al. (2020); Conneau
et al. (2023); Bu et al. (2017); Du et al. (2018) construction relies heavily on human-labeled speech
data, making it time-consuming and a major bottleneck in the fast-paced AI industry. Reducing
dependence on vast labeled data is crucial when expanding to new languages and domains Hsu et al.
(2021). YODAS Li et al. (2023) attempts to address this issue by building multilingual datasets via
scraping audio and transcriptions from YouTube. However, neither manual nor automatic subtitles
accurately reflect the speech content, resulting in unguaranteed quality.
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With this perspective in mind, we propose a new paradigm for constructing large-scale ASR datasets,
focusing exclusively on audio content irrespective of the existence or quality of corresponding text
pairs. This approach leverages the gigantic amount of unlabeled audio data, thereby bypassing
the constraints of scarce paired data. We introduce GigaSpeech 2, an evolving, large-scale, multi-
domain, multilingual ASR corpus for low-resource Southeast Asian languages. GigaSpeech 2 raw
comprises about 30,000 hours of automatically transcribed speech, including Thai, Indonesian, and
Vietnamese. GigaSpeech 2 refined consists of 10,000 hours of Thai, 6,000 hours each for Indonesian
and Vietnamese. To achieve this, an automated pipeline is developed for data crawling, transcription,
and filtering. Furthermore, a modified Noisy Student Training (NST) Xie et al. (2020) method is
proposed to refine labels from flawed data iteratively. Through comprehensive evaluations, ASR
models trained on GigaSpeech 2 refined can reduce the word error rate for Thai, Indonesian, and
Vietnamese on our YouTube test set by 25% to 40% compared to the powerful Whisper large-v3
model, with merely 10% model parameters.

Our contributions can be summarized as follows:

• We release GigaSpeech 2, an evolving, large-scale, multi-domain, and multilingual ASR
corpus focusing on low-resource languages. GigaSpeech 2 raw comprises about 30,000
hours of automatically transcribed speech across Thai, Indonesian, and Vietnamese. Gi-
gaSpeech 2 refined consists of 10,000 hours of Thai, 6,000 hours each for Indonesian and
Vietnamese.

• We develop an automated pipeline for data crawling, transcription, and label refinement,
enabling the creation of large-scale speech datasets without reliance on labeled data.

• We propose a modified NST method to refine flawed pseudo labels iteratively. Our modified
NST considers scaling, relabeling, and filtering data within each iteration, significantly
improving data quality.

• We release a series of challenging and realistic speech recognition test sets, including Thai,
Indonesian, and Vietnamese. Compared to previous public test sets, GigaSpeech 2 test sets
more realistically reflect speech recognition scenarios and mirror the real performance of
an ASR system for low-resource languages.

• Experimental results on our challenging GigaSpeech 2 test sets, as well as other competitive
public test sets including Common Voice and FLEURS, demonstrate the superiority of
the ASR models trained on GigaSpeech 2 over several competitive baselines, including
Whisper large-v3 and commercial services.

2 RELATED WORK

Multilingual Low-Resource Speech Datasets Several public multilingual speech datasets have
emerged for low-resource languages. BABEL Gales et al. (2014), a pioneering dataset, includes
conversational telephone data in 17 African and Asian languages. Common Voice Ardila et al.
(2020) offers 19,000 hours of validated recordings in over 100 languages. FLEURS Conneau et al.
(2023) covers 102 languages with 12 hours of supervised data per language. CMU Wilderness Black
(2019) provides 20 hours of New Testament data for over 700 languages. VoxLingua107 Valk &
Alumäe (2021) contains 6,628 hours of unlabeled YouTube data across 107 languages. However,
most public multilingual speech datasets focus on high-resource languages, leaving low-resource
languages with limited annotated speech data. For example, the available open-source data for Thai,
Indonesian, and Vietnamese is scarce, as detailed in Table 1. In contrast, industry-utilized speech
models like Whisper Radford et al. (2023), MMS Pratap et al. (2024), Google USM Zhang et al.
(2023), and Universal-1 Ramirez et al. (2024) are trained on massive industrial-grade datasets, the
details of which remain undisclosed. To resolve the problem, YODAS Li et al. (2023) attempts to
crawl audio from YouTube, but neither manual nor automatic subtitles accurately reflect the speech
content, resulting in unguaranteed quality. Moreover, widely used evaluation benchmarks for low-
resource languages Ardila et al. (2020); Conneau et al. (2023) only consist of read speech, which is
relatively clean and mismatched with real-world speech data.

Multilingual Automatic Speech Recognition As the demand for communication between people
worldwide grows, many works Radford et al. (2023); Zhang et al. (2023); Pratap et al. (2024);
Li et al. (2021); Lugosch et al. (2022); Toshniwal et al. (2018); Cho et al. (2018); Pratap et al.
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Table 1: Comparison of data size between GigaSpeech 2 and other common public multilingual
speech datasets on Thai (“th”), Indonesian (“id”), and Vietnamese (“vi”).

Dataset Language Total Duration
(h) Domain Speech Type Labeled Label Type

Common Voice Ardila et al. (2020)
th 172.0

Open domain Read Yes Manualid 28.0
vi 6.0

FLEURS Conneau et al. (2023)
th 13.3

Wikipedia Read Yes Manualid 12.6
vi 13.3

VoxLingua107 Valk & Alumäe (2021)
th 61.0

YouTube Spontaneous No -id 40.0
vi 64.0

CMU Wilderness Black (2019)
th 15.6

Religion Read Yes Manualid 70.9
vi 9.2

BABEL Gales et al. (2014) vi 87.1 Conversation Spontaneous Yes Manual
VietMed Le-Duc (2024) vi 16.0 Medical Spontaneous Yes Manual

Thai Dialect Corpus Suwanbandit et al. (2023) th 840.0 Open domain Read Yes Manual
TITML-IDN Shinoda & Furui (2011) id 14.5 News Read Yes Manual
MEDISCO Qorib & Adriani (2018) id 10.0 Medical Read Yes Manual

YODAS manual Li et al. (2023)
th 497.1

YouTube Spontaneous Yes Manualid 1420.1
vi 779.9

YODAS automatic Li et al. (2023)
th 1.9

YouTube Spontaneous Yes Pseudoid 8463.6
vi 9203.1

GigaSpeech 2 raw
th 12901.8

YouTube Spontaneous Yes Pseudoid 8112.9
vi 7324.0

GigaSpeech 2 refined
th 10262.0

YouTube Spontaneous Yes Pseudoid 5714.0
vi 6039.0

(2020a); Tjandra et al. (2023); Kannan et al. (2019); Conneau et al. (2021) have shifted attention
to multilingual speech recognition. Whisper Radford et al. (2023), built on 680,000 hours of web
data, supports 99 languages. Google USM Zhang et al. (2023), trained on YouTube audio, extends
to 100+ languages. Massively Multilingual Speech (MMS) Pratap et al. (2024), trained on religion
data, further scales to 1,107 languages.

Noisy Student Training (NST) NST Xie et al. (2020); Park et al. (2020); Xu et al. (2020); Zhang
et al. (2020); Likhomanenko et al. (2021); Mehmood et al. (2022); Chen et al. (2023) is a self-
training technique that leverages unlabeled data to enhance performance. Traditional NST methods
start with training a teacher model on high-quality labeled data. Each student model then trains
on both noisy-augmented labeled data and pseudo-labeled data generated by its teacher from the
unlabeled data. A recent study Xu et al. (2020) uses Character Error Rate (CER) between pseudo-
labeled data generated with and without a language model to perform data selection, suggesting a
positive correlation between the CERs of different pseudo labels and their ground truth.

3 DATASET CONSTRUCTION

Our proposed automated construction pipeline is illustrated in Fig. 1. Sec. 3.1 covers the stages
involved in building GigaSpeech 2 raw and Sec. 3.2 further construct GigaSpeech 2 refined.

3.1 GIGASPEECH 2 RAW: AUTOMATED CRAWLING AND TRANSCRIPTION

Audio Collection Due to the scarcity of human-labeled data in low-resource languages, our dataset
is collected with a focus solely on the audio content, irrespective of the existence or quality of cor-
responding text pairs. This strategy allows for a broader range of audio data. Given the scarcity

3
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Figure 1: Automated construction pipeline of GigaSpeech 2, comprising (1) audio collection, (2)
dataset partitioning, (3) automated transcription with Whisper, (4) forced alignment with TorchAu-
dio, (5) transcription normalization, (6) data filtering, and (7) label refinement.

and uneven distribution of resources for low-resource languages, we strategically focus on crawling
videos from YouTube channels based on two key assumptions. First, prioritizing popular channels
ensures consistent domain characteristics and audio quality. Second, different channels have no
speaker overlap, simplifying the subsequent data partitioning. The data collection process starts by
manually defining categories of interest. The selected topics include Agriculture, Art, Business, Cli-
mate, Culture, Economics, Education, Entertainment, Health, History, Literature, Music, Politics,
Relationships, Shopping, Society, Sport, Technology, and Travel. Alongside multiple topics, vari-
ous content formats are also considered, including Audiobook, Commentary, Lecture, Monologue,
Movie, News, Talk, and Vlog. This broad selection ensures the comprehensiveness of the dataset
across multiple domains for research and analysis. Moreover, the collected audio must be accom-
panied by a Creative Commons license. Once the list of YouTube channels is prepared, we use
yt-dlp1 toolkit to download all audio files in WebM format. These files are then converted to WAV
format with a single channel and resampled at a 16 kHz sampling rate.

Creating TRAIN/DEV/TEST Splits To ensure no speaker overlap between the splits, we man-
ually verify no speaker overlap between different channels and partition the data by allocating dif-
ferent YouTube channels to each subset. The dataset is divided into three distinct subsets: TRAIN,
DEV, and TEST. The DEV and TEST sets each contain 10 hours and are manually transcribed by
professionals, while the remainder is allocated to the TRAIN set. Table 1 shows the amount of data
across these three languages. Detailed analysis of GigaSpeech 2 is illustrated in Appendix B.

Transcription with Whisper Whisper large-v3 model2 from OpenAI is used to transcribe audio
files automatically. For each audio recording, a 30-second segment is selected from the middle to
perform language detection by Whisper. Only audios that match the target languages are transcribed.

Forced Alignment with TorchAudio Although Whisper can generate timestamps, inspection re-
veals they are not precise enough. We resort to the model3 from TorchAudio Hwang et al. (2023)
for forced alignment, which provides reliable alignment for noisy transcriptions, supports efficient
processing on GPUs, and handles longer sequences more effectively (Pratap et al., 2024).

Text Normalization Text normalization on transcripts involves applying Normalization Form
Compatibility Composition (NFKC), converting all characters to uppercase, removing punctuation,
and mapping Arabic numerals to corresponding words in the respective languages.

Multi-dimensional Filtering A series of heuristic filtering rules across text and audio modalities
are implemented to exclude relatively poor-quality samples.

• Charset Filtering: Segments are retained if they only contain characters permitted by the
charset of the respective language.

1https://github.com/yt-dlp/yt-dlp
2https://huggingface.co/openai/whisper-large-v3
3https://dl.fbaipublicfiles.com/mms/torchaudio/ctc_alignment_mling_

uroman/model.pt
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• Language Confidence Filtering: The language identification (LID) model4 from fast-
Text (Joulin et al., 2016) is used to filter based on the estimated language confidence score,
retaining only segments with confidence scores above a predetermined threshold. This
method effectively eliminates meaningless and repetitive segments. Note that language
identification based on audio has already been performed before transcription.

• Audio Duration Filtering: Segments are filtered based on duration, with only those re-
tained within the predetermined minimum and maximum duration thresholds.

• Balancing: We carefully control the duplication of transcripts caused by channel-specific
content while preserving natural linguistic patterns. Samples containing personal informa-
tion, such as phone numbers, ID numbers, and specific addresses, are removed.

3.2 GIGASPEECH 2 REFINED: ITERATIVE LABEL REFINEMENT

Some samples remain low quality due to inaccuracies in Whisper transcriptions and imprecise forced
alignment boundaries. To address this, we develop a modified NST method. As illustrated in the bot-
tom right corner of Fig. 1, it begins by training a teacher model on a subset of flawed pseudo labels,
iteratively expanding the training set, generating new pseudo labels, and filtering them. A student
model, equal to or larger than the teacher, is trained on these refined pseudo labels and assigned as
the new teacher. Unlike previous NST approaches that heavily rely on unchanged supervised data
combined with additional unsupervised data, our method eliminates the need for supervised data as
a seed. Instead, we treat the flawed pseudo labels generated by Whisper as supervised data, refining
all labels iteratively based on the Character Error Rate (CER) between those produced by Whisper
and the teacher model. SpecAugment (Park et al., 2019), Bypass (Yao et al., 2024), and feature
mask (Yao et al., 2024) introduce noise during each NST step. Bypass, a type of stochastic depth,
learns channel-wise scalar weights to combine the module input and output. Feature mask performs
dropout in the hidden dimension of the feedforward and convolution layer but shares across the
time dimension. This deliberate noising enables the student model to learn consistency with the
teacher model, which remains unaffected by noise when generating pseudo labels (Xie et al., 2020).
This iterative process progressively enhances data quality. Detailed algorithm steps are provided in
Appendix A Algo. 1.

4 EXPERIMENTS

4.1 ASR MODEL TRAINING ON GIGASPEECH 2

Our ASR systems are constructed by Zipformer Transducer Graves et al. (2013). Two Zipformer Yao
et al. (2024) variants, namely Zipformer-M and Zipformer-L, are employed for each NST itera-
tion. Specific configurations are listed in Appendix C.1. During Noisy Student Training, SpecAug-
ment Park et al. (2019) is used as input noise, and Bypass Yao et al. (2024) and feature mask Yao
et al. (2024) are used as model noise.

Table 2 presents the ASR results across different NST iterations on three evaluation sets, including
the development and test sets from GigaSpeech 2 and the Common Voice 17.0 and FLEURS test
set. Each iteration involves distinct modifications aimed at refining high-quality transcriptions. A
subset of automatic transcriptions generated by Whisper large-v3 is used to train the initial teacher
model (Iteration 1). The teacher model then filters the training utterances by applying a CER/WER
threshold, using the original labels as references and the new labels generated by the teacher as the
hypothesis. The student model is trained on this filtered set with noise injected (Iteration 2). The
student model is then used as the teacher to generate new labels on a larger subset of raw automatic
transcriptions, applying the same filter to refine the training data. This refined data is used to train
the student model with noise injected (Iteration 3). The process repeats in subsequent iterations,
and the model size is scaled up to a larger version in the final iteration (Iteration 3 of Indonesian &
Vietnamese, Iteration 4 of Thai).

According to the results shown in Table 2, several notable trends can be observed:

4https://dl.fbaipublicfiles.com/fasttext/supervised-models/lid.176.bin
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Table 2: Comparison of ASR performance with different NST iterations on various evaluation sets,
including GigaSpeech 2 DEV and TEST, Common Voice 17.0 TEST, and FLEURS TEST. Detailing
training set size (# Hours), model size (# Params), Character Error Rate (CER) for Thai, and Word
Error Rate (WER) for Indonesian and Vietnamese.

NST
Iter

# Hours
(h)

# Vocab # Params
(M)

CER / WER
GigaSpeech 2
DEV TEST

Common Voice
TEST

FLEURS
TEST

Thai
1 4378 500 65.5 12.14 15.10 8.88 14.33
2 3497 500 65.5 10.97−9.6% 13.15−12.9% 6.99−21.3% 11.93−16.7%

3 7219 2000 68.6 10.50−4.3% 12.46−5.2% 4.61−34.0% 10.94−8.3%

4 10262 2000 151.9 10.45−0.5% 12.46−0.0% 4.15−10.0% 10.54−3.7%

Indonesian
1 5765 2000 68.6 16.68 15.99 19.82 16.29
2 4534 2000 68.6 15.60−6.5% 15.23−4.8% 15.83−20.1% 14.30−12.2%

3 5714 2000 151.9 14.58−6.5% 14.92−2.0% 13.83−12.6% 13.77−3.7%

Vietnamese
1 2351 2000 68.6 16.08 16.95 24.63 17.86
2 1764 2000 68.6 15.08−6.2% 14.72−13.2% 18.81−23.6% 13.50−24.4%

3 6039 2000 151.9 14.09−6.6% 12.83−12.8% 14.43−23.3% 11.59−14.1%

1) Across all three languages (Thai, Indonesian, and Vietnamese), iteratively scaling the training data
size, adding noise, and filtering labels lead to consistent improvements in the WER performance on
the evaluation sets until the final iteration. This indicates that the iterative approach of refining and
scaling the training data is effective in enhancing the accuracy of the raw transcriptions.

2) The Thai language achieves the absolute lowest error rates consistently across iterations from
Iteration 1 to 4, indicating the effectiveness of the NST approach for this particular language. The
best NST model outperforms the standard transcription model data by WER reductions of 1.69%,
2.64%, 4.73%, and 3.79% absolute (13.92%, 17.48%, 53.27%, and 26.45% relative) respectively
(Iteration 4 vs. 1).

Additional ablation studies on our modified NST in Appendix D Table 9 demonstrate the effective-
ness of relabeling and discuss the detriment of enlarging noise when scaling the training data.

4.2 COMPARISON TO EXISTING ASR SYSTEMS

To demonstrate the efficacy of our ASR models trained on GigaSpeech 2, several mainstream and
competitive ASR systems, including Whisper Radford et al. (2023) from OpenAI, MMS Pratap et al.
(2024) from Meta, and commercial services from Azure and Google, are used as benchmarks.

Whisper: Our work builds upon Whisper Radford et al. (2023), a suite of large-scale, multitask, and
multilingual speech models developed by OpenAI. It leverages the encoder-decoder Transformer
architecture Vaswani et al. (2017), with model sizes ranging from 39 million parameters (tiny) to
1.55 billion parameters (large). Additionally, Whisper offers variants spanning from an English-only
version to a multilingual model capable of handling 99 languages. To conduct a comprehensive
evaluation, we test three variants: Whisper base, Whisper large-v2, and Whisper large-v3 models.

MMS: The Massively Multilingual Speech (MMS) Pratap et al. (2024) project leverages self-
supervised learning (SSL) techniques and a novel dataset to expand the language coverage of speech
technology significantly. The core components include pre-trained wav2vec 2.0 Baevski et al. (2020)
models for 1,406 languages, a single multilingual ASR model supporting 1,107 languages, speech
synthesis models for the same set of languages, and a language identification model capable of
recognizing 4,017 languages. In this study, we employ the MMS L1107 configuration.

Azure AI Speech: Azure Speech CLI offers a convenient way to leverage Microsoft’s speech recog-
nition capabilities directly from the command line. It not only supports a wide range of audio file
formats but also possesses the ability to handle various streaming audio inputs. We utilize the Azure
Speech CLI version 1.37 in this paper, which is the latest version available.

6
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Table 3: Comparison of ASR results for models trained on GigaSpeech 2 with open-source mul-
tilingual ASR models and commercial ASR services, evaluated on test sets from GigaSpeech 2,
Common Voice 17.0, and FLEURS. The evaluation metrics are Character Error Rate (CER) for
Thai and Word Error Rate (WER) for both Indonesian and Vietnamese. “†” denotes commercial
services.

Model # Params
(M)

CER / WER
GigaSpeech 2 Common Voice FLEURS

Thai
Whisper large-v3 1542 20.44 6.02 11.55
Whisper large-v2 1541 22.47 8.79 15.50
Whisper base 72 46.47 32.59 42.28
MMS L1107 964 31.75 14.49 23.07
Azure Speech CLI 1.37.0† - 17.25 10.20 13.35
Google USM Chirp v2† - 49.70 14.75 63.35
GigaSpeech 2 (proposed) 151.9 12.46 4.15 10.54

Indonesian
Whisper large-v3 1542 20.03 7.43 7.85
Whisper large-v2 1541 21.44 8.93 8.95
Whisper base 72 39.37 34.70 33.76
MMS L1107 964 35.27 20.72 24.49
Azure Speech CLI 1.37.0† - 18.07 10.33 11.18
Google USM Chirp v2† - 19.63 9.70 7.23
GigaSpeech 2 (proposed) 151.9 14.92 13.83 13.77

+ Common Voice + FLEURS 151.9 14.95 7.33 12.74
Vietnamese

Whisper large-v3 1542 17.94 13.74 8.59
Whisper large-v2 1541 18.74 18.00 10.26
Whisper base 72 39.88 44.07 40.41
MMS L1107 964 46.62 43.88 55.35
Azure Speech CLI 1.37.0† - 11.86 10.21 11.88
Google USM Chirp v2† - 13.28 12.46 11.75
GigaSpeech 2 (proposed) 151.9 12.83 14.43 11.59

+ Common Voice + FLEURS 151.9 12.39 11.47 9.94

Google USM: The Universal Speech Model (USM) Zhang et al. (2023) is introduced as a single,
large-scale model that excels in ASR across over 100 languages. This achievement is made possible
by pre-training the model’s encoder on a vast, unlabeled multilingual dataset of 12 million hours,
covering more than 300 languages, followed by fine-tuning on a smaller labeled dataset. To conduct
a thorough comparison, we utilize their Chirp Speech-to-Text v2 model for performance evaluation.

We compare the performance of our proposed approach trained on GigaSpeech 2 against these
above-mentioned ASR models, including Whisper (base, large-v2, and large-v3), MMS L1107,
Azure Speech CLI 1.37.0 and Google USM Chirp v25, across three languages: Thai, Indonesian,
and Vietnamese. The ASR performance is evaluated regarding character error rate (CER) or word
error rate (WER) on three distinct test sets from GigaSpeech 2, Common Voice 17.0, and FLEURS.
According to the results shown in Table 3, there are several intriguing findings:

1) For the Thai language, our ASR model trained on GigaSpeech 2 (Table 3, Thai, Row 7) outper-
forms all competitors, including commercial services from Azure and Google, securing the top rank
across all three test sets among the seven models. It outperforms Whisper large-v3 by WER reduc-
tions of 7.98%, 1.87%, and 1.01% absolute (39.04%, 31.06%, and 8.74% relative) (Table 3, Thai,
Row 7 vs. 1). Remarkably, our model achieves such impressive performance with nearly one-tenth
of the parameters compared to Whisper large-v3 (151.9 M vs. 1542 M).

5Abnormal high deletion rates with Google USM in Thai are observed in our repeated testing.
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Table 4: Comparison of ASR results for models trained on YODAS and GigaSpeech 2, evaluated on
test sets from GigaSpeech 2, Common Voice 17.0, and FLEURS. The evaluation metrics are Char-
acter Error Rate (CER) for Thai and Word Error Rate (WER) for both Indonesian and Vietnamese.

Training Set # Params
(M)

CER / WER
GigaSpeech 2 Common Voice FLEURS

Thai
YODAS manual 68.6 27.34 10.71 14.19
YODAS manual 151.9 28.76 10.96 16.11
GigaSpeech 2 refined 151.9 12.46 4.15 10.54

Indonesian
YODAS manual 68.6 25.77 10.82 14.63
YODAS manual + automatic 68.8 41.11 15.41 47.26
YODAS manual 151.9 25.11 11.05 12.67
GigaSpeech 2 refined 151.9 14.92 13.83 13.77

Vietnamese
YODAS manual 68.6 40.35 31.07 25.68
YODAS manual + automatic 68.6 71.91 25.73 61.38
YODAS manual 151.9 40.71 32.58 29.32
GigaSpeech 2 refined 151.9 12.83 14.43 11.59

2) For the Indonesian and Vietnamese languages, our system demonstrates competitive performance
compared to existing baseline models. This highlights the efficacy of our pipeline in delivering
high-quality results with a lightweight model. Specifically, on the GigaSpeech 2 test set in the
Indonesian language, our system (Table 3, Indonesian, Row 7) outperforms all baseline models,
attaining the best performance. Compared to Whisper large-v3, the model trained on Indonesian
achieves an absolute WER reduction of 5.11%, corresponding to a relative reduction of 25.51%
(Table 3, Indonesian, Row 7 vs. 1). Similarly, the model trained on Vietnamese achieves an absolute
WER reduction of 5.11%, corresponding to a relative reduction of 28.48% (Table 3, Vietnamese,
Row 7 vs. 1).

3) Our model exhibits degraded performance compared to commercial ASR systems on the Common
Voice and FLEURS test sets in Indonesian and Vietnamese, which can be attributed to the domain
mismatch. Contrastively, we observe a performance leap after adding Common Voice and FLEURS
training data into GigaSpeech 2 (Table 3, Indonesian & Vietnamese, Row 7 vs. 8).

Despite the substantial disparity in training data size, our method achieves the best performance for
the Thai language domain and delivers comparable results to commercial models for Indonesian and
Vietnamese. This remarkable accomplishment highlights the efficacy of our approach in leveraging
limited, free, open-source, unlabeled data to train highly competitive speech recognition models. It
showcases a promising path towards developing high-quality speech recognition systems without
the need for extensive, proprietary datasets, thereby reducing the barrier to entry and enabling wider
accessibility.

4.3 COMPARISON TO THE YODAS CORPUS

Table 4 compares ASR performance across different models trained on YODAS Li et al. (2023)
and GigaSpeech 2 datasets evaluated on various test sets. Note that YODAS Thai automatic is not
included because of insufficient data (only 1 hour). Despite variations in overall data volume, several
general conclusions can be drawn from the trend analysis:

1) The models trained on GigaSpeech 2 refined yield generally superior results compared to those
trained on the YODAS datasets for all three languages.

2) The YODAS manual may suffer from overfitting or noisy data issues due to simplistic filtering
rules, leading to inconsistent performance in Indonesian (Table 4, Indonesian, Row 1 & 3).
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Table 5: Comparison of ASR models trained on GigaSpeech 2 with Icefall and ESPnet toolkits,
evaluated on GigaSpeech 2 TEST set. The evaluation metrics are Character Error Rate (CER) for
Thai (th) and Word Error Rate (WER) for both Indonesian (id) and Vietnamese (vi).

Toolkit Model # Params
(M)

CER / WER
th id vi

Icefall Zipformer/Stateless Pruned RNN-T 151.9 12.46 14.92 12.83
ESPnet Conformer/Transformer CTC/AED 111.8 13.70 15.50 14.60

3) Purely automatic generation of YODAS tends to degrade performance, as observed for Viet-
namese (Table 4, Vietnamese, Row 1 vs. 2) and Indonesian (Table 4, Indonesian, Row 1 vs. 2),
likely due to the inherent noise and errors in the automatically generated subtitles.

4.4 TRAINING ASR MODELS WITHIN ESPNET AND ICEFALL ON GIGASPEECH 2

Icefall: The neural Transducer Graves et al. (2013) architecture is employed, with Zipformer-L as
the encoder and the pruned RNN-T loss Kuang et al. (2022) as the object function. 2000-class Byte
Pair Encoding (BPE) Sennrich et al. (2016) word pieces are used. More details are provided in
Appendix C.1.

ESPnet: The Conformer Gulati et al. (2020) CTC/AED Kim et al. (2017) system is adopted from
ESPnet Watanabe et al. (2018), with Conformer-L as the encoder and a combination of the localized
sensitivity of convolutional neural networks and the long-range modeling capabilities of Transform-
ers Vaswani et al. (2017). 2000-class BPE word pieces are used. More details can be found in
Appendix C.2.

Table 5 shows the results of ASR models trained with icefall and ESPnet. The models trained
with ESPnet are slightly worse than icefall in all three languages, which is as expected and can be
explained by the discrepancy in the number of model parameters (112M vs. 152M). It is worth noting
that the results in Table 5 are intended to provide baseline systems for these two popular toolkits to
demonstrate the universality of GigaSpeech 2 instead of pursuing state-of-the-art performance.

5 LIMITATION AND FUTURE WORK

Due to time constraints, we only tested 3-4 iterations of the proposed NST model. We are optimistic
that more iterations will yield even better results. We are actively extending our language coverage
by incorporating additional languages, including Malay, Korean, Arabic, Cantonese, and Minnan.
We will also expand our low-resource language family in our future investigation. In addition, we
did not perform language model fusion to further boost performance since there is a lack of high-
quality and in-domain text data for low-resource languages. To resolve potential legal risks, our
dataset adopts the same terms as GigaSpeech Chen et al. (2021), restricting use to non-commercial
research and educational purposes only.

6 CONCLUSION

This paper introduces a new multilingual speech dataset, GigaSpeech 2, and a novel automated
pipeline to boost speech recognition performance using in-the-wild audio-only data. GigaSpeech 2
aims to address the scarcity of labeled training data on low-resource languages by developing this
large-scale, multi-domain, and multilingual corpus. Extensive experiments are conducted to validate
the efficacy of our newly introduced corpus. The ASR models trained in three languages, which are
Thai, Indonesian, and Vietnamese within GigaSpeech 2, demonstrate superior and impressive per-
formance compared to various powerful ASR models, including Whisper large v2/v3 from OpenAI,
MMS from Meta, and even commercial services from Google and Azure. The related resources,
including the training corpus, curated test sets, automated pipeline, and recipes, will be released
to facilitate research in this direction. In the future, we are eager to extend our paradigm to more
low-resource languages and are devoted to breaking down the language barrier.
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A ALGORITHM OF ITERATIVE LABEL REFINEMENT

Algo. 1 illustrates the workflow of our proposed iterative label refinement.

Algorithm 1: Iterative Label Refinement
Input: Pseudo-label set P , Number of iterations n, Threshold τ
Output: Refined-label setR
Divide P into n splits P1,P2, . . . ,Pn;
R ← P1;
Train teacher modelM1 onR with noise;
for i← 1 to n do
R ← ∅;
if i == 1 then

// Filter Pi by teacher model Mi with CER ≤ τ
R ← {(x, y) ∈ Pi | CER(y,Mi(x)) ≤ τ};

else
for j ← 1 to i do

// Relabel Pj by teacher model Mi and filter with CER
≤ τ

Rtmp ← {(x,Mi(x)) | (x, y) ∈ Pj ,CER(y,Mi(x)) ≤ τ};
R ← R∪Rtmp;

end
end
Train equal-or-larger student modelMi+1 onR with noise and assign as new teacher;

end
returnR;

B DETAILED ANALYSIS OF GIGASPEECH 2

B.1 MANUAL TRANSCRIPTION QUALITY ASSURANCE

The manual transcription process, carried out by a professional data annotation company, includes
rigorous manual quality checks and secondary inspections to ensure that timestamp accuracy and
transcription correctness exceed 97%. All manually transcribed results undergo a 100% manual
quality inspection, where both timestamps and transcription accuracy are thoroughly checked. Any
data that fails to meet the required standards is sent back for correction. Subsequently, 30% of
each inspector’s reviewed data is re-evaluated. If this recheck confirms over 97% accuracy, the data
passes; otherwise, the entire dataset inspected by that quality inspector is returned for full correction.
For timestamp accuracy, an audio snippet tool is used to ensure that timestamps do not overlap with
the waveform. If any timestamp does fall on the waveform, a manual inspection is conducted to
confirm whether it corresponds to speech.

B.2 DOMAIN DISTRIBUTION OF MANUAL EVALUATION SETS

The domain distribution of the manual evaluation sets is shown in Fig. 2. The domains are identified
based on a predefined set of categories. Each sample is manually annotated at the individual video
level, considering both the topic type and content format.

B.3 DURATION DISTRIBUTION OF TRAINING SETS

The utterance-level duration distribution of the training sets is illustrated in Fig. 3.

B.4 EVALUATION OF PROCESSING TIME

The processing times for transcription, forced alignment, filtering, segmentation, and relabeling are
measured on an idle single V100 32G GPU machine using a 100-hour subset of Thai audio. The
processing time and the real-time factor (RTF) are detailed in Table 6.
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(a) Thai (b) Indonesian (c) Vietnamese

Figure 2: Hours distribution of manual evaluation sets for Thai, Indonesian, and Vietnamese. The
inner circle represents the format, and the outer circle represents the topic.
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(b) Thai refined
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(c) Indonesian raw
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(d) Indonesian refined
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(e) Vietnamese raw
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Figure 3: Utterance-level duration (second) distribution of training sets for Thai, Indonesian, and
Vietnamese.

C MODEL CONFIGURATIONS

C.1 CONFIGURATION OF ZIPFORMER

Two Zipformer-based models are used, following official configurations reported in icefall6. In each
Zipformer stack, the hidden dimensions of the first and last feedforward modules are 3/4 and 5/4 of
the middle one, respectively. Ahead of the encoder, a convolution subsampling module with a stride
of 2 reduces the frame rate to 50 Hz. The input consists of 80-channel FBank features extracted
over windows of 25ms, strided by 10ms. The label decoder utilizes a stateless decoder Ghodsi et al.
(2020). 8 V100 32G GPUs are used for training. Detailed configurations are provided in Table 7.

C.2 CONFIGURATION OF CONFORMER

A Conformer-based model is developed adhering to the official configurations outlined in ESP-
net7. The model comprises an encoder that employs the Conformer architecture and a decoder that
leverages the Transformer architecture. Moreover, the parameters for both the encoder and decoder

6https://github.com/k2-fsa/icefall
7https://github.com/ESPnet/ESPnet
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Table 6: Evaluation of overall processing time and real-time factor (RTF) for each process in the
construction of GigaSpeech 2. The processing times for transcription, forced alignment, filtering,
segmentation, and relabeling are measured on an idle single V100 32G GPU machine using a 100-
hour subset of Thai audio.

Process Time Consumption RTF
Transcription 19h 42min 13s 1.97× 10−1

Forced Alignment 3h 27min 29s 3.46× 10−2

Filter 3s 8.00× 10−6

Segmentation 6min 58s 1.16× 10−3

Relabel 40min 48s 6.80× 10−3

components, the optimization process, the scheduling mechanism, and SpecAugment settings are
carefully designed to ensure a comprehensive and efficient model setup. 4 A100 80G GPUs are
used for training. The specifics of these configurations are detailed in Table 8.

D ABLATION STUDY ON NOISY STUDENT TRAINING

Based on the ablation study of our proposed NST on the evaluation sets in Table 9, we can analyze
the effects of different iterations and their impact on performance: 1) Relabeling the data during the
transition from iteration 2 to 3 is crucial for improving performance (Sys.1 vs. Sys.2). 2) Larger
augmentation applied in our NST process may have a negative impact on the performance (Sys.1
vs. Sys.3). These findings suggest that careful consideration of the relabeling and augmentation
strategies is crucial for optimizing the performance of the NST model across different evaluation
sets and domains.
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Table 7: Configuration of Zipformer at two different scales

Zipformer-M Zipformer-L
Encoder

number of stacks 6
numbers of layers 2,2,3,4,3,2 2,2,4,5,4,2
downsampling factors 1,2,4,8,4,2
output downsampling factor 2
embedding dimensions 192,256,384,512,384,256 192,256,512,768,512,256
embedding unmasked dimensions 192,192,256,256,256,192 192,192,256,320,256,192
feedforward dimensions 512,768,1024,1536,1024,768 512,768,1536,2048,1536,768
convolution kernel sizes 31,31,15,15,15,31
attention heads 4,4,4,8,4,4
attention query dimension 32
attention value dimension 12
positional encoding embedding dimension 48
projected positional encoding dimension per head 4

Decoder
embedding dimensions 512
context size 2

Joiner
embedding dimensions 512

Criterion
use ctc head false
use transducer head true
pruned range 5
loss smoothing lm scale 0.25
loss smoothing am scale 0.0
simple loss scale 0.5
simple loss scale warmup steps 2000

Frontend
n fft 512
hop length 256
feature dimension 80

Training
use amp true
max epochs 30
max duration per batch 1000
ref duration 600
seed 42

Optimization
optimizer scaledadam
base learning rate 0.045
seed 42

Scheduler
scheduler eden
lr batches 7500
lr epochs 10000 / training set hours
warmup batches 500
warmup starting lr 0.5

SpecAugment
time warping factor 80
number of time masks 10
time mask maximum width 100
number of frequency masks 2
frequency mask width range 0 - 27
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Table 8: Configuration of Conformer at the large scale.

Conformer-L
Encoder Criterion

attention head 8 ctc weight 0.3
numbers of blocks 12 label smoothing 0.1
linear unit 2048 length normalized false
dropout rate 0.1 Frontend
positional dropout rate 0.1 n fft 512
attention dropout rate 0.1 hop length 256
input layer conv2d Training
normalize before true use amp true
macaron style true gradient accumulation 4
relative position type latest max epochs 20
position encoding layer rel pos Optimization
self-attention layer rel selfattn optimizer adam
activation type swish learning rate 0.0025
use cnn module true weight decay 0.000001
cnn module kernel 31 Scheduler

Decoder scheduler warmuplr
attention heads 8 warmup steps 40000
linear units 2048 SpecAugment
number of blocks 6 time warp window 5
dropout rate 0.1 frequency mask width range 0 - 27
positional dropout rate 0.1 number of frequency masks 2
self-attention dropout rate 0.1 time mask width ratio range 0.0 - 0.05
source attention dropout rate 0.1 number of time masks 10

Table 9: Ablation study of NST on GigaSpeech 2 Thai, evaluated across various evaluation sets:
GigaSpeech 2 DEV and TEST, Common Voice 17.0 TEST, and FLEURS TEST.

NST
method

# Hours
(h)

CER
GigaSpeech 2
DEV TEST

Common Voice
TEST

FLEURS
TEST

Sys. 1 (Tab. 2, iter 2→ iter 3) 7219 10.47 12.38 4.63 10.96
Sys. 2 (Tab. 2, iter 2→ iter 3, without relabeling) 7219 10.77+2.9% 12.90+4.2% 5.23+13.0% 10.72−2.2%

Sys. 3 (Tab. 2, iter 2→ iter 3, larger augmentation) 7219 10.65+1.7% 12.81+3.5% 5.36+15.8% 10.86−0.9%
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