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ABSTRACT

This work analyzes the training dynamics of Image Restoration (IR) Transform-
ers and uncovers a critical yet overlooked issue: conventional LayerNorm (LN)
drives feature magnitudes to diverge to a million scale and collapses channel-wise
entropy. We analyze this in the perspective of networks attempting to bypass Lay-
erNorm’s constraints, which conflict with IR tasks. Accordingly, we address two
misalignments: 1) per-token normalization that disrupts spatial correlations, and
2) input-independent scaling that discards input-specific statistics. To address this,
we propose Image Restoration Transformer Tailored Layer Normalization (i-LN),
a simple drop-in replacement that normalizes features holistically and adaptively
rescales them per input. We provide theoretical insights and empirical evidence that
this design effectively captures important spatial correlations and better preserves
input-specific statistics throughout the network. Experimental results verify that
the proposed i-LN consistently outperforms vanilla LN on various IR tasks.

1 INTRODUCTION

Image restoration (IR) aims to reconstruct high-quality images from degraded inputs. With the success
of Vision Transformers (Dosovitskiy et al., 2020), Transformer-based architectures have been actively
adopted for IR tasks and are now a common standard for high-performance IR backbone (Liang
et al., 2021; Chen et al., 2023a; Hsu et al., 2024). However, despite recent architectural advances, the
underlying training dynamics of IR Transformers remain underexplored.

This inspires us to take a closer look at their internal behavior, leading us to uncover a critical yet
overlooked phenomenon: feature magnitudes diverge dramatically, reaching scales up to a million,
while channel-wise feature entropy drops sharply (Fig.1). Interestingly, this phenomenon aligns with
previous studies (Karras et al., 2020; Wang et al., 2022a), which similarly observed visual artifacts
and abnormal features when coupled with specific normalization layers. However, discussions specific
to the unique requirements of IR tasks and IR Transformers were not made.

Building on these insights, we hypothesize that the observed feature divergence in IR Transformers
arises from networks attempting to circumvent LayerNorm (LN), due to constraints of LN that do
not align with the unique requirements of IR tasks. Accordingly, we identify two key mismatches
between LayerNorm and IR tasks; supported by both theoretical insights and extensive empirical
analysis. First, LayerNorm operates in a per-token manner, without considering inter-pixel (token)
relationships. This disrupts the spatial correlations in input features, an aspect crucial for high-fidelity
image restoration. Second, it maps intermediate features into a unified normalized space, limiting the
range flexibility of internal representations. This thereby disregards the input-dependent statistical
variability (Lim et al., 2017b) that is inherent in IR tasks. Together, these mismatches significantly
hinder IR Transformer’s ability to accurately preserve low-level features throughout the network,
which is necessary for faithful image restoration. While one intuitive solution could be the complete
removal of normalization layers as prior works have done (Lim et al., 2017b; Wang et al., 2018;
Karras et al., 2020; 2024), our experimental observations highlight significant training instability
when normalization is entirely omitted from IR Transformers (Tab.1); the network fails to converge.

In this work, we show that these issues can be addressed in a surprisingly simple manner; leading to
significant stability and substantial performance gain. We propose the Image Restoration Transformer
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Figure 1: Visualization of feature magnitudes and channel-wise entropy during training of an
Image Restoration (IR) Transformer using conventional LayerNorm (LN) and i-LN (Ours).
(a) Evolution of feature magnitudes across layers and training iterations, highlighting the dramatic
divergence (to million-scale) under conventional LN. (b-c) Channel-wise entropy with LN drops
sharply at the very early stage of training, indicating the emergence of acute peaks hidden in specific
channels. Ours i-LN exhibits well-distributed activation across channels and significant stability.

Tailored Layer Normalization (i-LN), which acts as a drop-in replacement to conventional (vanilla)
LayerNorm by better aligning with the unique requirements of IR tasks. Instead of normalizing each
token independently, we propose to apply normalization across the entire spatio-channel dimension
within IR Transformers (Fig.3), effectively preserving spatial correlationships among tokens, contrary
to vanilla per-token LayerNorm. Furthermore, We rescale features with the normalization parameters
after each attention and feed-forward layer, explicitly enabling range flexibility and accounting for
input-dependent variations in internal feature statistics. Together, these modifications effectively
preserve low-level feature statistics throughout the network, better aligning with the requirements of
IR tasks. Extensive experiments show that i-LN leads to both stable training dynamics with improved
performance across various IR benchmarks. Additionally, we observe cues suggesting robustness
under reduced-precision configurations and improved spatial correlation modeling.

2 METHOD

2.1 REVISITING LAYER NORMALIZATION

Observation (Abnormal Feature Statistics). Our initial analysis focuses on tracking the trajectory
of internal features during the training of IR Transformers. We visualize the squared mean of
intermediate features at each basic building block of the network, following (Karras et al., 2024). We
select the x4 SR task using the HAT (Chen et al., 2023a) model as the representative IR task (Fig.1).

The analysis reveals that feature statistics diverge dramatically, reaching values up to a million
scale. To pinpoint the origins of this feature divergence, we analyze the feature entropy across
the channel-axis. Analysis demonstrates a sharp decrease in feature entropy, which indicates the
presence of channels with extreme values that dominate the statistics. Since these extreme values are
unusual, this motivates us to further investigate. Accordingly, we analyze the training dynamics across
configurations by varying the network scale (Fig.2a2b), varying the IR tasks (Fig.2c), and varying the
normalization scheme (Fig.4); and observe that this phenomenon occurs across all configurations
utilizing standard IR Transformers. While this type of hidden abnormal behavior aligns with the
observations in prior studies (Karras et al., 2020; Wang et al., 2018; 2022a), further discussion did not
gain much attention, especially regarding the unique properties and requirements of IR Transformers.

In the following, we provide further insights into this phenomenon by examining the characteristics
of LayerNorm (LN), the de facto normalization in IR Transformers. We start by defining the spatial
relationship between pixels (i.e., inter-pixel structure), and further show that conventional LayerNorm
cannot preserve this. For simplicity, we neglect the affine parameters for theoretical analysis.

Definition 1 (Inter-pixel Structure and Preservation). Let x ∈ RL×C be a feature map with L tokens.
We write the ℓ-th token as xℓ ∈ RC and the c-th element of it as xℓ,c ∈ R. The inter-pixel structure of
a feature map is given by the set of relative differences ∆x := {xℓ − xk : 1 ≤ ℓ, k ≤ L }.
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Figure 2: Feature magnitude evolution in IR Transformers across different settings. (a-b) Feature
divergence signifies as the network scales. (c) Feature divergence appears across various Transformer
backbones and IR tasks: super-resolution (SR), denoising (DN), deraining (DR), JPEG compression
artifact removal (CAR), demonstrating that this phenomenon is widespread. It can be effectively
mitigated by simply replacing conventional LayerNorm with the proposed i-LN.

Definition 2 (Structure Preserving Transformation). A transformation T is said to preserve inter-pixel
structure up to scale if there exists a homothety H(x) = ax+ b, with a > 0 and b ∈ RC , such that

T (xℓ)− T (xk) = H(xℓ − xk) = a(xℓ − xk) for all ℓ, k.

Such maps preserve all angles and pairwise distance ratios, and correspond to a single global shift
and uniform scaling across all tokens. For a = 1, T is said to preserve structure absolutely.

Intuitively, consider x as a point cloud in RC , where each point represents a token. A structure-
preserving transformation may only uniformly scale and shift the entire cloud. That is, the overall
shape of the point cloud should be preserved up to a single global scaling factor and translation.

Vanilla Per-token LayerNorm (Baseline). Conventional Transformer architectures utilize the per-
token LayerNorm (LN) as the de facto normalization scheme which operates as follows:

LN(xℓ) = γ
1√

σ2
ℓ + ϵ

(xℓ − µℓ) + β, µℓ = Ec[xℓ,c], σ2
ℓ = Ec[(xℓ,c − µℓ)

2], (1)

where Ec[·] is taken over the channel dimension c, and γ, β ∈ Rc are each affine parameters applied
after the normalization step, and LN operates for each token xℓ given the entire input feature x.

Proposition 1. (Vanilla LayerNorm fails to preserve structure). Let TLN be the normalization in
vanilla per-token LN. Then, in general, there do not exist a > 0 and an orthogonal Q such that

TLN(xℓ)− TLN(xk) = aQ (xℓ − xk) for all xℓ, xk,

Thus TLN is not even conformal on the token set. Since homotheties are strict subclasses of conformal
maps, TLN is not a homothety and therefore it does not preserve inter-pixel structure in general.

Remark. The exception arises in degenerate cases where all tokens share identical per-token mean
and variance, in which case a similarity map can exist (i.e., inter-pixel structure is preserved). Such
cases are extremely rare in practice. Our intuition is that since LN cannot naturally preserve inter-
pixel structure, networks learn to generate large magnitude features regardless of the input, thereby,
manipulate the overall feature statistic to behave similarly to this exceptional degenerate scenario.

Inspired by prior observations, we hypothesize that feature divergence arises from a fundamental
mismatch between the requirements of IR tasks and the constraints imposed by LayerNorm, leading
us to propose a tailored normalization scheme that aligns with the unique requirements of IR tasks.

3
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Figure 3: Comparison between IR Transformer blocks using conventional per-token LayerNorm (LN)
and our proposed i-LN. Contrary to conventional LN, which normalizes each token independently, our
i-LN applies holistic normalization across the entire spatio-channel dimension, preserving essential
spatial correlations between tokens. Additionally, i-LN input-adaptively rescales features after the
attention (Attn) and feedforward (FFN) layers, thereby better preserving input statistics and allowing
feature range flexibility. These together enable IR Transformers to preserve low-level characteristics
of input throughout the network, aligning with the unique requirements of IR.

2.2 TAILORING LAYERNORM FOR IMAGE RESTORATION TRANSFORMERS

Spatially Holistic Normalization (LN*). We propose a simple variant of LN that improves in
preserving inter-token spatial relationships of input features, which we refer to as LN*. Instead
of normalizing each token individually as LN, we derive normalization statistics from the entire
spatio-channel dimension of the input feature as follows:

LN∗(x) = γ
1√

σ2 + ϵ
(x− µ) + β, µ = Eℓ,c[xℓ,c], σ2 = Eℓ,c[(xℓ,c − µ)2], (2)

where the expectation Eℓ,c[·] is taken over both spatial (ℓ) and channel dimensions (c). This straightfor-
ward modification effectively mitigates the issue raised by the per-token operation in vanilla per-token
LayerNorm. While normalization methods in CNNs already inherently work in a spatially holistic
manner, the implications of such holisticness in normalization and the corresponding spatial structure
corruption without it have received little attention, particularly in the context of IR Transformers.
With this point, the following section aims to provide further intuition and establish connections
between holisticness and spatial structure (i.e., inter-pixel structure) preservation.

Proposition 2. (LN∗ preserves structure). Let TLN∗ be the normalization defined by LN∗, with global
mean µ and std. σ > 0 computed over all tokens and channels. Then for any two tokens xℓ, xk,

TLN∗(xℓ)− TLN∗(xk) = (1/σ)(xℓ − xk).

Thus, TLN∗ is a homothety, and accordingly, preserves spatial structure up to a global scale.

Remark. In short, LN∗ is structure-preserving up to one missing scalar (i.e., the global scale). We
handle this loss of information by explicitly reintroducing it later, as described below.

Preserving Input Dependent Statistics. We further tailor the normalization operator to better suit
the requirements of IR tasks. Specifically, we address the issue of input-blind normalization. While
IR tasks require the preservation of input-dependent feature statistics for faithful reconstruction, both
conventional LayerNorm and even the holistic LN* overlooks this aspect by mapping features into
a unified normalized space. Although normalization improves training stability, it also causes the
model to lose critical input-dependent information (i.e., the missing global scale term of inter-pixel
structure) by restricting the range flexibility of internal representations (Lim et al., 2017b).

Accordingly, we propose a simple input-adaptive rescaling strategy that effectively tackles this issue.
We rescale the output of Attention and FFN by their standard deviation computed in the preceding
normalization process as the yellow line in Fig.3b, which we refer to as i-LN. Accordingly, a typical
Attention or FFN block B could be further improved by coupling with i-LN as follows:

B(x; f, i-LN) = x+
√
σ2 + ϵ · f(LN∗(x)), (3)

4
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Idx Method SH Set14 BSD100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

1 LayerNorm % 28.79 .7876 27.68 .7411 26.55 .8015 31.01 .9150

2 LayerScale % 28.89 .7887 27.76 .7426 26.75 .8058 31.37 .9178
3 RMSNorm % 28.88 .7879 27.74 .7417 26.67 .8037 31.24 .9165

4 ReZero ! 28.81 .7861 27.70 .7406 26.41 .7964 31.05 .9147
5 None ! - - - - - - - -
6 InstanceNorm ! 28.98 .7907 27.80 .7445 27.02 .8136 31.46 .9199
7 BatchNorm† ! 28.95 .7901 27.80 .7442 26.70 .8123 31.39 .9186

8 i-LN (Ours) ! 29.01 .7915 27.84 .7456 27.17 .8167 31.82 .9228

Table 1: Comparison between var-
ious normalization schemes. † in-
dicates that BatchNorm is evaluated
in train-mode. SH indicates the spa-
tial holisticness of the normaliza-
tion scheme, including the setting
without any normalization (None).
Experiments are performed for ×4
SR with HAT1. The best result for
each setting is highlighted in bold.

where f is either the according Attention or FFN operation of block B. Overall, this reintroduces
the original feature statistic lost due to normalization. This simple strategy enables IR Transformers
to better preserve the per-instance statistics throughout the network and allows range flexibility to
intermediate features. We later show that this leads to an order of magnitude more stable feature
distribution (i.e., higher entropy) and overall improved IR performance.

Remark. This simple input-adaptive rescaling strategy explicitly reintroduces the missing global
scaling term that LN* could not preserve (which leads to restricted range flexibility).

3 EXPERIMENTS

Training Settings. Since recent works have discrepancies in their detailed training settings (Chen
et al., 2024), we reimplement baseline methods and our method under identical settings for fair
comparison. Networks for deraining (DR) were trained on Rain13K (Jiang et al., 2020), while DF2K
(DIV2K (Agustsson & Timofte, 2017) + Flickr2K (Lim et al., 2017a)) was used for other tasks. Only
basic augmentations (random flips, rotations, crops) were applied, without mixing augmentations,
progressive patch sizing, or warm-start. In order to provide thorough experimental results under
various settings, the overall training budget was reduced as specified in Appendix.5. The representative
SwinIR (Liang et al., 2021), HAT (Chen et al., 2023a), and DRCT (Hsu et al., 2024) were used.

Evaluation Settings. Standard benchmarks are employed including: Set5 (Bevilacqua et al.,
2012), Set14 (Zeyde et al., 2010), BSD100 (Martin et al., 2001), Urban100 (Huang et al., 2015),
Manga109 (Matsui et al., 2017) for SR; CBSD68 (Martin et al., 2001), Kodak (Franzen, 1999),
McMaster (Zhang et al., 2011), Urban100 for DN; LIVE1 (Sheikh, 2005), Classic5 (Foi et al., 2007),
Urban100 (Huang et al., 2015) for CAR; Test100 (Zhang et al., 2019) and Rain100L (Yang et al.,
2017) for DR. We crop Urban100 into non-overlapping 256×256 patches due to memory limits for
CAR and DN. We report PSNR and SSIM indices. Experiments were performed on NVIDIA A6000s.

3.1 NORMALIZATION SCHEME VARIATION
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Figure 4: Feature divergence
across various normalizations.

We analyze the effects of various normalization techniques, in-
cluding representative normalization schemes as vanilla Layer-
Norm (LN) (Ba et al., 2016), per-token RMSNorm (RMS) (Zhang
& Sennrich, 2019), InstanceNorm (IN) (Ulyanov et al., 2016), Batch-
Norm (BN) (Ioffe & Szegedy, 2015), and our proposed i-LN. Con-
sidering previous studies where completely removing normalization
from SR networks (Lim et al., 2017b; Wang et al., 2018) led to perfor-
mance improvements, we additionally tested a similar configuration
indicated as None, where normalizations are entirely removed.

Further, we investigate the empirical impacts of recent methods de-
signed to stabilize Transformer training: ReZero (RZ) (Bachlechner
et al., 2021) and LayerScale (LS) (Touvron et al., 2021). ReZero
removes LayerNorm from Transformer blocks and multiplies a learn-
able zero-initialized scalar to the residual path. Similarly, LayerScale multiplies a near-zero-initialized
learnable diagonal matrix to the residual path but reintroduces LayerNorm. Since both methods ini-
tially multiply a (near) zero-scale factor to the network output, we consider them as potential solutions
to resolve the feature increasing issue in IR tasks. Notably, these methods also align with prior stud-
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Table 2: Quantitative comparison between the conventional LayerNorm (LN) and our proposed i-LN
across diverse IR tasks. The best result for each setting is highlighted in bold.

Backbone Scale Set5 Set14 BSD100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

HAT1 + LN ×2 38.14 .9610 33.78 .9196 32.19 .9000 32.16 .9297 38.84 .9778
HAT1 + i-LN ×2 38.37 .9619 34.08 .9218 32.42 .9028 33.32 .9385 39.69 .9794
DRCT1 + LN ×2 38.19 .9613 33.28 .9197 32.28 .9010 32.60 .9323 39.23 .9785
DRCT1 + i-LN ×2 38.23 .9614 33.86 .9206 32.31 .9014 32.79 .9344 39.40 .9788
HAT1 + LN ×4 32.51 .8992 28.79 .7876 27.68 .7411 26.55 .8015 31.01 .9150
HAT1 + i-LN ×4 32.72 .9019 29.01 .7915 27.84 .7456 27.17 .8167 31.82 .9228
DRCT1 + LN ×4 32.50 .8989 28.85 .7871 27.73 .7414 26.63 .8021 31.24 .9169
DRCT1 + i-LN ×4 32.57 .8997 28.91 .7887 27.76 .7426 26.79 .8063 31.41 .9188

(a) Single image super-resolution (SR)

Backbone Testset Metric
PSNR SSIM

HAT1 + LN Rain100L 34.35 .9471
HAT1 + i-LN 36.20 .9641
SwinIR1 + LN Rain100L 33.00 .9434
SwinIR1 + i-LN 34.43 .9527
HAT1 + LN Test100 29.52 .8905
HAT1 + i-LN 30.14 .9022
SwinIR1 + LN Test100 27.45 .8766
SwinIR1 + i-LN 29.87 .8982

(b) Image deraining (DR)

Backbone σ
Urban100 CBSD68 Kodak24 McMaster

PSNR PSNR PSNR PSNR

HAT1 + LN 15 35.489 34.285 35.347 35.440
HAT1 + i-LN 15 35.558 34.296 35.366 35.477
SwinIR1 + LN 15 35.077 34.164 35.147 35.183
SwinIR1 + i-LN 15 35.138 34.181 35.177 35.223
HAT1 + LN 25 33.296 31.622 32.864 33.105
HAT1 + i-LN 25 33.384 31.632 32.887 33.139
SwinIR1 + LN 25 32.753 31.480 32.643 32.829
SwinIR1 + i-LN 25 32.803 31.489 32.660 32.848

(c) Color image denoising (DN)

Backbone q Urban100 LIVE1 Classic5
PSNR SSIM PSNR SSIM PSNR SSIM

HAT1 + LN 10 28.45 .8514 27.89 .8048 29.94 .8167
HAT1 + i-LN 10 28.52 .8530 27.90 .8057 29.96 .8178
SwinIR1 + LN 10 27.86 .8400 27.65 .7995 29.72 .8111
SwinIR1 + i-LN 10 27.92 .8410 27.62 .7993 29.72 .8111
HAT1 + LN 40 33.26 .9302 32.63 .9158 34.34 .9060
HAT1 + i-LN 40 33.36 .9312 32.67 .9162 34.39 .9066
SwinIR1 + LN 40 32.62 .9245 32.34 .9127 34.11 .9036
SwinIR1 + i-LN 40 32.68 .9252 32.35 .9129 34.12 .9038

(d) Image JPEG compression artifact removal (CAR)

ies (Lim et al., 2017b; Wang et al., 2018), where multiplying a small scale factor to the residual
path components helped the network to converge. Overall, this study aims to explore 1) the feature
divergence tendency of per-token and holistic normalizations and 2) determine which normalization
method yields the best performance.

Feature Divergence Behavior. Fig.4 illustrates that feature divergence always emerges when using
per-token normalizations: vanilla LN, RMSNorm, and LayerScale. In contrast, spatially consistent
normalizations as our i-LN or BN, IN, ReZero do not exhibit the divergence trend. For the configura-
tion without any normalization, we observe failure to converge due to unstable training. However, the
feature magnitudes are well-bounded before this failure occurs, aligning with other normalization
schemes without the per-token operation. This observation also aligns with our hypothesis that the
feature divergence phenomena is closely related to the per-token normalization, and also reveals that
any spatially consistent normalization could potentially reduce this effect.

Performance Comparisons. We further analyze the empirical performance for each normalization
scheme in Tab.1. Conventional LN performs the worst since it neglects inter-token spatial relationships
and maps features into a unified normalized space, disregarding the input-dependent feature statistics.

0K 100K 200K 300K
Training Iterations

10

15

20

25

PS
N

R
 (d

B)

BN
None

Figure 5: Eval-mode BN
and removing all normal-
ization (None) fails.

LayerScale and RMSNorm show improvement against vanilla LN, but per-
form worse than methods with spatially consistent normalization. Mean-
while, without any normalization (None), the network fails to converge
potentially due to unstable gradients raised by the absence of normaliza-
tion, similar to prior studies in RZ (Bachlechner et al., 2021). BN leads
to a significant performance drop in eval-mode, despite being healthy
in train-mode; consistent with prior studies (Lim et al., 2017b; Wang
et al., 2022a). This signifies the necessity of per-image statistics within
the normalization scheme for IR tasks. IN performs better than vanilla
LN but worse than ours. Both IN and BN discard crucial channel-wise
information necessary for representing deep features, resulting in lim-
ited performance. However, despite these limitations in current spatially
holistic normalization schemes (IN, BN), they already outperform those
with per-token schemes (LN, LS, RMS). Meanwhile, our i-LN achieves
the best performance among all examined methods, demonstrating its effectiveness in preserving
important inter-token spatial relationships and internal statistics, and ultimately the input low-level
features throughout the network.
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Figure 6: Qualitative comparison across four representative image restoration tasks.

3.2 ANALYSIS UNDER TASK VARIATION

Feature Divergence Behavior. Fig. 2c illustrates the evolution of feature magnitudes across various
Image Restoration (IR) tasks, including Image Super-Resolution (SR), Image Denoising (DN), Image
Deraining (DR), and JPEG Compression Artifact Removal (CAR). The figure clearly demonstrates
that feature divergence consistently occurs across all restoration tasks under conventional LayerNorm.
In contrast, integrating our i-LN effectively resolves this issue, maintaining stable and well-bounded
feature scales throughout training. This consistent stabilization of internal feature magnitudes confirms
the general applicability and robustness of our proposed method across diverse IR scenarios.

Benchmark: Image Super-Resolution (SR). Tab.2a and Fig.6a illustrate quantitative and qualitative
results for SR. Compared to vanilla LayerNorm, we achieve significant improvements across bench-
marks. Notably, SR benefits greatly from our method due to the inherent nature of SR: the input is
entirely reliable, since it exactly aligns with the low-frequency information in the ground truth. By
precisely preserving these input features, our method substantially enhances restored image quality.
We additionally provide a comparison against the official public models under computationally
extensive settings in Appendix.B.1.

Benchmark: Image Deraining (DR). Similarly, Tab. 2b and Fig. 6b demonstrate substantial improve-
ments of our method in image deraining compared to conventional LayerNorm. This improvement is
particularly pronounced because our method effectively preserves reliable input regions, specifically
the local areas unaffected by rain streaks. By explicitly maintaining these local correspondences with
the ground truth, our i-LN method achieves improved restoration accuracy.

Benchmark: Image Denoising (DN) Tab. 2c and Fig. 6c demonstrate that our method consistently
outperforms conventional LayerNorm in image denoising tasks. However, the observed performance
improvements are smaller compared to SR and Deraining. This relatively reduced benefit arises
because denoising involves uniformly distributed corruptions across the entire image, limiting the
advantage gained from explicitly preserving particular input features. Despite this, visual examples
confirm meaningful improvements in recovering sharp edges.

Benchmark: JPEG compression artifact removal (CAR). Similarly, Tab. 2d and Fig. 6d demon-
strate consistent improvements of our method over LayerNorm for JPEG compression artifact removal.
However, these performance gains remain smaller than those achieved in SR and Deraining. Similar
to denoising, JPEG artifacts affect images globally and irregularly, limiting the advantage of explicitly
preserving specific input details. Still, visual examples illustrate consistent improvement in accurate
artifact reductions, highlighting our method’s broad effectiveness across various IR tasks.

Real-world Degradation Scenarios. To further validate the effectiveness and robustness of the
proposed method, we conduct further experiments under the challenging real-world degradation
configurations. Here, we choose the representative Real-ESRGAN Wang et al. (2021) degradation
pipeline and synthesize both the train and test images accordingly. Experiments are performed under
the ×4 SR task with the HAT1 model. In Fig. 9 and Tab. 15, we provide qualitative and quantitative
results, respectively. As demonstrated, our i-LN shows significant improvements even under the
complex real-world degradation settings, successfully reconstructring fine-details and sharp edges.
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3.3 ABLATION STUDY
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Figure 7: Channel entropy
collapses exponentially as
we remove each compo-
nent (spatially holisticness
and rescaling) of our i-LN;
falling back to vanilla LN.

To analyze the contribution of each component in i-LN, we conduct
an ablation study by selectively removing spatial holisticness and
rescaling. Compared to Tab.2, we increase the network capacity and
training iterations (denoted as HAT2) to ensure that the observed
benefits are not simply due to faster convergence. In Tab. 3, Fig.13
and Fig.12, we provide a quantitative and qualitative analysis results
under the ×4 SR task. Removing either the rescaling strategy (Rs) or
the spatial holisticness (SH) consistently reduces restoration quality,
confirming their complementary roles in improving IR performance.

We then examine feature statistics in Fig. 7. Starting from our full
method, we remove the rescaling method (falling back to LN*) and
subsequently the spatial holistic scheme (falling back to vanilla per-
token LN). Here, we observe that channel entropy collapses expo-
nentially, indicating that each component contributes to maintaining
well-distributed activations across channels.

Overall, using both components together achieves the best results in terms of both restoration quality
and stable feature statistics. Spatial holisticness (LN*) effectively preserves inter-token relationships,
while the rescaling strategy further restores the missing global scale that LN* alone cannot maintain.

3.4 INTRIGUING PROPERTIES OF FEATURE DIVERGENCE UNDER VANILLA LN

3.4.1 HOW NETWORK SCALE IMPACTS FEATURE DIVERGENCE

We further investigate how the overall network size affects feature divergence by varying the depth
and width of the IR Transformer individually. As shown in Fig. 2a–2b, larger models consistently
diverge faster and to higher magnitudes. In particular, the emergence of an extreme valued feature
appears to be a cumulative process: in order for a newly generated outlier channel to dominate the
statistics, it must surpass the already abnormal activations propagated through the residual path,
resulting in increasingly extreme values as the network scales. Taken together, our analysis reveals
a potential vulnerability unique to low-level restoration at scale, where enlarging capacity does not
merely amplify representational power but also exacerbates pathological feature growth.

3.4.2 CHANNEL IMBALANCE AND BIAS ALIGNMENT

5

0
1e4 SR

0

2
1e5 JPEG

0
5

1e 1

5
0

1e 1

2.5

0.0
1e3 Derain

2.5

0.0
1e4 Denoise

Channel Index5
0
5

1e 1

Channel Index
0
5

1e 1

Feature Mean 

Affine Bias 

Channel Index Channel Index

Figure 8: Alignment of affine bias pa-
rameters in the last LN and channel-
wise magnitude of input feature;
showing a compensatory mechanism.

Earlier, we observed extreme feature norms and imbalances
in channel entropy, indicating highly peaky feature distribu-
tions concentrated in specific channels. Interestingly, despite
these severe imbalances, baseline IR Transformers manage to
converge and produce outputs with well-bounded magnitudes.
To gain insights to this paradox, we take a closer look at the
final normalization layer (LN). In Fig. 8, we visualize the un-
normalized feature magnitudes along the channel dimension
before the final normalization layer and compare them with
the learned affine bias parameter (γ) across various IR tasks.

We observe sharp peaks in the bias parameters precisely align-
ing with the channels exhibiting high magnitudes. This exact alignment reveals a compensatory mech-
anism where the learnable affine terms (γ, β) of LayerNorm counteract abnormal channel activations,
allowing baselines to yield normal images. Additionally, this also indicates that the normalization
operation (µ, σ) itself is incapable of directly removing these extreme peaks.

Moreover, although the observed bias–feature alignment allows baseline IR Transformers to maintain
reasonable outputs, this mechanism should be regarded as a compensatory shortcut rather than a
fundamental fix. The fact that networks must rely on such peaky biases to counteract extreme channel
activations leaves the model fragile and prone to failures, including potential training instability and
failure in practical scenarios such as reduced-precision inference as discussed in Sec.3.5.2.
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(a) Baseline (LN) (b) Ours (i-LN)

Figure 9: Visualization of Relative Position Embeddings
(RPE) per head, for training iteration 100K and 500K. Ours
exhibit well-structured RPEs, indicating the superiority in
understanding the spatial relationship between pixels.

(a) HR (b) LN (c) i-LN

Figure 10: Half-precision inference re-
sults for ×4 SR. LN leads to artifacts
while our i-LN achieves near-zero fi-
delity loss compared to full-precision.

Idx Backbone SH Rs BSD100 Urban100 Manga109
1 HAT2 (LN) 27.7897 26.8779 31.5444
2 HAT2 ✓ 27.8615 27.3373 31.8888
3 HAT2 ✓ 27.9034 27.5335 32.0837
4 HAT2 (i-LN) ✓ ✓ 27.9206 27.5849 32.1694

Table 3: Ablation study. SH indicates introduc-
ing spatial holisticness (identical to LN*) and
Rs indicates our rescaling strategy. Idx 1 and 4
are each identical to vanilla LN and our i-LN,
respectively. Experiments conducted for ×4 SR.

Idx Backbone Quantization Urban100 Manga109
1 HAT2 + LN W int8 26.8711 31.5266
2 HAT2 + i-LN W int8 27.5818 32.1657
3 HAT2 + LN W int4 25.0242 28.0831
4 HAT2 + i-LN W int4 26.8292 30.6596
5 HAT2 + LN W+F fp16 7.4640 5.0736
6 HAT2 + i-LN W+F fp16 27.5849 32.1693

Table 4: Quantitative results under low-precision
inference. W indicates weight-only quantization,
W+F indicates weight and feature quantization.

3.5 INTRIGUING PROPERTIES UNDER i-LN

3.5.1 ENHANCED SPATIAL CORRELATION VIA STRUCTURED RPE
Relative Position Embeddings (RPE) explicitly encodes relative spatial positions between tokens in
an input-agnostic manner, similar to the convolution operation that inherently captures the spatial
locality through their structured kernel patterns. Accordingly, we can consider well-structured RPEs
as a strong indicator of enhanced spatial correlation understanding. In Fig.9, we analyze how our
proposed normalization method influences spatial relationship modeling by visualizing the learned
RPE of both the baseline IR Transformer and our proposed method. The baseline Transformer exhibits
noisy, unstructured embedding patterns, suggesting a limited capability to effectively model spatial
correlations. Conversely, our method produces RPEs that resemble well-structured convolutional
filter patterns, clearly indicating superior capture of spatial relationships. This structured embed-
ding aligns with our hypothesis that our spatially holistic normalization better preserves intrinsic
spatial correlations, helping the network to learn spatial relations more effectively. In Fig. 12, we
provide further visual examples of RPEs between LN, i-LN and also the ablated variants LN* and
LN+Rescaling, which shows aligning results with the discussion above.

3.5.2 LOW PRECISION INFERENCE

Image restoration networks often require deployment on lightweight edge devices, creating significant
demand for efficient inference in IR Transformers. A common approach to enhance inference
efficiency is reducing precision during model deployment. Consequently, we conducted experiments
under reduced-precision inference conditions to empirically evaluate the effects of i-LN. Initially,
we applied linear weight quantization to the model weights. As shown in Tab.4, vanilla LayerNorm
resulted in substantial performance degradation, while i-LN demonstrated remarkable stability. We
further conducted half-precision inference experiments, casting both internal feature values and
weights to half-precision floating-point numbers. Fig.10 illustrates that vanilla LayerNorm generated
extensive regions of black dots, indicating network-generated infinity values due to extreme internal
feature magnitudes inadequate for low-precision conditions. Notably, no substantial performance
degradation was observed in regions where the network maintained finite feature values. This
highlights the necessity of well-bounded feature values achieved by i-LN, emphasizing its critical
role in enabling efficient inference for IR Transformers.

3.5.3 EMPIRICAL EFFECTS OF IMPROVED STABILITY

Multiple Runs. To further probe training stability, we conduct extensive multi-run experiments across
diverse random seeds (Fig.11). Here, we use a small batch size of 2 to induce training instability.
Vanilla LN exhibits inconsistent optimization trajectories, with large fluctuations in feature statistic
evolution patterns and substantial discrepancy in final PSNR results for each run. In contrast, our i-LN
produces significantly lower variance between multiple runs, in terms of both training statistics and

9
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Figure 11: Feature statistics and PSNR across multiple runs with different random seeds.
Trajectories show significant fluctuation under vanilla LN, while our i-LN maintains well-bounded
and consistent results across all seeds (×4 SR, Urban100).

the final reconstruction performance. These results demonstrate that i-LN provides a more reliable
optimization landscape, reducing susceptibility to randomness in initialization or data ordering, which
is an important practical advantage for training IR networks.

4 RELATED WORK
Image Restoration Transformers. Recent advances in Image Restoration (IR) transformers (Chen
et al., 2024; Zamir et al., 2022; Wang et al., 2022c; Zhang et al., 2022) show superior performance over
CNNs (Dong et al., 2015; Kim et al., 2016; Zhang et al., 2018) by leveraging attention mechanisms
to effectively model long-range context. A pioneering work, SwinIR (Liang et al., 2021), adopted an
efficient Swin-Transformer (Liu et al., 2021) based architecture in IR tasks, balancing computational
cost and restoration quality. A notable method is HAT, which originated as a super-resolution
model (Chen et al., 2023b) but expanded to general image restoration tasks (Chen et al., 2023a). By
unifying spatial and channel attention within a hybrid attention framework, HAT surpasses existing
IR Transformers in both restoration fidelity and robustness across various IR tasks.

Abnormal Feature Behaviors. Normalization is a key element in enhancing stability and performance
in deep networks, but also can lead to unintended feature behavior. EDSR (Lim et al., 2017b), which
is a foundational work in super-resolution pointed out that BatchNorm removes range flexibility of
intermediate features, leading to a performance drop. Accordingly, normalization layers are removed
in the most recent CNN-based SR architectures. Meanwhile, ESRGAN (Wang et al., 2018) and
StyleGAN2 (Karras et al., 2020) observe that InstanceNorm and BatchNorm, respectively, cause
water droplet-like artifacts. They suggest that the generator might learn to deceive feature statistics by
sneaking abnormal values in internal features to reduce the effects of normalization. EDM2 (Karras
et al., 2024) identifies feature magnitude divergence in diffusion models. Accordingly, they redesign
the network architecture to preserve the magnitude based on statistical assumptions, leading to overall
performance enhancement. DRCT (Hsu et al., 2024) notes that feature map intensities drop sharply at
the end of SR networks, leading to information bottlenecks, and shows that dense residuals help.

5 CONCLUSION
We analyzed the training dynamics of Image Restoration (IR) Transformers and highlighted an
overlooked phenomenon: divergence of feature magnitudes accompanied by collapses in channel-
wise entropy. We interpret this as networks attempting to bypass the constraints of conventional
LayerNorm, whose per-token normalization and input-independent scaling disrupt spatial correlations
and restrict the flexibility needed for accurate restoration. To address this, we introduced Image
Restoration Transformer Tailored Layer Normalization (i-LN), a simple drop-in replacement for
LayerNorm. It is designed to better align with the unique characteristics of IR tasks and preserve
important low-level features of the input throughout the network. i-LN normalizes jointly across
spatial and channel dimensions and incorporates input-dependent rescaling, aligning normalization
more closely with the demands of IR tasks. Extensive experiments show that i-LN prevents feature
divergence, stabilizes channel entropy, improves robustness under low-precision inference, and
significantly enhances IR performance across diverse tasks.
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6 REPRODUCIBILITY STATEMENT

Experimental settings for both training and evaluation are described in Sec.3. Detailed hyperparameter
settings and network configurations for each model variant are described in Appendix.B.1 and Tab.5.
Detailed algorithm to calculate the channel entropy is in Appendix.A.2 We plan to release the code
for further reproducibility.

REFERENCES

Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-resolution: Dataset
and study. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pp. 126–135, 2017.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Thomas Bachlechner, Bodhisattwa Prasad Majumder, Henry Mao, Gary Cottrell, and Julian McAuley.
Rezero is all you need: Fast convergence at large depth. In Uncertainty in Artificial Intelligence,
pp. 1352–1361. PMLR, 2021.

Marco Bevilacqua, Aline Roumy, Christine Guillemot, and Marie Line Alberi-Morel. Low-complexity
single-image super-resolution based on nonnegative neighbor embedding. 2012.

Yochai Blau and Tomer Michaeli. Rethinking lossy compression: The rate-distortion-perception
tradeoff. In International Conference on Machine Learning, pp. 675–685. PMLR, 2019.

Rob Brekelmans, Daniel Moyer, Aram Galstyan, and Greg Ver Steeg. Exact rate-distortion in
autoencoders via echo noise. Advances in neural information processing systems, 32, 2019.

Xiangyu Chen, Xintao Wang, Wenlong Zhang, Xiangtao Kong, Yu Qiao, Jiantao Zhou, and Chao
Dong. Hat: Hybrid attention transformer for image restoration. arXiv preprint arXiv:2309.05239,
2023a.

Xiangyu Chen, Xintao Wang, Jiantao Zhou, Yu Qiao, and Chao Dong. Activating more pixels in
image super-resolution transformer. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 22367–22377, 2023b.

Xiangyu Chen, Zheyuan Li, Yuandong Pu, Yihao Liu, Jiantao Zhou, Yu Qiao, and Chao Dong.
A comparative study of image restoration networks for general backbone network design. In
European Conference on Computer Vision, pp. 74–91. Springer, 2024.

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-resolution using deep
convolutional networks. IEEE transactions on pattern analysis and machine intelligence, 38(2):
295–307, 2015.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. Pointwise shape-adaptive dct for high-
quality denoising and deblocking of grayscale and color images. IEEE transactions on image
processing, 16(5):1395–1411, 2007.

R. Franzen. Kodak lossless true color image suite. http://r0k.us/graphics/kodak, 1999.
Volume 4, no. 2.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. In International conference on learning representations, 2017.

Chih-Chung Hsu, Chia-Ming Lee, and Yi-Shiuan Chou. Drct: Saving image super-resolution away
from information bottleneck. arXiv preprint arXiv:2404.00722, 2024.

11

http://r0k.us/graphics/kodak


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single image super-resolution from transformed
self-exemplars. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 5197–5206, 2015.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
pmlr, 2015.

Kui Jiang, Zhongyuan Wang, Peng Yi, Chen Chen, Baojin Huang, Yimin Luo, Jiayi Ma, and Junjun
Jiang. Multi-scale progressive fusion network for single image deraining. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 8346–8355, 2020.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing
and improving the image quality of stylegan. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 8110–8119, 2020.

Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyzing
and improving the training dynamics of diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 24174–24184, 2024.

Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-resolution using very deep
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1646–1654, 2016.

Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. Swinir: Im-
age restoration using swin transformer. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 1833–1844, 2021.

Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep residual
networks for single image super-resolution. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, July 2017a.

Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep residual
networks for single image super-resolution. In Proceedings of the IEEE conference on computer
vision and pattern recognition workshops, pp. 136–144, 2017b.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of human segmented
natural images and its application to evaluating segmentation algorithms and measuring ecological
statistics. In Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001,
volume 2, pp. 416–423. IEEE, 2001.

Yusuke Matsui, Kota Ito, Yuji Aramaki, Azuma Fujimoto, Toru Ogawa, Toshihiko Yamasaki, and
Kiyoharu Aizawa. Sketch-based manga retrieval using manga109 dataset. Multimedia Tools and
Applications, 76:21811–21838, 2017.

H Sheikh. Live image quality assessment database release 2. http://live. ece. utexas.
edu/research/quality, 2005.

Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Going
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Table 5: Overview of model variants. ▶ indicates the group (type) of each model variant: from
lightweight to computationally extensive settings. The according placements of the experiments
are specified as Main (i.e., the main article) and Appendix. The placements of the detailed network
hyperparameters and training configurations for each variant are highlighted in bold.

Variant Description

▶ Type1 (Lightweight Computational Configuration)
These configurations are used for most analyses. All models were trained from scratch without the
Warm-start strategy (i.e., the ×4 SR models are not finetuned from the ×2 SR weights), Mixing
Augmentations, Progressive Patch Sizing.

SwinIR1 - Main . . . . . . . . . . . . . Details are provided in Tab. 10. This variant shares the same
network architecture as the official SwinIR-light model imple-
mentation.

DRCT1 - Main . . . . . . . . . . . . . . Details are provided in Tab. 11. This variant is a lightweight
variant of the DRCT Hsu et al. (2024) model implementation.
The embedding dimension is reduced in order align the network
architecture with the HAT1 model.

HAT1 - Main & Appendix . . . . Details are provided in Tab. 13. This is a variant is a lighter
version of the HAT-S Chen et al. (2023b) model, modified
with a slightly reduced embedding dimension. This change
was made since the standard HAT-S, despite being denoted
as small, requires more Mult-Adds than the full-sized SwinIR
model.

SRFormer1 - Appendix . . . . . . Details are provided in Tab. 12. This variant is a lightweight
variant of the SRFormer Zhou et al. (2023) model. The overall
capacity is reduced to align with the networks specified above.

▶ Type2 (Moderate Computational Configuration)
These configurations are used for the ablation study and low-precision inference analysis.

HAT2 - Main . . . . . . . . . . . . . . . Details are provided in Tab. 14. This variant shares the same
network capacity as the official HAT-S implementation, which
is slightly heavier than HAT1. However, the training budget is
reduced for computational efficiency compared to HAT-S† (the
public model); the patch size and the batch size were halved
each. Aligning with Type1 configurations, all models were
trained from scratch without the warm-start strategy for 300K.

▶ Type3 (Extensive Computational Configuration)
These configurations are used when comparing with official public models and validating the
scalability of our method.

HAT† - Main & Appendix . . . . Details are provided in Tab. 15. This variant shares the same
network architecture as the official full-sized HAT implemen-
tation and precisely follows the training configuration of the
public model. Quantitative results from this variant are copied
from the original paper Chen et al. (2023b).
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Table 6: Quantitative results for classical image super-resolution under computationally extensive
setting. † indicates that we have precisely followed the architecture and training settings of the official
public model, as specified in Tab.15. HAT† requires 40 GPU days for ×2 SR (500K train iterations)
and additional 20 GPU days for ×4 SR (250K finetuning iterations). The best results for each setting
are highlighted in bold, respectively.

Backbone Scale Set5 Set14 BSD100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

HAT† + LN ×2 38.63 .9630 34.86 .9274 32.62 .9053 34.45 .9466 40.26 .9809
HAT† + i-LN (Ours) ×2 38.65 .9631 34.92 .8276 32.63 .9053 34.60 .9476 40.38 .9811
HAT† + LN ×4 33.04 .9056 29.23 .7973 28.00 .7517 27.97 .8368 32.48 .9292
HAT† + i-LN (Ours) ×4 33.12 .9064 29.26 .7981 28.00 .7520 28.04 .8388 32.56 .9299

A EXPERIMENTAL DETAILS

A.1 MODEL IMPLEMENTATION DETAILS

Since this work provides extensive analysis for more than 60 configurations, analyses throughout this
work are performed on various settings due to computational efficiency. We provide implementation
details in terms of both network architectural hyperparameters and training configuration for each
model variant in Tab.5.

• Type1 (Lightweight Setting): These models are the lightweight variants of the original
implementations. These configurations are used in Tab.1 and Tab.2, where effects of different
normalization schemes and task variations are analyzed.

• Type2 (Moderate Setting): These model variants indicate moderate computational budget
settings. They are used for the ablation study and also for the analysis in low-precision
settings (Tab.3, Tab.4, Fig.10).

• Type3 (Computationally Extensive Setting): These model variants indicate computation-
ally extensive settings. This configuration is used to validate the scalability of our method
(Tab.6), which aligns with the official implementation of the public models.

A.2 CHANNEL ENTROPY

Algorithm 1 represents a simple pseudocode to calculate the channel-axis entropy used in our
analysis. A sharp drop in channel-axis entropy indicates that feature activations are becoming
concentrated in a few specific channels. Analysis throughout this work shows that this entropy
collapse is intrinsically linked to the feature divergence problem that arises from conventional
LayerNorm in Image Restoration (IR) Transformers.

Algorithm 1 Channel Entropy Calculation
Require: Activation tensor x of shape (C, H, W), a small constant ϵ for numerical stability.
Ensure: A single scalar entropy value.

▶ Step 1: Average the total activation magnitude over spatial-dim.
▶ Step 2: Convert to a probability distribution.
▶ Step 3: Compute channel entropy.

1: function CHANNELENTROPY(x, ϵ)
2: xavg ← mean(abs(x), dims = (H,W )) ▷ Step 1
3: p← softmax(xavg) ▷ Step 2
4: entropy← -1 · sum(p · log(p + ϵ)) ▷ Step 3
5: return entropy
6: end function
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Table 7: Quantitative results for ×4 super-resolution on the SRFormer (Zhou et al., 2023) network
architecture. The network capacity and the training budget are adjusted as in Tab.12, which aligns with
experimental settings in Tab.2. The best results for each setting are highlighted in bold, respectively.

Backbone Scale Set5 Set14 BSD100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SRFormer1 + LN ×4 32.41 .8972 28.77 .7853 27.68 .7398 26.43 .7957 30.98 .9141
SRFormer1 + i-LN (Ours) ×4 32.45 .8979 28.81 .7862 27.70 .7407 26.49 .7997 31.10 .9152

Table 8: Quantitative results for ×4 super-resolution with additional regularization methods. GC
denotes Gradient Clipping, and KLD denotes an auxiliary KL-Divergence loss. Neither proved
effective at addressing the instability caused by LayerNorm. GC slightly improves stability but still
allows extreme feature magnitudes (5.6× 106), comparable to the vanilla baseline (5.8× 106). KLD
regularization enforces smoother statistics but leads to a notable performance drop. In contrast, our
proposed i-LN yields magnitudes close to N (0, 1) (around 1.2) while consistently outperforming all
alternatives. The best results for each setting are highlighted in bold.

Backbone Scale Set5 Set14 BSD100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

HAT1 + LN ×4 32.51 .8992 28.79 .7876 27.68 .7411 26.55 .8015 31.01 .9150
HAT1 + LN + GC ×4 32.55 .8996 28.87 .7882 27.74 .7417 26.70 .8037 31.31 .9169
HAT1 + LN + KLD ×4 32.36 .8974 28.65 .7853 27.64 .7402 26.34 .7972 30.41 .9105
HAT1 + i-LN (Ours) ×4 32.72 .9019 29.01 .7915 27.84 .7456 27.17 .8167 31.82 .9228

B ADDITIONAL BENCHMARK RESULTS

B.1 SCALING MODELS AND COMAPRISON AGAINST PUBLIC MODELS

In Tab.6, we validate the scalability of the proposed i-LN under computationally extensive settings.
Specifically, we train our models on top of the full-sized HAT architecture variant, with the exact
training configurations of the public model as specified in Tab.15. The models are indicated as HAT†,
where † means that we have precisely followed the exact network architecture hyperparameters and
training configurations for fair comparison. HAT† for ×2 SR and ×4 SR variants requires 40 GPU
days and 20 GPU days on wall-clock time each, with NVIDIA RTX A6000s under the representative
BasicSR (Wang et al., 2022b) framework.

Benchmark. In Tab.6 we validate that replacing the conventional LayerNorm with the proposed i-LN
leads to significant performance gain also in the computationally extensive setting where the networks
have significantly larger capacity Accordingly, we conclude that the proposed i-LN is effective in
both 1) lightweight settings, as shown in our main article and 2) also in computationally extensive
settings as in Tab.6, showing the scalability of our i-LN.

Training Details. Scores are from the original paper for the baselines. Here, we follow the original
training scheme where ×4 SR models are trained under warm-start configuration (i.e., finetuned from
×2 SR model weight).

B.2 ADAPTATION TO EFFICIENT SR NETWORK

In Tab.7, we further validate the effectiveness on top of the SRFormer Zhou et al. (2023) architecture, a
representative efficient SR network. Similar to other Type1 model variants, the training configurations
are adjusted. Refer to Tab.12 for the detailed configurations.

Discussion. SRFormer utilizes a Permuted Self-Attention (PSA) mechanism. Accordingly, features
across multiple pixels are reshaped into a single feature-pixel (pixelshuffle-style). Thus, the per-
token vanilla LN implicitly takes normalization parameters across multi-pixels. While the effect
of permuted self-attention in the perspectives of normalization was not discussed in the original
work, our work suggests insights that PSA induces (partially) spatial holisticness in normalization, a
potential factor for the performance gain of SRFormer (i.e., potentially reducing the performance
gap against ours). Seeking further improvements regarding the relationship between the reshaping
operation and normalization may be a valuable direction for future work.
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C OTHER REGULARIZATION TECHNIQUES FOR TRAINING STABILITY

Beyond our proposed i-LN, one may ask whether simpler regularization methods could mitigate the
training instabilities of IR Transformers. We therefore examined common strategies such as gradient
clipping (GC) and KL divergence (KLD) regularization in Tab.8.

While GC is widely used to bound exploding gradients, our experiments confirmed that it does not
prevent the emergence of extreme feature magnitudes in IR Transformers. The maximum feature
magnitude observed during training with GC was 5.6× 106. As a reference, the maximum feature
magnitude for the vanilla HAT1+LN was 5.8× 106. In contrary, our HAT1+i-LN shows 1.2, very
closely aligning with the expected magnitude of a random noise sampled from the normal distribution
N (0, 1), which is 1. Additionally, while GC leads to slight performance improvement against the
vanilla model, it consistently underperforms compared to i-LN.

Likewise, KLD regularization can stabilize feature statistics, but at the cost of substantial reconstruc-
tion performance degradation. Specifically, we observed that although KLD encourages well-behaved
distributions, the resulting models suffered PSNR drops even below the baseline with vanilla LN. This
is consistent with prior findings in rate–distortion theory (Brekelmans et al., 2019; Blau & Michaeli,
2019), and also to VAE literature (Higgins et al., 2017; Yao et al., 2025), where strong regularization
penalties reduce reconstruction fidelity.

Overall, these results highlight that although general-purpose regularization may offer partial reme-
dies, they are either ineffective (GC) or detrimental to reconstruction quality (KLD). This further
emphasizes the necessity of normalization methods tailored to the unique requirements of IR Trans-
formers.
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Figure 12: Visual comparison of Relative Position Embeddings (RPE) across attention heads. We
show the RPEs from the last three attention layers of each a shallow (RHAG.0) and a deep (RHAG.5)
building block of HAT Chen et al. (2023a) (i.e., the RHAG Block), as well as early training (100K
iterations) versus fully converged models (500K iterations). Each corresponds to an experimental
setting aligned with Tab. 3, where vanilla LN and our i-LN are the primary comparison, and LN* and
LN+Rescale represent ablation variants obtained by selectively removing components of our method.
Our full method (i-LN) yields cleaner and more stable RPE patterns, with substantially reduced noise
across variations in training iteration and layer depth.

(a) HQ (b) HQ crop (c) LN (d) i-LN (Ours) (e) LN∗ (f) LN+Rescaling

Figure 13: Visual comparison between LN and i-LN, along with the ablated variants LN* and
LN+Rescaling with the HAT2 configuration. Experimental settings follow the ablation study in the
main article (Tab. 3). The proposed i-LN more faithfully reconstructs fine details, producing sharper
edges and clearer complex patterns than the LN baseline.

D FURTHER ABLATION STUDY

Here, we further compare our full method i-LN against the baseline (vanilla) LN, and two variants:
LN* and LN+Rescaling, which each are ablations of out method without rescaling (LN*) and without
the spatial holistic type of normalization (LN+Rescaling). Below, we provide additional visualization
of relative position embeddings (RPEs) and also further visual comparison of the according ×4 SR
result. Quantitative comparison can be seen in Tab.3 of the main article. Each of these experimental
setups is directly aligned with the ablation analysis presented in Tab. 3 of the main article. Accordingly,
all experiments were performed with the HAT2 configuration for the synthetic (bicubic) ×4 SR task.
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D.1 ABLATION STUDY: RELATIVE POSITION EMBEDDINGS (RPE) VISUALIZATION

In Fig. 12, we provide a comprehensive visual comparison of the learned Relative Position Embed-
dings (RPE) across different normalization strategies. The figure compares vanilla Layer Normaliza-
tion (LN), our proposed i-LN, as well as two ablated variants, LN* and LN+Rescaling.

To obtain deeper insight into the dynamics and stability of RPE formation, we visualize both early-
stage training (100K iterations) and fully converged models (500K iterations), and further examine
representations from a shallow block (RHAG.0) and a deep block (RHAG.5).

Across all settings, vanilla LN exhibits highly noisy RPE structures throughout the entire training
process. Even after convergence, its embeddings fail to organize into meaningful spatial patterns,
suggesting a limited ability to encode coherent spatial correlations. The LN* variant, which adopts a
spatially holistic normalization, occasionally reveals global structures, but these patterns remain weak
and are overshadowed by considerable noise. The LN+Rescaling variant shows improved structure in
deeper layers, yet its shallow-layer embeddings remain unstable and inconsistent. This indicating
that rescaling alone is insufficient to guide early-layer RPE formation, reflected in low reconstruciton
scores in Tab.3.

In contrast, our proposed i-LN consistently produces substantially clearer and more structured
RPE maps, with significantly reduced noise across both shallow and deep layers and across all
training stages. The strong spatial coherence visible in the embeddings aligns with the quantitative
improvements reported in Tab. 3, where i-LN achieves the highest performance among all evaluated
variants. These visual results confirm that i-LN facilitates stable and meaningful spatial relational
modeling throughout the entire network depth and training trajectory.

D.2 ABLATION STUDY: ×4 SR VISUALIZATION

In Fig.13, we provide additional visual comparisons between the SR outputs obtained by networks
each employing LN, LN*, LN+Rescale and our i-LN.

Across all cases, the model equipped with i-LN produces the sharpest and most faithful reconstruction
of fine-grained structures, including thin edges, repetitive patterns, and high-frequency textures. The
restored images exhibit not only improved clarity but also enhanced local contrast and reduced
artificial smoothing, indicating that i-LN effectively preserves low-level feature statistics throughout
the network.

By contrast, the baseline vanilla LN often yields blurry and overly smoothed outputs, where crucial
high-frequency details are lost. This degradation is consistent with the unstable and noisy RPE
behavior observed earlier, suggesting that vanilla LN struggles to maintain coherent spatial relations
required for accurate detail reconstruction. The ablated variants as LN* (spatial holistic normal-
ization without rescaling) and LN+Rescaling (rescaling without spatial holisticness) show partial
improvements over LN but still fall short of i-LN.

Overall, the qualitative comparisons provide visual evidence that both components of i-LN (spatial
holisticness and input-adaptive rescaling) are essential.

E ADDITIONAL EXPERIMENTS ON THE STABILITY AND ROBUSTNESS

In this section, we provide additional experiments that further validate the stability, robustness, and
general applicability of the proposed i-LN across a wide range of practical and challenging training
scenarios. Specifically, we evaluate: 1) real-world super-resolution settings, 2) robustness under
multiple training batch sizes.

Across all settings, i-LN consistently outperforms and exhibits more stable behavior than the con-
ventional per-token LayerNorm (LN). Unless otherwise specified, the base configuration follows the
HAT1 setting for the ×4 SR task. In all experiments, we compare against the vanilla LN baseline
under identical training configurations.

E.1 ROBUSTNESS ACROSS VARYING BATCH SIZES
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Run Backbone Set5 Set14 BSD100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

1 RealHAT1 + LN 26.27 .7601 24.43 .6272 24.39 .5881 22.01 .6064 23.65 .7466
RealHAT1 + i-LN 26.38 .7656 24.58 .6322 24.47 .5918 22.19 .6146 23.96 .7557

2 RealHAT1 + LN 26.77 .7739 24.27 .6201 24.29 .5839 22.00 .6056 23.61 .7503
RealHAT1 + i-LN 26.90 .7777 24.46 .6272 24.37 .5876 22.19 .6141 23.84 .7587

3 RealHAT1 + LN 24.39 .6927 24.77 .6325 24.32 .5823 21.96 .5973 23.71 .7522
RealHAT1 + i-LN 24.58 .6993 24.94 .6377 24.40 .5862 22.16 .6055 23.99 .7602

4 RealHAT1 + LN 25.86 .7472 24.72 .6389 24.35 .5878 21.84 .5954 23.22 .7365
RealHAT1 + i-LN 26.05 .7531 24.93 .6447 24.43 .5913 22.04 .6046 23.48 .7450

5 RealHAT1 + LN 25.08 .7086 24.46 .6355 24.38 .5899 21.93 .6032 23.46 .7458
RealHAT1 + i-LN 25.26 .7120 24.63 .6411 24.46 .5933 22.10 .6115 23.73 .7554

Avg. RealHAT1 + LN 25.68 .7365 24.53 .6308 24.35 .5864 21.95 .6016 23.53 .7463
RealHAT1 + i-LN 25.83 .7415 24.71 .6366 24.43 .5900 22.14 .6101 23.80 .7550

Table 9: Quantitative results for real-world ×4 super-resolution across five random seeds. Both the
training images and the test images were synthesized following the Real-ESRGAN (Wang et al.,
2021) degradation pipeline. The best results for each setting are highlighted in bold.

(a) HQ (b) HQ crop (c) Input (d) i-LN (Ours) (e) LN
Figure 15: Visual comparison between LN and i-LN for the real-world ×4 super-resolution task
with HAT1. Both the training images and the test images were synthesized following the Real-
ESRGAN (Wang et al., 2021) degradation pipeline.

0K 100K 200K 300K
Training steps

24.5

25.0

25.5

26.0

26.5

27.0 HAT1 + LN
HAT1 + i-LN (Ours)

Figure 14: PSNR for ×4 SR with
the HAT1 model, but with batch
size 2, 4, 8 (Urban100).

To evaluate the robustness of i-LN, we train HAT1 models but
with varying batch size from 2 to 8; while keeping all other hyper-
parameters fixed (Fig. 14). This experimental design is chosen in
order to mimic unstable training configurations without heavy hy-
perparameter search. For each configuration, we report PSNR and
SSIM for the ×4 SR task on Urban100 throughout training. As
shown in Fig. 14, models with i-LN consistently achieve higher
PSNR/SSIM than the baseline across all batch sizes. Notably,
the performance gap remains stable as the batch size decreases.
These results demonstrate that the benefit of i-LN is not tied to
a particular training setup, and that its stability advantages per-
sist even under extremely small-batch training (e.g., batch size
2). This property is especially valuable for memory-constrained
environments where large batches are infeasible.

E.2 REAL-WORLD SUPER-RESOLUTION

To evaluate the practical effectiveness of i-LN, we adopt a real-world degradation setup following the
RealESRGAN Wang et al. (2021) pipeline. These analyses complement the main text by demonstrat-
ing that the advantages of i-LN are not restricted to controlled laboratory settings, but generalize to
real-world usage and unstable training regimes.

Training is performed on synthetic DF2K pairs, and testing is conducted on synthetically degraded
versions of standard SR benchmarks (Set5, Set14, BSD100, Urban100, Manga109). Degradation syn-
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thesis strictly follows the RealESRGAN procedures. To assess robustness, we repeat each experiment
across five different random seeds and report the average score of the resulting PSNR/SSIM scores.

As shown in Tab.9 and Fig.15, i-LN leads to consistent and significant improvements over vanilla
LN across all benchmarks, despite the increased complexity of the real-world degradation pipeline.
These results highlight that i-LN is not only theoretically grounded but also practically beneficial in
more challenging real-world restoration scenarios.

F ADDITIONAL QUALITATIVE COMPARISON

We provide additional visual comparisons between IR Transformers with our proposed i-LN against
their counterparts using vanilla Layer Normalization (LN). As shown in the following figures, i-LN
consistently produces sharper structures, cleaner textures, and fewer artifacts across a range of low-
level vision tasks. Qualitative results are provided for: (i) super-resolution (Figs. 16 and 17), (ii)
image denoising (Figs. 18 and 19), (iii) JPEG compression artifact removal (Figs. 23 and 22), and
(iv) image deraining (Figs. 20 and 21).
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(a) HQ (b) HQ crop (c) Input (d) i-LN (Ours) (e) LN

Figure 16: Visual comparison between LN and i-LN for the super-resolution task with HAT1.

(a) HQ (b) HQ crop (c) Input (d) i-LN (Ours) (e) LN

Figure 17: Visual comparison between LN and i-LN for the super-resolution task with DRCT1.

(a) HQ (b) HQ crop (c) Input (d) i-LN (Ours) (e) LN

Figure 18: Visual comparison between LN and i-LN for the denoising task with HAT1.

(a) HQ (b) HQ crop (c) Input (d) i-LN (Ours) (e) LN

Figure 19: Visual comparison between LN and i-LN for the denoising task with SwinIR1.
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(a) HQ (b) HQ crop (c) Input (d) i-LN (Ours) (e) LN

Figure 20: Visual comparison between LN and i-LN for the deraining task with HAT1.

(a) HQ (b) HQ crop (c) Input (d) i-LN (Ours) (e) LN

Figure 21: Visual comparison between LN and i-LN for the deraining task with SwinIR1.

(a) HQ (b) HQ crop (c) Input (d) i-LN (Ours) (e) LN

Figure 22: Visual comparison between LN and i-LN for the JPEG artifact removal task with HAT1.

(a) HQ (b) HQ crop (c) Input (d) i-LN (Ours) (e) LN

Figure 23: Visual comparison between LN and i-LN for the JPEG artifact removal task with SwinIR1.
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G DETAILED DERIVATIONS FOR STRUCTURE PRESERVATION

G.1 NOTATION AND PRELIMINARIES

Let X ∈ RL×C be the feature matrix with tokens xℓ ∈ RC (row-vectors). Define the inter-pixel
(inter-token) structure by the set of pairwise displacements

∆X := {xℓ − xk : 1 ≤ ℓ, k ≤ L}.

A map T : RC → RC preserves inter-pixel structure up to scale if there exists a homothety
H(x) = ax+ b with a > 0, b ∈ RC such that

T (xℓ)− T (xk) = a(xℓ − xk) for all ℓ, k.

Equivalently, all angles and pairwise distance ratios are preserved.

We analyze the pure normalization maps (i.e., the normalization before the affine (γ, β) is applied);
any global translation by β does not affect ∆X , and a scalar post-scale can be absorbed into the
homothety factor a.

G.2 PROPOSITION 1 (VANILLA LAYERNORM FAILS TO PRESERVE STRUCTURE)

Let TLN denote the transformation defined by the normalization in vanilla per-token LayerNorm. In
general there do not exist a > 0 and an orthogonal Q such that for all tokens xℓ, xk,

TLN(xℓ)− TLN(xk) = aQ(xℓ − xk).

Hence TLN is not conformal on the token set. By the nested class relation Homothety ⊂
Similarity ⊂ Conformal, it follows that TLN is neither a similarity nor a homothety, and thus
does not preserve inter-pixel structure in general.

Proof. Write per-token means and standard deviations as

µℓ =
1

C

C∑
c=1

xℓ,c, σℓ =
( 1

C

C∑
c=1

(xℓ,c − µℓ)
2
)1/2

.

The pure LN map (no γ, β) acts componentwise as

TLN(xℓ) =
xℓ − µℓ1

σℓ
,

so for two tokens ℓ, k,

∆ℓk := TLN(xℓ)− TLN(xk) (4)

=
xℓ

σℓ
− xk

σk
−
(µℓ

σℓ
− µk

σk

)
1. (1)

Assume for contradiction there exist a > 0 and orthogonal Q such that ∆ℓk = aQ(xℓ − xk) for all
ℓ, k. Compare the coefficients of xℓ and xk on both sides of (1). Because the equality must hold for
arbitrary token values, we must have

1

σℓ
I = aQ and

1

σk
I = aQ,

hence σℓ = σk for all ℓ, k and Q must be proportional to the identity. With σℓ ≡ σ, the bias term
in (1) reduces to

(
µk−µℓ

σ

)
1, which must vanish for all ℓ, k; thus µℓ = µk for all ℓ, k. Therefore the

assumed similarity can hold only in the degenerate case where all tokens share identical per-token
mean and variance.

For real features, {µℓ, σℓ} are not constant across tokens, so the assumption leads to a contradiction.
Hence no single similarity map exists; TLN is not conformal and does not preserve spatial structure.

Remark. The degenerate equal-statistics case is precisely the rare exception noted in the main text.
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G.3 PROPOSITION 2 (LN* PRESERVES STRUCTURE)

Let TLN∗ denote the transformation defined by the normalization in spatially holistic LayerNorm
(LN*) with global mean and standard deviation

µ =
1

LC

∑
ℓ,c

xℓ,c, σ =
( 1

LC

∑
ℓ,c

(xℓ,c − µ)2
)1/2

> 0.

Then for any tokens xℓ, xk,

TLN∗(xℓ)− TLN∗(xk) =
1

σ
(xℓ − xk),

so TLN∗ is a homothety and preserves inter-pixel structure up to a global scale.

Proof. TLN∗ (without γ, β) is

TLN∗(x) =
x− µ1

σ
.

Hence
TLN∗(xℓ)− TLN∗(xk) =

xℓ − µ1

σ
− xk − µ1

σ
=

1

σ
(xℓ − xk).

This is exactly a homothety with scale factor a = σ−1; therefore angles and pairwise distance ratios
of ∆X are preserved and the spatial configuration is rigid up to a uniform scale.
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Network Architecture Hyperparameters

Embedding Dimension 60
Layer Depths [6, 6, 6, 6]
Attention Heads [6, 6, 6, 6]
Window Size 8× 8
MLP Ratio 2
Residual Connection ‘1conv‘

Dataset Configuration

Training Dataset DIV2K + Flickr2K
PatchSize | BatchSize

- Denoising 64× 64 | 16
- Deraining 128× 128 | 8
- JPEG Artifact Removal 64× 64 | 16

Noise Degradation torch.randn
JPEG Degradation OpenCV

Optimizing Configuration

Total Iterations 300K
Optimizer Adam
Learning Rate (LR) 2× 10−4

Adam Betas (0.9, 0.99)
Weight Decay 0
Scheduler (γ = 0.5) StepLR
Milestones (K) 250
Loss Function L1 Loss

Table 10: Hyperparameters and training con-
figurations for the model variant SwinIR1.
Network architectural terminology is based on
terminologies either in the official implemen-
tation of each work or the implementation in
BasicSR Wang et al. (2022b).

Network Architecture Hyperparameters

Embedding Dimension 96
Layer Depths [6, 6, 6, 6, 6, 6]
Attention Heads [6, 6, 6, 6, 6, 6]
Window Size 16× 16
MLP Ratio 2
Residual Connection ‘1conv‘

Dataset Configuration

Training Dataset DIV2K + Flickr2K
PatchSize | BatchSize

- ×2 Super Resolution 64× 64 | 16
- ×4 Super Resolution 128× 128 | 16

SR Degradation MATLAB

Optimizing Configuration

Total Iterations 300K
Optimizer Adam
Learning Rate (LR) 2× 10−4

Adam Betas (0.9, 0.99)
Weight Decay 0
Scheduler (γ = 0.5) StepLR
Milestones (K) 250
Loss Function L1 Loss

Table 11: Hyperparameters and training con-
figurations for the model variant DRCT1.
Network architectural terminology is based on
terminologies either in the official implemen-
tation of each work or the implementation in
BasicSR Wang et al. (2022b).
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Network Architecture Hyperparameters

Embedding Dimension 60
Layer Depths [6, 6, 6, 6]
Attention Heads [6, 6, 6, 6]
Window Size 16× 16
MLP Ratio 2
Residual Connection ‘1conv‘

Dataset Configuration

Training Dataset DIV2K + Flickr2K
PatchSize | BatchSize

- ×4 Super Resolution 128× 128 | 16
SR Degradation MATLAB

Optimizing Configuration

Total Iterations 300K
Optimizer Adam
Learning Rate (LR) 2× 10−4

Adam Betas (0.9, 0.99)
Weight Decay 0
Scheduler (γ = 0.5) StepLR
Milestones (K) 250
Loss Function L1 Loss

Table 12: Hyperparameters and training con-
figurations for the model variant SRFormer1.
Network architectural terminology is based on
terminologies either in the official implemen-
tation of each work or the implementation in
BasicSR Wang et al. (2022b).

Network Architecture Hyperparameters

Embedding Dimension 96
Layer Depths [6, 6, 6, 6, 6, 6]
Attention Heads [6, 6, 6, 6, 6, 6]
Window Size 16× 16
MLP Ratio 2
Compress Ratio 24
Squeeze Factor 24
Overlap Ratio 0.5
Conv Scale 0.01
Residual Connection ‘1conv‘

Dataset Configuration

Training Dataset DIV2K + Flickr2K
PatchSize | BatchSize

- Denoising 64× 64 | 16
- Deraining 128× 128 | 8
- JPEG Artifact Removal 64× 64 | 16
- ×2 Super Resolution 64× 64 | 16
- ×4 Super Resolution 128× 128 | 16

Noise Degradation torch.randn
JPEG Degradation OpenCV
SR Degradation MATLAB

Optimizing Configuration

Total Iterations 300K
Optimizer Adam
Learning Rate (LR) 2× 10−4

Adam Betas (0.9, 0.99)
Weight Decay 0
Scheduler (γ = 0.5) StepLR
Milestones (K) 250
Loss Function L1 Loss

Table 13: Hyperparameters and training con-
figurations for the model variant HAT1. Net-
work architectural terminology is based on ter-
minologies either in the official implementa-
tion of each work or the implementation in
BasicSR Wang et al. (2022b).
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Network Architecture Hyperparameters

Embedding Dimension 144
Layer Depths [6, 6, 6, 6, 6, 6]
Attention Heads [6, 6, 6, 6, 6, 6]
Window Size 16× 16
MLP Ratio 2
Compress Ratio 24
Squeeze Factor 24
Overlap Ratio 0.5
Conv Scale 0.01
Residual Connection ‘1conv‘

Dataset Configuration

Training Dataset DIV2K + Flickr2K
PatchSize | BatchSize

- ×4 Super Resolution 128× 128 | 16
SR Degradation MATLAB

Optimizing Configuration

Total Iterations 500K
Optimizer Adam
Learning Rate (LR) 2× 10−4

Adam Betas (0.9, 0.99)
Weight Decay 0
Scheduler (γ = 0.5) MultiStepLR
Milestones (K) [250, 400, 450, 475]
Loss Function L1 Loss

Table 14: Hyperparameters and training con-
figurations for HAT2. This variant uses the
HAT-S architecture but is trained with a reduced
budget. Differences from HAT1 are highlighted
in bold. Network architectural terminology is
based on terminologies either in the official im-
plementation of each work or the implementation
in BasicSR Wang et al. (2022b).
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Network Architecture Hyperparameters

Embedding Dimension 180
Layer Depths [6, 6, 6, 6, 6, 6]
Attention Heads [6, 6, 6, 6, 6, 6]
Window Size 16× 16
MLP Ratio 2
Compress Ratio 3
Squeeze Factor 30
Overlap Ratio 0.5
Conv Scale 0.01
Residual Connection ‘1conv‘

Dataset Configuration

Training Dataset DIV2K + Flickr2K
PatchSize | BatchSize

- ×2 Super Resolution 128× 128 | 32
- ×4 Super Resolution 256× 256 | 32

SR Degradation MATLAB

Optimizing Configuration

Optimizer Adam
Adam Betas (0.9, 0.99)
Weight Decay 0
Scheduler (γ = 0.5) MultiStepLR
Loss Function L1 Loss
×2 Super Resolution

- Total Iterations 500K
- Learning Rate (LR) 2× 10−4

- Scheduler Milestones (K) [250, 400, 450, 475]
×4 Super Resolution

- Total Iterations 250K
- Learning Rate (LR) 1× 10−4

- Scheduler Milestones (K) [125, 200, 225, 240]
- Pretrained finetune from ×2 SR weight

Table 15: Hyperparameters and training configurations
for HAT†. This variant uses the full-sized HAT architecture
and precisely follows the training settings of the public model.
Network architectural terminology is based on terminologies
either in the official implementation of each work or the
implementation in BasicSR Wang et al. (2022b).
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H THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this study, LLMs were used for text editing, grammar correction, and coding assistance for graph
visualization.
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