
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A SCALABLE COOPERATIVE/COMPETITIVE SPLITTING
SCHEME FOR MIXTURE OF EXPERTS MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a novel probabilistic expectation-maximization scheme for training
hierarchical mixture-of-experts models that both exposes and exploits parallelism
during training. By replacing the typical categorical distribution used in gating net-
works with a joint distribution blending cooperative and competitive mechanisms,
we obtain a likelihood that encodes both global and local interactions between
experts. The application of an M-splitting scheme reveals an M-step that enables
the solution of localized, embarrassingly parallel subproblems governing local
experts, with deferred corrections accounting for global coupling between experts.
When combined with a hierarchical decomposition of nested networks, this yields a
fast multi-level training scheme reminiscent of multigrid algorithms, which avoids
under-utilization of experts, exposes further GPU parallelism and outperforms
standard models on regression tasks. We provide experiments using a scalable
GPU implementation that demonstrate rapid convergence and parallel scalability
of the iterative scheme, as well as strong localization of the model for non-smooth,
high-dimensional regression problems.

1 INTRODUCTION AND PRIOR WORK

Mixture-of-experts (MoE) models employ a gating network to dynamically route specialized sub-
networks (”experts”) to perform a given task. When the gating network is sparsely activated, the
resulting architecture can be highly efficient, as only a small number of experts are evaluated per
input. Following their introduction in the 1990s Jacobs et al. (1991); Jordan and Jacobs (1994), MoE
models were initially viewed as a means of incorporating modular, specialized components that
performed well across multiple tasks French (1999). In recent years, however, they have attracted
attention as a scalable approach to training large models Shazeer et al. (2017), with some works
successfully training models with over 100 billion parameters Fedus et al. (2022); Du et al. (2022);
Lewis et al. (2021); Lepikhin et al. (2020). The recent success of DeepSeek-V2 also relies crucially
on MoE architectures Liu et al. (2024). Whereas large monolithic architectures of comparable size are
challenging to train, sparsely gated expert models offer a way to combine easier-to-train component
networks.

Despite their scalability, training MoE models remains challenging, particularly with respect to
ensuring balanced expert utilization and promoting cooperation among experts. Traditional training
methods often struggle with these issues, leading to underutilized experts and suboptimal performance.

In this work, we construct a probabilistic framework that admits a scalable expectation-maximization
(EM) training scheme for efficiently training individual experts. We introduce a new approach that
combines the predictive accuracy of cooperative experts, which blend expert predictions, with the
computational efficiency of competitive experts, which train independently on disjoint subsets of data.
This approach integrates several novel technical contributions:

• A novel probabilistic gating function exposes a decomposition of local and global work by
using a mean-field assumption to blend cooperative and competitive effects.

• An expectation-maximization (EM) algorithm, solved via a novel splitting scheme, exposes
parallelism in local computations amenable to GPU acceleration while preserving coopera-
tion across experts. A theoretical bound establishes a sufficient condition for convergence
which are explored experimentally.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• A hierarchical MoE architecture supports a novel multi-level training scheme that ensures
full utilization of all experts. This work builds upon the multilevel training framework
introduced in Trask et al. (2022) (see Appendix A for distinctions). While the current
method inherits this structure, it introduces a cooperative/competitive split that exposes
latent GPU-parallelism.

• Benchmarks demonstrate acceleration from these techniques, as well as the importance of
cooperative effects in a physics-informed architecture where a purely competitive expert
model provides over 10× less accurate predictions.

For simplicity, we develop the method and accompanying theory in the context of supervised re-
gression using simple dense feedforward expert models. However, the proposed scheme is readily
compatible with switch transformers and can be integrated into large-scale models without modifica-
tion. The benchmarks presented in this work demonstrate strong GPU scalability, establishing the
feasibility of extending the approach to large transformer-based architectures in future work.

Probabilistic MoE, EM, and cooperative/competitive experts. Early work by Jordan and Jacobs
(1994) demonstrated that MoE models admit a probabilistic interpretation, with the gating network
defining a categorical distribution upon which experts are conditioned. By maximizing the evidence
lower bound (ELBO), they showed that EM can be used to efficiently train experts competitively: the
M-step yields posterior-weighted, decoupled subproblems for training each expert independently.
They also proposed a cooperative loss that fully couples experts during training, improving accuracy
at the cost of increased computational expense. More recent works have explored the trade-off
between cooperative and competitive training objectives Ahn and Sentis (2021); Do et al. (2025). The
present work provides a probabilistic unification of both losses under a single ELBO formulation.

Hierarchical models and multigrid. Our cooperative/competitive split builds on the hierarchical
MoE regression framework of Trask et al. (2022), which extends Jordan and Jacobs (1994) by
incorporating multigrid-inspired training. In numerical linear algebra, multigrid methods enable
O(N logN) solves Brandt (1977); Briggs et al. (2000) and power exascale simulations Ibeid et al.
(2020); Falgout et al. (2021). This motivates our hypothesis that multigrid-trained hierarchical models
can scale to similarly large architectures. Recent work has explored multigrid-inspired model training
Ke et al. (2017); Albergo et al. (2019); Gunther et al. (2020) and ML-enhanced multigrid solvers
Oswald et al. (2023); Taghibakhshi et al. (2023).

Splitting schemes in scientific computing. Splitting schemes are an essential algorithmic ingredient
in scientific computing, with seminal works by Chorin (1968) and Strang (1968). Our work leverages
splitting methods in numerical linear algebra, like Jacobi and Gauss-Seidel, that were among the
first iterative methods for solving linear systems (Saad, 2003; Golub and Van Loan, 2013). Within
multigrid methods, they serve a critical numerical role of reducing high-frequency errors (Brandt,
1986). Further, exploiting the parallelization of splitting schemes, like Jacobi, allows multigrid
methods to run efficiently on supercomputers Adams et al. (2003); Chow et al. (2006).

Scientific machine learning. Beyond scaling large models, MoEs have seen growing use in ML-based
physical modeling—e.g., in fluids Sharma and Shankar (2024); Zigon and Zhu (2025), chemistry
Shirasuna et al. (2024), and materials Chang et al. (2022). They are particularly effective for enforcing
hard constraints on physics residuals Chalapathi et al. (2024); Actor et al. (2024), where accuracy
approaching machine precision are often required. While some address this via problem-specific
multistage training Wang and Lai (2024); Ainsworth and Dong (2021); Howard et al. (2023), our
method aims to achieve such accuracies directly through optimizer design. We demonstrate this by
solving a physics-informed neural network with hierarchical cooperative training—without modifying
the PDE—yielding accurate predictions. This scales the earlier findings of Cyr et al. (2020), which
showed orders-of-magnitude improvements from cooperative MoE losses but required dense O(N3)
linear solves that hinder scalability.

Code is available on the (anonymized) GitHub https://anonymous.4open.science/r/
coopcompsplit_neurips2025-3F27/readme.md.

2

https://anonymous.4open.science/r/coopcompsplit_neurips2025-3F27/readme.md
https://anonymous.4open.science/r/coopcompsplit_neurips2025-3F27/readme.md

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 TECHNICAL APPROACH

We summarize here the key algorithmic features to exposing and exploiting parallelism, sketched in
Figure 1. For further details and distinctions from Trask et al. (2022), see Appendix A.

MoE models admit a probabilistic interpretation where each expert prescribes a conditional distribu-
tion and the gating network defines a categorical distribution selecting a given expert. Let the gating
variable Z(x) ∼ Cat(π(x)), where π(x) prescribe the probability of a given input x being assigned
to the i-th expert model, i.e., p(Z1(x) = i1) = πi1(x; θ), providing the output distribution

p(Y1(x) = y) =

N1∑
i1=1

p(Ei1 = y|Z1(x) = i1)p(Z1(x) = i1),

We assume a mean-field decomposition of the experts into cooperative and competitive components

p(Ei1 = y|Z1(x) = i1) =
1

Qi1

N (y;µi1 , σ
2
comp)N (y; ŷ1, σ

2
coop), (1)

where Qi1 is the normalizing factor. Each expert prediction µi1 and the cooperative output blending
all experts ŷ1 are given by

µi1(x) = c⊤i1Hi1(x; θ) and ŷ1(x) = E[Y1](x) =

N1∑
i1=1

πi(x; θ)µi(x),

respectively. The assumed expert form is consistent with a generic hidden architecture consisting
of a hidden layer Hi1 composed with a linear layer ci1 ∈ RNbasis . The gating distribution πi1(x; θ)
is parameterized by a neural network with a softmax activation at the output layer. This setting
encapsulates a broad range of architectures, including switch transformers; for simplicity, in this
work, we will consider ResNet architectures.

In general, this architecture requires training of individual experts to prescribe µi1 , specification
of additive noise σ2

comp and σ2
coop, and training of the gating network. We will demonstrate a novel

expectation maximization strategy that provides a decoupling of the training for individual experts;
specifically, we obtain a coupled system of equations for optimal linear layer weights ci1 . To train
these individually, we may reinterpret σ2

comp and σ2
coop instead as numerical parameters that may be

used to control the relative importance of local and global information, selecting the cooperative
contribution to be non-zero but sufficiently small that guarantees can be provided for a splitting
scheme.

Hierarchical generalization to arbitrary levels. We extend to a multilevel setting by introducing a
hierarchy of latent variables Zn for each level n defined conditionally on the previous n− 1 levels

p(Zn = in | Z1 = i1, · · · , Zn−1 = in−1) = πIn ,

p(Z1 = i1, · · · , Zn = in) =

n∏
k=1

πIk = π̃In ,

Figure 1: An illustration of the hierarchical training. Details are provided in Appendix A.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

p(Yn(x) = y) =
∑

In

π̃InN (y;µIn , σ
2
comp)N (y; ŷn, σ

2
coop),

µIn(x) = c⊤InHIn(x; θ), ŷn(x) =
∑

In

π̃In(x; θ)µIn(x).

where In = {i1, · · · , in} is used as a shorthand for all indices up to the current level. In Trask et al.
(2022), the authors demonstrate a multi-grid inspired scheme where expectation maximization is used
to perform polynomial regression. In the current work, we modify this both by considering arbitrarily
deep architectures for experts and using the mean-field distribution in Equation 1. Following Trask
et al. (2022), at training time we perform a V-cycle optimization evaluating an EM-step at each
level of the hierarchy progressing from coarse to fine, and then applying marginalization of the
probabilistic to traverse the hierarchy back from fine to coarse. Details of this and a diagram of
training are provided in Appendix A.

When developing a multigrid scheme, a common requirement is that the range of the coarse space is a
subset of the fine space, implying that finer scales are well-approximated on coarse-scales. Formally,

span(Hi1,··· ,in) ⊆ span(Hi1,··· ,in,in+1
). (2)

We design architectures that achieve this by constructing children of parent experts which consist of
their parents hidden layer stacked with a new hidden layer, so that

µIn+1
(x) = c⊤In+1

[
HIn(x; θ)

H̃n+1(x; θ)

]
,

where H̃n+1(x; θ) is a new hidden layer architecture. This construction provides experts of increasing
nested complexity as the hierarchy is extended more deeply and exposes parallelism.

Cooperative/competitive EM update. We next demonstrate how the assumed mean-field approx-
imation impacts the standard EM update from Jordan and Jacobs (1994). The observed data log
likelihood is given by

logL(θ;D) =

Nd∑
d=1

log

[∑
In

π̃In(x
d; θ)N (yd;µIn(x

d), σ2
comp)N (yd; ŷn(x

d), σ2
coop)

]
,

which, by Jensen’s inequality, is bounded from below by

ℓ(θ) =
∑
d=1

∑
In

wIn(x
d) log

π̃In(x
d; θ)N (yd;µIn(x

d), σ2
comp)N (yd; ŷn(x

d), σ2
coop)

wIn(x
d)

.

We choose wIn(x
d) such that the ELBO is a tight lower bound,

wIn(x
d) := p(Z1 = i1, · · · , Zn = in | Yn = yd) =

π̃InN (yd;µIn(x
d), σ2

comp)∑
Jn
π̃JnN (yd;µJn(x

d), σ2
comp)

.

Computing wIn(x
d) prescribes the E-step of each iteration. In the M-step, we find the optimal

parameters cIn , HIn and π̃In to maximize the ELBO. Taking the derivative of the ELBO with respect
to the expert coefficients cIn yields the weighted least-squares problem

∑
d,Jn,β

(
wd

In
δIn Jn

σ2
comp

+
π̃d

In
π̃d

Jn

σ2
coop

)
Hd

In,αH
d
Jn,βcJn,β =

∑
d

(
wd

In

σ2
comp

+
π̃d

In

σ2
coop

)
ydHd

In,α (LS)

where δIn Jn , a generalization of the Kronecker delta, equals 1 if and only if all corresponding
components of In and Jn are the same, and equals 0 otherwise. Solving this weighted least-square
problem requires a dense matrix solve; in the following section we demonstrate how this can be
scalably solved.

HIn and π̃In are optimized with a gradient descent loss

LGD = −ℓ(θ)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

By marginalizing the posterior of the n level, we can obtain another estimator for the n− 1 level, i.e.,

ŵIn−1
=
∑
in

wIn .

Note that the summation is performed only on the last index in. Thus, we obtain a hierarchical
sequence of M step solves traversing up the hierarchy, accessing information at each level from the
solve of the previous level. See Appendix A for a worked two-level example.

3 SPLITTING SCHEME FOR PARALLELIZABLE ITERATIVE SOLVER

We can split the tensor on the left-hand side of equation equation LS into the competitive component
tensor M and the cooperative component tensor N defined by

MIJ =
∑
d

wd
In
δIn Jn

σ2
comp

Hd
In,αH

d
Jn,β ,

NIJ = −
∑
d

π̃d
In
π̃d

Jn

σ2
coop

Hd
In,αH

d
Jn,β ,

where I = {In, α} and J = {Jn, β}, allowing us to matricize these tensors and to vectorize c by
flattening each vector I and J into a single index. While N is a dense matrix, δIn Jn makes M block-
diagonal, which allows the computation of its inverse to be parallelized efficiently. Exploiting this
structure, we replace the direct solution of the linear system with an iterative scheme of the form

Mc(k+1) = Nc(k) + b. (I)

Theorem 1. Assume that the experts are linearly independent with respect to the M and N-weighted
inner-products, i.e. for In ̸= Jn,

det

(
π̃d

In
π̃d

Jn

σ2
coop

Hd
In,αH

d
Jn

)
̸= 0, det

(∑
d

wd
In
δIn Jn

σ2
comp

Hd
In,αH

d
Jn,β

)
̸= 0,

then the spectral radius ρ(M−1N) < 1 provides a sufficient condition for convergence. Under these
conditions, choosing Rσ = σ2

coop/σ
2
comp as

R∗
σ ≥

max
i

∑
d

π̃d
In

min
i

∑
d

wd
In

. (3)

guarantees convergence of the splitting scheme.

In Appendix B we provide a proof of this result, which follows from a generalized Rayleigh quotient
analysis and the Gerschgorin circle theorem (Gerschgorin, 1931). In practice, Rσ may be either
selected adaptively following equation 3, or it may be treated as a hyperparameter to be fixed to a
sufficiently large value before training.

With minor modification the Successive Over-Relaxation (SOR) method Young (1954) may be
adopted to further accelerate solution. At iteration k + 1, the update rule is modified via

c(k+1) = (1− ω)c(k) + ωM−1
(
Nc(k) + b

)
,

where ω ∈ (0, 2) a tunable parameter that recovers Theorem 1 for ω = 1.

4 NUMERICAL EXPERIMENTS

In our experiments, we first present a pedagogical regression task to illustrate how the hierarchical
basis enhances localization across scales. We then benchmark GPU scalability, demonstrating
efficient implementation of embarrassingly parallel weighted least squares solves, as well as less

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

obvious parallelism via JAX’s vmap. Next, we assess the tightness and practical impact of the bound
in Theorem 1, along with an ablation study showing robustness to data dimensionality. Finally, we
include a scientific machine learning example in which incorporating cooperative effects yields an
order-of-magnitude improvement when solving a numerically stiff partial differential equation.

Details of training data, hyperparameters, architecture, and a link to reproducible code are provided
in Appendix D.

4.1 ILLUSTRATIVE 1D REGRESSION EXAMPLE

In Figure 2, we regress the function y(x) = exp
[
− 1

2

(
x−0.5
0.05

)2]
on the unit interval. For this problem,

we observe that the hierarchical experts allow for an unsupervised concentration of resolution around
the relevant feature of the problem. While several works have constructed multistage function approx-
imators by hand (see e.g. Wang and Lai (2024)), this example highlights how hierarchy, cooperative
gating, and optimal EM-updates combine to provide highly accurate function approximation.

0.0

0.2

0.4

0.6

0.8

1.0

G
at

e

Epoch=0

coarse
fine

Epoch=1000 Epoch=10000 Epoch=50000

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ed

ic
tio

n

coarse
fine
exact

0.0 0.2 0.4 0.6 0.8 1.0
x

10 7

10 5

10 3

10 1

101

|e
rr

or
|

coarse
fine

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0 0.2 0.4 0.6 0.8 1.0
x

Figure 2: Regression of a Gaussian bump, highlighting unsupervised expert localization, specializa-
tion, hierarchical approximation and improved accuracy across levels. Top: Gating functions localize
on bump, Middle: Upon localizing gates, experts provide refined approximation, Bottom: Experts
deeper in hierarchy can specialize and provide orders of magnitude improved accuracy.

4.2 STRONG GPU SCALING OF BLENDED LEAST-SQUARES SOLVE

We consider a 64-dimensional regression problem using Nc coarse and Nf fine experts, benchmarking
acceleration across 1, 2, and 4 GPUs relative to a single-GPU baseline. Figure 3 highlights two forms
of GPU-parallelism exposed by our scheme. First, the M-step splitting decouples the global least-
squares problem into many small, embarrassingly-parallel solves, yielding strong scaling. Second,
the nested hierarchy exposes expert-level decoupling across levels, which JAX’s vmap efficiently
parallelizes. Appendix A details the mathematical structure behind this decoupling. Speedup is
measured against a naive LU-based single-GPU solve of the monolithic system. As expected, the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

split formulation achieves near-ideal scaling: 1.97× and 3.79× with 2 and 4 GPUs, respectively.
When vmap is activated, we observe up to 30× speedup; this improvement is directly attributable to
the combination of splitting and hierarchy which allows a complete utilization of GPUs.

100 200 300 400 500

Total Model Partitions (Nc ×Nf = 4×Nf)

0.5

1.0

1.5

2.0

2.5

3.0

S
p

ee
d

-u
p

v
s

d
ir

ec
t

3.79×

1.97×

Distributed Splitting Only

100 200 300 400 500

Total Model Partitions (Nc ×Nf = 4×Nf)

0

5

10

15

20

25

30

Distributed + Intra-GPU Parallelism (vmap)

Solver (# of GPUs)

direct(1) split(1) split(2) split(4)

Figure 3: Strong scaling for an iteration of the split linear solver. e Left. Distributed splitting with
no intra-GPU parallelism achieves near ideal speedup. Right. JAX’s vmap exploits intra-GPU
parallelism exposed by splitting and model hierarchy.

4.3 TIGHTNESS OF BOUND IN THEOREM 1 AND PRACTICAL IMPLICATIONS

The fundamental assumption of the method is that Rσ may be chosen small enough to incorporate
cooperative effects but large enough to guarantee convergence of the splitting. The bound for R∗

σ in
Theorem 1 makes several assumptions, raising the question of whether it is tight enough to provide
practical significance. 1. The experts are assumed linearly independent, which is particularly unlikely
at initialization (see e.g. Cyr et al. (2020) for discussion of degenerate rank at initialization time), 2.
Expert posterior collapse may lead to an explosion in R∗

σ as wid → 0 (See discussion in Appendix
B), and 3. the derived using Gerschgorin is too pessimistic to provide a tight and predictive estimate.
We design an experiment to explore two hypotheses: 1. There exists an experimentally calibrated
constant C such that choosing Rσ = C R∗

σ gives an effective threshold for guaranteeing convergence;
and 2. at the conclusion of training the experts are linearly independent so that R∗ is tight.

To test, we construct an artificial scenario in which we generate several different training runs
corresponding to a range of Rσ values spanning 1 to 1010. Define Nsplit as the number of iterations
for the splitting scheme to converge to a given tolerance. At each epoch, we perform an ablation
study fixing the matrices A and B and sweeping over different values of σcoop and σcomp to identify
the dependence of Nsplit on alternate weightings of M and N . This provides a realistic range of
possible weightings which can illustrate whether the bound in Theorem 1 is tight. We arbitrarily
impose a maximum iteration count of 2000 as an indicator of divergence.

Figure 4 illustrates the results of this study. By plotting Nsplit as a function of Rσ/R
∗
σ, we obtain

a scatter plot with a clear delineation consistent with selecting C = 1e4. Realistically C may be
problem dependent, but this suggest a practical strategy where C may be gradually increased for a
given problem until it is sufficiently large. Interestingly however, when plotting a range of values
at the end of training we observe that the transition to convergence occurs at the theory-predicted
C = 1, suggesting that the bound is tight at the conclusion of training.

4.4 INSENSITIVITY OF SPLITTING SCHEME TO PROBLEM DIMENSION

We consider a regression problem on the d-dimensional unit hypercube, regressing a multivariate
Gaussian problem with mean at the center of the cube and standard deviation 1

10 . Similar to Section
4.1, this provides a test whether the gating function can localize on a simple feature in high-dimensions,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

100 101 102 103 104 105 106 107 108 109

Rσ/R
∗
σ

101

102

103
S

ol
ve

It
er

at
io

n
s

Epochs 0–1500

100 101 102 103 104 105 106 107 108 109

Rσ/R
∗
σ

Epochs 4990–4999

Rσ

1.0e+10

2.5e+09

1.0e+08

2.5e+07

1.0e+06

5.6e+05

2.5e+05

6.2e+04

1.0e+04

5.6e+03

2.5e+03

6.2e+02

1.0e+02

4.9e+01

2.5e+01

4.0e+00

Figure 4: Ablation study exploring the tightness and practical implications of Theorem 1. Left. A
scatter plot of the number of splitting iterations to convergence as a function of Rσ/R

2
σ illustrates a

sharp transition at Rσ/R
2
σ = 104. Right. At the conclusion of training, we see that the predicted

bound Rσ = R∗
σ denoted by a vertical dashed line clearly indicates the threshold of stability,

suggesting that the assumptions of Theorem 1 are valid.

and indicating whether the split cooperative/competitive scheme may realistically be deployed on
high-dimensional problems.

1 2 4 8 16 32 64 128

Dimension

2

3

4

B
le

n
d

ed
L

in
ea

r
S

ol
ve

r
It

er
at

io
n

s
P

er
S

ol
ve

Coarse Level

Median

1 2 4 8 16 32 64 128

Dimension

Fine Level

Median

Figure 5: Ablation study illustrating insensitivity of convergence for splitting scheme to problem
dimension. Radius of blue circles denotes the frequency of convergence for a given dimension for
both coarse (Left) and fine (Right) levels of hierarchy. Performance is independent of dimension,
illustrating suitability for high-dimensional machine learning tasks.

4.5 PERFORMANCE ON A PHYSICS-INFORMED NEURAL NETWORK

Physics-informed neural networks (PINNs) offer a simple case where neural networks provide
candidate solutions that minimize a partial differential equation (PDE) residual Lagaris et al. (1998);
Raissi et al. (2019). Many works have established pathologies in the training of PINNs Wang et al.
(2021); Krishnapriyan et al. (2021); Fuks and Tchelepi (2020). While there are multiple challenges,
one is that solutions to PDEs have strict regularity requirements on continuity, which many have
shown may be avoided by using more advanced PDE discretizations Yu et al. (2018); Patel et al.
(2022). We show in Figure 6 that an application of a cooperative expert to the original ”vanilla”
scheme is sufficient to achieve results without modification to the original scheme and only via
choice of architecture/optimizer. We consider as a benchmark the singularly perturbed advection-
diffusion equation, which in the limit as transport becomes advection-dominated, exhibits many sharp

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

gradients that are challenging even for mature PDE-solution techniques Roos (2008). This regularity
is preserved by cooperative experts, but competitive experts are unable to resolve it. This problem
requires a non-trivial extension of the framework to a multi-objective loss (See Appendix C) that
provides a concrete example of how the framework may be extended to a broader class of problems.

Figure 6: Extension to multi-objective loss: Physics-informed neural networks (PINNs). Top. In
the advection-diffusion problem, High-Péclet cases yield steep gradients and pathological behavior
while requiring continuity. Compared to the analytic solution (Top-left), standard PINNs exhibit large
errors at steep gradients (Top-right), which are mitigated by the cooperative scheme (Bottom-left).
Competitive experts improve training stability but yield solutions with 10× larger error (Bottom-
right). Bottom. An ablation over Péclet numbers in 1D shows the cooperative scheme consistently
maintains > 10× lower error as the problem becomes more singular. Error bars indicate min/max
error across five random seeds.

5 CONCLUSION AND FUTURE WORK

We introduced a novel splitting scheme for cooperative/competitive hierarchical mixture-of-experts
models and provided analytical criteria guaranteeing robust performance. On simple tasks, the
method exposes new forms of GPU parallelism, yielding effective results for both regression and
multi-objective optimization, with performance largely insensitive to input dimension. While scaling
this scheme to large transformer-based architectures remains a substantial engineering challenge, the
present work establishes a clear proof of concept and a promising foundation for future development.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Jonas A Actor, Xiaozhe Hu, Andy Huang, Scott A Roberts, and Nathaniel Trask. Data-driven whitney
forms for structure-preserving control volume analysis. Journal of Computational Physics, 496:
112520, 2024.

Mark Adams, Marian Brezina, Jonathan Hu, and Ray Tuminaro. Parallel multigrid smoothing:
polynomial versus gauss–seidel. Journal of Computational Physics, 188(2):593–610, 2003.

Junhyeok Ahn and Luis Sentis. Nested mixture of experts: Cooperative and competitive learning of
hybrid dynamical system. In Learning for Dynamics and Control, pages 779–790. PMLR, 2021.

Mark Ainsworth and Justin Dong. Galerkin neural networks: A framework for approximating
variational equations with error control. SIAM Journal on Scientific Computing, 43(4):A2474–
A2501, 2021.

Michael S Albergo, Gurtej Kanwar, and Phiala E Shanahan. Flow-based generative models for
markov chain monte carlo in lattice field theory. Physical Review D, 100(3):034515, 2019.

Achi Brandt. Multi-level adaptive solutions to boundary-value problems. Mathematics of computation,
31(138):333–390, 1977.

Achi Brandt. Algebraic multigrid theory: The symmetric case. Applied mathematics and computation,
19(1-4):23–56, 1986.

William L Briggs, Van Emden Henson, and Steve F McCormick. A multigrid tutorial. SIAM, 2000.

Nithin Chalapathi, Yiheng Du, and Aditi Krishnapriyan. Scaling physics-informed hard constraints
with mixture-of-experts. arXiv preprint arXiv:2402.13412, 2024.

Rees Chang, Yu-Xiong Wang, and Elif Ertekin. Towards overcoming data scarcity in materials
science: unifying models and datasets with a mixture of experts framework. npj Computational
Materials, 8(1):242, 2022.

Alexandre Joel Chorin. Numerical solution of the navier-stokes equations. Mathematics of computa-
tion, 22(104):745–762, 1968.

Edmond Chow, Robert D Falgout, Jonathan J Hu, Raymond S Tuminaro, and Ulrike Meier Yang.
A survey of parallelization techniques for multigrid solvers. Parallel processing for scientific
computing, pages 179–201, 2006.

Eric C Cyr, Mamikon A Gulian, Ravi G Patel, Mauro Perego, and Nathaniel A Trask. Robust training
and initialization of deep neural networks: An adaptive basis viewpoint. In Mathematical and
Scientific Machine Learning, pages 512–536. PMLR, 2020.

Giang Do, Hung Le, and Truyen Tran. Sparse mixture of experts as unified competitive learning.
arXiv preprint arXiv:2503.22996, 2025.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language models
with mixture-of-experts. In International conference on machine learning, pages 5547–5569.
PMLR, 2022.

Robert D Falgout, Ruipeng Li, Björn Sjögreen, Lu Wang, and Ulrike Meier Yang. Porting hypre
to heterogeneous computer architectures: Strategies and experiences. Parallel Computing, 108:
102840, 2021.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in Cognitive Sciences, 3
(4):128–135, 1999.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Olga Fuks and Hamdi A Tchelepi. Limitations of physics informed machine learning for nonlinear
two-phase transport in porous media. Journal of Machine Learning for Modeling and Computing,
1(1), 2020.

S. Gerschgorin. Uber die abgrenzung der eigenwerte einer matrix. Izvestija Akademii Nauk SSSR,
Serija Matematika, 7(3):749–754, 1931.

Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

Stefanie Gunther, Lars Ruthotto, Jacob B Schroder, Eric C Cyr, and Nicolas R Gauger. Layer-parallel
training of deep residual neural networks. SIAM Journal on Mathematics of Data Science, 2(1):
1–23, 2020.

Amanda A Howard, Sarah H Murphy, Shady E Ahmed, and Panos Stinis. Stacked networks improve
physics-informed training: applications to neural networks and deep operator networks. arXiv
preprint arXiv:2311.06483, 2023.

Huda Ibeid, Luke Olson, and William Gropp. Fft, fmm, and multigrid on the road to exascale:
Performance challenges and opportunities. Journal of Parallel and Distributed Computing, 136:
63–74, 2020.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm. Neural
computation, 6(2):181–214, 1994.

Tsung-Wei Ke, Michael Maire, and Stella X Yu. Multigrid neural architectures. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 6665–6673, 2017.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Char-
acterizing possible failure modes in physics-informed neural networks. Advances in neural
information processing systems, 34:26548–26560, 2021.

Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for solving
ordinary and partial differential equations. IEEE transactions on neural networks, 9(5):987–1000,
1998.

Kookjin Lee, Nathaniel A Trask, Ravi G Patel, Mamikon A Gulian, and Eric C Cyr. Partition of unity
networks: deep hp-approximation. arXiv preprint arXiv:2101.11256, 2021.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer. Base layers:
Simplifying training of large, sparse models. In International Conference on Machine Learning,
pages 6265–6274. PMLR, 2021.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-of-
experts language model. arXiv preprint arXiv:2405.04434, 2024.

Dominik Oswald, Andrew Trask, and Adrian Sandu. Learning multigrid solvers with graph neural
networks. SIAM Journal on Scientific Computing, 45(2):A819–A844, 2023.

Ravi G Patel, Indu Manickam, Nathaniel A Trask, Mitchell A Wood, Myoungkyu Lee, Ignacio Tomas,
and Eric C Cyr. Thermodynamically consistent physics-informed neural networks for hyperbolic
systems. Journal of Computational Physics, 449:110754, 2022.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Hans-Görg Roos. Robust numerical methods for singularly perturbed differential equations. Springer,
2008.

Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.

Ramansh Sharma and Varun Shankar. Ensemble and mixture-of-experts deeponets for operator
learning. arXiv preprint arXiv:2405.11907, 2024.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538, 2017.

Victor Yukio Shirasuna, Eduardo Soares, Emilio Vital Brazil, Karen Fiorella Aquino Gutierrez,
Renato Cerqueira, Seiji Takeda, and Akihiro Kishimoto. A multi-view mixture-of-experts based on
language and graphs for molecular properties prediction. In ICML 2024 AI for Science Workshop,
2024.

Gilbert Strang. On the construction and comparison of difference schemes. SIAM Journal on
Numerical Analysis, 5(3):506–517, 1968. doi: 10.1137/0705041. URL https://doi.org/
10.1137/0705041.

Ali Taghibakhshi, Nicolas Nytko, Tareq Uz Zaman, Scott MacLachlan, Luke Olson, and Matthew
West. Mg-gnn: Multigrid graph neural networks for learning multilevel domain decomposition
methods. In International Conference on Machine Learning, pages 33381–33395. PMLR, 2023.

Nathaniel Trask, Amelia Henriksen, Carianne Martinez, and Eric Cyr. Hierarchical partition of
unity networks: fast multilevel training. In Mathematical and Scientific Machine Learning, pages
271–286. PMLR, 2022.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow pathologies
in physics-informed neural networks. SIAM Journal on Scientific Computing, 43(5):A3055–A3081,
2021.

Yongji Wang and Ching-Yao Lai. Multi-stage neural networks: Function approximator of machine
precision. Journal of Computational Physics, 504:112865, 2024.

David Young. Iterative methods for solving partial difference equations of elliptic type. Transactions
of the American Mathematical Society, 76(1):92–111, 1954.

Bing Yu et al. The deep ritz method: a deep learning-based numerical algorithm for solving variational
problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

Bob Zigon and Luoding Zhu. Modeling 2d unsteady flows at moderate reynolds numbers using a 3d
convolutional neural network and a mixture of experts. Computer Physics Communications, page
109540, 2025.

12

https://doi.org/10.1137/0705041
https://doi.org/10.1137/0705041

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A DETAILS OF ALGORITHM AND DISTINCTION FROM TRASK ET AL. 2022

For specificity, we provide here the individual steps of a two-level scheme, illustrating the
operations performed in a single V-cycle in Figure 7. We define operations consisting of
OPT , Restrict, LSS and Prolongate appearing in the figure. For further derivation, we
direct the interested reader to Trask et al. (2022), and provide a Github for a scalable
GPU implementation at https://anonymous.4open.science/r/coopcompsplit_
neurips2025-3F27/readme.md.

Figure 7: An illustration of the hierarchical training for a simple two level scheme. The key
contribution of this work is the introduction of the cooperative/competitive splitting which allows
expensive least square solves (LSS) to be distributed in an embarrassingly parallel manner and
allowing gradient updates (OPT) to be performed.

Restrict/Prolongate blocks: In the EM algorithm we follow Trask et al. (2022) where the standard
evidence lower bound derivation of expectation maximization yields closed form expressions for the
posterior distribution of the gating function conditioned on the data. For coarse and fine scales, we
obtain the expressions

wid := p(Z1 = i|Y1 = yd) =
πi(xd, θ)N (yd;µi(xd), σ

2
i I)∑

I πI(xd)N (yd;µI(xd), σ2
II)

, (4)

wijd := p(Z1 = i, Z2 = j|Y2 = yd) =
πi(xd, θ)πij(x, θi)N (yd;µij(xd), σ

2
ijI)∑

I,J πI(xd)πIJ(x, θI)N (yd;µIJ(xd), σ2
IJI)

, (5)

We note that the coarse posterior wid can be evaluated independently of the fine level, and then
sequentially used to evaluate the fine level posterior wijd. Following the nomenclature in multigrid
methods, we refer to this evaluation of wijd from wid as a restriction. Then, to propagate information
from the child to parent the following marginalization formula is used

ŵid := p(Z1 = i|Y2 = yd) =

∑
j πi(xd)πij(x, θi)N (yd;µij(xd), σ

2
ijI)∑

I,j πI(xd)πIj(x, θI)N (yd;µIj(xd), σ2
IjI)

. (6)

Again, motivated multigrid nomenclature, we refer to this marginalization as prolongation.

LSS block. At each scale a posterior weighted least square solve prescribes optimal values for final
linear layers of expert models. In Trask et al. (2022) these least squares problems are defined as:

Nd∑
d=1

widΦα(xd)Φβ(xd)ci,β =

Nd∑
d=1

widΦα(xd)yd, (7)

Nd∑
d=1

wijdΦα(xd)Φβ(xd)cij,β =

Nd∑
d=1

wijdΦα(xd)yd. (8)

In the current work, we replace both with the hierarchical cooperative/competitive loss defined in LS.

13

https://anonymous.4open.science/r/coopcompsplit_neurips2025-3F27/readme.md
https://anonymous.4open.science/r/coopcompsplit_neurips2025-3F27/readme.md

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Coop/comp split block. In the literature, the incorporation of optimal layers requires choosing
between a dense solve in the LSS block for a purely cooperative formulation Lee et al. (2021), or a
parallelizable but purely competitive loss Trask et al. (2022). Our primary contribution is a splitting
scheme outlined in equation I which preserves the benefits of both. Analysis in Theorem 1 provides
guaranteed conditions for convergence of this scheme, and experimental results in Figure 3 show that
it exposes a source of GPU parallelism

OPT block. A standard gradient descent update is finally applied at each layer of the hierarchy. As
explained in Trask et al. (2022), the loss may be derived rigorously from the evidence lower bound
and results in a cross-entropy loss penalizing mismatch between the posterior distribution and gating
functions. In light of policy gradient methods, one may interpret the posterior as a reward and the
gating network as a policy. The updates are thus localized to each level, exposing the source of
parallelism that JAX’s vmap is able to exploit (See Figure 3).

Lc(θ;D) =
∑
i,d

wid log πi(xd; θ), (9)

Lf (θi;D) =
∑
i,j,d

wijd log (πi(xd; θ)πij(xd; θi)) , (10)

Lf2c(θ;D) =
∑
i,d

ŵid log πi(xd; θ). (11)

A key equation from Trask et al. (2022) demonstrates that the total loss decouples across scales:

Lf (θi;D) = Lf2c(θ;D) +
∑
i,j,d

wijd log (πij(xd; θi)) . (12)

This decoupling allows the scales to separate so that training at the fine level does not impede progress
from the coarse. A useful interpretation of this is that the the prolongated loss at the coarse scale may
be viewed as a correction to the fine scale.

B PROOF OF THEOREM 1

We first summarize why ρ(M−1N) < 1 is a sufficient condition for convergence.

With the scheme given by
Mck+1 = Nck + b, (13)

we may rewrite to obtain

ck+1 = ck +M−1 (N −M) ck +M−1b. (14)

We now prove that ρ(M−1N) < 1. For simplicity, we adopt the notation

N = nP⊺AP (15)
M = mP⊺BP (16)

where m = σ−2
comp, n = −σ−2

coop and m,n > 0 denote the variance scaling, P ∈
RNwidth×Nexperts×Ndata denotes the output of the ith output neuron of the jth expert model evalu-
ated at the kth node, and A and B denote a scaling by either the gating or posterior distribution,
respectively.

Aij =
∑
d

πidπjd (17)

Bij =
∑
d

widδij . (18)

After an appropriate reshaping, it is clear that equation 15 are matrices associated with weighted least
squares problems, with A and B serving as weights, and are symmetric positive definite provided the
weights are non-degenerate.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Rewriting the desired spectral radius inequality in terms of equation 15 and lower bounding the
spectral radius by the maximal generalized Rayleigh quotient, we obtain

σ2
coop

σ2
comp

> max
x

x⊺P⊺APx

x⊺P⊺BPx
, (19)

or after simplifying by defining y = Px

σ2
coop

σ2
comp

> max
y

y⊺Ay

y⊺By
. (20)

The numerator and denominator can be treated in worst case by bounding by the maximum and
minimum eigenvalues, respectively

σ2
coop

σ2
comp

≥ (maxλA) y
⊺y

(minλB) y⊺y
=

maxλA

minλB
. (21)

As both matrices are positive definite, we can bound using standard element-wise expressions
following the Gerschgorin circle theorem Gerschgorin (1931).

maxλA ≥ max
i

∑
j

|Aij | (22)

minλB ≤ min
i

|Bii| −
∑
j ̸=i

|Bij |

 (23)

σ2
coop

σ2
comp

≥
max

i

∑
j

|Aij |

min
i

(
|Bii| −

∑
j ̸=i

|Bij |
) . (24)

By direct calculation we compute ∑
j

|Aij | =
∑
d,j

πidπjd (25)

=
∑
d

πid (26)

and

|Bii| −
∑
j ̸=i

|Bij | =
∑
d

widδij −
∑
d,j ̸=i

widδij (27)

=
∑
d

wid (28)

Finally providing our desired bound

σ2
coop

σ2
comp

≥
max

i

∑
d

πid

min
i

∑
d

wid
. (29)

Validity of assumptions, anticipated consequences, and practical use. In practice, there are several
assumptions that may not be met. The expert models may not be linearly independent (particularly at
initialization time); we explore this result experimentally in the Section 4.3. Secondly, in the event
of expert posterior collapse (i.e. there exists an i where wid = 0 for all d) the estimate could give a
division by zero. In exact precision, wid is never zero, as it is the posterior distribution of a Gaussian
mixture and Gaussians have non-compact support. In practice, in the extreme tails of the Gaussian
contributions the denominator may be vanishingly small, requiring a small stabilizing background
white noise in the mixture model to avoid division by zero in machine precision.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C DERIVATIONS FOR PINN APPLICATION

For a general PDE of the form

L[u](x, t) = f(x, t), x ∈ Ω

B[u](x, t) = g(x, t), x ∈ ∂Ω

u(x, 0) = u0(x), t = 0

where L is any derivative operator, we can modify equation equation 1 with the residue in place of the
true prediction and add the terms for boundary/initial conditions to the mean-field approximation. For
simplicity, we only show the boundary condition terms, as the initial condition terms are analogous

p(Ei1 = u|Z1 = i1) =
1

Qi1

N (f ;L[µi1], σ
2
r1)N (f ;L[ŷ1], σ2

r2)N (γg; γµi1 , σ
2
b1)N (γg; γŷ1, σ

2
b2)

where γ is an indicator function, i.e.

γ(x) =

{
1 if x ∈ ∂Ω
0 otherwise

The observed data log-likelihood becomes

logL =

Nd∑
d=1

log

[∑
In

π̃d
In
N (fd;L[µIn]

d, σ2
r1)N (fd;L[ŷn]d, σ2

r2)N (γdgd; γdµd
In
, σ2

b1)N (γdgd; γdŷdn, σ
2
b2)

]
from which a new ELBO is given in a similar manner to the regression problem. In the E-step, we
compute the posterior distribution, i.e.,

wIn(x
d) =

π̃InN (fd;L[µIn](x
d), σ2

r1)N (γgd; γµd
In
, σ2

b1
)∑

Jn
π̃JnN (fd;L[µJn](x

d), σ2
r1)N (γgd; γµd

In
, σ2

b1
)
.

If L is a linear operator, taking the derivative of the ELBO with respect to the expert coefficients
yields a similar weighted least-squares problem to equation equation LS, where the matrix on the
left-hand side∑
d

[
wd

In
δIn Jn

σ2
r1

L[H]dIn,αL[H]dJn,β +
L[π̃InHIn,α]

dL[π̃JnHJn,β]
d

σ2
r2

+ γd

(
wd

In
δIn Jn

σ2
b1

+
π̃d

In
π̃d

Jn

σ2
b2

)
Hd

In,αH
d
Jn,β

]
and the right-hand side vector∑

d

[(
wd

In
L[H]dIn,α
σ2
r1

+
L[π̃InHIn,α]

d

σ2
r2

)
fd + γd

(
wd

In

σ2
b1

+
π̃d

In

σ2
b2

)
gdHd

In,α

]
If L is nonlinear, we will need to set up a Newton solver. HIn and π̃In are optimized with a gradient
descent loss

LGD = −ℓ(θ)

similar to the regression problem.

D EXPERIMENTAL DETAILS AND HYPERPARAMETERS

Simulations were conducted on an Nvidia A100 cluster, an Nvidia H200 cluster, as well initial
experiments prototyped on a Macbook Air M2 16GB/256GB. Scripts for experiments will be
provided on the anonymized github with associated seeds.

D.1 HYPERPARAMETERS USED FOR DATA COLLECTION

Remark. For the PINN case the additional terms present in the multiobjective loss require special
care. To accelerate hyperparameter tuning for the ablation study of Peclet number the splitting scheme
was turned off and the SOR scheme turned on with small ω for a few cases to ensure convergence.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 1: Key hyperparameters used in section 4.1.

Component Parameter Value
Problem Dataset 1D Gaussian peak, µ = 0.5, σ = 0.05

Input dimension 1

Gating Network Hidden units / Depth
(excluding input layer) 30 / 0

Activation tanh
Hierarchical MoE Partitions (Nc, Nf) 3, 2

Basis size / Hidden units / Depth 30 / 30 / 1
Training Outer iterations 50,000 (staged training)

Learning rates (coarse/fine) 1e-3 / 1e-3
σcomp / σcoop 1.0 / 1e6

Iterative Solver Type Iterative splitting scheme
Tolerance / Regularization 1e-12 / 1e-4
Max iterations 10,000

Precision Data and parameters float64

Table 2: Key hyperparameters used for strong scaling study (section 4.2).

Component Parameter Value
Problem Dataset Gaussian peak, µ = 0.5, σ = 0.1

Input dimension 64

Gating Network Hidden units / Depth
(excluding input layer) 30 / 0

Activation tanh
Hierarchical MoE Partitions sweep (Nc, Nf) (4, 2), (4, 4), (4, 8), (4, 16), (4, 32)

Basis size / Hidden units / Depth 30 / 20 / 1
Training Benchmark iterations 5000 (solver timing only)

Learning rates (coarse/fine) 1e-3 / 1e-3
σcomp / σcoop 1.0 / 1e5

Iterative Solver Type Direct / Iterative splitting scheme (with and
without vmap)

Tolerance / Regularization 1e-12 / 1e-4
Max iterations 5000

Precision Data and parameters float32

Table 3: Key hyperparameters used in section 4.3.

Component Parameter Value
Problem Dataset 1D Gaussian peak, µ = 0.5, σ = 0.05

Input dimension 1

Gating Network Hidden units / Depth
(excluding input layer) 50 / 0

Activation tanh
Hierarchical MoE Partitions (Nc, Nf) 4, 2

Basis size / Hidden units / Depth 20 / 20 / 1
Training Outer iterations 5,000

Learning rates (coarse/fine) 1e-3 / 1e-3
σcomp / σcoop 1.0 / 1e5

Iterative Solver Type Iterative splitting scheme
Tolerance / Regularization 1e-12 / 1e-4
Max iterations 2,000
Recorded iterations counts performed for σcoop given in legend

Precision Data and parameters float64

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 4: Key hyperparameters used for linear solve iteration scaling with problem dimension (sec-
tion 4.4).

Component Parameter Value
Problem Dataset 1D Gaussian peak, µ = 0.5, σ = 0.1

Input dimension 1, 2, 4, 8, 16, 32, 64, 128

Gating Network Hidden units / Depth
(excluding input layer) 100 / 0

Activation tanh
Hierarchical MoE Coarse / Fine partitions (Nc, Nf) 4 / 2

Basis size / Hidden units / Depth 10 / 10 / 1
Training Outer iterations 100,000

Accuracy threshold 1% relative error
Learning rates (coarse/fine) 1e-3 / 1e-3
σcomp / σcoop 1.0 / 1e5

Iterative Solver Type Iterative splitting scheme
Tolerance / Regularization 1e-12 / 1e-4
Max iterations 100,000

Precision Data and parameters float64

Table 5: Key hyperparameters used for convection-diffusion problem (section 4.5).

Component Parameter Value
Problem Dataset 100x100 grid points

Gating Network Hidden units / Depth
(excluding input layer) 40/0 or 20/0

Activation tanh
Hierarchical MoE Coarse / Fine partitions (Nc, Nf) 4 / 2

Basis size / Hidden units / Depth MoEs: 10 / 10 / 2
PINNs: 40/40/3

Training Outer iterations MoEs: 50,000
PINNs: 100,000

Learning rate 1e-4
σcomp / σcoop 1e-3 / 1e-3

Precision Data and parameters float64

Table 6: Key hyperparameters used for Peclet number ablation study (section 4.5).

Component Parameter Value
Problem Dataset 500 points on [0,1]

Gating Network Hidden units / Depth
(excluding input layer) 40/1

Activation tanh
Hierarchical MoE Nc (1 level) 4

Basis size / Hidden units / Depth MoEs: 10 / 10 / 0
PINNs: 40/30/4

Training Outer iterations MoEs: 30,000
PINNs: 100,000

Learning rate 1e-4
σcomp / σcoop 1e5 / 1e-3

Precision Data and parameters float64

18

	Introduction and prior work
	Technical approach
	Splitting scheme for parallelizable iterative solver
	Numerical experiments
	Illustrative 1D regression example
	Strong GPU scaling of blended least-squares solve
	Tightness of bound in Theorem 1 and practical implications
	Insensitivity of splitting scheme to problem dimension
	Performance on a physics-informed neural network

	Conclusion and Future Work
	Details of algorithm and distinction from Trask et al. 2022
	Proof of Theorem 1
	Derivations for PINN Application
	Experimental details and hyperparameters
	Hyperparameters used for data collection

