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ABSTRACT

We present a novel probabilistic expectation-maximization scheme for training
hierarchical mixture-of-experts models that both exposes and exploits parallelism
during training. By replacing the typical categorical distribution used in gating net-
works with a joint distribution blending cooperative and competitive mechanisms,
we obtain a likelihood that encodes both global and local interactions between
experts. The application of an M-splitting scheme reveals an M-step that enables
the solution of localized, embarrassingly parallel subproblems governing local
experts, with deferred corrections accounting for global coupling between experts.
When combined with a hierarchical decomposition of nested networks, this yields a
fast multi-level training scheme reminiscent of multigrid algorithms, which avoids
under-utilization of experts, exposes further GPU parallelism and outperforms
standard models on regression tasks. We provide experiments using a scalable
GPU implementation that demonstrate rapid convergence and parallel scalability
of the iterative scheme, as well as strong localization of the model for non-smooth,
high-dimensional regression problems.

1 INTRODUCTION AND PRIOR WORK

Mixture-of-experts (MoE) models employ a gating network to dynamically route specialized sub-
networks (”experts”) to perform a given task. When the gating network is sparsely activated, the
resulting architecture can be highly efficient, as only a small number of experts are evaluated per
input. Following their introduction in the 1990s Jacobs et al. (1991); Jordan and Jacobs (1994), MoE
models were initially viewed as a means of incorporating modular, specialized components that
performed well across multiple tasks French (1999). In recent years, however, they have attracted
attention as a scalable approach to training large models Shazeer et al. (2017), with some works
successfully training models with over 100 billion parameters Fedus et al. (2022); Du et al. (2022);
Lewis et al. (2021); Lepikhin et al. (2020). The recent success of DeepSeek-V2 also relies crucially
on MoE architectures Liu et al. (2024). Whereas large monolithic architectures of comparable size are
challenging to train, sparsely gated expert models offer a way to combine easier-to-train component
networks.

Despite their scalability, training MoE models remains challenging, particularly with respect to
ensuring balanced expert utilization and promoting cooperation among experts. Traditional training
methods often struggle with these issues, leading to underutilized experts and suboptimal performance.

In this work, we construct a probabilistic framework that admits a scalable expectation-maximization
(EM) training scheme for efficiently training individual experts. We introduce a new approach that
combines the predictive accuracy of cooperative experts, which blend expert predictions, with the
computational efficiency of competitive experts, which train independently on disjoint subsets of data.
This approach integrates several novel technical contributions:

• A novel probabilistic gating function exposes a decomposition of local and global work by
using a mean-field assumption to blend cooperative and competitive effects.

• An expectation-maximization (EM) algorithm, solved via a novel splitting scheme, exposes
parallelism in local computations amenable to GPU acceleration while preserving coopera-
tion across experts. A theoretical bound establishes a sufficient condition for convergence
which are explored experimentally.
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• A hierarchical MoE architecture supports a novel multi-level training scheme that ensures
full utilization of all experts. This work builds upon the multilevel training framework
introduced in Trask et al. (2022) (see Appendix A for distinctions). While the current
method inherits this structure, it introduces a cooperative/competitive split that exposes
latent GPU-parallelism.

• Benchmarks demonstrate acceleration from these techniques, as well as the importance of
cooperative effects in a physics-informed architecture where a purely competitive expert
model provides over 10× less accurate predictions.

For simplicity, we develop the method and accompanying theory in the context of supervised re-
gression using simple dense feedforward expert models. However, the proposed scheme is readily
compatible with switch transformers and can be integrated into large-scale models without modifica-
tion. The benchmarks presented in this work demonstrate strong GPU scalability, establishing the
feasibility of extending the approach to large transformer-based architectures in future work.

Probabilistic MoE, EM, and cooperative/competitive experts. Early work by Jordan and Jacobs
(1994) demonstrated that MoE models admit a probabilistic interpretation, with the gating network
defining a categorical distribution upon which experts are conditioned. By maximizing the evidence
lower bound (ELBO), they showed that EM can be used to efficiently train experts competitively: the
M-step yields posterior-weighted, decoupled subproblems for training each expert independently.
They also proposed a cooperative loss that fully couples experts during training, improving accuracy
at the cost of increased computational expense. More recent works have explored the trade-off
between cooperative and competitive training objectives Ahn and Sentis (2021); Do et al. (2025). The
present work provides a probabilistic unification of both losses under a single ELBO formulation.

Hierarchical models and multigrid. Our cooperative/competitive split builds on the hierarchical
MoE regression framework of Trask et al. (2022), which extends Jordan and Jacobs (1994) by
incorporating multigrid-inspired training. In numerical linear algebra, multigrid methods enable
O(N logN) solves Brandt (1977); Briggs et al. (2000) and power exascale simulations Ibeid et al.
(2020); Falgout et al. (2021). This motivates our hypothesis that multigrid-trained hierarchical models
can scale to similarly large architectures. Recent work has explored multigrid-inspired model training
Ke et al. (2017); Albergo et al. (2019); Gunther et al. (2020) and ML-enhanced multigrid solvers
Oswald et al. (2023); Taghibakhshi et al. (2023).

Splitting schemes in scientific computing. Splitting schemes are an essential algorithmic ingredient
in scientific computing, with seminal works by Chorin (1968) and Strang (1968). Our work leverages
splitting methods in numerical linear algebra, like Jacobi and Gauss-Seidel, that were among the
first iterative methods for solving linear systems (Saad, 2003; Golub and Van Loan, 2013). Within
multigrid methods, they serve a critical numerical role of reducing high-frequency errors (Brandt,
1986). Further, exploiting the parallelization of splitting schemes, like Jacobi, allows multigrid
methods to run efficiently on supercomputers Adams et al. (2003); Chow et al. (2006).

Scientific machine learning. Beyond scaling large models, MoEs have seen growing use in ML-based
physical modeling—e.g., in fluids Sharma and Shankar (2024); Zigon and Zhu (2025), chemistry
Shirasuna et al. (2024), and materials Chang et al. (2022). They are particularly effective for enforcing
hard constraints on physics residuals Chalapathi et al. (2024); Actor et al. (2024), where accuracy
approaching machine precision are often required. While some address this via problem-specific
multistage training Wang and Lai (2024); Ainsworth and Dong (2021); Howard et al. (2023), our
method aims to achieve such accuracies directly through optimizer design. We demonstrate this by
solving a physics-informed neural network with hierarchical cooperative training—without modifying
the PDE—yielding accurate predictions. This scales the earlier findings of Cyr et al. (2020), which
showed orders-of-magnitude improvements from cooperative MoE losses but required dense O(N3)
linear solves that hinder scalability.

Code is available on the (anonymized) GitHub https://anonymous.4open.science/r/
coopcompsplit_neurips2025-3F27/readme.md.
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2 TECHNICAL APPROACH

We summarize here the key algorithmic features to exposing and exploiting parallelism, sketched in
Figure 1. For further details and distinctions from Trask et al. (2022), see Appendix A.

MoE models admit a probabilistic interpretation where each expert prescribes a conditional distribu-
tion and the gating network defines a categorical distribution selecting a given expert. Let the gating
variable Z(x) ∼ Cat(π(x)), where π(x) prescribe the probability of a given input x being assigned
to the i-th expert model, i.e., p(Z1(x) = i1) = πi1(x; θ), providing the output distribution

p(Y1(x) = y) =

N1∑
i1=1

p(Ei1 = y|Z1(x) = i1)p(Z1(x) = i1),

We assume a mean-field decomposition of the experts into cooperative and competitive components

p(Ei1 = y|Z1(x) = i1) =
1

Qi1

N (y;µi1 , σ
2
comp)N (y; ŷ1, σ

2
coop), (1)

where Qi1 is the normalizing factor. Each expert prediction µi1 and the cooperative output blending
all experts ŷ1 are given by

µi1(x) = c⊤i1Hi1(x; θ) and ŷ1(x) = E[Y1](x) =

N1∑
i1=1

πi(x; θ)µi(x),

respectively. The assumed expert form is consistent with a generic hidden architecture consisting
of a hidden layer Hi1 composed with a linear layer ci1 ∈ RNbasis . The gating distribution πi1(x; θ)
is parameterized by a neural network with a softmax activation at the output layer. This setting
encapsulates a broad range of architectures, including switch transformers; for simplicity, in this
work, we will consider ResNet architectures.

In general, this architecture requires training of individual experts to prescribe µi1 , specification
of additive noise σ2

comp and σ2
coop, and training of the gating network. We will demonstrate a novel

expectation maximization strategy that provides a decoupling of the training for individual experts;
specifically, we obtain a coupled system of equations for optimal linear layer weights ci1 . To train
these individually, we may reinterpret σ2

comp and σ2
coop instead as numerical parameters that may be

used to control the relative importance of local and global information, selecting the cooperative
contribution to be non-zero but sufficiently small that guarantees can be provided for a splitting
scheme.

Hierarchical generalization to arbitrary levels. We extend to a multilevel setting by introducing a
hierarchy of latent variables Zn for each level n defined conditionally on the previous n− 1 levels

p(Zn = in | Z1 = i1, · · · , Zn−1 = in−1) = πIn ,

p(Z1 = i1, · · · , Zn = in) =

n∏
k=1

πIk = π̃In ,

Figure 1: An illustration of the hierarchical training. Details are provided in Appendix A.
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p(Yn(x) = y) =
∑

In

π̃InN (y;µIn , σ
2
comp)N (y; ŷn, σ

2
coop),

µIn(x) = c⊤InHIn(x; θ), ŷn(x) =
∑

In

π̃In(x; θ)µIn(x).

where In = {i1, · · · , in} is used as a shorthand for all indices up to the current level. In Trask et al.
(2022), the authors demonstrate a multi-grid inspired scheme where expectation maximization is used
to perform polynomial regression. In the current work, we modify this both by considering arbitrarily
deep architectures for experts and using the mean-field distribution in Equation 1. Following Trask
et al. (2022), at training time we perform a V-cycle optimization evaluating an EM-step at each
level of the hierarchy progressing from coarse to fine, and then applying marginalization of the
probabilistic to traverse the hierarchy back from fine to coarse. Details of this and a diagram of
training are provided in Appendix A.

When developing a multigrid scheme, a common requirement is that the range of the coarse space is a
subset of the fine space, implying that finer scales are well-approximated on coarse-scales. Formally,

span(Hi1,··· ,in) ⊆ span(Hi1,··· ,in,in+1
). (2)

We design architectures that achieve this by constructing children of parent experts which consist of
their parents hidden layer stacked with a new hidden layer, so that

µIn+1
(x) = c⊤In+1

[
HIn(x; θ)

H̃n+1(x; θ)

]
,

where H̃n+1(x; θ) is a new hidden layer architecture. This construction provides experts of increasing
nested complexity as the hierarchy is extended more deeply and exposes parallelism.

Cooperative/competitive EM update. We next demonstrate how the assumed mean-field approx-
imation impacts the standard EM update from Jordan and Jacobs (1994). The observed data log
likelihood is given by

logL(θ;D) =

Nd∑
d=1

log

[∑
In

π̃In(x
d; θ)N (yd;µIn(x

d), σ2
comp)N (yd; ŷn(x

d), σ2
coop)

]
,

which, by Jensen’s inequality, is bounded from below by

ℓ(θ) =
∑
d=1

∑
In

wIn(x
d) log

π̃In(x
d; θ)N (yd;µIn(x

d), σ2
comp)N (yd; ŷn(x

d), σ2
coop)

wIn(x
d)

.

We choose wIn(x
d) such that the ELBO is a tight lower bound,

wIn(x
d) := p(Z1 = i1, · · · , Zn = in | Yn = yd) =

π̃InN (yd;µIn(x
d), σ2

comp)∑
Jn
π̃JnN (yd;µJn(x

d), σ2
comp)

.

Computing wIn(x
d) prescribes the E-step of each iteration. In the M-step, we find the optimal

parameters cIn , HIn and π̃In to maximize the ELBO. Taking the derivative of the ELBO with respect
to the expert coefficients cIn yields the weighted least-squares problem

∑
d,Jn,β

(
wd

In
δIn Jn

σ2
comp

+
π̃d

In
π̃d

Jn

σ2
coop

)
Hd

In,αH
d
Jn,βcJn,β =

∑
d

(
wd

In

σ2
comp

+
π̃d

In

σ2
coop

)
ydHd

In,α (LS)

where δIn Jn , a generalization of the Kronecker delta, equals 1 if and only if all corresponding
components of In and Jn are the same, and equals 0 otherwise. Solving this weighted least-square
problem requires a dense matrix solve; in the following section we demonstrate how this can be
scalably solved.

HIn and π̃In are optimized with a gradient descent loss

LGD = −ℓ(θ)

4
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By marginalizing the posterior of the n level, we can obtain another estimator for the n− 1 level, i.e.,

ŵIn−1
=
∑
in

wIn .

Note that the summation is performed only on the last index in. Thus, we obtain a hierarchical
sequence of M step solves traversing up the hierarchy, accessing information at each level from the
solve of the previous level. See Appendix A for a worked two-level example.

3 SPLITTING SCHEME FOR PARALLELIZABLE ITERATIVE SOLVER

We can split the tensor on the left-hand side of equation equation LS into the competitive component
tensor M and the cooperative component tensor N defined by

MIJ =
∑
d

wd
In
δIn Jn

σ2
comp

Hd
In,αH

d
Jn,β ,

NIJ = −
∑
d

π̃d
In
π̃d

Jn

σ2
coop

Hd
In,αH

d
Jn,β ,

where I = {In, α} and J = {Jn, β}, allowing us to matricize these tensors and to vectorize c by
flattening each vector I and J into a single index. While N is a dense matrix, δIn Jn makes M block-
diagonal, which allows the computation of its inverse to be parallelized efficiently. Exploiting this
structure, we replace the direct solution of the linear system with an iterative scheme of the form

Mc(k+1) = Nc(k) + b. (I)

Theorem 1. Assume that the experts are linearly independent with respect to the M and N-weighted
inner-products, i.e. for In ̸= Jn,

det

(
π̃d

In
π̃d

Jn

σ2
coop

Hd
In,αH

d
Jn

)
̸= 0, det

(∑
d

wd
In
δIn Jn

σ2
comp

Hd
In,αH

d
Jn,β

)
̸= 0,

then the spectral radius ρ(M−1N) < 1 provides a sufficient condition for convergence. Under these
conditions, choosing Rσ = σ2

coop/σ
2
comp as

R∗
σ ≥

max
i

∑
d

π̃d
In

min
i

∑
d

wd
In

. (3)

guarantees convergence of the splitting scheme.

In Appendix B we provide a proof of this result, which follows from a generalized Rayleigh quotient
analysis and the Gerschgorin circle theorem (Gerschgorin, 1931). In practice, Rσ may be either
selected adaptively following equation 3, or it may be treated as a hyperparameter to be fixed to a
sufficiently large value before training.

With minor modification the Successive Over-Relaxation (SOR) method Young (1954) may be
adopted to further accelerate solution. At iteration k + 1, the update rule is modified via

c(k+1) = (1− ω)c(k) + ωM−1
(
Nc(k) + b

)
,

where ω ∈ (0, 2) a tunable parameter that recovers Theorem 1 for ω = 1.

4 NUMERICAL EXPERIMENTS

In our experiments, we first present a pedagogical regression task to illustrate how the hierarchical
basis enhances localization across scales. We then benchmark GPU scalability, demonstrating
efficient implementation of embarrassingly parallel weighted least squares solves, as well as less

5
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obvious parallelism via JAX’s vmap. Next, we assess the tightness and practical impact of the bound
in Theorem 1, along with an ablation study showing robustness to data dimensionality. Finally, we
include a scientific machine learning example in which incorporating cooperative effects yields an
order-of-magnitude improvement when solving a numerically stiff partial differential equation.

Details of training data, hyperparameters, architecture, and a link to reproducible code are provided
in Appendix D.

4.1 ILLUSTRATIVE 1D REGRESSION EXAMPLE

In Figure 2, we regress the function y(x) = exp
[
− 1

2

(
x−0.5
0.05

)2]
on the unit interval. For this problem,

we observe that the hierarchical experts allow for an unsupervised concentration of resolution around
the relevant feature of the problem. While several works have constructed multistage function approx-
imators by hand (see e.g. Wang and Lai (2024)), this example highlights how hierarchy, cooperative
gating, and optimal EM-updates combine to provide highly accurate function approximation.
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Figure 2: Regression of a Gaussian bump, highlighting unsupervised expert localization, specializa-
tion, hierarchical approximation and improved accuracy across levels. Top: Gating functions localize
on bump, Middle: Upon localizing gates, experts provide refined approximation, Bottom: Experts
deeper in hierarchy can specialize and provide orders of magnitude improved accuracy.

4.2 STRONG GPU SCALING OF BLENDED LEAST-SQUARES SOLVE

We consider a 64-dimensional regression problem using Nc coarse and Nf fine experts, benchmarking
acceleration across 1, 2, and 4 GPUs relative to a single-GPU baseline. Figure 3 highlights two forms
of GPU-parallelism exposed by our scheme. First, the M-step splitting decouples the global least-
squares problem into many small, embarrassingly-parallel solves, yielding strong scaling. Second,
the nested hierarchy exposes expert-level decoupling across levels, which JAX’s vmap efficiently
parallelizes. Appendix A details the mathematical structure behind this decoupling. Speedup is
measured against a naive LU-based single-GPU solve of the monolithic system. As expected, the
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split formulation achieves near-ideal scaling: 1.97× and 3.79× with 2 and 4 GPUs, respectively.
When vmap is activated, we observe up to 30× speedup; this improvement is directly attributable to
the combination of splitting and hierarchy which allows a complete utilization of GPUs.
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Total Model Partitions (Nc ×Nf = 4×Nf )
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Figure 3: Strong scaling for an iteration of the split linear solver. e Left. Distributed splitting with
no intra-GPU parallelism achieves near ideal speedup. Right. JAX’s vmap exploits intra-GPU
parallelism exposed by splitting and model hierarchy.

4.3 TIGHTNESS OF BOUND IN THEOREM 1 AND PRACTICAL IMPLICATIONS

The fundamental assumption of the method is that Rσ may be chosen small enough to incorporate
cooperative effects but large enough to guarantee convergence of the splitting. The bound for R∗

σ in
Theorem 1 makes several assumptions, raising the question of whether it is tight enough to provide
practical significance. 1. The experts are assumed linearly independent, which is particularly unlikely
at initialization (see e.g. Cyr et al. (2020) for discussion of degenerate rank at initialization time), 2.
Expert posterior collapse may lead to an explosion in R∗

σ as wid → 0 (See discussion in Appendix
B), and 3. the derived using Gerschgorin is too pessimistic to provide a tight and predictive estimate.
We design an experiment to explore two hypotheses: 1. There exists an experimentally calibrated
constant C such that choosing Rσ = C R∗

σ gives an effective threshold for guaranteeing convergence;
and 2. at the conclusion of training the experts are linearly independent so that R∗ is tight.

To test, we construct an artificial scenario in which we generate several different training runs
corresponding to a range of Rσ values spanning 1 to 1010. Define Nsplit as the number of iterations
for the splitting scheme to converge to a given tolerance. At each epoch, we perform an ablation
study fixing the matrices A and B and sweeping over different values of σcoop and σcomp to identify
the dependence of Nsplit on alternate weightings of M and N . This provides a realistic range of
possible weightings which can illustrate whether the bound in Theorem 1 is tight. We arbitrarily
impose a maximum iteration count of 2000 as an indicator of divergence.

Figure 4 illustrates the results of this study. By plotting Nsplit as a function of Rσ/R
∗
σ, we obtain

a scatter plot with a clear delineation consistent with selecting C = 1e4. Realistically C may be
problem dependent, but this suggest a practical strategy where C may be gradually increased for a
given problem until it is sufficiently large. Interestingly however, when plotting a range of values
at the end of training we observe that the transition to convergence occurs at the theory-predicted
C = 1, suggesting that the bound is tight at the conclusion of training.

4.4 INSENSITIVITY OF SPLITTING SCHEME TO PROBLEM DIMENSION

We consider a regression problem on the d-dimensional unit hypercube, regressing a multivariate
Gaussian problem with mean at the center of the cube and standard deviation 1

10 . Similar to Section
4.1, this provides a test whether the gating function can localize on a simple feature in high-dimensions,

7
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Figure 4: Ablation study exploring the tightness and practical implications of Theorem 1. Left. A
scatter plot of the number of splitting iterations to convergence as a function of Rσ/R

2
σ illustrates a

sharp transition at Rσ/R
2
σ = 104. Right. At the conclusion of training, we see that the predicted

bound Rσ = R∗
σ denoted by a vertical dashed line clearly indicates the threshold of stability,

suggesting that the assumptions of Theorem 1 are valid.

and indicating whether the split cooperative/competitive scheme may realistically be deployed on
high-dimensional problems.
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Figure 5: Ablation study illustrating insensitivity of convergence for splitting scheme to problem
dimension. Radius of blue circles denotes the frequency of convergence for a given dimension for
both coarse (Left) and fine (Right) levels of hierarchy. Performance is independent of dimension,
illustrating suitability for high-dimensional machine learning tasks.

4.5 PERFORMANCE ON A PHYSICS-INFORMED NEURAL NETWORK

Physics-informed neural networks (PINNs) offer a simple case where neural networks provide
candidate solutions that minimize a partial differential equation (PDE) residual Lagaris et al. (1998);
Raissi et al. (2019). Many works have established pathologies in the training of PINNs Wang et al.
(2021); Krishnapriyan et al. (2021); Fuks and Tchelepi (2020). While there are multiple challenges,
one is that solutions to PDEs have strict regularity requirements on continuity, which many have
shown may be avoided by using more advanced PDE discretizations Yu et al. (2018); Patel et al.
(2022). We show in Figure 6 that an application of a cooperative expert to the original ”vanilla”
scheme is sufficient to achieve results without modification to the original scheme and only via
choice of architecture/optimizer. We consider as a benchmark the singularly perturbed advection-
diffusion equation, which in the limit as transport becomes advection-dominated, exhibits many sharp

8
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gradients that are challenging even for mature PDE-solution techniques Roos (2008). This regularity
is preserved by cooperative experts, but competitive experts are unable to resolve it. This problem
requires a non-trivial extension of the framework to a multi-objective loss (See Appendix C) that
provides a concrete example of how the framework may be extended to a broader class of problems.

Figure 6: Extension to multi-objective loss: Physics-informed neural networks (PINNs). Top. In
the advection-diffusion problem, High-Péclet cases yield steep gradients and pathological behavior
while requiring continuity. Compared to the analytic solution (Top-left), standard PINNs exhibit large
errors at steep gradients (Top-right), which are mitigated by the cooperative scheme (Bottom-left).
Competitive experts improve training stability but yield solutions with 10× larger error (Bottom-
right). Bottom. An ablation over Péclet numbers in 1D shows the cooperative scheme consistently
maintains > 10× lower error as the problem becomes more singular. Error bars indicate min/max
error across five random seeds.

5 CONCLUSION AND FUTURE WORK

We introduced a novel splitting scheme for cooperative/competitive hierarchical mixture-of-experts
models and provided analytical criteria guaranteeing robust performance. On simple tasks, the
method exposes new forms of GPU parallelism, yielding effective results for both regression and
multi-objective optimization, with performance largely insensitive to input dimension. While scaling
this scheme to large transformer-based architectures remains a substantial engineering challenge, the
present work establishes a clear proof of concept and a promising foundation for future development.
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A DETAILS OF ALGORITHM AND DISTINCTION FROM TRASK ET AL. 2022

For specificity, we provide here the individual steps of a two-level scheme, illustrating the
operations performed in a single V-cycle in Figure 7. We define operations consisting of
OPT , Restrict, LSS and Prolongate appearing in the figure. For further derivation, we
direct the interested reader to Trask et al. (2022), and provide a Github for a scalable
GPU implementation at https://anonymous.4open.science/r/coopcompsplit_
neurips2025-3F27/readme.md.

Figure 7: An illustration of the hierarchical training for a simple two level scheme. The key
contribution of this work is the introduction of the cooperative/competitive splitting which allows
expensive least square solves (LSS) to be distributed in an embarrassingly parallel manner and
allowing gradient updates (OPT) to be performed.

Restrict/Prolongate blocks: In the EM algorithm we follow Trask et al. (2022) where the standard
evidence lower bound derivation of expectation maximization yields closed form expressions for the
posterior distribution of the gating function conditioned on the data. For coarse and fine scales, we
obtain the expressions

wid := p(Z1 = i|Y1 = yd) =
πi(xd, θ)N (yd;µi(xd), σ

2
i I)∑

I πI(xd)N (yd;µI(xd), σ2
II)

, (4)

wijd := p(Z1 = i, Z2 = j|Y2 = yd) =
πi(xd, θ)πij(x, θi)N (yd;µij(xd), σ

2
ijI)∑

I,J πI(xd)πIJ(x, θI)N (yd;µIJ(xd), σ2
IJI)

, (5)

We note that the coarse posterior wid can be evaluated independently of the fine level, and then
sequentially used to evaluate the fine level posterior wijd. Following the nomenclature in multigrid
methods, we refer to this evaluation of wijd from wid as a restriction. Then, to propagate information
from the child to parent the following marginalization formula is used

ŵid := p(Z1 = i|Y2 = yd) =

∑
j πi(xd)πij(x, θi)N (yd;µij(xd), σ

2
ijI)∑

I,j πI(xd)πIj(x, θI)N (yd;µIj(xd), σ2
IjI)

. (6)

Again, motivated multigrid nomenclature, we refer to this marginalization as prolongation.

LSS block. At each scale a posterior weighted least square solve prescribes optimal values for final
linear layers of expert models. In Trask et al. (2022) these least squares problems are defined as:

Nd∑
d=1

widΦα(xd)Φβ(xd)ci,β =

Nd∑
d=1

widΦα(xd)yd, (7)

Nd∑
d=1

wijdΦα(xd)Φβ(xd)cij,β =

Nd∑
d=1

wijdΦα(xd)yd. (8)

In the current work, we replace both with the hierarchical cooperative/competitive loss defined in LS.
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Coop/comp split block. In the literature, the incorporation of optimal layers requires choosing
between a dense solve in the LSS block for a purely cooperative formulation Lee et al. (2021), or a
parallelizable but purely competitive loss Trask et al. (2022). Our primary contribution is a splitting
scheme outlined in equation I which preserves the benefits of both. Analysis in Theorem 1 provides
guaranteed conditions for convergence of this scheme, and experimental results in Figure 3 show that
it exposes a source of GPU parallelism

OPT block. A standard gradient descent update is finally applied at each layer of the hierarchy. As
explained in Trask et al. (2022), the loss may be derived rigorously from the evidence lower bound
and results in a cross-entropy loss penalizing mismatch between the posterior distribution and gating
functions. In light of policy gradient methods, one may interpret the posterior as a reward and the
gating network as a policy. The updates are thus localized to each level, exposing the source of
parallelism that JAX’s vmap is able to exploit (See Figure 3).

Lc(θ;D) =
∑
i,d

wid log πi(xd; θ), (9)

Lf (θi;D) =
∑
i,j,d

wijd log (πi(xd; θ)πij(xd; θi)) , (10)

Lf2c(θ;D) =
∑
i,d

ŵid log πi(xd; θ). (11)

A key equation from Trask et al. (2022) demonstrates that the total loss decouples across scales:

Lf (θi;D) = Lf2c(θ;D) +
∑
i,j,d

wijd log (πij(xd; θi)) . (12)

This decoupling allows the scales to separate so that training at the fine level does not impede progress
from the coarse. A useful interpretation of this is that the the prolongated loss at the coarse scale may
be viewed as a correction to the fine scale.

B PROOF OF THEOREM 1

We first summarize why ρ(M−1N) < 1 is a sufficient condition for convergence.

With the scheme given by
Mck+1 = Nck + b, (13)

we may rewrite to obtain

ck+1 = ck +M−1 (N −M) ck +M−1b. (14)

We now prove that ρ(M−1N) < 1. For simplicity, we adopt the notation

N = nP⊺AP (15)
M = mP⊺BP (16)

where m = σ−2
comp, n = −σ−2

coop and m,n > 0 denote the variance scaling, P ∈
RNwidth×Nexperts×Ndata denotes the output of the ith output neuron of the jth expert model evalu-
ated at the kth node, and A and B denote a scaling by either the gating or posterior distribution,
respectively.

Aij =
∑
d

πidπjd (17)

Bij =
∑
d

widδij . (18)

After an appropriate reshaping, it is clear that equation 15 are matrices associated with weighted least
squares problems, with A and B serving as weights, and are symmetric positive definite provided the
weights are non-degenerate.
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Rewriting the desired spectral radius inequality in terms of equation 15 and lower bounding the
spectral radius by the maximal generalized Rayleigh quotient, we obtain

σ2
coop

σ2
comp

> max
x

x⊺P⊺APx

x⊺P⊺BPx
, (19)

or after simplifying by defining y = Px

σ2
coop

σ2
comp

> max
y

y⊺Ay

y⊺By
. (20)

The numerator and denominator can be treated in worst case by bounding by the maximum and
minimum eigenvalues, respectively

σ2
coop

σ2
comp

≥ (maxλA) y
⊺y

(minλB) y⊺y
=

maxλA

minλB
. (21)

As both matrices are positive definite, we can bound using standard element-wise expressions
following the Gerschgorin circle theorem Gerschgorin (1931).

maxλA ≥ max
i

∑
j

|Aij | (22)

minλB ≤ min
i

|Bii| −
∑
j ̸=i

|Bij |

 (23)

σ2
coop

σ2
comp

≥
max

i

∑
j

|Aij |

min
i

(
|Bii| −

∑
j ̸=i

|Bij |
) . (24)

By direct calculation we compute ∑
j

|Aij | =
∑
d,j

πidπjd (25)

=
∑
d

πid (26)

and

|Bii| −
∑
j ̸=i

|Bij | =
∑
d

widδij −
∑
d,j ̸=i

widδij (27)

=
∑
d

wid (28)

Finally providing our desired bound

σ2
coop

σ2
comp

≥
max

i

∑
d

πid

min
i

∑
d

wid
. (29)

Validity of assumptions, anticipated consequences, and practical use. In practice, there are several
assumptions that may not be met. The expert models may not be linearly independent (particularly at
initialization time); we explore this result experimentally in the Section 4.3. Secondly, in the event
of expert posterior collapse (i.e. there exists an i where wid = 0 for all d) the estimate could give a
division by zero. In exact precision, wid is never zero, as it is the posterior distribution of a Gaussian
mixture and Gaussians have non-compact support. In practice, in the extreme tails of the Gaussian
contributions the denominator may be vanishingly small, requiring a small stabilizing background
white noise in the mixture model to avoid division by zero in machine precision.
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C DERIVATIONS FOR PINN APPLICATION

For a general PDE of the form

L[u](x, t) = f(x, t), x ∈ Ω

B[u](x, t) = g(x, t), x ∈ ∂Ω

u(x, 0) = u0(x), t = 0

where L is any derivative operator, we can modify equation equation 1 with the residue in place of the
true prediction and add the terms for boundary/initial conditions to the mean-field approximation. For
simplicity, we only show the boundary condition terms, as the initial condition terms are analogous

p(Ei1 = u|Z1 = i1) =
1

Qi1

N (f ;L[µi1 ], σ
2
r1)N (f ;L[ŷ1], σ2

r2)N (γg; γµi1 , σ
2
b1)N (γg; γŷ1, σ

2
b2)

where γ is an indicator function, i.e.

γ(x) =

{
1 if x ∈ ∂Ω
0 otherwise

The observed data log-likelihood becomes

logL =

Nd∑
d=1

log

[∑
In

π̃d
In
N (fd;L[µIn ]

d, σ2
r1)N (fd;L[ŷn]d, σ2

r2)N (γdgd; γdµd
In
, σ2

b1)N (γdgd; γdŷdn, σ
2
b2)

]
from which a new ELBO is given in a similar manner to the regression problem. In the E-step, we
compute the posterior distribution, i.e.,

wIn(x
d) =

π̃InN (fd;L[µIn ](x
d), σ2

r1)N (γgd; γµd
In
, σ2

b1
)∑

Jn
π̃JnN (fd;L[µJn ](x

d), σ2
r1)N (γgd; γµd

In
, σ2

b1
)
.

If L is a linear operator, taking the derivative of the ELBO with respect to the expert coefficients
yields a similar weighted least-squares problem to equation equation LS, where the matrix on the
left-hand side∑
d

[
wd

In
δIn Jn

σ2
r1

L[H]dIn,αL[H]dJn,β +
L[π̃InHIn,α]

dL[π̃JnHJn,β ]
d

σ2
r2

+ γd

(
wd

In
δIn Jn

σ2
b1

+
π̃d

In
π̃d

Jn

σ2
b2

)
Hd

In,αH
d
Jn,β

]
and the right-hand side vector∑

d

[(
wd

In
L[H]dIn,α
σ2
r1

+
L[π̃InHIn,α]

d

σ2
r2

)
fd + γd

(
wd

In

σ2
b1

+
π̃d

In

σ2
b2

)
gdHd

In,α

]
If L is nonlinear, we will need to set up a Newton solver. HIn and π̃In are optimized with a gradient
descent loss

LGD = −ℓ(θ)

similar to the regression problem.

D EXPERIMENTAL DETAILS AND HYPERPARAMETERS

Simulations were conducted on an Nvidia A100 cluster, an Nvidia H200 cluster, as well initial
experiments prototyped on a Macbook Air M2 16GB/256GB. Scripts for experiments will be
provided on the anonymized github with associated seeds.

D.1 HYPERPARAMETERS USED FOR DATA COLLECTION

Remark. For the PINN case the additional terms present in the multiobjective loss require special
care. To accelerate hyperparameter tuning for the ablation study of Peclet number the splitting scheme
was turned off and the SOR scheme turned on with small ω for a few cases to ensure convergence.
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Table 1: Key hyperparameters used in section 4.1.

Component Parameter Value
Problem Dataset 1D Gaussian peak, µ = 0.5, σ = 0.05

Input dimension 1

Gating Network Hidden units / Depth
(excluding input layer) 30 / 0

Activation tanh
Hierarchical MoE Partitions (Nc, Nf ) 3, 2

Basis size / Hidden units / Depth 30 / 30 / 1
Training Outer iterations 50,000 (staged training)

Learning rates (coarse/fine) 1e-3 / 1e-3
σcomp / σcoop 1.0 / 1e6

Iterative Solver Type Iterative splitting scheme
Tolerance / Regularization 1e-12 / 1e-4
Max iterations 10,000

Precision Data and parameters float64

Table 2: Key hyperparameters used for strong scaling study (section 4.2).

Component Parameter Value
Problem Dataset Gaussian peak, µ = 0.5, σ = 0.1

Input dimension 64

Gating Network Hidden units / Depth
(excluding input layer) 30 / 0

Activation tanh
Hierarchical MoE Partitions sweep (Nc, Nf ) (4, 2), (4, 4), (4, 8), (4, 16), (4, 32)

Basis size / Hidden units / Depth 30 / 20 / 1
Training Benchmark iterations 5000 (solver timing only)

Learning rates (coarse/fine) 1e-3 / 1e-3
σcomp / σcoop 1.0 / 1e5

Iterative Solver Type Direct / Iterative splitting scheme (with and
without vmap)

Tolerance / Regularization 1e-12 / 1e-4
Max iterations 5000

Precision Data and parameters float32

Table 3: Key hyperparameters used in section 4.3.

Component Parameter Value
Problem Dataset 1D Gaussian peak, µ = 0.5, σ = 0.05

Input dimension 1

Gating Network Hidden units / Depth
(excluding input layer) 50 / 0

Activation tanh
Hierarchical MoE Partitions (Nc, Nf ) 4, 2

Basis size / Hidden units / Depth 20 / 20 / 1
Training Outer iterations 5,000

Learning rates (coarse/fine) 1e-3 / 1e-3
σcomp / σcoop 1.0 / 1e5

Iterative Solver Type Iterative splitting scheme
Tolerance / Regularization 1e-12 / 1e-4
Max iterations 2,000
Recorded iterations counts performed for σcoop given in legend

Precision Data and parameters float64
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Table 4: Key hyperparameters used for linear solve iteration scaling with problem dimension (sec-
tion 4.4).

Component Parameter Value
Problem Dataset 1D Gaussian peak, µ = 0.5, σ = 0.1

Input dimension 1, 2, 4, 8, 16, 32, 64, 128

Gating Network Hidden units / Depth
(excluding input layer) 100 / 0

Activation tanh
Hierarchical MoE Coarse / Fine partitions (Nc, Nf ) 4 / 2

Basis size / Hidden units / Depth 10 / 10 / 1
Training Outer iterations 100,000

Accuracy threshold 1% relative error
Learning rates (coarse/fine) 1e-3 / 1e-3
σcomp / σcoop 1.0 / 1e5

Iterative Solver Type Iterative splitting scheme
Tolerance / Regularization 1e-12 / 1e-4
Max iterations 100,000

Precision Data and parameters float64

Table 5: Key hyperparameters used for convection-diffusion problem (section 4.5).

Component Parameter Value
Problem Dataset 100x100 grid points

Gating Network Hidden units / Depth
(excluding input layer) 40/0 or 20/0

Activation tanh
Hierarchical MoE Coarse / Fine partitions (Nc, Nf ) 4 / 2

Basis size / Hidden units / Depth MoEs: 10 / 10 / 2
PINNs: 40/40/3

Training Outer iterations MoEs: 50,000
PINNs: 100,000

Learning rate 1e-4
σcomp / σcoop 1e-3 / 1e-3

Precision Data and parameters float64

Table 6: Key hyperparameters used for Peclet number ablation study (section 4.5).

Component Parameter Value
Problem Dataset 500 points on [0,1]

Gating Network Hidden units / Depth
(excluding input layer) 40/1

Activation tanh
Hierarchical MoE Nc (1 level) 4

Basis size / Hidden units / Depth MoEs: 10 / 10 / 0
PINNs: 40/30/4

Training Outer iterations MoEs: 30,000
PINNs: 100,000

Learning rate 1e-4
σcomp / σcoop 1e5 / 1e-3

Precision Data and parameters float64
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