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ABSTRACT

In multi-agent reinforcement learning, the behaviors that agents learn in a sin-
gle Markov Game (MG) are typically confined to the given agent number. Ev-
ery single MG induced by varying population sizes may possess distinct optimal
joint strategies and game-specific knowledge, which are modeled independently
in modern multi-agent algorithms. In this work, we focus on creating agents that
generalize across population-varying MGs. Instead of learning a unimodal policy,
each agent learns a policy set that is formed by effective strategies across a vari-
ety of games. We propose Meta Representations for Agents (MRA) that explicitly
models the game-common and game-specific strategic knowledge. By represent-
ing the policy sets with multi-modal latent policies, the common strategic knowl-
edge and diverse strategic modes are discovered with an iterative optimization
procedure. We prove that as an approximation to a constrained mutual informa-
tion maximization objective, the learned policies can reach Nash Equilibrium in
every evaluation MG under the assumption of Lipschitz game on a sufficiently
large latent space. When deploying it at practical latent models with limited size,
fast adaptation can be achieved by leveraging the first-order gradient information.
Extensive experiments show the effectiveness of MRA on both training perfor-
mance and generalization ability in hard and unseen games.

1 INTRODUCTION

Behaviors of agents learned in a single Markov Game (MG) highly depend on the environmental set-
tings, especially the number of agents, i.e., population size Suarez et al. (2019); Long* et al. (2020).
Many multi-agent reinforcement learning (MARL) algorithms Sukhbaatar et al. (2016); Foerster
et al. (2016); Lowe et al. (2017) are developed in games with fixed population sizes. However, the
algorithms may suffer from generalization issues, i.e., the policies learned in a single MG are brittle
to the change of game setting Suarez et al. (2019). Recent works have experimentally shown the
benefit of knowledge transfer between MGs with different population sizes Agarwal et al. (2019);
Long* et al. (2020), which is required to perform between successive games. Unfortunately, the
resulting agents are still confined to particular training games, with less ability for extrapolation.

In this work, we are concerned with learning multi-agent policies that generalize across Markov
Games constructed by varying the population from the same underlying environment. The created
agents are expected to behave well in both training and novel (or unseen) evaluation MGs. However,
optimizing one unimodal policy even for maximizing the performance of the entire training set is
still challenging Teh et al. (2017). Effective policies in population-varying games, e.g., the ones that
achieve Nash Equilibrium in each game, may behave dramatically different due to the game-specific
strategic knowledge of themselves. Such discrepancy will hamper the performance in individual
games Brunskill & Li (2013). In this regard, it is desirable to learn sets of policies that contain
the optimal strategies for each training MG, while transferring knowledge to unseen MGs is still
challenging nevertheless.
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To cope with this challenge, we explicitly model the MG-specific and MG-common strategic knowl-
edge. In unseen games, although the optimal game-specific knowledge that leads to optimal policies
is unobtainable, the common strategic knowledge and various strategic modes can still be captured
during training by imposing knowledge variations, i.e., the suboptimal game-specific knowledge.
By learning to make the smartest decisions under multiple imagined variations instead of only fit-
ting the best response, the strategic knowledge is learned in an unsupervised manner and agents can
effectively generalize to novel MGs.

Since games induced by varying populations possess distinct optimal policy behaviors characterized
by different (egocentric) strategic relationships, we model the game-specific knowledge as such rela-
tionship. For example, the optimal game-specific knowledge for PacMan agents in a ghost-dominant
game is to focus on ghost agents for survival. However, this leads to PacMan agents that are unaware
of eating more food if evaluated in other games, e.g., a PacMan-dominant game. By additionally
impelling the PacMan to pay more attention to other competing PacMan, although the resulting pol-
icy may be suboptimal in the training ghost-dominant game, the common knowledge can be learned,
which involves eluding ghosts while moving towards food that is with less competition.

We propose Meta Representations for Agents (MRA) to discover the underlying strategic structures
in the games. By meta-representing the policy sets with multi-modal latent policies, the game-
common strategic knowledge and diverse policy modes are captured with an iterative optimization
procedure. We prove that as an approximation to a constrained mutual information maximization
objective, the latent policies can reach Nash Equilibrium in every evaluation MG under Lipschitz
game assumption and on a large latent space. When with practical limited-size latent models, fast
adaptation is achieved by leveraging first-order gradient information. We further empirically validate
the benefits of MRA, which is capable of boosting training performance and extrapolating over a
variety of unseen MGs.

2 PRELIMINARIES

Game: An N-agent Markov Game is defined by state set S, action sets {A1, . . . ,AN}, and ob-
servation sets {O1, . . . ,ON}. For every agent i, oi ∈ Oi is an observation of the global state
s ∈ S . State transition and per-agent reward function are defined as P(S,A1, . . . ,AN ,S ′) and
Ri : S × Ai � [0, 1], respectively. The joint strategy is denoted as π = (π1, . . . , πN ) = (πi,π-i),
where πi is the strategy of agent i and π-i is the joint strategy excluding it.

In this work, we consider role-symmetric MGs Suarez et al. (2019); Muller et al. (2020), where
homogeneous agents are with the same reward function and action space. The type number of
homogeneous agents is denoted as h, e.g., h = 2 for Pac-Man and ghosts in any Pac-Man game.

Relational Representation is an opponent modeling framework to capture the strategic relationship
between agents and output embedding e for further policy or value function learning Long* et al.
(2020); Agarwal et al. (2019); Iqbal & Sha (2018). Consider the observation oi of agent i with
entities oi =

[
ois, o

i
1, . . . , o

i
j , . . . , o

i
N

]
, where ois is agent i’s self properties (e.g., its speed), oij

is agent i’s observation on agent j (e.g., distance from agent j), and the observed environment
information (e.g., landmark locations) is concatenated to these entities. Then with self-attention
Vaswani et al. (2017) generating the pair-wise relation gi,j , i.e., the j-th entity of agent i’s egocentric
relational graph gi, the representation embedding ei for agent i is formulated as:

ei =
∑
j ̸=i

gi,jV (oij),where gi,j =
exp(Q(ois)

⊤K(oij))∑
j ̸=i exp(Q(ois)⊤K(oij))

. (1)

Here, V (·), Q(·) and K(·) denote linear transformations. The observation embedding with an arbi-
trary number of agents can thus be represented with a fixed length.

Nash Equilibrium: A core concept in game theory is Nash Equilibrium (NE). When every agent in
gamem acts according to the joint strategy π at state s, the value vi,mπ (s) of agent i is the expectation
of i’s γ-discounted cumulative reward:

vi,mπ (s) = E
a∼π,s0=s
st∼Pm

[∑
t

γtrim(st,at)

]
. (2)
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In this work, the bold symbol is joint over all agents, and variables with superscript i are of agent i.
Denote the value of the best response for agent i as v∗i,m

π-i , which is the best policy of agent i when
π-i is executed, i.e., v∗i,m

π-i = maxπi v
i,m
πi,π-i . Then π reaches NE if ∀i ∈ {1, ..., N}, vi,mπ = v∗i,m

π-i .

A common metric to measure the distance to a Nash Equilibrium is NASHCONV, which represents
how much each player gains by deviating to their best response (unilaterally) in total. And it can be
approximately calculated in small games Johanson et al. (2011); Lanctot et al. (2017). We denote the
NASHCONV of π in game m as Dm(π). Then the joint strategy π reaches NE in m if Dm(π) = 0.

Dm(π) = Dm(πi,π-i) =

∥∥∥∥∥∥∥v∗i,mπ-i − vi,mπ

∥∥∥
s,∞

∥∥∥∥
i,1

(3)

3 LEARNING META REPRESENTATIONS FOR AGENTS

3.1 PROBLEM STATEMENT

In a single stochastic game, achieving Nash Equilibrium gives reasonable solutions and is of great
importance Hu & Wellman (2003); Yang et al. (2018); Pérolat et al. (2017). To enable generaliza-
tion in different MGs, the most straightforward way is to learn a joint strategy set Π that contains
effective joint strategies for every MG, e.g., the ones that achieve NE. Denote the set of all training
MGs as M and the set of evaluation MGs as M′. The goal is then to obtain an optimal discrete
(finite) or continuous (infinite) joint strategy set Π∗ such that:

∀m′ ∈ M′,∃π ∈ Π∗, s.t. Dm′(π) = 0. (4)

For a satisfiable Π, we first need its size |Π| to be sufficiently large to contain at least one effective
strategy for every m′ ∈ M′. Then Π should be improved with respect to the worst-performing m′,
i.e., the game with no effective strategy contained in Π, to achieve low regret Dm′ for all m′. In
other words, Π is updated to include the joint strategy π that minimizes Dm′(π). Formally,

Π∗ = argmin
Π

L(Π), where L(Π) = min
π∼Π

max
m′∈M′

Dm′(π). (5)

However, minimizing L(Π) over the unseen games in M′ is impractical in general. We cope with
such intractability by introducing a heuristic algorithm and showing that the resulting objective is
indeed equivalent to equation 5 and can thus lead to the optimal Π∗ in equation 4.

3.2 RELATIONAL REPRESENTATION WITH LATENT VARIABLE POLICIES

Instead of learning independent policies to form Π, we adopt hierarchical latent variable policies to
represent the multimodality. In this way, the MG-common and MG-specific strategic knowledge can
be explicitly modeled. Specifically, in the relational representation framework, the specific strategic
knowledge for population-varying MGs is captured by the egocentric relational graph g since agents
optimally behave in each game by learning per-game optimal relationship. Besides, agents take
different actions when incorporating different strategic relationships, i.e., multiple policy modes are
obtained with varied g. Therefore, we treat g as a higher-level latent variable that is dynamically gen-
erated by g = ϕ(o, z). Here, z is a lower-level latent sampled from a learned distribution p(z|m;ψ).
Then the common knowledge that how agents optimally behave under different g can be distilled
into the policy parameter θ, which includes the transform V in equation 1 and the successive policy
network parameters. An agent takes action a ∼ π(·|o, g; θ), where g = ϕ(o, z) and z ∼ p(z|m;ψ).

Although the instantiation can be applied to MARL multi-task learning setups, the design of latent
policies by itself does not immediately suggest an algorithm that generalizes to novel MGs. As such,
we present the key ingredient of the Meta Representations for Agents (MRA) algorithm as follows.

3.3 GENERALIZATION BY STRATEGIC KNOWLEDGE DISCOVERY

Our core idea to enable generalization is to discover the underlying strategic structures in the un-
derlying games. Although the effective policies in the evaluation games are never known during
training, agents can still learn the common strategic knowledge and different behavioral modes
solely in the training games in an unsupervised manner with the imposed suboptimal game-specific
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knowledge. In particular for population varying games, the agents are assigned different strategic
relationships, i.e., each agent pays additional attention to some agents while ignoring others. Instead
of learning only one optimal joint policy, training with multiple strategic relationships enables the
unsupervised discovery of behavior modes, some of which offer appreciable returns in evaluation
MGs. Thus, when evaluating in novel games, the desired policy behaviors can be quickly gener-
ated by adaptation. In the extreme case that sufficiently many strategic modes are captured with an
extremely large latent space, the desired policy for evaluation games can be directly found.

Specifically, agents optimally behave in each game m ∈ M with the optimal policy parameter θ∗
and the (per-game) optimal relational graph g∗. By imposing knowledge (or relation) variations
in m, i.e., multiple suboptimal g at a certain observation, agents learn how the best decisions to
accomplish the task are made, i.e., learn θ∗ that achieves the highest average return. With the
discovery of distinct strategic modes, the MG-common knowledge contained in θ∗ is obtained. Thus,
when agents are in the novel MGs m′ ∈ M′, their policies can effectively adapt by learning the
optimal relational graph in m′, or achieve zero-shot transfer (without adaptation) if the latent space
is large. This gives the objective of θi that maximizes the average return of all knowledge variations
and all training MGs:

max
θi

L(θi) = max
θi

E
m∼M,gi

[
vi,m
πi(·|·,gi;θi),π-i

]
(6)

Notably, equation 6 differs from the objective of multi-task learning where the average training
return is maximized by learning the optimal θ∗ and a single optimal relational graph in each game.

In order to perform well in all m′ ∈ M′, the strategic modes captured during training should cover
as many behaviors as possible. This requires both a large latent space size |Z| and diverse actions.
For fixed |Z|, we introduce a diversity-driven objective that encourages high mutual information
between g and a for behavior diversity, as well as between m and g to encourage game-specific
knowledge learning. With high dependence between g and a, distinct variations g can generate
diverse actions a.

max
ψi,ϕi

L(ψi, ϕi) = max
ψi,ϕi

I(gi; ai|oi) + I(m; gi|oi), (7)

where I(g; a|o) = H(a|o) − H(a|o, g) is the mutual information between g and a conditioned on
observation o. With a slight abuse of notation, m denotes the basic information of game m, e.g., the
populations of each role. Iterative optimization of equation 6 and equation 7 is then performed.

3.4 FAST ADAPTATION WITH LIMITED LATENT SPACE SIZE

Despite the diversity-inducing objective, we also need a large latent space |Z|. For Π parameterized
by Θ = {ψ, ϕ, θ}, denote ΠΘ = Π. Specially, achieving zero-shot transfer requires |Z| = |ΠΘ| ≥
|Π∗|. However, if the settings of games in M′ are not restricted, the size |Π∗| is unbounded. For
practical limited-size latent models and unrestricted M′, fast adaptation ability is thus desired.

The generated graph g, together with observations, actions are stored in the replay buffer. Then
various knowledge variations, i.e., (o, g) pair, are sampled to update θ. Compared with only |Z|
variations generated in an on-policy manner, this leads to a much larger size of variations. Then we
use similar techniques from Reptile Nichol et al. (2018) to achieve fast adaptation.

The optimization of θ is now to perform K policy gradient steps on each individual MG, instead
of on the average return (over m) in a joint training way. In game m, the objective for θ in the
k-th mini-batch changes from equation 6 to Lkm(θi) = Egi

[
vi,m
πi(·|·,gi;θi),π-i

]
. Let UKm (θ) denote the

policy parameter after K gradient steps with learning rate β. Then θ is updated by θ � θ + α∆θ,
where α is a hyperparameter and ∆θ = UKm (θ)−θ. By doing so, the first-order gradient information
can be leveraged to update θ towards the instance-specific adapted policy parameter. Specifically,
the expected policy parameter update Ek[∆θ] over mini-batches in game m is

Ek[∆θ]= (K − 1)Ek
[
Lkm(θ)

]
+

(K − 1)(K − 2)β

2
Ej,k

[
∇
(
∇Lkm(θ)∇Ljm(θ)

)]
, (8)

where ∇Lkm(θ) is the gradient at the initial θ. The derivation is in Appendix B. The second term
of the RHS in equation 8 is with direction that increases the inner product between gradients of
different mini-batches j, k. That is, θ is optimized not only to maximize the return under all relation
variations, but also towards the place that gradients of different variations point to the same direction,
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i.e., the place that is easy to optimize from. With this property, when the optimal strategic modes of
evaluation MGs are not discovered during training, θ can still fast adapt to effective policies.

4 ANALYSIS

In this section, we provide a theoretical analysis of MRA. We show how the tractable objective in
equation 6 and equation 7 can be derived out of the primary optimization problem in equation 4.

To begin with, we introduce the Markov state transition operator Pπi,π-i

m in MG m, defined as(
Pπ

i,π-i

m x
)
(s) =

∫
s′∼S

x(s′) E
πi,π-i

[
Pm(ds′|s, ai,a-i)

]
.

Here, x : S � R is an L1 Lebesgue integrable function. The norm of the operator is defined as
∥Λ∥op = sup{∥Λx∥L1(S) : ∥x∥L1(S) ≤ 1}, where ∥·∥L1(S) is the L1-norm over the state space S.

Then we make the assumption of Lipschitz Game.

Assumption 1. (Lipschitz Game). For any Markov Game m ∈ (M∪M′), there exists a Lipschitz
coefficient ιm > 0 such that for all agent in m and s ∈ S:∥∥∥Pπ∗i,π-i

m − Pπ
i,π-i

m

∥∥∥
op

≤ ιm

∥∥∥∥∥∥∥π∗i(a|s)− πi(a|s)
∥∥∥
a,1

∥∥∥∥
s,∞

. (9)

Similar assumptions also appear in many previous works Liu et al. (2021); Zhang et al. (2019). We
note that Assumption 1 is reasonable since the Lipschitz coefficient ιm can be interpreted as the
influence of agents Radanovic et al. (2019); Dimitrakakis et al. (2019), which measures how much
the policy changing of an agent can affect the game environment.

Then we define a distance metric that measures the discrepancy between M and M′ by comparing
and computing the distance to NE in the games of the two sets. Let Nm denote the total number of
agents in game m, and hi,m denote the homogeneous agent set of agent i in m.

Definition 1. For two sets of MGs M and M′, define the distance ς between M and M′ by

ς = max
m′∈M′

i∈{1,...,Nm′}

min
m∈M,i′∈hi,m

π∈{π|Dm(π)=0}
π′∈{π′|Dm′ (π′)=0}

Dm′(πi
′
,π′-i). (10)

We also define the ϵ-range joint strategy set Π̂ to guide the policy learning of agents during training.

Definition 2. For the training MG set M and ϵ > 0, the ϵ-range joint strategy set Π̂ is defined as:

Π̂ =
⋃

m∈M

Π̂m, where Π̂m = {π|Dm(π) ≤ ϵ}. (11)

By bounding ϵ that characterizes a large set Π̂, equation 5 can be shown to be equivalent to a con-
strained mutual information maximization objective. Formally, we provide the following theorem.
The variables and parameters are per agent, e.g., πθ is joint over πθi . The superscript is omitted for
clarity.

Theorem 1. If |ΠΘ| ≥ |Π̂| and ϵ satisfies ϵ ≥ ς − minιm,ιm′
ςγ(ιm′−ιm)
γιm′+1−γ , then with the optimal

parameters Θ∗ = {ψ∗, ϕ∗, θ∗} given by

ψ∗, ϕ∗ = argmax
ψ,ϕ

I(g; a|o) + I(m; g|o) s.t. πθ∗ ∈ Π̂, (12)

for every evaluation Markov Game m′ ∈ M′, there exists a joint strategy π ∈ ΠΘ∗ that reaches
Nash Equilibrium (i.e., ΠΘ∗ = Π∗ satisfies equation 4).

Theorem 1 suggests a general paradigm of diversity-driven learning that is effective when Π̂ satisfies
certain properties. In practical MGs, however, the unknown Lipschitz coefficient and the hardness
of calculating ς pose challenges to compute the satisfying ϵ. An approximation to the optimal
parameters in equation 12 is to perform iterative optimization following equation 6 and equation 7.
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With fixed ϕ and ψ, the objective of θ in equation 6 (greedily) maximizes the expected value over
variations in order to minimize the distances to Nash of different policy modes. In other words, the
distance Dm(π) of the corresponding joint strategies is minimized to satisfy Dm(π) ≤ ϵ in the long
run. Then the optimization of ϕ and ψ follows to maximize I(g; a|o) + I(m; g|o). By iteratively
improving the mutual information and updating θ towards the ϵ-range Π̂, the obtained solutions are
close to the optimal parameters in equation 12. Besides, the condition |ΠΘ| ≥ |Π̂| in the theorem
supports the intuition that a sufficiently large policy set (or latent space) is required for zero-shot
transfer. However, as an approximation to the theorem, MRA also has some limitations, which we
discuss and provide potential improvements in Section 7.

5 PRACTICAL ALGORITHM

We have shown that the iterative optimization of MRA can arise from a theoretically justified objec-
tive. In this section, we present practical implementations of the two optimization procedures. We
provide the pseudocode in Appendix D. Implementation details can be found in Appendix E.

5.1 MAXIMIZATION OF EXPECTED VALUE OVER VARIATIONS

The policy parameter θi in objective equation 6 is optimized by introducing a centralized critic
Qζi for each agent i Lowe et al. (2017). Denote the target network with delayed policy and critic
parameters as θ̄, ζ̄, and replay buffer as D. The parameterized critic Qζi is optimized to minimize:

L(ζi) = E
(o,a,o′,r)∼D

[(
Qζi(o,a)− yi

)2
]
,where yi = ri + γ E

a′∼πθ̄

[
Qζ̄i(o

′,a′)
]

(13)

Then the gradient of the policy parameter θi of agent i during training is given by:

∇θiL(π) = E
(o,g)∼D

a∼π

[
∇θi log πθi(a

i|oi, gi)Qζi(o,a)
]
. (14)

When evaluation in a novel MG, θi and ϕi is fine-tuned to greedily maximize agents’ individual
rewards. Denote ωi = {θi, ϕi}. Then the gradient of ωi is given by:

∇ωiL(π) = E
o∼D,a∼π

[
∇ωi log πθi(a

i|oi, ϕi(oi, zi))Qζi(o,a)
]
. (15)

5.2 MUTUAL INFORMATION MAXIMIZATION

In an iteration, several update steps of actor and critic are followed by mutual information
I(gi; ai|oi) + I(m; gi|oi) maximization. According to the definition of mutual information and
the non-negativeness of KL divergence, the following bound holds. And ϕ is optimized to optimize
equation 16 by gradient ascent. All the derivations below are provided in Appendix C.

I(gi; ai|oi)≥ E
oi∼D,gi

ai∼π
θi

(·|oi,gi)

[
log

πθ̄i(a
i|oi, gi)

p(ai|oi)

]
,where p(ai|oi) = E

z′∼p(·|m)

g′=ϕi(oi,z′)

[
πθ̄(a

i|oi, g′)
]
. (16)

For |M| training games, the I(m; gi|oi) term can be simplified as:

I(m; gi|oi) = Em,oi∼D
[
log p(m|oi, gi)

]
+ log |M| , (17)

To calculate the RHS of equation 17, we introduce an auxiliary inference network ξ. Denote the
game’s one-hot index as x. Then the auxiliary network outputs the prediction x̂, i.e., p(x̂|o, g; ξ). By
minimizing the cross-entropy loss in equation 18, ψ and ξ are simultaneously optimized. Gumbel-
softmax trick Jang et al. (2016) is used for discrete z.

min
ψ,ξ

Ez∼p(·|m;ψ)

oi∼D

[
−x log

(
p
(
x̂|oi, ϕi(oi, z); ξ

))]
. (18)

6 EXPERIMENTS

Experiments are conducted in three environments which cover both competitive and mixed games
and are built based on the particle-world framework Lowe et al. (2017). Models are trained with 4
random seeds. Details of environment settings and hyperparameters are listed in Appendix E.
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6.1 BENEFITS OF META REPRESENTATIONS

We first conduct experiments to show the benefits of the proposed meta-representations. We aim
to answer the question that if the MG-common strategic knowledge in various training MGs can be
extracted by MRA, and if it can benefit individual training games.

In Fig. 1, we compare MRA and the following methods: (1) the MADDPG algorithm Lowe et al.
(2017) with relational representations (MADDPG); (2) the Reptile algorithm Nichol et al. (2018)
(Reptile); (3) baseline with the same network architectures as MRA, but agents learn their policies
only in a single MG (baseline).

For MRA and Reptile, the size of training MG set |M| for the three environments is 4, 4, 3, respec-
tively. Further specifications are in Appendix E. We note that the actual executed episodes of MRA
in one MG are |M| times smaller than that for baseline and MADDPG, which reveals the efficiency
of the proposed meta-representation. Although the Pacman-like world is not a zero-sum game, we
still provide cross-comparison results in Appendix E for completeness.

(a) Treasure collection. (b) Resource occupying. (c) Pacman-like world: Left: Pac-Man. Right: Ghost.

Figure 1: Benefits of meta-representations in the three environments. (a): 6 collectors and 20
treasures; (b): 12 agents with 6 resources; (c): 8 Pac-Man, 4 ghosts and 20 food dots.

Figure 2: Multi-MG training curves in resource occupying environment. Total number of training
MGs are 4, with population 3, 6, 12, 24.

6.2 PERFORMANCE COMPARISON IN MULTIPLE GAMES

In this part, we compare the performance of MRA with multi-task and meta-learning methods,
including EPC Long* et al. (2020) and RL2 Duan et al. (2016).

The curriculum learning EPC is implemented by initializing 3 parallel sets of agents and mix-and-
match the top 2 sets to the successive MG. For RL2, each trial contains a cycle of all the |M| MGs.
We also compare another MRA variant, uni-MRA, that samples z from a uniform distribution. In
resource occupying environment with 8 resources, the results are shown in Fig. 2.

Due to the discrepancy between effective policies in different MGs, the game-common strategic
knowledge is not well exploited by EPC. RL2 agents are also observed to perform poorly in some
MGs, which verifies the benefits of explicitly modeling the MG-common knowledge and MG-
specific knowledge when population varies. Since no game-specific information is conditioned in
uni-MRA, we observe that some MGs dominate the others. Detailed settings and curves in other
environments are provided in Appendix E.

6.3 GENERALIZATION EVALUATION

If the learned policies both (1) adapt better and faster; and (2) perform well in novel games with
no additional training (i.e., zero-shot transfer), then the algorithm is considered to generalize well.
Now we evaluate the generalization ability of MRA and other methods based on these two metrics.
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(a) MG with sparse reward. (b) Complex MG. (c) Imbalanced competitive agents.

Figure 3: Adaptation performance comparison. (a): Sparse reward treasure collection task; (b):
Complex treasure collection MG with large population size; (c): Imbalanced Pac-Man and ghost
agents: 2 Pac-Man vs 8 ghosts, where random exploration bottleneck exists.

Better Adaptation: We first show that MRA have better adaptation ability benefited from the dis-
tilled common knowledge and first-order gradient information. Comparisons are conducted between
MRA, EPC, RL2, MADDPG and MAAC Iqbal & Sha (2018). MADDPG and MAAC are trained
from scratch, while the others are fine-tuned from the parameters trained in multiple MGs.

The common knowledge can provide agents a good policy initialization and overcome the random
exploration bottleneck. For example, the random exploration often results in Pac-Man agents being
killed if ghost agents dominate the game. And all agents end up with almost random behaviors.
However, with common knowledge guiding the Pac-Man to take reasonable actions, agents will get
useful information and learn to accomplish the task. In the Pac-Man game where 8 ghost agents
chase 2 Pac-Man agents, the benefits of the common knowledge are reflected in Fig. 3(c). The
random exploration leads to worse performance of MAAC and MADDPG agents.

Figure 4: Left: Evaluation in the training MGs.
Right: Zero-shot transfer to novel MGs.

Besides, in Fig. 3(a) when reward shaping
is removed, MRA agents can still adapt with
fewer episodes and has better asymptotic per-
formance. We also show in Fig. 3(b) that
the complexity brought by the large popula-
tions, e.g., 48, can be successfully handled by
MRA. The results verify the benefits of com-
mon knowledge compared with the transfer
knowledge in EPC.

Zero-shot Transfer: MRA also has better
zero-shot transferability than EPC and RL2.
The results in resource occupying are reported in Fig. 4. Performance of MRA is calculated by
taking expectations over the latent. However, its return will get higher if enumerated trial-and-error
is taken, i.e., choose the best policy mode by trying every z.

7 CONCLUSION & DISCUSSIONS

In this paper, we propose meta representations for agents (MRA) that can generalize in Markov
Games with varying populations. With latent variable policies and relational representations, the di-
verse strategic modes are captured. As an approximation to a theoretically justified objective, MRA
effectively discovers the underlying strategic structures in the games that facilities generalizable
knowledge learning. Experimental results also verify the benefits of MRA.

Our work also opens some new problems. Theorem 1 requires the computation of ς and ϵ as well as
an extremely large latent space, both of which are impractical. Although approximations that MRA
makes are reasonable, obtaining optimal Π∗ will not always be guaranteed. Possible improvements
include: bound ς by imposing restrictions on the evaluation MG set, or enlarge the latent space size
by e.g., adopting continuous latent variables, which we would like to explore as future work.

With role-symmetric game settings, MRA has benefits in many research problems, including dealing
with population complexity, overcoming the multi-agent random exploration bottleneck, and adapt-
ing faster with the meta-represented agents. A fruitful avenue for future work is to augment MRA
by e.g., adapting roles Wang et al. (2020), to apply to other game settings. Besides, achieving NE

8
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may not indicate the global optimality in general-sum MGs, and metrics such as social optimum can
be investigated.

For population-varying MGs, we model game-specific knowledge as strategic relationship. Al-
though it may lose the universality in broader scopes compared with general meta-RL algorithms,
we hope the idea of explicit strategic knowledge modeling can inspire algorithms that adjust with
the task of interest.
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A PROOFS

In this section, we provide three propositions in A.1, A.2 and A.3. The proof of Theorem 1 in A.4
is built upon these propositions.

A.1 PROPOSITION 1

Before giving Proposition 1, we provide a useful lemma of the Markov state transition operator
Pπi,π-i

m . The following Lemma 1 is given in (Liu et al., 2021), which is concerned with Fictitious
Self-Play. We modify it to be suitable for multi-agent general-sum Markov Games with our nota-
tions.

Lemma 1. (Liu et al., 2021). The Markov state transition operator satisfies:∥∥∥∥∥∑
t

γt
[(

Pπ
∗i,π-i

m

)t
−
(
Pπ

i,π-i

m

)t]∥∥∥∥∥
op

≤ γ

(1− γ)
2

∥∥∥Pπ∗i,π-i

m − Pπ
i,π-i

m

∥∥∥
op

10
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Proof. To begin with, we have the following inequality of the operator Pπi,π-i

m :∥∥∥∥(Pπ∗i,π-i

m

)t
−
(
Pπ

i,π-i

m

)t∥∥∥∥
op

=

∥∥∥∥(Pπ∗i,π-i

m

)t−1 (
Pπ

∗i,π-i

m − Pπ
i,π-i

m

)
+

((
Pπ

∗i,π-i

m

)t−1

−
(
Pπ

i,π-i

m

)t−1
)
Pπ

i,π-i

m

∥∥∥∥
op

≤
∥∥∥∥(Pπ∗i,π-i

m

)t−1 (
Pπ

∗i,π-i
− Pπ

i,π-i

m

)∥∥∥∥
op

+

∥∥∥∥((Pπ∗i,π-i

m

)t−1

−
(
Pπ

i,π-i

m

)t−1
)
Pπ

i,π-i

m

∥∥∥∥
op

≤
∥∥∥Pπ∗i,π-i

m − Pπ
i,π-i

m

∥∥∥
op

+

∥∥∥∥(Pπ∗i,π-i

m

)t−1

−
(
Pπ

i,π-i

m

)t−1
∥∥∥∥
op

≤
∥∥∥Pπ∗i,π-i

m − Pπ
i,π-i

m

∥∥∥
op

+
∥∥∥Pπ∗i,π-i

m − Pπ
i,π-i

m

∥∥∥
op

+

∥∥∥∥(Pπ∗i,π-i

m

)t−2

−
(
Pπ

i,π-i

m

)t−2
∥∥∥∥
op

≤ t ·
∥∥∥Pπ∗i,π-i

m − Pπ
i,π-i

m

∥∥∥
op

(19)

Then we have: ∥∥∥∥∥∑
t

γt
[(

Pπ
∗i,π-i

m

)t
−
(
Pπ

i,π-i

m

)t]∥∥∥∥∥
op

≤
∑
t

γt
∥∥∥∥(Pπ∗i,π-i

m

)t
−
(
Pπ

i,π-i

m

)t∥∥∥∥
op

≤

(∑
t

tγt

)∥∥∥Pπ∗i,π-i

m − Pπ
i,π-i

m

∥∥∥
op

(20)

Thus,: ∥∥∥∥∥∑
t

γt
[(

Pπ
∗i,π-i

m

)t
−
(
Pπ

i,π-i

m

)t]∥∥∥∥∥
op

≤ γ

(1− γ)
2

∥∥∥Pπ∗i,π-i

m − Pπ
i,π-i

m

∥∥∥
op

Now we state our first proposition.

Let the distance κ(πi) between policy πi and the best response π∗i in the action space be defined as:

κ(πi) =

∥∥∥∥∥∥∥π∗i(a|s)− πi(a|s)
∥∥∥
a,1

∥∥∥∥
s,∞

.

Proposition 1. For the joint strategy π, Dm(π) is bounded by:

Dm(π) ≤
(

γLm
(1− γ)2

+
1

1− γ

)∥∥κ(πi)∥∥
i,1
. (21)

Proof. First, a state visitation measure ρπ
∗i,π-i

s,m of the joint strategy (π∗i,π-i) in MG m is defined
as follows:

ρπ
∗i,π-i

s,m =
(
I − γPπ

i,π-i

m

)−1

δs

=

(∑
t

γt
(
Pπ

i,π-i

m

)t)
δs,

(22)

where δs is a Dirac delta function.
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By converting the value of strategy to the integration of reward over state measure, we have:

v∗i,mπ-i (s)− vi,mπ (s)

= E
s′∼ρπ

∗i,π-i
s,m

[
Eπ∗i,π-irim(s′,a)

]
− E

s′∼ρπ
i,π-i
s,m

[
Eπi,π-irim(s′,a)

]
= E

s′∼ρπ
∗i,π-i
s,m

[
Eπi,π-irim(s′,a)

]
− E

s′∼ρπ
i,π-i
s,m

[
Eπi,π-irim(s′,a)

]
+ E

s′∼ρπ
∗i,π-i
s,m

[
Eπ∗i,π-irim(s′,a)− Eπi,π-irim(s′,a)

]
≤
∥∥∥ρπ∗i,π-i

s,m − ρπ
i,π-i

s,m

∥∥∥
L1(S)

+ E
s′∼ρπ

∗i,π-i
s,m

[
Eπ∗i,π-irim(s′,a)− Eπi,π-irim(s′,a)

]
(23)

We then bound the two terms separately. For the first term, we have from Lemma 1 that:

∥∥∥∥∥∑
t

γt
[(

Pπ
∗i,π-i

m

)t
−
(
Pπ

i,π-i

m

)t]∥∥∥∥∥
op

≤ γ

(1− γ)
2

∥∥∥Pπ∗i,π-i

m − Pπ
i,π-i

m

∥∥∥
op

Then by the definition of Lm, we have:

∥∥∥∥∥∑
t

γt
[(

Pπ
∗i,π-i

m

)t
−
(
Pπ

i,π-i

m

)t]∥∥∥∥∥
op

≤ γ

(1− γ)
2

∥∥∥Pπ∗i,π-i

m − Pπ
i,π-i

m

∥∥∥
op

≤ γLm

(1− γ)
2κ(π

i)

(24)

Thus, the first term satisfies:

∥∥∥ρπ∗i,π-i

s,m − ρπ
i,π-i

s,m

∥∥∥
L1(S)

=

∥∥∥∥∥
(∑

t

γt
(
Pπ

∗i,π-i

m

)t)
δs −

(∑
t

γt
(
Pπ

i,π-i

m

)t)
δs

∥∥∥∥∥
L1(S)

≤

∥∥∥∥∥∑
t

γt
[(

Pπ
∗i,π-i

m

)t
−
(
Pπ

i,π-i

m

)t]∥∥∥∥∥
op

· ∥δs∥L1(S)

≤ γLm

(1− γ)
2κ(π

i)

(25)

The L+∞-norm over s of the second term is bounded by:

∥∥∥E
s′∼ρπ

∗i,π-i
s,m

[
Eπ∗i,π-irim(s′,a)− Eπi,π-irim(s′,a)

]∥∥∥
s,∞

≤
∥∥∥E

s′∼ρπ
∗i,π-i
s,m

[∥∥π∗i(·|s)− πi(·|s)
∥∥
1

]∥∥∥
s,∞

≤κ(πi)

(∑
t

γt

)

=
κ(πi)

1− γ

(26)
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Finally, from equation 25 and equation 26, we have the following bound for Dm(π):

Dm(π) =

∥∥∥∥∥∥∥v∗i,mπ-i (s)− vi,mπ (s)
∥∥∥
s,∞

∥∥∥∥
i,1

≤

∥∥∥∥∥
∥∥∥∥∥∥∥ρπ∗i,π-i

s,m − ρπ
i,π-i

s,m

∥∥∥
L1(S)

+ E
s′∼ρπ

∗i,π-i
s,m

[
Eπ∗i,π-irim(s′,a)− Eπi,π-irim(s′,a)

]∥∥∥∥
s,∞

∥∥∥∥∥
i,1

≤

∥∥∥∥∥ γLm

(1− γ)
2κ(π

i) +
κ(πi)

1− γ

∥∥∥∥∥
i,1

=

(
γLm

(1− γ)2
+

1

1− γ

)∥∥κ(πi)∥∥
i,1

(27)

A.2 PROPOSITION 2

Proposition 2. For the training MG set M and the evaluation MG set M′, if ϵ satisfies

ϵ ≥ ς − min
ιm,ιm′

ςγ (ιm′ − ιm)

γιm′ + 1− γ
, (28)

then for every evaluation Markov Gamem′ ∈ M′, the joint strategy that achieves Nash Equilibrium
in m′ is guaranteed to be contained in the ϵ-range joint strategy set Π̂.

Proof. For Definition 1 of the distance ς between the training MG set M and the evaluation MG set
M′, we have the following equivalent logic statement:

∀m′ ∈ M′, i ∈ {1, . . . , Nm′},∃m ∈ M,π,π′, i′ ∈ hi,m,

s.t. Dm(π) = 0,Dm′(π′) = 0,∀πi ∈ π,Dm′(πi
′
,π′-i) ≤ ς.

In an evaluation MG m̃′ ∈ M′, let i and i′ be the agent index defined as follows:

i = argmax
i∈{1,...,Nm̃′}

[
min
i′∈hi,m

Dm̃′(πi
′
,π′-i)

]
, s.t. Dm(π) = 0,Dm̃′(π′) = 0 (29)

Intuitively, the above agent i is the agent in m̃′ that being replaced by the trained policy πi
′

in the
policy set leads to the largest distance to the Nash Equilibrium. And agent i′ is the corresponding
agent that πi

′
achieves an NE in a particular training MG.

With i and i′ denied in equation 29, the bound in Proposition 1 can be specified as follows:

Dm̃′(πi
′
,π′-i) =

∥∥∥∥∥∥∥v∗i,m̃′

π′-i − vi,m̃
′

πi′ ,π′-i

∥∥∥
s,∞

∥∥∥∥
i,1

=
∥∥∥vi,m̃′

π′ − vi,m̃
′

πi′ ,π′-i

∥∥∥
s,∞

=
∥∥∥vi,m̃′

π′i,π′-i − vi,m̃
′

πi′ ,π′-i

∥∥∥
s,∞

≤ γιm̃′

(1− γ)
2κ(π

i′) +
κ(πi

′
)

1− γ

(30)

The second equality holds since Dm̃′(π′) = 0, and the distance from the joint strategy (πi
′
,π′-i)

to a Nash Equilibrium is equal to the distance to π′. The last inequality holds due to the bound in
Proposition 1 and the definition of i and i′.

13
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This implies that for any MG m̃′ we have:

max
i∈{1,...,Nm̃′}

min
m∈M,i′∈hi

π∈{π|Dm(π)=0}
π′∈{π′|Dm̃′ (π′)=0}

Dm̃′(πi
′
,π′-i) ≤ γιm̃′

(1− γ)
2κ(π

i′) +
κ(πi

′
)

1− γ
(31)

With the maximum influence ιm′ over the evaluation MG m′ ∈ M′, we obtain:

ς = max
ιm′

γιm′

(1− γ)
2κ(π

i′) +
κ(πi

′
)

1− γ
(32)

Since Dm(π) = 0 and Dm′(π′) = 0, the best response in MG m with other agent’s strategies fixed
as π-i′ is πi

′
. And in MG m′, the best response with other agent’s strategies fixed as π′-i is π′i.

Thus we get:

κ(πi
′
) = κ(π′i) =

∥∥∥∥∥∥∥πi′(a)− π′i(a)
∥∥∥
a,1

∥∥∥∥
s,∞

(33)

For ϵ that satisfies equation 28, we obtain:

ϵ ≥ max
ιm′ ,ιm

ς − ςγ (ιm′ − ιm)

γιm′ + 1− γ

≥ max
ιm′ ,ιm

(
γιm + 1− γ

γιm′ + 1− γ

)
·

(
γιm′

(1− γ)
2κ(π

i′) +
κ(πi

′
)

1− γ

)

≥ max
ιm

(
γιm + 1− γ

γιm̃′ + 1− γ

)
·

(
γιm̃′

(1− γ)
2κ(π

′i) +
κ(π′i)

1− γ

)

≥ max
ιm

γιm

(1− γ)
2κ(π

′i) +
κ(π′i)

1− γ

(34)

For i and i′ defined in equation 29, we have the following inequality by noticing that Dm(π) = 0:

Dm
(
(πi

′
,π-i′)

)
=

∥∥∥∥∥∥∥v∗i,mπ-i′ − vi,m
π′i,π-i′

∥∥∥
s,∞

∥∥∥∥
i,1

=
∥∥∥vi,mπ − vi,m

π′i,π-i′

∥∥∥
s,∞

=
∥∥∥vi,m
πi′ ,π-i′ − vi,m

π′i,π-i′

∥∥∥
s,∞

≤ γιm

(1− γ)
2κ(π

′i) +
κ(π′i)

1− γ

≤ max
ιm

γιm

(1− γ)
2κ(π

′i) +
κ(π′i)

1− γ

≤ ϵ

(35)

This indicates that if we choose ϵ to satisfy equation 28, then the policy π′i that achieves Nash
Equilibrium in MG m̃′ is guaranteed to be included in the policy set.

Since all the above inequalities hold for any m̃′ ∈ M′, the policy that achieves NE in all MGs in the
evaluation MG set M′ is guaranteed to be included in the policy set. This completes the proof.

A.3 PROPOSITION 3

Proposition 3. If |ΠΘ| ≥ |Π̂| and ϵ satisfies ϵ ≥ ς − minιm,ιm′
ςγ(ιm′−ιm)
γιm′+1−γ , then the optimal Π

that maximizes the objective:

L(Π) = max
π∼Π

min
π̂∼Π̂

Ea∼π̂,o [logπ(a|o)] , (36)
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for every evaluation Markov Game m′ ∈ M′, there exists a joint strategy π ∈ ΠΘ∗ that reaches
Nash Equilibrium (i.e., ΠΘ∗ = Π∗ satisfies equation 4).

Proof. Since |Π| ≥ |Π̂|, the optimal |Π| that maximizes L(Π) in equation 36 must satisfy:

min
π̂∼Π̂

Ea∼π̂,o [logπ(a|o)] = 1

.

In other words, for every policy π̂ in the joint strategy set Π̂, i.e., π̂ ∈ Π̂, there exists a learned
policy π ∈ Π, such that π = π̂. Note that the above statement is true only when |Π| ≥ |Π̂|.
For ϵ that satisfies equation 28, from Proposition 2 we know that for every evaluation MGm′ ∈ M′,
the strategy that achieves Nash Equilibrium are guaranteed to be contained in Π̂. Thus, the optimal
policy set Π that results from optimizing equation 36 also contains the strategies that are NE in
every MG m′ ∈ M′.

So the optimal policy set Π satisfies equation 4, which completes the proof.

A.4 PROOF OF THEOREM 1

Proof. Since |ΠΘ| ≥ |Π̂|, we can simplify the objective in equation 36 by updating the joint strategy
π in a fixed-size set Π. That is, maximizing equation 36 is equivalent to:

max
Π

min
π̂∼Π̂

max
π∼Π

Ea∼π̂,o [logπ(a|o)] = max
π∼Π

min
π̂∼Π̂

Ea∼π̂,o [logπ(a|o)] (37)

From the non-negativeness of KL divergence, we have:

DKL (π̂,π) = Eπ̂

[
log

π̂

π

]
≥ 0

The equality holds when π = π̂.

Thus, we have:
max
π

Eπ̂ [logπ] ≤ −H(π̂) (38)

If π ∈ Π̂ is constrained, then the equality holds and max
π

Eπ̂ [logπ] = −H(π̂)

This leads to:
max
π∼Π

min
π̂∼Π̂

Eπ̂ [logπ] = min
π̂∼Π̂

−H(π̂)

=max
π̂∼Π̂

H(π̂)

=max
π∼Π

H(π), s.t. π ∈ Π̂

(39)

The above equation states that the strategy π is learned to fit π̂. And to cover all the π̂ ∈ Π̂, the
entropy of strategies in Π should also be maximized.

Then we get the following equality:

max
π∼Π

H(π) =max
Ω

I(m; a|o) +H(a|m, o)

=max
Ω

I(m; a|o) + I(g; a|m, o) +H(a|m, o, g)

=max
Ω

I(m; a|o) + I(g; a|o) +H(a|m, o, g)

=max
Ω

I(m; a|o) + I(g; a|o),

(40)

where the first equality holds following the definition of mutual information and by noticing that
policy π is meta-represented by Ω. The last equality holds since the size of the meta-represented
policy set |ΠΘ| is sufficiently large and satisfying |ΠΘ| ≥ |Π̂|.
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Combining equation 39 and equation 40. we have:

min
π̂∼Π̂

max
π∼Π

Eπ̂ [logπ] = max
Ω

I(m; a|o) + I(g; a|o), s.t. π ∈ Π̂ (41)

Then by equation 37 and equation 41, we have that the solution of the following objective is equiv-
alent to the solution of equation 36:

ψ∗, ϕ∗ = argmax
ψ,ϕ

I(g; a|o) + I(m; g|o) s.t. πθ∗ ∈ Π̂

Thus, for every evaluation Markov Game m′ ∈ M′, there exists a joint strategy π ∈ ΠΘ that
reaches Nash Equilibrium (i.e., ΠΘ∗ = Π∗ satisfies equation 4).

B FAST ADAPTATION WITH FIRST-ORDER GRADIENT

Reptile Nichol et al. (2018) is a meta-learning algorithm that uses first-order gradient information
for fast adaptation.

For parameter θ that maximizes objective Lkm(θ) in the k-th mini-batch of game m, θ is updated by
θ � θ + α∆θ, where ∆θ = UKm (θ) − θ and UKm (θ) denotes the updated θ after K gradient steps
with learning rate β, and α is a hyperparameter.

Denote the k-th step parameter as θk, then the update ∆θ of K gradient steps is as follows:

∆θ= θK − θ1

= β

K−1∑
k=1

∇Lkm(θk)

= β

K−1∑
k=1

(
∇Lkm(θ1) +∇2Lkm(θ1) (θk − θ1) +O

(
∥θk − θ1∥2

))

= β

K−1∑
k=1

∇Lkm(θ1) + β∇2Lkm(θ1)

k−1∑
j=1

∇Lkm(θj) +O
(
β2
)

= β

K−1∑
k=1

∇Lkm(θ1)+β

k−1∑
j=1

(
∇2Lkm(θ1)∇Ljm(θ1)

)+O
(
β2
) ,

(42)

where the last equation holds since ∇Lkm(θj) = ∇Lkm(θ1) +O (β).

For the initial parameter θ = θ1, the term
K−1∑
k=1

∇Lkm(θ1) maximizes the overall performance at θ in

all the K mini-batches in an MG m. The key difference from the joint training objective is the term
∇2Lkm(θ1)∇Ljm(θ1). When the expectation are taken under mini-batch sampling in m, denote Ek
as the expectation over the mini-batch defined by Jk. Omitting the higher-order term O

(
β2
)
, we

have:

E [∆θ] = (K − 1)Ek
[
Lkm(θ)

]
+ (K − 1)(K − 2)βEj,k

[
∇2Lkm(θ)∇Ljm(θ)

]
= (K − 1)Ek

[
Lkm(θ)

]
+

(K − 1)(K − 2)β

2
Ej,k

[
∇2Lkm(θ)∇Ljm(θ) +∇2Ljm(θ)∇Lkm(θ)

]
= (K − 1)Ek

[
Lkm(θ)

]
+

(K − 1)(K − 2)β

2
Ej,k

[
∇
(
∇Lkm(θ)∇Ljm(θ)

)]
(43)

Thus, updating θ by θ � θ + α∆θ not only maximizes the average performance in K mini-batches
of all MGs, but also maximizes the inner product between gradients of different mini-batches, i.e.,
∇Lkm(θ)∇Ljm(θ). Thus, the generalization ability is improved and fast adaptation is achieved.
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Algorithm 1 MRA: Training in MG set M
while not converged do

for MG m = 1 . . . |M| do
sample lower-level latent z ∼ pψ(·|m);
execute action a∼πθ(·|o, g), where g = ϕ(o, z);
push (o,a,o′, g, r) to replay buffer;
for k = 1 . . .K do

update critic ζ by minimizing equation 13;
update policy at the k-th step θk by equation 14;

end for
update θ by θ � θ + α(θK − θ);
update ϕ to maximize the RHS of equation 16;
update ψ and auxiliary network ξ by equation 18;
update delayed parameters θ̄ and ζ̄;

end for
end while

Algorithm 2 MRA: Adaptation in a novel
evaluation MG m′

while not converged do
sample lower-level latent z ∼ pψ(·|m′);
execute action a∼ πθ(·|o, g), where g =
ϕ(o, z);
push (o,a,o′, r) to replay buffer;
update critic ζ by minimizing equation 13;

update θ and ϕ by equation 15;
update delayed parameters θ̄ and ζ̄;

end while

C DERIVATION OF MUTUAL INFORMATION CALCULATION

The two mutual information terms in equation 12, i.e., I(g; a|o) and I(m; g|o) can be calculated as
follows:

I(g; a|o) =
∫
p(a, o, g) log

p(a|o, g)
p(a|o)

da do dg

= Ea,o,g[log
πθ̄(a|o, g)
p(a|o)

] + Ea,o,g[DKL(p(a|o, g)||πθ̄(a|o, g))]

≥ Ea,o,g[log
πθ̄(a|o, g)
p(a|o)

]

≈ E o∼D
z∼p(·|m)

a∼πθ(·|o,ϕ(o,z))

log πθ̄(a|o, ϕ(o, z))
Ez′∼p(·|m)
g′=ϕ(o,z′)

[πθ̄(a|o, g′)]


(44)

Similarly, we have:

I(m; g|o) =
∫
p(m, o, g) log

p(m|o, g)
p(m|o)

dmdo dg

= Em,o,g[log
p(m|o, g)
p(m)

]

= Em,o∼D [log p(m|o, g)] + log |M|

(45)

D PSEUDOCODE

The high level algorithmic frameworks of the training process and evaluation process are shown in
Algorithm 3 and Algorithm 2, respectively.

The complete pseudocode for training MRA is provided in Algorithm 3, and the pseudocode of the
MRA adaptation process is given in Algorithm 4.
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Algorithm 3 Training Procedure of MRA in Set M of Population-Varying Markov Games

Input: Markov Games m ∈ M with index y.
Output: Parameter ψ and θi, ϕi, ζi for each agent i.
Initialize P threads of games;
Initialize Tupdate � 0;
Initialize replay buffer Dm for each Markov Game m;
while total episode number not reach do

for Markov Game m in M do
Reset game, each agent i samples lower-level latent code zi ∼ pψ(z|m);
for time steps in an episode do

Each agent i executes action ai ∼ π
(
·|oi, ϕi(oi, zi); θi

)
simultaneously and get reward ri,

next observation o′i;
Push (o,a,o′, g, r) to replay buffer Dm;
o � o′

Tupdate � Tupdate + P ;
if Tupdate%(min steps per update) ≤ P then

A mini-batch of B samples of (ob,ab,o′
b, gb, rb) is sampled from Dm;

for k = 1 to K do
Update all agents’ critic parameter ζi by minimizing:

L
(
ζi
)

= 1
B

∑
b

(
BiπQ−Q

(
ob,ab, g

i
b; ζ

i
))2

,where BiπQ = rib +

γEa′∼π̄

[
Q
(
o′
b,a

′, gib; ζ̄
i
)]

;
The k-th step of policy parameter θik is updated by gradient ascent:

∇θiJ = 1
B

∑
b∇θi log π

(
ai|oib, gib; θik

)
Q
(
ob,ab, g

i
b; ζ

i
)
;

end for
Update all agents’ θi by θi � θi + α(θiK − θi);
Sample n latent code z′i and approximate p(a|oib) by 1

n

∑
π
(
ai|oib, ϕi

(
oib, z

′i) ; θ̄i);
Update all agents’ ϕi by maximizing:

L
(
ϕi
)
= 1

B

∑
b Eai∼π(·|oib,ϕi(oib,zi);θi)

[
log

π(ai|oib,ϕ
i(oib,z

i);θ̄i)
p(a|o)

]
;

Update ψ and auxiliary network ξ simultaneously by minimizing:
L (ψ, ξ) = Ez′i∼pψ(·|m)

[
−y log

(
p
(
ŷ|oib, ϕ(oib, z′i); ξ

))]
;

Update all agents’ delayed parameters θ̄i and ζ̄i;
end if

end for
end for

end while
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Algorithm 4 Adaptation Procedure of MRA in a Novel Markov Game m′

Input: Trained parameters from Alg. 3.
Output: Adapted parameters.
Initialize replay buffer D;
Each agent i samples lower-level latent code zi ∼ pψ(z|m′);
while total episode number not reach do

Reset game and receive initial observation o;
for time steps in an episode do

Each agent i executes action ai ∼ π
(
·|oi, ϕi(oi, zi); θi

)
simultaneously and get reward ri,

next observation o′i;
Push (o,a,o′, r) to replay buffer Dm′ ;
o � o′

A mini-batch of B samples of (ob,ab,o′
b, rb) is sampled from Dm;

Calculate the detached relational graph gi = ϕi(o
i
b, z

i
b)

Update all agents’ critic parameter ζi by minimizing:
L
(
ζi
)

= 1
B

∑
b

(
BiπQ−Q

(
ob,ab, g

i; ζi
))2

,where BiπQ = rib +

γEa′∼π̄

[
Q
(
o′
b,a

′, gi; ζ̄i
)]

;
Update all agents’ parameter ωi = (θi, ϕi) by gradient ascent:

∇ωiJ = 1
B

∑
b∇ωi log π

(
ai|oib, ϕi(oib, zib); θik

)
Q
(
ob,ab, g

i; ζi
)
;

Update all agents’ delayed parameters θ̄i and ζ̄i;
end for

end while

E ADDITIONAL EXPERIMENTS

E.1 TRAINING SETUPS AND HYPERPARAMETERS

Treasure Collection: Each agent is with the goal to collect more treasures in an episode. Treasures
disappear and re-generate at a random location when touched by agents.

Resource Occupying: Agents receive rewards for occupying varisized resource landmarks: higher
reward if one agent is occupying a larger resource with fewer other agents in it.

Pacman-like World: It is similar to predatory-prey games, but with additional food dots. Pac-Man
agents are with goals to collect food and elude ghosts, and ghosts are with goals to touch Pac-Man.

The treasures in the treasure collection environment and the food dots in the Pacman-like world are
randomly initialized in the position range of [−1,+1], and regenerated when touched by collector
agents and PacMan agents, respectively. The sizes of the resource landmarks are pre-defined as
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6} and fixed in each episode.

When evaluating the benefits of MRA in Section 6.1 of the main paper, the training Markov Games
in the three environments are as follows. In treasure collection environment, there are 4 training
MGs in total. The agent populations in the 4 MGs are 3, 6, 12, 24, respectively, which we denote as
{3, 6, 12, 24}. The 4 training MGs in the resource occupying environment is {6, 9, 12, 15}. In the
PacMan-like world, there are 3 training MGs in total: {(4, 2), (6, 3), (8, 4)}, where (4, 2) in the first
MG denotes that there are 4 PacMan agents and 2 ghost agents.

We adopt the same set of hyperparameter for experiments. 12 rollouts are executed in parallel when
training. The maximum length of the replay buffer is 1e6. Episode length is set to 20. The dimension
of the latent code z is 6. The critic also adopts a self-attention network in a similar way with MAAC
Iqbal & Sha (2018). And the number of gradient steps of policy and critic parameters in each update,
i.e., K, is set as 10. And α = 1 works well in experiments. Batch size is set to 1024 and Adam
is used as the optimizer. The initial learning rate is set to 0.0003. In all experiments, we use one
NVIDIA Tesla P40 GPU.
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E.2 CROSS-COMPARISON RESULTS

We provide the cross-comparison results in the PacMan-like world. The comparisons are conducted
between the MRA agents trained in multiple MGs and the agents trained in a single MG. The score
is summed in each episode, averaged across homogeneous agents on 40 runs and normalized.

Table 1: PacMan scores.

Ghosts
PacMan

Single MRA

Single 0.78 1.00
MRA 0.54 0.89

Table 2: Ghost scores.

Ghosts
PacMan

Single MRA

Single 0.82 0.59
MRA 1.00 0.85

The cross-comparison results are shown in Table 1 and Table 2. We can see that the agents created
by the proposed MRA outperform the single-MG counterparts for both PacMan agents and ghosts
agents, validating the effectiveness of the proposed method.

E.3 IMPLEMENTATION VARIANTS

In role-symmetric games, the parameters θ, ϕ, ζ are shared by homogeneous agents. And ϕ can be
implemented as the option architecture Sutton et al. (1999), i.e., g corresponds to the z-th option
sampled from the categorical distribution. We then conduct experiments on different instantiations
of the ϕ(o, z) function in MRA.

We denote the default implementation architecture, where different relational graph from different
attention heads is controlled by the lower-level latent variable z, as the option Sutton et al. (1999)
architecture. Specifically, we apply the multi-head self-attention architecture Vaswani et al. (2017).
And the head number is set as the dimension of the categorical distribution p(z), and g corresponds
to the graph at the z-th head when sampling z.

The other two variants we consider for implementing ϕ(o, z) are the ones that are discussed in
Florensa et al. (2017). The first variant is to concatenate z to each entity of the observation de-
composition oi =

[
ois, o

i
1, · · · , oij , · · · , oiN

]
. The same relational representation is also adopted to

generate the relational graph g. The second variant is to perform the outer product between each
observation entity and z. We refer to the two variants as “concat” and “bilinear”, respectively.

The performance of the three implementations is evaluated in the 6-resource occupying environment.
The number of training MGs is set to 3, and the numbers of agents in the 3 games are {6, 9, 12}.
The results in Figure 5 show that all the three implementations can obtain agents that effectively act
in all the 3 scenarios. And the default option architecture achieves better performance than the other
two variants. The possible reason is that the lower-level latent code z in the option architecture can
explicitly control the structural factors and can thus learn the common knowledge more quickly and
better.

Figure 5: Performances of different implementation variants in the resource occupying environment.
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E.4 ABLATION STUDY ON THE SIZE OF TRAINING MG SET

The information in all the training MGs determines the common knowledge that agents can learn.
We provide ablation study on the number of training MGs. In the resource occupying environment,
we train the agents in three settings, each of which is with different size of training MG set: 2, 3 and
4. Specifically, the population size of the three settings are: {6, 12}, {6, 9, 12} and {6, 9, 12, 15}.
The curves in MGs with {6, 9, 12} populations are shown in Figure 6.

Figure 6: Ablation study on the size of the training MG set in the resource occupying environment.

We observe that when the size of the training MG set is greater than 2, the benefits of the meta-
representation are obvious. The knowledge that agents learn from few training MGs, e.g., 1 or 2
training MGs, is limited, and the random exploration bottleneck still exists. However, the perfor-
mance can be significantly improved by leveraging the information from more training MGs, e.g., 3
or 4 training MGs, where the common knowledge is more likely to be distilled and thus guiding the
exploration.

E.5 ADDITIONAL CURVES

When training in multiple treasure collection MGs, the curves of MRA and other related multi-task
or meta-learning approaches are shown in Fig. 7.

Figure 7: Multi-MG training curves in the treasure collection environment. Total number of training
MGs are 4, with population 3, 6, 12, 24.

We provide the training phase curves of the approximated mutual information I(g; a|o) and the
inference loss of MG index output by auxiliary network ξ. The curves are shown in Figure 8.

E.6 VISUALIZATIONS

The screenshots of the three environments in the experiments are shown in Figure 9.

We visualize the trajectories of one agent in a resource occupying MG in Figure 10. Green dots
and blue dots are agents and resources, respectively. When agents are only trained in this MG
with different random seeds, different behaviors are obtained. This indicates that agents trained in
single MGs are confined to environmental settings. Agents only learn the best responses and fit an
NE. However, if the agents are only aware of some of the successful behaviors, the generalization
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(a) The curve of mutual information I(g; a|o) dur-
ing training.

(b) The loss curve of the MG index inference.

Figure 8: Additional curves during training. The total number of training MGs is 4, with
{3, 6, 12, 24} agents in the resource occupying environment.

treasure 
landmark

collector 
agent

(a) Treasure collection.

agent

resource 
landmark

(b) Resource occupying.

food 
dots 

PacMan 
agent

ghost 
agent

(c) Pacman-like world.

Figure 9: The illustration of the three environments that are used in our experiments.
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will be constrained. On the contrary, MRA has large capacities to represent multiple strategies by
incorporating different relational graph with the distilled common knowledge, which leads to diverse
reasonable behaviors.

0

1

2

3

4

5

6

mean reward: 10.16seed mean reward: 11.31

Figure 10: Trajectory visualization in resource occupying environment. Left: Trajectories of agents
that are trained in a single MG, lighter colors are the exploration trajectories. Right: Trajectories of
agents that are trained in multiple MGs.

We also visualize some instances of the learned relation variations, i.e., different relational graph g
under observation o, as well as how agents make the smartest decisions under different variations in
Fig. 11. The common knowledge learned by the agent can be interpreted as ”moving to less-agent
resources”. Specifically, in Fig. 11(a) the black agent makes decisions to move left by focusing
on the topmost red agents which are occupying a resource. By focusing on the leftmost red agents
in Fig. 11(b), the black agent makes decisions to move up. Although such behavior might not be
optimal, since the topmost resource is smaller than the leftmost resource, this variation helps agents
learn common knowledge and optimally behave in an unseen MG by incorporating the optimal
relation mapping in that game.

0.23 0.63

(a)

0.44

0.51

(b)

0.43

0.31

0.18

(c)

Figure 11: Instances of different learned relational graph and the corresponding actions that agents
take. We visualize how the black agent makes different reasonable decisions by incorporating re-
lational graph with the common knowledge. The relation scores that are smaller than 0.1 are not
shown.
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