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ABSTRACT

Unsupervised text-to-speech (TTS) aims to train TTS models for a specific lan-
guage without any paired speech-text training data in that language. Existing
methods either use speech and corresponding pseudo text generated by an un-
supervised automatic speech recognition (ASR) model as training data, or employ
the back-translation technique. Though effective, they suffer from low robust-
ness to low-quality data and heavy dependence on the lexicon of a language that
is sometimes unavailable, leading to difficulty in convergence, especially in low-
resource language scenarios. In this work, we introduce a bag of tricks to enable
effective unsupervised TTS. Specifically, 1) we carefully design a voice conver-
sion model to normalize the variable and noisy information in the low-quality
speech data while preserving the pronunciation information; 2) we employ the
non-autoregressive TTS model to overcome the robustness issue; and 3) we ex-
plore several tricks applied in back-translation, including curriculum learning,
length augmentation and auxiliary supervised loss to stabilize the back-translation
and improve its effectiveness. Through experiments, it has been demonstrated
that our method achieves better intelligibility and audio quality than all previous
methods, and that these tricks are very essential to the performance gain.

1 INTRODUCTION

Text to speech (TTS), or speech synthesis, has been a hot research topic (Wang et al., 2017; Shen
et al., 2018; Ming et al., 2016; Arik et al., 2017; Ping et al., 2018; Ren et al., 2019a; Li et al.,
2018; Ren et al., 2021a; Liu et al., 2021; Ren et al., 2021b) and has broad industrial applications as
well. However, previous TTS has been developed dominantly for majority languages like English,
Mandarin or German, while seldom for minority languages and dialects (low-resource languages), as
supervised TTS requires hours of single-speaker and high-quality data to retain a good performance,
but collecting and labeling such data for low-resource languages are very expensive and need a
substantial amount of manpower.

Recently, some works exploit unsupervised (Ni et al., 2022; Liu et al., 2022b) or semi-unsupervised
learning (Tjandra et al., 2017; Ren et al., 2019b; Liu et al., 2020; Xu et al., 2020) to enable speech
synthesis for low-resource languages, some of which are summarized in Table 1. Semi-supervised
methods rely on a small amount of high-quality paired data in the target language to initialize
the model parameters and employ back-translation to leverage the unpaired data. But high-quality
paired data in minor languages are usually collected via recording in professional studios or tran-
scribing by native speakers, and hence very costly and sometimes even unaffordable to attain. In
contrast, unsupervised methods train an unsupervised automatic speech recognition model (ASR)
(Baevski et al., 2021; Liu et al., 2022a) to generate pseudo labels for the unpaired speech data, and
then use the pseudo labels and speech paired data to train the TTS model. However, their per-
formance tends to be bounded by the performance of the unsupervised ASR model, which is
extremely difficult and unstable to train on some low-resource languages, especially for those with-
out lexicon or grapheme-to-phoneme (G2P) tools (Baevski et al., 2021; Liu et al., 2022a)1. Besides,

1Baevski et al. (2021) claimed their method “requires phonemization of the text for the language of interest”,
and Liu et al. (2022a) claimed “when switching to an entirely letter-based system without a lexicon, the unit
error rate increases substantially”.
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Table 1: Comparison of some semi-supervised and unsupervised TTS methods. “G2P” denotes
grapheme-to-phoneme tool; “Paired (tgt)” and “Paired (other)” mean using paired data in the target
language and other languages; “BT” denotes back-translation; “NAR” denotes non-autoregressive
architecture for TTS model. “Semi.” denotes semi-supervised and “Unsup.” denotes unsupervised.

Methods Type G2P Dataset settings BT NAR
Multispeaker Paired (tgt) Paired (other) Noisy

Ren et al. (2019b) Semi. ✓ ✗ few ✗ ✗ ✓ ✗
Xu et al. (2020) Semi. ✓ ✓ few ✓ ✓ ✓ ✗

Liu et al. (2022b) Unsup. ✓ ✓ ✗ ✗ ✗ ✗ ✗
Ni et al. (2022) Unsup. ✓ ✗ ✗ ✗ ✗ ✗ ✗

Ours Unsup. ✗ ✓ ✗ ✓ ✓ ✓ ✓

the unpaired speech samples used in existing unsupervised methods are clean and ready for gen-
eral TTS model training, such as CSS10 (Park & Mulc, 2019), LibriTTS (Zen et al., 2019) and
LJSpeech (Ito, 2017). However, in real low-resource language scenarios, there is no guarantee that
enough clean data can be obtained.

In this work, we aim to train an unsupervised TTS model in a low-resource language (the target
language) with unpaired data, rather than any paired speech and text data, in that language, and also
paired data in other rich-resource languages for initialization. Such training data are easily acces-
sible. For example, the unpaired speech and text in the target language can be crawled from video
or news websites in the countries using that language; the paired data in rich-resource languages
can be obtained from some ASR and TTS datasets. Besides, these crawled speech data are from
different speakers. Under such a task setting, we need to address the following challenges in order
to achieve our goal. 1) Low-quality multi-speaker data. The speech data to be used for unsu-
pervised training in our problem are often multi-speaker and low-quality, with much variable and
noisy information like timbre, background noise, etc., hindering model convergence and meaning-
ful speech-text alignment. This significantly increases the difficulty of the TTS model training. 2)
Back-translation stability. Previous semi-supervised TTS methods (Xu et al., 2020; Ren et al.,
2019b) leverage the unpaired data with back-translation, but only achieving limited performance
and sometimes difficult to converge, especially in unsupervised settings. 3) Robustness. Previous
semi-supervised/unsupervised TTS methods (Xu et al., 2020; Ren et al., 2019b; Ni et al., 2022; Liu
et al., 2022b) use an auto-regressive architecture (Li et al., 2018; Shen et al., 2018), which suffers
from word missing and repeating issues, especially when the supervision signal is very weak. 4)
Lack of lexicon. For low-resource languages, it is usually difficult to obtain existing lexicons or
G2P tools.

We propose several practical tricks to address these issues and enable unsupervised TTS without
any paired data in the target language and bridge the performance gap between the unsupervised and
supervised TTS. Specifically, 1) we normalize the variable and noisy information in the low-quality
training data. We propose a cross-lingual voice conversion model with flow-based enhanced prior,
which converts the timbre of all sentences in different languages to one same speaker’s voice while
preserving the pronunciation information. 2) We explore some tricks including curriculum learning,
length augmentation and auxiliary supervised loss to improve the effectiveness of back-translation.
3) To strengthen model robustness, we employ the non-autoregressive (NAR) TTS model and use
the alignment extracted from the ASR model2 in the back-translation process to guide the NAR TTS
model training. By applying such a bag of tricks, we can successfully train an effective TTS model
with noisy and multi-speaker data and without any lexicons.

Through experiments, it has been verified that our method can achieve both high-quality and high-
intelligibility TTS, in terms of MOS and of word error rate (WER) and character error rate (CER)
evaluated by external ASR, respectively. We compare our method to existing unsupervised TTS
baselines (Ren et al., 2019b; Xu et al., 2020; Ni et al., 2022; Liu et al., 2022b) and find it significantly
outperforms them in both audio quality and intelligibility under the same experimental settings. We
conduct some analyses on the proposed tricks, which demonstrate the importance and necessity of

2The ASR model is the byproduct of back-translation, which does not need any extra paired data.
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these tricks to achieve state-of-the-art unsupervised TTS. The samples generated by our models can
be found at https://unsupertts-tricks.github.io.

2 RELATED WORKS

2.1 SUPERVISED SPEECH SYNTHESIS

In the past few years, with the development of deep learning, neural network-based TTS has
thrived (Wang et al., 2017; Tachibana et al., 2018; Li et al., 2019; Ren et al., 2019a; 2021a; Łańcucki,
2020), where the text-to-speech mapping is modeled by deep neural networks using encoder-decoder
architectures. Early methods by Wang et al. (2017) and Ping et al. (2017) generate the mel-
spectrogram autoregressively. However, they suffer from slow inference and low robustness issues,
e.g. word skipping and repeating. To tackle these issues, later works explore non-autoregressive
(NAR) speech generation. FastSpeech (Ren et al., 2019a) is the first non-autoregressive TTS archi-
tecture, which adopts the duration predictor and length regulator to bridge the length gap between
the speech and the text sequence. After that, many methods are proposed, such as FastSpeech 2
(Ren et al., 2021a), Glow-TTS (Kim et al., 2020) and EATS (Donahue et al., 2021), achieving not
only better audio quality but also fast inference and good robustness. Recently, some NAR models
leveraging variational auto-encoder (VAE) to model the variation information in the latent space are
developed, like VITS (Kim et al., 2021b) and PortaSpeech (Ren et al., 2021b), and they quickly
become popular. In this work, we also employ non-autoregressive architecture and VAE structure to
achieve robustness against low-quality data.

2.2 LOW-RESOURCE SPEECH SYNTHESIS

Supervised speech synthesis requires high-quality paired speech and text data for training, which
are costly to attain, especially for low-resource languages. To broaden the application scope of TTS
systems, several low-resource TTS models are developed, which only need a few or even not any
high-quality paired data. Instead, they use unpaired text and audio data to train TTS models in a
semi-supervised or unsupervised way, which are much straightforward and cheap to obtain.

Semi-supervised TTS. Ren et al. (2019b) adopt back-translation and pre-training to leverage un-
paired data, generating pseudo text/speech samples with ASR/TTS models and training them with
the augmented data iteratively. However, as a proof of concept, Ren et al. (2019b) only verify
the feasibility of semi-supervised TTS in a single-speaker dataset. Later, LRSpeech (Xu et al.,
2020) supports multi-speaker and noisy datasets and is closer to real application. However, these
semi-supervised methods still require a few pairs of high-quality speech and text data, which are
expensive for low-resource languages since they often need to be recorded in professional studios.

Unsupervised speech synthesis. Unsupervised speech synthesis does not use any paired training
data from the target speaker and language, which has attracted growing attention recently. As the
earliest unsupervised TTS works, Liu et al. (2022b) and Ni et al. (2022) both use an unsupervised
ASR model to transcribe the TTS speech data to pseudo text and train with the augmented data to
build an unsupervised TTS system. However, they heavily rely on the unsupervised ASR technique,
whose training procedure is very unstable and heavily relies on lexicons. Therefore, these methods
are difficult to apply to other low-resource languages. Besides, when switching to a multi-speaker
setup, the gap between supervised and these unsupervised TTS methods becomes larger than single-
speaker setup (Liu et al., 2022b). A recent ArXiv paper (Lian et al., 2022) trains a non-parallel voice
conversion model using unpaired speech data as the acoustic model and a specific module to map
the text sequence to the speech discrete representation sequence, but this module has to be trained
with an external dataset with the same language as in the unpaired dataset. Thus this method is
hardly applicable to real low-resource language scenarios due to the difficulty of collecting such a
large paired dataset in this language.

3 PROPOSED BAG OF TRICKS

Suppose we have an unpaired speech dataset Slow and a text dataset Tlow in the target low-resource
language Llow, together with a paired speech-text dataset Srich and Trich in another rich-resource
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language Lrich as auxiliary supervised training data. We assume that Llow and Lrich share some
common characters, such as Indonesian and French share some Latin alphabets. Slow is a multi-
speaker speech dataset whose audio quality is extremely low, as it is difficult to obtain enough
single-speaker clean data for the low-resource language. As for the auxiliary training data, since
there are many public speech audios available in rich-resource languages, we do not impose any
restrictions on the quality of these speech data. Our method aims to train the TTS model in the
language Llow using the above datasets. Besides, we need another clean speech dataset Sref to
provide the target timbre in our voice conversion model and it can be part of Srich or Slow. In this
section, we first describe the overall training pipeline. Then we introduce model designs and some
tricks used in each stage of the pipeline.

3.1 OVERALL TRAINING PIPELINE

Voice
Conversion

Supervised 
TTS & ASR

Unsupervised 
TTS & ASR

initialize

ASR

TTS

XE

TTS

ASR

MAE 
+ 

AdvLoss

N steps

N steps

Figure 1: The overall pipeline of our method.
The top part of the figure shows the iterative
back-translation in our method. The modules
marked in green with solid border are train-
able and those in purple with dotted border
are fixed. “XE” denotes cross-entropy loss;
“MAE” and “AdvLoss” denote mean abso-
lute error and adversarial loss.

As shown in Figure 1, the training pipeline of our
method consists of 3 stages: voice conversion, su-
pervised warm-up training and unsupervised back-
translation training. We put the detailed pseudo-code
algorithm of our training pipeline in Appendix A and
describe each stage in the following paragraphs.

Stage 1: Voice conversion. The low-resource
speech dataset Slow contains many speakers and
can be very noisy. We consider the variable and
noisy information, e.g., background noise, speaker
timbre, accent and some specific prosody, as the
text-independent information in speech. Although
some variable information is essential for certain
TTS tasks like emotional, expressive and person-
alized TTS, it would be an obstacle for unsuper-
vised TTS. The core purpose of unsupervised TTS is
to solve the information matching problem between
two modalities, i.e., speech and text, which are ac-
tually aligned by the pronunciation (or called con-
tent). The variable information in speech may in-
terfere with the crossmodal pronunciation informa-
tion matching in the unsupervised training stage and
make the model struggle to find aligned clues in the
text for this variable information. Therefore intuitively, if we can reduce the information gap be-
tween speech and text, our TTS and ASR model can achieve crossmodal pronunciation information
matching faster, and the unsupervised training process can then be stabilized. To this end, we apply
the cross-lingual voice conversion as the first stage. We train the voice conversion model on the
datasets Slow, Srich and a clean dataset Sref providing the reference speaker timbre and can be in
any language. Then we can normalize the variable and noisy speech information of audios in Slow

and Srich using the voice conversion model and denote the generated datasets as S′
low and S′

rich.

Stage 2: Supervised warm-up training. It is still very difficult to directly train unsupervised TTS
from scratch even though we have normalized the variable information in the speech dataset Slow.
To warm up the models for next unsupervised training, we train a sequence-to-sequence-based ASR
model, which is required in the following back-translation stage, and a non-autoregressive TTS
model using the auxiliary paired dataset Srich in a rich-resource language. This stage can provide
a better initialization for the model since there exist certain commonalities between written and
spoken formats in different languages3.

Stage 3: Unsupervised back-translation training. Back-translation, originating from neural ma-
chine translation, is one of the most effective ways to leverage monolingual data for translation. In
unsupervised TTS, back-translation (Sennrich et al., 2016; He et al., 2016; Ren et al., 2019b) lever-
ages the dual nature (He et al., 2016; Qin, 2020) of TTS and ASR tasks and develops the capability of

3For a low-resource language Llow, it is usually not difficult to find a rich-resource language Lrich which
is close to Llow.
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(a) Voice conversion model
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Figure 2: The voice conversion and TTS architecture in our method. In subfigure (a), “Disc” denotes
discriminator; in training, M1, M2 and M3 are all the same; in inference, M1 is the content provider
mel-spectrogram from the source speaker and M2 is the target speaker’s reference mel-spectrogram.
In subfigure (b), “LR” and “DP” denote length regulator and duration predictor.

transforming text to speech (TTS) and speech to text (ASR). We transform a speech sequence s into
a text sequence tpseudo using the ASR model, and then train the TTS model on the transformed pair
(tpseudo, s). Similarly, we also train the ASR model on the transformed pair (spseudo, t) generated by
the TTS model. The back-translation has two training directions, and as the training directions shift,
the accuracy of ASR and performance of TTS can be boosted iteratively. We show the performance
improvements as the back-translation training progresses in Appendix D.1.

3.2 VARIATIONAL VOICE CONVERSION MODEL WITH ENHANCED PRIOR

The new voice conversion (VC) model in Stage 1 is aimed at normalizing the variance and noisy
information in low-quality audios. It is based on self-supervised learning (SSL) audio representa-
tion (Polyak et al., 2021; van Niekerk et al., 2022), which has been proved to be very effective in
disentangling the content and timbre information. As shown in Figure 2a, the overall architecture
of our VC model is like an autoencoder. In training, the mel-spectrogram M1 and M2, which are
the same here, are fed into several information extraction modules to generate disentangled rep-
resentations. Specifically, 1) the pre-trained speaker encoder extracts the sentence-level speaker
embedding; 2) the pre-trained HuBERT (Hsu et al., 2021) extracts the frame-level SSL discrete rep-
resentations containing content (pronunciation) information; and 3) the posterior encoder extracts
the residual information. After the information decomposition, the speech decoder takes all the rep-
resentations as input and reconstructs the mel-spectrogram using a mean absolute error (MAE) and
a multi-length adversarial loss (Ladv) following Ye et al. (2022) and Chen et al. (2020). In inference,
we replace M1 with the reference speech which provides the target speaker timbre. In this way, the
generated speech can preserve the pronunciation information in M2 and transfer its timbre to M1.

However, besides the common merits of general VC including preserving content and converting
timbre, our model should also have the below properties to ensure its performance in our pipeline.
1) Our model should be cross-lingual. It should be able to normalize Slow and Srich which are in
different languages. 2) Our model should generate high-quality results. As the normalized speech
will be fed to the next two stages as the training target, its result would bound that of the whole
pipeline. 3) Our model should be robust to noisy and low-quality audio. Upon previous SSL-based
VC methods, we enable these properties of our model with several improvements:

Multilingual HuBERT. To enable the model to be cross-lingual, we employ a multilingual Hu-
BERT (Lee et al., 2021; Popuri et al., 2022) to extract the SSL discrete representations as the content
information, which is pre-trained on speech in multiple languages. We find it also generalizes well
to other unseen languages (see Appendix D.2). HuBERT does not need any paired data or speaker
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information, which is consistent with our task setting. Besides, we add a language ID input to the
speech decoder to indicate the language we need to generate, which can accurately model the pro-
nunciation differences among different languages given the same discrete representation, and make
up for the limited capacity of multilingual representations.

Variational encoder with flow-based enhanced prior. To improve model robustness and audio
quality, inspired by previous successful work in TTS (Ren et al., 2021b; Kim et al., 2021a), we
introduce a variational encoder with flow-based enhanced prior. In training, this encoder can “store”
the residual information, e.g., some irregular noises, time-varying timbre and prosody, that cannot
be encoded by other information extraction modules to the posterior distribution Dq , and uses a
normalizing flow to reshape the prior distribution Dp which needs to be close to Dq in terms of
KL-divergence. With normalizing flows, the KL-divergence no longer offers a simple closed-form
solution. So we estimate KL-divergence via Monte-Carlo method as in Ren et al. (2021b) and
Kim et al. (2021a). The reason why we need the normalizing flow is that simple Gaussian prior
distribution results in strong constraints on the posterior, which pushes the posterior distribution
towards the mean and limits diversity, while the distribution shaped by normalizing flows is more
flexible and provides the decoder with stronger prior. Besides, it can also provide the sampled
random variables with temporal dependency.

Information bottleneck. HuBERT representation is a kind of low-bitrate representation for speech
content and does not contain much non-lexical information such as speaker identity and emotion.
However, due to its discrete space bottleneck and way of training, we still cannot ensure it fully
disentangles the timbre information, and the remaining timbre information may degrade the voice
conversion quality in the inference stage. To further erase the speaker identity information, we
need to choose an appropriate input dimension for the content encoder (i.e., embedding layer for
HuBERT tokens), which can neither be too large nor too small. A large dimension may lead to
leakage of fine-grained identity information from the content encoder and a small one may result in
loss of pronunciation information. We put more details of our VC model in Appendix B.1.

3.3 TTS AND ASR MODELS

Previous unsupervised TTS works use an autoregressive (AR) TTS architecture such as Tacotron
2 (Shen et al., 2018) and TransformerTTS (Li et al., 2018), which automatically find the speech-
text alignment. However, such an AR TTS architecture is not robust and prone to word missing
and repeating problems as stated in Ren et al. (2019a). In this work, as shown in Figure 2b, we
adopt a non-autoregressive (NAR) TTS architecture (Ren et al., 2019a; 2021a). We mainly follow
PortaSpeech (Ren et al., 2021b), except that we replace the post-net in PortaSpeech with multi-
length adversarial training (Ye et al., 2022; Chen et al., 2020) to simplify the training pipeline while
keeping the naturalness of the generated mel-spectrogram. Instead of obtaining the ground-truth
duration information from Montreal Forced Aligner (MFA) (McAuliffe et al., 2017) as many non-
autoregressive TTS models (Ren et al., 2021a;b; Ye et al., 2022) do, we extract the speech-text align-
ment from the attention matrix generated by the ASR model, which simplifies the training pipeline
in our back-translation stage and removes the dependency upon external tools. Specifically, inspired
by GlowTTS (Kim et al., 2020), we extract the speech-text alignment by finding the monotonic path
of maximum probability over the attention matrix of our ASR model using the Viterbi decoding. To
enable the TTS model to generate speech in a different language, we add a language embedding to
the decoder and an extra language ID input is required to specify the language of the target speech.

Our ASR model is based on a sequence-to-sequence architecture with an LSTM-based encoder
and decoder. To generate more monotonic alignment for TTS training, we employ the location-
sensitive attention (Shen et al., 2018). Different from the TTS model, our ASR model is universal
to all languages and does not need any language embedding as input, which can generalize to new
languages better in our scenario. We put more details and model configurations of TTS and ASR
models in Appendix B.2 and B.3.

3.4 TRICKS IN BACK-TRANSLATION

Back-translation is a very critical step for unsupervised TTS training to leverage unpaired speech
and text data. In this subsection, we describe some back-translation strategies that can significantly
improve the effectiveness and efficiency of unsupervised TTS training.
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Curriculum learning. After warming up the ASR model in Stage 2 using Srich and Trich, we
can force the ASR model to transcribe the audio in Llow to the text in Lrich by initializing the
language embedding of Llow with that of Lrich. Considering the results of ASR are taken as the
input of TTS, we select some good transcriptions, whose pronunciation is very similar to the ground-
truth, for TTS training and discard bad ones in each round of back-translation. Apparently, we
cannot directly calculate the error rate between the transcription and ground-truth text since we
have no corresponding text for each audio. Therefore, to filter good recognition results during
iterative back-translation, we design a metric called focus rate (F) to evaluate the confidence of
ASR results, which is defined as F = 1

N

∑N
i=1 Ai,Pi

. In its definition, N denotes the number of
mel-spectrogram frames; Ai,j is ASR attention weights at the position of the i-th mel-spectrogram
frame and the j-th text token and satisfies

∑
Ai = 1; Pi is the text token index corresponding to the

i-th mel-spectrogram frame in the monotonic path of maximum probability decoded by the Viterbi
algorithm (Forney, 1973). A higher F means greater probability lies in the decoded monotonic path
and implies better speech-text monotonic alignment and higher confidence in the transcribed results.
In each round of the pseudo text generation process, we use F to select good ASR results whose F
is greater than a fixed threshold Fthres. Besides, we also store F for each pseudo text tpseudo and
replace tpseudo with new result in the next back-translation round only if F is increased.

Length augmentation. At the beginning of training in the low-resource language, short utterances
(text and speech) are easier for TTS and ASR models to fit and they are generally better at generating
short utterances rather than long ones. Besides, our curriculum learning strategy approximates the
quality of the generated text and filters bad results, forcing our model to keep more short utterances
than long ones. Consequently, our model becomes biased towards short utterances and may perform
very poorly for long sentences. To fix this issue, we introduce a length augmentation strategy.
In particular, we randomly concatenate two utterances (t1, t2)/(s1, s2) and their generated results
(s1pseudo, s2pseudo)/(t1pseudo, t2pseudo) with some probability pcat and obtain the generated pairs (tcat, scat

pseudo)
and (scat, tcat

pseudo) for back-translation training. Length augmentation helps the TTS and ASR models
generate long sentences better and become more robust to some long text inputs in inference.

Auxiliary supervised losses. If we only employ the back-translation loss in Stage 3, the model may
fail to find the correct speech-text alignment, leading to unsatisfied results and unstable training,
especially at the beginning of training. To solve this problem, apart from the back-translation loss
in the target low-resource language, we also keep the supervised training losses in the auxiliary
rich-resource language the same as those in Stage 2. We call them “auxiliary supervised losses”.
Specifically, in the process of training, we intersperse the rich resource language supervised training,
for both TTS and ASR, into the back-translation steps with some probability paux.

4 EXPERIMENTS AND RESULTS

In this section, we conduct experiments to evaluate the effectiveness of our proposed method for
unsupervised TTS. We first describe the experiment settings, show the results of our method, and
conduct some analyses of our method.

4.1 EXPERIMENTAL SETUP

Datasets. We choose the speech and text data from CommonVoice dataset (Ardila et al., 2019) for
training and English and Indonesian as the target low-resource languages4. We use French as the
rich-resource language unless otherwise stated. The experimental results of using other languages
as the rich-resource language are put in Appendix D.2. We split the target language data into two
halves. We take unpaired speech data from the first half and text data from the second, so as to guar-
antee the speech and text data are disjoint. We use LJSpeech (Ito, 2017) as the Sref to provide the
speaker timbre and suppress the background noise for the voice conversion model. For evaluation,
we choose 100 audio/text pairs in LJSpeech for English5 and 100 audio/text pairs in CommonVoice
(Indonesian subset) for Indonesian. For the speech data, we convert the raw waveform into mel-

4We choose English as one of the target languages since we can understand English and it is easy to evaluate,
although English is not a low-resource language.

5We use LJSpeech because it has fewer errors in text and speech pairing, while the data in CommonVoice
are very noisy and have much wrongly labeled text.
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Table 2: The comparison between our method and other existing unsupervised TTS methods. Liu
et al. (2022b) and Ni et al. (2022) are same in our settings.

Methods English Indonesian

MOS CER WER MOS CER WER

Supervised 4.11±0.07 0.016 0.052 4.07±0.08 0.024 0.068

Ren et al. (2019b) 3.32±0.12 0.393 0.684 3.25±0.11 0.392 0.702
Xu et al. (2020) 3.42±0.10 0.376 0.645 3.39±0.13 0.389 0.695

Liu et al. (2022b); Ni et al. (2022) 3.49±0.11 0.305 0.555 3.52±0.09 0.299 0.536

Ours 3.82±0.09 0.145 0.320 3.98±0.10 0.034 0.083

spectrograms with 80 ms frame size, 20 ms frame hop following Hsu et al. (2021). More details are
listed in Appendix C.1.

Training and evaluation. We train our VC, TTS, and ASR models on 1 NVIDIA A100 GPU witch
batch size 128. We use the Adam optimizer with β1 = 0.9, β2 = 0.98, ε = 10−9 and learning rate
2e-4. The training takes nearly 3 days. The output mel-spectrograms are converted to waveform
using a HiFi-GAN (Kong et al., 2020) pre-trained on LJSpeech (Ito, 2017). The focus rate Fthres,
Nsteps, pcat and paux in back-translation are set to 0.2, 20k, 0.2 and 0.2. For evaluation, we mainly
use MOS (mean opinion score) for audio quality, WER (word error rate), and CER (character error
rate) for the intelligibility of the voice (French & Steinberg, 1947) to verify if we can generate a
reasonable speech sequence. For mean opinion score evaluation, we keep the text content consis-
tent among different models so as to exclude other interference factors and only examine the audio
quality. We randomly choose 20 sentences from the test set and each audio is listened by at least
20 testers following Ren et al. (2019a; 2021a), who are all native English/Indonesian speakers. For
WER and CER, we first transcribe the sentences from the generated speech using open-sourced or
commercial ASR and calculate these metrics between them and the ground-truth text in the test set.
We use WeNet (Yao et al., 2021; Zhang et al., 2022) for English for fair comparison with future
works, since commercial ASR could be changed in the future; but we choose Azure ASR service6

for Indonesian since we cannot find any Indonesian open-sourced ASR that is accurate enough. In
analytical experiments, we also show the CER of our ASR model, which also indicates the perfor-
mance of our system since ASR and TTS are dependent on each other and boosted iteratively.

4.2 RESULTS AND ANALYSES

4.2.1 PERFORMANCE

We compare our method with previous works including Ren et al. (2019b), Xu et al. (2020), Liu
et al. (2022b) and Ni et al. (2022). For fair comparison, we make some modifications to all baseline
methods including unifying the training dataset, TTS acoustic model and vocoder (more detailed
modifications of each baseline method are put in Appendix C.2). The results are shown in Table 2.
We also evaluate the outputs of a supervised TTS model trained with paired target language data for
reference, and its results can be regarded as the upper bound. From the table, it can be seen that
our method achieves the best performance in both speech quality (MOS) and intelligibility (CER
and WER) in English and Indonesian. And very surprisingly, our method can even approach the
performance of the supervised model in Indonesian. A possible reason is that Indonesian is easier
to pronounce than English. These observations prove the effectiveness of our proposed tricks for
unsupervised TTS.

4.2.2 ABLATION STUDY

To analyze the effectiveness of each trick and component, we conduct some ablation stud-
ies on English. In addition to generated speech quality (MOS) and intelligibility (CER and
WER), we also analyze the character error rate of our ASR model (CER(ASR)). The results
are shown in Table 3. 1) From Row 2, it can be seen that our model can achieve better
performance after normalizing the speech variance including timbre and noise in our dataset.

6https://azure.microsoft.com/en-us/products/cognitive-services/
speech-to-text/
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Table 3: Ablation studies on the components of our method.
“Norm” denotes normalization via voice conversion model;
“NAR” denotes non-autoregressive TTS architecture; “CL” de-
notes curriculum learning; “Aug” denotes the length augmenta-
tion; “Aux” denotes the auxiliary supervised training loss; “BT”
denotes back-translation.

No. Settings MOS CER WER CER (ASR)

1 Ours 3.82±0.09 0.145 0.320 0.445

2 w/o. Norm 3.21±0.12 0.431 0.789 0.684
3 w/o. NAR 3.18±0.09 0.496 0.756 0.627
4 w/o. BT 3.39±0.10 0.376 0.706 /
5 w/o. CL 3.72±0.08 0.225 0.493 0.481
6 w/o. Aug 3.73±0.09 0.163 0.358 0.479
7 w/o. Aux 3.70±0.09 0.227 0.472 0.575

2) From Row 3, it can be seen
that the NAR TTS architecture
improves speech quality and in-
telligibility by a large margin,
as NAR TTS is more robust to
noisy speech and reduces some
bad cases in generated speech.
3) From Row 4, it can be seen
that back-translation is essential
to unsupervised TTS, which is
consistent with the findings of
previous works (Xu et al., 2020;
Ren et al., 2019b). 4) From Row
5, we can see that curriculum
learning can improve the training
effectiveness since it can filter out
bad pseudo transcripts and improve the training set quality for back-translation. 5) From Row 6, it
can be seen that our length augmentation strategy can improve the robustness to long text inputs in
inference. 6) From Row 7, we find that auxiliary supervised training loss can improve the perfor-
mance of both ASR and TTS by stabilizing the training. From the table, comparing other rows with
Row 1 that shows our model with all tricks, we have several observations.

4.2.3 ANALYSES ON VOICE CONVERSION MODEL

Table 4: The comparison between our unsupervised TTS with
others whose training speech is normalized with different voice
conversion methods. “Var. Enc.” represents our variational en-
coder with flow-based enhanced prior; “Chn” denotes the content
information bottleneck channels.

No. Var. Enc. Chn. MOS CER WER CER (ASR)

1 ✓ 16 3.82±0.09 0.145 0.320 0.445

2 ✗ 16 3.75±0.10 0.155 0.351 0.500

3 ✓ 8 3.69±0.10 0.191 0.384 0.496
4 ✓ 32 3.79±0.09 0.146 0.342 0.478
5 ✓ 128 3.70±0.11 0.199 0.396 0.507

With verified effectiveness of
normalization via the voice con-
version model as demonstrated
in Section 4.2.2, we conduct
more analyses on our proposed
voice conversion model, includ-
ing the effects of different infor-
mation bottleneck channels and
the flow-based enhanced prior.
The results are shown in Table 4.
It can be observed that an appro-
priate size of bottleneck chan-
nels is crucial for the perfor-
mance of the voice conversion
model, with a large bottleneck resulting in timbre information leakage and a small bottleneck lead-
ing to pronunciation information loss. Besides, our flow-based enhanced prior can improve the
quality of converted speech, since it has make fewer assumptions about the prior distribution as we
mentioned in Section 3.2.

5 CONCLUSION

In this work, we proposed an unsupervised method for TTS by leveraging low-quality and noisy un-
paired speech and text data in the target language and paired data in other rich-resource languages.
Our method encloses several practical tricks to realize unsupervised text-to-speech, including nor-
malizing variable and noisy information in speech data, curriculum learning, length augmentation,
and auxiliary supervised training. We have also found that the non-autoregressive TTS architecture
can significantly relieve robustness issues in unsupervised settings. We conducted experiments on
CommonVoice dataset, taking English and Indonesian as the target languages, and have found that
our method can achieve high audio quality in terms of MOS, and high intelligibility in terms of
WER and CER, demonstrating remarkable effectiveness. Further analyses have well verified the
importance of each trick of our method.
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Aäron Van Den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew W Senior, and Koray Kavukcuoglu. Wavenet: A generative model for
raw audio. SSW, 2016.
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Appendices

A TRAINING ALGORITHM

The detailed unsupervised training algorithm is shown in Algorithm 1.

Algorithm 1 Unsupervised TTS Training
1: Input: paired dataset in rich-resource language Srich and Trich; unpaired speech and text data in low-

resource language Slow and Tlow; single-speaker speech dataset Sref containing reference speaker for voice
conversion; pre-trained multilingual HuBERT model Mh; pre-trained speaker encoder Mspk.

2: Initialize: multilingual TTS model MTTS and ASR model MASR; current unsupervised training step t = 0;
total unsupervised training steps Ttotal; number of steps for each TTS or ASR stage Nstep.

3: Train our proposed voice conversion model with Srich, Slow and Sref , and use the Mh and Mspk to extract
HuBERT and speaker representations.

4: Convert the timbre of all speech samples in Srich and Slow to that of the speech in Sref and obtain the
converted S′

rich and S′
low. {Sec. 3.2}

5: Train MASR and MTTS using S′
rich and Trich.

6: repeat
7: Convert all samples s in S′

low to pseudo text tpseudo.
8: Select pseudo training pairs (tpseudo, s) satisfying F > Fthres and

obtain (Tpseudo, S′). {Curriculum learning in Sec. 3.4}
9: for N in 0 to Nsteps do

10: if Random() ≤ paux then
11: Sample D ← (trich, s) from (Trich, S

′
rich). {Auxiliary loss in Sec. 3.4}

12: else
13: Sample D ← (tpseudo, s) from (Tpseudo, S

′).
14: if Random() ≤ pcat then
15: Sample D′ ← (t2pseudo, s

2) from (Tpseudo, S
′).

16: D ← (Concat(tpseudo, t
2
pseudo), Concat(s, s2)) {Length augmentation in Sec. 3.4}

17: end if
18: end if
19: Train MTTS using D.
20: end for
21: for N in 0 to Nsteps do
22: Convert all samples t in Tlow to pseudo speech spseudo and obtain (Spseudo, Tlow).
23: if Random() ≤ paux then
24: Sample D ← (srich, t) from (S′

rich, Trich). {Auxiliary loss in Sec. 3.4}
25: else
26: Sample D ← (spseudo, t) from (Spseudo, Tlow).
27: if Random() ≤ pcat then
28: Sample D′ ← (s2pseudo, t

2) from (Spseudo, Tlow).
29: D ← (Concat(spseudo, s

2
pseudo), Concat(t, t2)) {Length augmentation in Sec. 3.4}

30: end if
31: end if
32: Train MASR using D.
33: end for
34: t← t+ 1
35: until t > Ttotal

B MODEL DETAILS AND CONFIGURATIONS

In this section, we put more details of models including voice conversion (VC), text-to-speech
(TTS), and automatic speech recognition (ASR) models, and also the hyper-parameters we used
in our experiments.

B.1 VC MODEL

Our proposed VC model takes two mel-spectrograms (content provider M1 and timbre reference
M2) as inputs and outputs the converted mel-spectrogram M3. Firstly, M1 is fed into a pre-trained
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speaker encoder7 to extract the speaker embedding Hspk. Secondly, M2 is fed into a pre-trained
multilingual HuBERT8, which is pre-trained with three languages, and extract the HuBERT discrete
frame-level representation Hling. Thirdly, M2 is taken to the posterior encoder, which generates
a multivariate Gaussian distribution as the posterior in our variational VC model. Instead of di-
rectly employing Gaussian distribution, we introduce a small volume-preserving normalizing flow
to model the prior distribution. A latent z is sampled from the posterior distribution (in training)
or prior distribution (in inference). Finally, we add Hspk, Hling, z and language embedding of M2

together (all of them have the same channel size C = 192) and feed the result hidden states into the
speech decoder to generate the target speech. Besides, we introduce a multi-length discriminator to
distinguish between the output generated by the model and the ground truth mel-spectrogram.

The loss terms of the voice conversion model consist of 1) reconstruction loss of mel-spectrotram
LMAE: mean absolute error between the generated and ground-truth mel-spectogram; 2) the KL-
divergence of prior and posterior distributions: LKL = log qϕ(z|x)− log pθ̄(z), where z ∼ qϕ(z|x);
and 3) the adversarial training loss introduced by the multi-length discriminator: Ladv. The final
weighted total loss is Ltotal = λ1LMAE + λ2LKL + λ3Ladv. In our experiments, we set λ1 = λ2 =
λ3 = 1.0.

The detailed structure of each module is introduced in the following subsubsections.

B.1.1 MULTILINGUAL HUBERT

Multilingual HuBERT (Lee et al., 2021) is trained on English (En), Spanish (Es), and French (Fr)
100k subsets of the VoxPopuli dataset (Wang et al., 2021). VoxPopuli contains unlabeled speech
data for 23 languages, and Lee et al. (2021) use the 4.5k hrs of unlabeled speech for En, Es, and
Fr, totaling 13.5k hours. We extract the HuBERT features from the 11-th layer of the third-iteration
HuBERT model and discretize them using the pre-trained K-means model to obtain the discrete
representations Hling.

B.1.2 POSTERIOR ENCODER

The structure of posterior encoder is similar with the encoder in the variational generator of Por-
taSpeech (Ren et al., 2021b), which is composed of a 1D-convolution with stride 4 followed by
ReLU activation (Glorot et al., 2011) and layer normalization (Ba et al., 2016), and a non-causal
WaveNet (Van Den Oord et al., 2016), as shown in Figure 3a. The number of encoder layers,
WaveNet channel size and kernel size are 8, 192 and 5. The outputs of posterior encoder is the
parameters (µq and σq) of the posterior distribution N(µq, σq) and the latent z is sampled from
N(µq, σq), whose latent size is set to 32.

B.1.3 VOLUME-PRESERVING (VP) NORMALIZING FLOW

Following Kim et al. (2021b) and Ren et al. (2021b), we use volume-preserving normalizing flow as
the prior distribution generator since it does not need to consider the Jacobian term when calculating
the data log-likelihood and is powerful enough for modeling the prior, as shown in Figure 3c. The
normalizing flow transforms simple distributions (e.g., Gaussian distribution) to complex distribu-
tions through a series of K invertible mappings, which is a stack of WaveNet (van den Oord et al.)
residual blocks with dilation 1. Then we take the complex distributions as the prior of the speech
decoder. When introducing normalizing flow-based enhanced prior, the optimization objective of
the mel-spectrogram generator becomes:

log p(x) ≥ Eqϕ(z|x)[log pθ(x|z)]−KL(qϕ(z|x)|pθ̄(z)) ≡ L(ϕ, θ, θ̄), (1)

where ϕ, θ and θ̄ denote the model parameters of the posterior encoder, speech decoder and the
normalizing flow-based enhanced prior, respectively. Due to the introduction of normalizing flows,
the KL term in Equation 1 no longer offers a simple closed-form solution. So we estimate the
expectation w.r.t. qϕ(z|x) via Monte-Carlo method by modifying the KL term:

KL(qϕ(z|x)|pθ̄(z)) = Eqϕ(z|x)[log qϕ(z|x)− log pθ̄(z)]. (2)

7https://github.com/resemble-ai/Resemblyzer
8https://github.com/facebookresearch/fairseq/blob/main/examples/speech_

to_speech/docs/textless_s2st_real_data.md
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(d) Content encoder layers.

Figure 3: Modules in our voice conversion model.

In training, the posterior distribution N(µq, σq) is encoded by the encoder of the posterior encoder.
Then z is sampled from the posterior distribution using reparameterization and is passed to the
speech decoder. In the meanwhile, the posterior distribution is fed into the VP normalizing flow to
convert it to a standard normal distribution (the middle dotted line). In inference, VP normalizing
flow converts a sample in the standard normal distribution into a sample z and we pass the z to the
speech decoder.

Our VP normalizing flow consists of 4 flow steps, each of which has 4 WaveNet layers, whose
channel size and kernel size are set to 64 and 3.

B.1.4 CONTENT ENCODER

The content encoder is stacks of feed-forward Transformer (Vaswani et al., 2017) layers with relative
position encoding (Shaw et al., 2018), as shown in Figure 3d. The information bottleneck is located
in the first layer of the content encoder (the embedding layer of HuBERT tokens). We set the channel
size of each embedding to 16 as default.

B.1.5 SPEECH DECODER

The speech decoder, as shown in Figure 3b, consists of a non-causal WaveNet and a 1D transposed
convolution with stride 4, also followed by ReLU and layer normalization. The number of decoder
layers, WaveNet channel size and kernel size are set to 4, 192 and 5.
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B.1.6 MULTI-LENGTH DISCRIMINATOR
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(a) Multi-window clips in mel-spectrogram.
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(b) Discriminator structure.

Figure 4: Multi-length Discriminator.

Inspired by Ye et al. (2022), our multi-length discriminator is an ensemble of multiple CNN-based
discriminators, which evaluate the mel-spectrogram based on random windows of different lengths,
as shown in Figure 4. In our experiments, we train three CNN-based discriminators which observe
random mel-spectrogram clips with lengths of 32, 64, and 128 frames. The structure of the CNN-
based discriminator is shown in Figure 4b. It consists of N+1 2D-convolutional layers, each of
which is followed by a Leaky ReLU activation and drop-out layer. The latter N convolutional layers
are additionally followed by an instance normalization (Ulyanov et al., 2016) layer. After the con-
volutional layers, a linear layer projects the hidden states of the mel-spectrogram slice to a scalar,
which is the prediction that the input mel-spectrogram is true or fake. In our experiments, we set
N=2 and the channel size of these discriminators to 32.

B.2 TTS MODEL

Our TTS model architecture follows PortaSpeech (Ren et al., 2021b) except that 1) we replace the
post-net in PortaSpeech with multi- length adversarial training, which is the same as the adversarial
training in our voice conversion model in Appendix B.1. 2) We add a language embedding layer
to the speech decoder, indicating the language of the speech that will be generated. 3) We use a
simple character encoder like FastSpeech (Ren et al., 2019a; 2021a) instead of the mixed linguistic
encoders for simplicity. The detailed model architecture and hyper-parameters of posterior encoder,
normalizing flow, speech decoder and multi-length discriminators are the same as those in the voice
conversion model in Appendix B.1. The structures of text encoder and duration predictor are the
same as those in Ren et al. (2021b), with channel size 192, kernel size 5 and number of layers 4.

B.3 ASR MODEL

We adopt the architecture of Tacotron 2 (Shen et al., 2018) for our ASR model, since its location-
sensitive attention can generate close-to-diagonal and monotonic alignment between speech and
text. We replace the character/phoneme embedding of the encoder in Tacotron 2 with a speech CNN-
based pre-net with stride 4 to enable speech information encoding. For the decoder side, we use the
character embedding as the input layer and the softmax as the output layer to adapt the decoder to the
character sequence. We set the hidden size of encoder RNN to 512 and the number of convolution
stacks to 5; the hidden size of decoder RNN and attention RNN are both set to 1024; the channel of
decoder attention is set to 512. We also train a Transformer-based (Vaswani et al., 2017) language
model and jointly beam search decode the recognition results X using the ASR model pASR(X|S)
and language model pLM(X) to maximize the probability logpASR(X|S) + λLMlogpLM(X), where
λLM is the weight of language model and it is set to 0.2 in this work. The beam size of beam search
decoding is set to 5.
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C MORE EXPERIMENTAL DETAILS

In this section, we describe more experimental details for reproducibility.

C.1 DATASETS

We select subsets of English, French and Indonesian from CommonVoice (Ardila et al., 2019)
dataset. We choose subsets of about 200k utterances for English and French and all data (about
20k utterances) for Indonesian. We randomly select 100 utterances in English and Indonesian for
validation and another 100 utterances in Indonesian for testing. The test set of English is randomly
selected from LJSpeech (Ito, 2017). We split the target language data into two halves according to
utterance ID: we take unpaired speech data from those with odd ID and text data from those with
even ID, so as to guarantee the speech and text data are disjoint.

C.2 BASELINES

For fair comparison, we make some modifications to all baseline methods as follows:

• We adopt training data consisting of paired French (as auxiliary rich-resource language)
data and unpaired English/Indonesian (as target low-resource language) data. Specifically,
for Ren et al. (2019b) and Xu et al. (2020), we warmup ASR and TTS in these methods us-
ing rich-resource language data before back-translation; for Liu et al. (2022b) and Ni et al.
(2022), we initialize the unsupervised ASR model using a modified CTC loss (Graves et al.,
2006) with rich-resource language data before unsupervised training and also initialize the
TTS model using this data.

• We directly use character sequence as TTS input without any lexicon and G2P tools.

• We extract the speaker embeddings using the same pre-trained speaker encoder9 and add
them to the TTS model to indicate the speaker information (timbre) since our dataset is
multi-speaker.

• We replace all baseline TTS models with NAR architecture the same as our method since
AR architecture is very sensitive to noisy audio and cannot produce any meaningful results
in our settings.

• We use the same voice conversion model (described in Section 3.2) to convert ground-truth
audios and all baselines’ outputs to the same person’s timbre from Sref .

• We use the same vocoder, HiFi-GAN (Kong et al., 2020), to convert mel-spectrogram to
the waveform.

D MORE EXPERIMENTAL RESULTS

D.1 PERFORMANCE CHANGES IN BACK-TRANSLATION TRAINING

To verify the accuracy of ASR and the performance of TTS can be boosted iteratively as the training
directions shift, we plot the accuracy of TTS and ASR results in Figure 5. From the figure, we can
see that with the training of the model (the training directions shift every Nsteps = 20000 steps), the
error rates of ASR and TTS results gradually drop until convergence.

D.2 USE OTHER RICH-RESOURCE AUXILIARY LANGUAGES

We explore how different rich-resource auxiliary languages can affect the target language’s per-
formance. In addition to French, we use other languages including German, Dutch, Spanish, and
Portuguese as the rich-resource auxiliary language to train our unsupervised TTS model. For fair
comparison, we use the same training data size for all rich-resource languages (80k pairs speech-
text subset in each language from CommonVoice). We choose English as the target low-resource
language. The results are shown in Table 5. It can be seen that using German as the rich-resource

9https://github.com/resemble-ai/Resemblyzer
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(a) CER of ASR results.
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(b) CER of TTS results.
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(c) WER of TTS results.

Figure 5: Accuracy of unsupervised English TTS and ASR models.

language achieves the best performance. The possible reason is that the pronunciation distance be-
tween English and German is closer than other languages as they both belong to west Germanic
languages. Though Dutch also belongs to west Germanic languages, it does not perform very well,
which might be due to its bad data quality. Then we combine data from all these languages and
find that it achieves very strong results and outperforms others that use only one auxiliary language.
Besides, we observe that our method performs very well not only in English, French and Spanish,
which are used to pre-trained the multilingual HuBERT, but also in other unseen languages, which
verifies the generalization of our voice conversion model and the whole unsupervised TTS pipeline.

Table 5: Performances of unsupervised English TTS and ASR models which are initialized with
supervised training in different rich-resource auxiliary languages.

Auxiliary languages CER WER CER (ASR)

French 0.195 0.377 0.475
German 0.113 0.264 0.370
Dutch 0.257 0.522 0.547

Spanish 0.207 0.423 0.539
Portuguese 0.225 0.468 0.540

All 0.068 0.168 0.288

D.3 ANALYSES ON FOCUS RATE F

To verify the effectiveness of focus rate F we propose in Section 3.4, we calculate F and CER
on English test set in our model training process. We plot the curves to explore the correlation
between them in Figure 6. From the figure we can see that the focus rate F is negatively related
to recognition accuracy, which means it is reasonable to use it as the indicator for filtering ASR
transcriptions (higher F indicates lower CER).
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Figure 6: F and CER evaluated on English test set in the training process.
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Table 6: The results of our method trained with different text unpaired dataset.

Dataset MOS CER WER

Supervised 4.11±0.07 0.016 0.052

Ours (CommonVoice text) 3.82±0.09 0.145 0.320
Ours (WMT text) 3.74±0.08 0.181 0.380

D.4 USE OTHER TEXT UNPAIRED DATASET

We train our model using the audio data from the CommonVoice English subset which is the same as
the original version of the paper and the text data from WMT16 (Bojar et al., 2016) English training
set to make the domains of unpaired audio and text very different. We keep the test set the same as
the original paper (LJSpeech subset). The results are shown in Table 6. From the table, it can be
seen that the performance drops a bit (∼0.036 and ∼0.06 increasing in CER and WER) due to the
domain gap between the text and speech unpaired data.

E POTENTIAL NEGATIVE SOCIETAL IMPACTS

Unsupervised TTS lowers the requirements for speech synthesis service deployment (only needs
unpaired speech and text data) and synthesizes high-quality speech voice, which may cause unem-
ployment for people with related occupations such as broadcasters and radio hosts. In addition, there
is the potential for harm from non-consensual voice cloning or the generation of fake media and the
voices of the speakers in the recordings might be overused than they expect.
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