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Abstract

Policy gradient (PG) methods are the backbone of many reinforcement learning
algorithms due to their good performance in policy optimization problems. As a
gradient-based approach, PG methods typically rely on knowledge of the system
dynamics. However, this information is not always available, and in such cases,
trajectory data can be utilized to approximate first-order information. When the
data are noisy, gradient estimates become inaccurate and a formal investigation that
encompasses uncertainty estimation and the analysis of its propagation through the
algorithm is currently missing. To address this, our work focuses on the Linear
Quadratic Regulator (LQR) problem for systems subject to additive stochastic
noise. After briefly summarizing the state of the art for cases with a known
model, we focus on scenarios where the system dynamics are unknown, and
approximate gradient information is obtained using zeroth-order optimization
techniques. We analyze the theoretical properties by computing the error in the
estimated gradient and examining how this error affects the convergence of PG
algorithms. Additionally, we provide global convergence guarantees for various
versions of PG methods, including those employing adaptive step sizes and variance
reduction techniques, which help increase the convergence rate and reduce sample
complexity. One contribution of this work is the study of the robustness of model-
free PG methods, aiming to identify their limitations in the presence of noise and
propose improvements to enhance their applicability. Numerical simulations show
that these theoretical analyses provide valuable guidance in tuning the algorithm
parameters, thereby making these methods more reliable in practically relevant
scenarios.

1 Introduction

Reinforcement learning [3, 4, 35] has demonstrated a significant influence across a wide range
of applications. A key concept within reinforcement learning is policy optimization, where the
policy is parameterized and directly optimized over based on a predefined performance metric [16].
Several successful policy optimization methods have been developed, including policy gradient [36],
actor-critic [19], proximal policy optimization [29]. This work focuses on policy gradient (PG)
methods, which are based on the simple idea of minimizing a cost function over the parameterized
policy by improving performance through a gradient descent-type update. Studying the convergence

18th European Workshop on Reinforcement Learning (EWRL 2025).



properties of PG methods, particularly their global convergence to the optimal policy, is an active
area of research [6, 10, 11, 41, 42, 45, 46, 15]. For instance, PG methods have been applied in [41] to
solve H2 cost function subject to H∞ constraints, and they have been applied in [42] to the Markov
decision processes.
The application of reinforcement learning to the linear quadratic regulator (LQR) problem has been
extensively explored due to its value as an analytically tractable benchmark, making it ideal for
studying reinforcement learning in environments with continuous state and action spaces [2, 8, 10,
20, 24, 28, 38, 14]. Policy gradient methods have gained attention in recent studies focusing on the
LQR problem. Interest in applying these methods to the LQR setting increased significantly after the
work in [10] demonstrated global convergence properties of policy gradient methods applied to the
deterministic LQR problem. In [46], the performance limitations of PG applied to LQR problem are
studied from a control-theoretic perspective. The work [45] explores a primal-dual policy gradient
method to solve the constrained LQR problem.
Solving the LQR problem requires the availability of a model of the system, as it is the case in
[41, 42, 45, 46], where the analysis assumes knowledge of the exact model. However, in real-
world applications, a complete system description is often unavailable, making it necessary to
combine policy optimization schemes with data-driven techniques. To address this challenge, various
approaches have been developed. For instance, methods like those in [1, 5, 31] combine system
identification with model-based LQR design and use regret as a performance metric of the learning
process. It is also possible to use the same two-step approach to solve the LQR problem with
gradient-based schemes. The work [33] integrates recursive least squares with policy iteration
optimization, while [30] combines recursive least squares with the policy gradient methods. Both
works assume noise-free data, whereas [34, 43] extend these frameworks to bounded-noise settings.
These approaches are termed indirect data-driven methods, because first data is used to estimate
a model, which is then integrated into a model-based certainty equivalence design. An alternative
category is direct data-driven control, which directly uses data to design the controller, bypassing
the intermediate model estimation process. For instance, a model-free policy iteration algorithm
is proposed in [39]. Several model-free policy gradient methods have also been introduced and
theoretically analyzed. In [10], model-free PG methods are proposed and formulated using zeroth-
order optimization to estimate gradients for the LQR cost from finite but noise-free system trajectories.
Similarly, in [37], PG methods are applied to a continuous-time output feedback system using
zeroth-order gradient estimation alongside variance reduction techniques. The work [44] focuses
on stabilizing the unknown system using policy gradient methods. In the aforementioned direct
data-driven works [10, 37, 44], only the case where the system’s trajectories are noise-free is studied.
However, it is essential to analyze what happens when gradients and other objects involved in the
policy update are estimated using noisy data. In [11], Model-free PG methods are applied to the
linear system with multiplicative noise, addressing uncertainty in the system matrix. The works
[37, 44, 11] all build on [10], leveraging the inherent robustness of PG methods: informally, when
the gradient estimation error is sufficiently small, one can still guarantee a decrease in the cost
function. Another line of research tackles the model-free LQR problem differently. The work
[25] derives convergence properties by carefully selecting step sizes when facing uncertainty of the
gradient. Follow-up works [27, 22] refine the analysis by incorporating alternative gradient estimation
techniques, yielding improved sample efficiency and robustness guarantees. In those works, the noise
is stochastic but bounded. These results assume stochastic but bounded noise. There are also studies
considering stochastic unbounded noise. For example, [13] applies PG methods to finite-horizon
LQR, while [17, 40] propose model-free first-order methods, which estimate individual components
of the gradient and differ from the aforementioned zeroth-order approaches. To date, there is no
comprehensive analysis that jointly addresses the uncertainty introduced by the estimation process
using the zeroth-order method and its propagation through the algorithm, and provides probabilistic
convergence guarantees and sample complexity bounds for the infinite-horizon LQR problem.
In this work, we analyze the sample complexity and robustness to noise of PG methods for the
model-free LQR with additive stochastic noise. Due to the presence of noise with unbounded support,
we consider an average infinite-horizon cost. We first characterize the properties of this cost function
and analyze model-based versions of a few PG algorithms. For the gradient descent (GD) and
natural policy gradient (NPG) methods, we propose an adaptive stepsize scheme that has a provable
faster convergence rate compared to the fixed step size methods discussed in [10, 11, 37]. Then, for
both the model-free gradient descent and natural policy gradient methods, we employ zeroth-order
optimization to approximate the gradient and covariance from noisy data. To handle the challenge
of unbounded gradient estimates due to unbounded noise, we introduce an event-based analysis,
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extending the approach of [13]. We provide convergence guarantees for these model-free PG methods
with a sample complexity that takes into account the noisy source of estimation error. Furthermore, we
introduce and analyze a variance reduction technique within the zeroth-order optimization framework,
and prove that this achieves a guaranteed improvement in the sample complexity. Even though
variance reduction techniques for model-free LQR were already presented in [37], the contribution
here represents a significant extension as we work in the noisy scenario and we are able to provide
a provable improvement in the number of required samples. Finally, we provide a comparative
analysis of model-free PG methods with and without noisy data, to demonstrate the importance of the
analysis considering noise, offer guidance of parameter tuning in applying policy gradient methods
to applications, and also illustrate the improvement of introducing adaptive step sizes and variance
reduction. Our analysis shows that model-free PG with stochastic data enjoys qualitatively similar
convergence guarantees to those in the noise-free scenario, but it points out limitations in terms of the
number of samples necessaries, stepsize ranges, and convergence rate that are caused by noise.

The paper is organized as follows. Section 2 introduces the problem setting and provides some
preliminaries. Section 3 studies convergence properties of a few representative PG methods for
the average cost case and proposes their extension to adaptive stepsizes. Section 4 investigates
convergence and sample complexity of model-free versions of gradient descent and natural policy
gradient methods by placing particular emphasis on the effect of noisy data on the algorithms, together
with adaptive step sizes and variance reduction techniques. Section 5 serves as a concluding summary
of the work. Numerical results are provided to illustrate the main findings of this work by examining
the behavior of the analyzed policy gradient methods under varying noise levels and algorithmic
configurations. Due to page limitations, the detailed results are presented in the appendix D.

Notations

We denote by A ⪰ 0 and A ≻ 0 a positive semidefinite and positive definite matrix A, respectively.
The symbols λ1(A) denote the smallest eigenvalue of the matrix A. For matrices, ∥·∥F , ∥·∥ denote
the Frobenius norm and induced 2-norm, respectively. For vectors, ∥·∥ denotes the Euclidean norm.
I represents the identity matrix. N (0,Σ) denotes a Gaussian distribution with 0 mean and covariance
Σ ≻ 0.

2 Preliminaries

In this work, we consider the following averaged infinite horizon optimal control problem, where the
plant is subject to additive stochastic noise:

min
ut

lim
T→+∞

1

T
E

x0,wt

T−1∑
t=0

(
x⊤
t Qxt + u⊤

t Rut

)
, (1a)

s. t. xt+1 = Axt +But + wt, x0 ∼ D, (1b)

where xt ∈ Rnx is the system state and ut ∈ Rnu is the system input; A ∈ Rnx×nx , B ∈ Rnx×nu ,
(A,B) is unknown but stabilizable; wt ∼ N (0,Σw); Q,R ≻ 0 are the weighting matrix. We define
the state covariance at the initial time as Σ0 := E

x0

[
x0x

⊤
0

]
and then D := N (0,Σ0).

The input ut is parameterized as a linear state feedback control with gain K, i.e. ut = Kxt. The
optimal control cost only depends on K and is denoted by C:

C(K) := lim
T→+∞

1

T
E

x0,wt

T−1∑
t=0

x⊤
t

(
Q+K⊤RK

)︸ ︷︷ ︸
=:QK

xt. (2)

We introduce basic properties of problem (1) that are particularly relevant when policy gradient
methods are used to solve it. While these results are mostly well-known, they form the foundation for
the main results of this work in Sections 3 and 4. The state response xt for t ≥ 1 associated with any
gain K is given by:

xt = (AK)tx0 +

t−1∑
k=0

(AK)t−kwk−1. (3)
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We define the set S as the set of matrices K ∈ Rnx×nu that stabilizes the system (A,B), meaning
that the matrix AK := A+BK is Schur stable:

S :=
{
K ∈ Rnx×nu |∥AK∥ < 1

}
. (4)

Now, we introduce some important definitions associated with K ∈ S . The covariance matrix at time
t is defined as Σt := E

x0,wt

[xtx
⊤
t ]. From this definition and the state response given in (3), we obtain:

Σt+1 = AKΣtA
⊤
K +Σw, t ∈ Z+. (5)

The average covariance matrix associated with K ∈ S is defined as:

ΣK := lim
T→+∞

1

T

T−1∑
t=0

Σt. (6)

The cost function C(K) associated with K ∈ S can be equivalently expressed as:

C(K) = Tr (PKΣw) = Tr (QKΣK) , (7)

where PK is defined as the solution of the following Lyapunov equation:

PK = QK +A⊤
KPKAK . (8)

From the expression of the cost function (7) and well-known results [21], the optimal K∗, which
minimizes the cost function C, is given by:

K∗ = −(R+B⊤PK∗B)−1B⊤PK∗A, (9a)

PK∗ = Q+A⊤PK∗A−A⊤PK∗B(R+B⊤PK∗B)−1B⊤PK∗A. (9b)

The average covariance matrix associated with the optimal K∗ is denoted as ΣK∗ . Using (7), the
gradient of C(K) with K ∈ S can be expressed as follows [46]:

∇C(K) = 2EKΣK , (10)

where EK :=
(
R+B⊤PKB

)
K +B⊤PKA.

It is known that the cost function C defined in (2) is generally non-convex. In the context of non-
convex optimization, the convergence to the optimal solution of gradient descent cannot usually
be guaranteed. However, the cost function C(K) satisfies a special condition known as gradient
domination.

Lemma 1 (Gradient Domination) The function C on the set S is gradient dominated. That is, for
any K ∈ S, the following inequality holds:

C(K)− C(K∗) ≤ µ∥∇C(K)∥2F , (11)

with µ := 1
4∥ΣK∗∥∥Σ−2

w ∥∥R−1∥.

From (11) and the fact that Σw ≻ 0, it follows that the cost function C has a unique minimizer
and no other stationary points. The proof of Lemma 1 is provided in [32, Appendix A.1], and is a
straightforward extension of [10, Lemma 3] to the averaged infinite horizon setting considered here.

Lemma 2 (Almost Smoothness on S) For any K,K ′ ∈ S, the following inequality holds:∣∣C(K ′)− C(K)− 2Tr
(
(K ′ −K)⊤EKΣK′

)∣∣ ≤ ∥ΣK′∥
∥∥R+B⊤PKB

∥∥ ∥K ′ −K∥2F , (12)

The proof of Lemma 2 is provided in [32, Appendix A.2], which is an extension of [10, Lemma 6].
To understand why (12) is referred to as almost smoothness, assume additionally that: we can approx-
imate ΣK with ΣK′ , i.e. ΣK ≈ ΣK′ , and that we can upper bound the term ∥ΣK∥

∥∥R+B⊤PKB
∥∥

by L. Then, recalling (12), we see that (10) is equivalent to:∣∣C(K ′)− C(K)− Tr
(
(K ′ −K)⊤∇C(K)

)∣∣ ≤ L ∥K ′ −K∥2F , ∀K, K ′ ∈ S.
which is the classic descent lemma for a smooth matrix function C. This approximation allows us to
interpret the cost function as nearly smooth when the aforementioned assumptions are satisfied. Since
we aim to use (12) to develop a gradient descent algorithm, it is crucial to quantify the relationship
between ΣK and ΣK′ and find the upper bound L, which is discussed in Appendix A.
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3 Convergence of Model-based Policy Gradient

In this section, we show the global convergence properties of various model-based policy gradient
methods, that is, algorithms that operate with perfect knowledge of the system matrices (A,B). We
first present the theorem guaranteeing the convergence of the model-based gradient descent method,
based on the properties introduced in (12).

Theorem 1 (Gradient Descent with Adaptive Step Size) Suppose the initial K0 ∈ S, and con-
sider the gradient descent iteration

Ki+1 = Ki − ηi∇C(Ki), ∀i ∈ Z+, (13)

where the step size satisfies ηi ≤ hGD(C(Ki)), and hGD(C(Ki)) is defined in (36) in the proof.
Then, the following relationship holds:

C(Ki+1)− C(K∗) ≤
(
1− 2ηiλ1(R)λ2

1(Σw)

∥ΣK∗∥

)
(C(Ki)− C(K∗)). (14)

For ηi = hGD(C(Ki)), i ∈ Z+ and given any accuracy gap ϵ > 0, if the number of iterations N
satisfies:

N ≥ ∥ΣK∗∥
2η0λ1(R)λ2

1(Σw)
log

C(K0)− C(K∗)

ϵ
,

then C(KN )− C(K∗) ≤ ϵ.

The proof of Theorem 1 can be found in Appendix B.1. From Theorem 1, we see that the gradient
descent method can achieve any desired accuracy ϵ within a finite number of iterations N and
converges linearly. According to Theorem 1, the step size is adaptive according to the cost C(Ki) at
the current iterate Ki. A similar analysis can be conducted for the other two policy gradient methods:
the natural policy gradient method: Ki+1 = Ki − η∇C(Ki)Σ

−1
Ki

and the Gauss-Newton method:
Ki+1 = Ki − η(R + B⊤PKi

B)−1∇C(Ki)Σ
−1
Ki

. Theoretical results supporting this analysis are
provided in Theorem 5 and Theorem 6 in Appendix B.

Lack of robustness of model-based PG methods

The guarantees on PG methods reviewed in the previous sections rely on the availability of an
exact system model. When this is not available, gradients and covariances are estimated from data
trajectories, and for plants such as (1b), they will be subject to stochastic errors. We exemplify with
a simple toy example the performance of a policy GD method when noisy gradients are used. We
consider a linear time-invariant (LTI) system described by the following dynamics [8, 39]:

xt+1 =

[
1.01 0.01 0
0.01 1.01 0.01
0 0.01 1.01

]
︸ ︷︷ ︸

A

xt +

[
1 0 0
0 1 0
0 0 1

]
︸ ︷︷ ︸

B

ut + wt. (15)

The weighting matrices Q and R are set to

Q = 0.001I3, R = I3. (16)

The initial condition K̂0 is chosen as the optimal gain for the LQR problem with (A,B, 50Q,R). To
model gradient estimation errors due to noisy data, we define the gradient estimate as follows:

∇̂C(K) := ∇C(K) + ∆, (17)

where ∆ ∈ R3×3 is a matrix with entries ∆ij sampled according to the distribution N (0, σ2), where
the values of σ ≥ 0 will be discussed later. The gradient descent algorithm updates the gain K̂i as
follows:

K̂i+1 = K̂i − η∇̂C(K̂i), ∀i ∈ Z+. (18)
The simulation results are illustrated in Figure 1, where the y-axis represents the average obtained
from a Monte Carlo simulation over 10,000 data samples. When the gradient is exactly known (i.e.
σ = 0, black dotted line), we can use theoretical bounds on the step size to guarantee convergence
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Figure 1: Performance of Gradient Descent with Inexact Noisy Gradient for Different Values of Step
Size and Noise

of the gradient descent algorithm. In this case, the converging behavior of η = 0.12 to the optimal
policy is shown as an example. When the gradient estimation is affected by a small amount of noise
(σ = 0.03, blue dashed line), the same step size yields convergence but to a suboptimal value of
gain K. As the noise level increases (σ = 0.6, green dash-dotted line), the algorithm starts showing
non-converging behavior. In this case, reducing the step size addresses the issue, as shown by the red
solid line where the step size is empirically decreased to 0.03. It is worth observing that this reduction
in step size results in a slower convergence rate. These results exemplify that when PG algorithms
are run using finite noisy data trajectories to compute gradients (or equivalently covariances), the
convergence guarantees obtained in the model-based scenario no longer hold. Specifically, the
algorithm might converge to suboptimal solutions or even diverge. It is also shown that, in the latter
case, by properly modifying the algorithms’ parameters (such as the step size), converging behaviors
can be achieved.

To characterize the fundamental limitations of such algorithms and improve their performance it is
then paramount to: quantify the uncertainty on gradients and covariances due to the use of finite noisy
data; and analyze how this uncertainty propagates in the policy optimization algorithm. To the best
of the authors’ knowledge, there is no holistic analysis that captures all these aspects and provides
guarantees for model-free PG algorithms in the presence of noisy trajectory data. The main technical
contribution of this work is to bridge this gap by providing: probabilistic guarantees of convergence
and suboptimality bounds; closed-form expressions for the algorithm’s parameters (e.g. step size,
variance reduction) that guarantee converging behavior.

4 Convergence of Model-free Policy Gradient

In this section, we analyze the model-free policy gradient methods. Unlike model-based approaches,
the system dynamics (A,B) are unknown in the model-free setting. Instead of relying on system
identification, we use zeroth-order optimization, where gradients and covariance estimates are
estimated directly from trajectory data. In Section 4.1, we begin by analyzing estimation algorithm
for the gradient utilized in the proposed method. We derive novel finite-sample error bounds
that explicitly account for the effects of noisy data. Building on this quantitative bound, Section
4.2 introduces a variance reduction technique to provably reduce the required number of rollouts.
Leveraging these results, we establish probabilistic convergence guarantees for gradient descent
(Section 4.3), emphasizing the more general scenario with time-adaptive step sizes. A similar analysis
can also be carried out for the natural policy gradient method, where the additional term Σk must be
estimated from data. Error quantification and convergence guarantees can likewise be established. For
further details, we refer the reader to Appendix C.4. The distinction between the noisy and noise-free
analyses is also discussed in Appendix C.5, which highlights the impact of accounting for noisy data.

4.1 Model-free Gradient and Covariance Estimation

In the model-free setting, zeroth-order optimization techniques [7, 23] can be utilized to approximate
the gradient and average covariance matrix using only function evaluations. The procedures for
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gradient and covariance estimation are outlined in Algorithm 1. We present two theorems to analyze
the estimation errors of both ∇̂C(K) and Σ̂K , obtained from Algorithm 1.

Algorithm 1 Gradient and covariance estimation
Require: Gain matrix K ∈ S, number of rollouts n, rollout length l, exploration radius r, an upper

bound of the initial state L0

for k = 1, ..., n do
1. Generate a sample gain matrix K̂k = K + Uk, where Uk is drawn uniformly at random over
matrices of compatible dimensions with Frobenius norm r;
2. Generate a sample initial state x

(k)
0 with ∥x(k)

0 ∥ ≤ L0;
3. Excite the closed-loop system with u

(k)
t = K̂kx

(k)
t for l-steps starting from x

(k)
0 , yielding the

state sequence
{
x
(k)
t

}l−1

t=0
originating from (1b);

4. Collect the empirical cost estimate Ĉk := 1
l

∑l−1
t=0 x

(k) ⊤
t (Q + K̂⊤

k RK̂k)x
(k)
t and the

empirical covariance matrix Σ̂i =
1
l

∑l−1
t=0 x

(k)
t x

(k) ⊤
t ;

end for
return Gradient estimate ∇̂C(K) := 1

n

∑n
k=1

nxnu

r2 ĈkUk and covariance estimate Σ̂K :=
1
n

∑n
k=1 Σ̂k.

Theorem 2 (Error Bound of ∇̂C(K)) Given an arbitrary tolerance ϵ > 0, which can be expressed
as ϵ = ϵd + ϵl + ϵn + ϵr, and an arbitrary probability δ ∈ (0, 1), which can be expressed as
δ = 1− (1− δd)(1− δn)(1− δx) with δx, δn, δd ∈ (0, 1), for a given K ∈ S , the estimated gradient
∇̂C(K) from Algorithm 1 enjoys the following bound:

P
{
∥∇̂C(K)−∇C(K)∥ ≤ ϵ

}
≥ 1− δ, (19)

if the parameters r, l, n in Algorithm 1 satisfy:

r ≤ rmax(C(K), ϵr), l ≥ lmin(C(K), ϵl), (20a)

n ≥ max
(
N1(C(K), ϵr, ϵl, ϵn, δn, δd), N2(C(K), ϵr, ϵl, ϵn, ϵd, δx, δn, δd)

)
. (20b)

where the detailed expressions of functions rmax, lmin, N1 and N2 are given in (47), (48), (49a), and
(49b) in Appendix C.6, respectively.

The proof of Theorem 2 is given in [32, Appendix C.5]. Similarly, the error bound for the estimation
of Σ̂K is established in Theorem 7 in Appendix C.1.

4.2 Model-free Gradient Estimation with Variance Reduction

In the previous section, we employed zeroth-order optimization to estimate the gradient of the cost at
the current value of the policy. However, this approach often suffers from high variance, resulting in
a slow learning process [12]. Using a baseline is a common variance reduction technique in policy
gradient methods [9, 26]. In this section, we propose employing the finite-horizon cost function as a
baseline and show its performance improvement. For a state-dependent baseline function b(x), the
estimated gradient with variance reduction ∇̂Cv(K) is expressed as

∇̂Cv(K) :=
1

n

n∑
k=1

nxnu

r2
(Ĉk − b(x

(k)
0 ))Uk, (21)

where Uk, x
(k)
0 , Ĉk, r are the same as those defined in Algorithm 1. We select the baseline function

bs(x0) as

bs(x0) =
1

l

l−1∑
t=0

Ewt

[
x ⊤
t (Q+K⊤RK)xt

]
, (22)

which can be estimated in the model-free setting using trajectory data. The detailed procedure for
computing this baseline, as well as the rationale behind its choice, is presented in [32, Section 4.2].
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Algorithm 2 Baseline function estimation bs(x0) for variance reduction of ∇̂C(K)

Require: Gain matrix K ∈ S , number of rollouts to estimate the baseline function nv , rollout length
l, initial state x0

for k = 1, ..., nv do
1. Excite the closed-loop system with ut = Kxt for l-steps starting from x0, yielding the state

sequence
{
x
(k)
t

}l−1

t=0
;

2. Collect the empirical finite-horizon cost estimate ĈV
k := 1

l

∑l−1
t=0 x

(k) ⊤
t (Q+K⊤

i RK)x
(k)
t ;

end for
return Baseline function estimate b̂s(x0) :=

1
nv

∑nv

k=1 Ĉ
V
k .

Using the estimated baseline function b̂s, the gradient estimation algorithm can be summarized
in Algorithm 3 given in Appendix C.2. Compared with Algorithm 1, Algorithm 3 introduces an
additional step involving the baseline function to reduce the variance of the estimated gradient. The
following theorem shows that this modification of the algorithm brings a provable improvement in
the sample complexity required to estimate the gradient with a given accuracy:

Theorem 3 (Performance Improvement) Given the same tolerance ϵ = ϵd + ϵl + ϵn + ϵr and
probability δ = 1− (1− δd)(1− δn)(1− δx) introduced in Theorem 2, for a given K ∈ S , then the
estimated gradient ∇̂C(K) from Algorithm 3 enjoys the following bound:

P
{
∥∇̂C(K)−∇C(K)∥ ≤ ϵ

}
≥ 1− δ, (23)

if nb, l and r in Algorithm 3 satisfy:

r ≤ rmax(C(K), ϵr), l ≥ lmin(C(K), ϵl), (24a)

nb ≥ max(N1, N3(b̂s(x
(k)
0 )) (24b)

where the detailed expression of N3 is given in (55) in Appendix C.6 and rmax, lmin and N1

were introduced in Theorem 2. Moreover, let the desired probability δv ∈ (0, 1) be expressed as
δv = 1− (1− δ̃v)(1− δ̃x). If the number of rollouts nv to estimate the baseline function (as defined
in Algorithm 2) satisfies

nv ≥ ñmin(C(K), l, δ̃v, δ̃x), (25)
then:

P {N2 ≥ N3} ≥ 1− δv, (26)
where N2 was first introduced in (20b) in Theorem 2 and the detailed expression of ñmin is provided
in (56) in Appendix C.6.

The proof of Theorem 3 is given in [32, Appendix C.6]. Based on Theorem 3, we can compare the
performance of Algorithm 1 without variance reduction and Algorithm 3 with variance reduction.
The exploration radius rmax and rollout length lmin (24a) remain the same for both algorithms. The
number of rollouts (24b) is determined by the maximum of two arguments. N1 remains unchanged
across the two algorithms, as it depends on the smoothing function and the original function. From
the second part of Theorem 3 (Equation (26)), it then follows that the required number of rollouts is
at least non-increasing when the baseline function estimates are sufficiently accurate. δx in Theorem
(2) represents the probability that the data samples remain bounded. Increasing δx leads to a larger
bound for the data samples. This upper bound is utilized in the matrix concentration inequality to
determine the required number of rollouts. From the expressions of N1, N2 (see (49a) and (49b)), we
observe that, for large Σw and thus large noise, the required number of rollouts is determined by N2

(in Algorithm 1) and N3 (in Algorithm 3). In other words, the proposed variance reduction gives a
provable reduction of the number of rollouts (and thus of samples) for scenarios with large noise,
which is intuitive and expected.

4.3 Gradient Descent with Adaptive Step Size

Building on the gradient uncertainty quantified in the previous section, we now proceed to study the
convergence of the model-free gradient descent algorithm.
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Theorem 4 (Model-free Gradient Descent with Adaptive Step Size) Suppose the initial K̂0 ∈ S ,
and consider the gradient descent with adaptive step size:

K̂i+1 = K̂i − ηi∇̂C(K̂i), ∀i ∈ Z+, (27)

where ∇̂C(K̂i) is the gradient estimate from Algorithm 1 and 0 < ηi ≤ hGD(C(K̂i)), where the
function hGD was introduced in Theorem 1. Given any accuracy ϵ > 0, and σ ∈ (0, 1), define
ηGD := inf

i
ηi and the number of iterations nGD:

nGD =
∥ΣK∗∥

2(1− σ)ηGDλ1(R)λ2
1(Σw)

log
C(K̂0)− C(K∗)

ϵ
.

Given any probability δ ∈ (0, 1) satisfying δnGD ∈ (0, 1), if the estimation error of the gradient
∇̂C(K̂i) satisfies:

P
{
∥∇̂C(K̂i)−∇C(K̂i)∥ ≤ σϵλ1(R)λ2

1(Σw)

hC(C(K̂i))∥ΣK∗∥

}
≥ 1− δ,

where hC was introduced in Lemma 4. This can be ensured by choosing (l, r, n) according to
Theorem 2. Then for any C(K̂i) ≥ C(K∗) + ϵ, the following inequality holds:

P
{
C(K̂i+1)− C(K∗) ≤ γi(C(K̂i)− C(K∗))

}
≥ 1− δ,

where γi := 1− (1− σ)
2ηiλ1(R)λ2

1(Σw)
∥ΣK∗∥ and γi < 1,∀i ∈ Z+.

As a result, the gradient descent method enjoys the following performance bound:

P
{

min
i∈[0,nGD]

C(K̂i)− C(K∗) ≤ ϵ

}
≥ 1− δnGD.

To achieve the desired accuracy of the estimates stated in Theorem 4, the corresponding values of
li, ri, ni, as defined in Algorithm 4 given in Appendix C.3, should be selected based on Theorem 2.
Theorem 4 ensures that the cost will converge to the optimal solution with a predefined accuracy gap
ϵ, meaning C(K∗) + ϵ will be reached with a certain probability. However, due to the estimation
error in the gradient, further improvements in cost stop when the realized cost C(K̂i) ≤ C(K∗) + ϵ.
To achieve higher accuracy, it is necessary to minimize the gradient estimation error. Nevertheless,
the algorithm can only converge to the optimal when the gradient estimation is exact, which is not
possible with a finite number of rollouts. The interpretation of the σ is given in Remark 1. Regarding
the step size ηi stated in Theorem 4, from the expression of hGD given in (36), we observe that as the
noise level Σw increases, the step size ηi decreases, reflecting the observation analyzed in Section 3.

5 Conclusions

In this work, we applied the policy gradient method to the Linear Quadratic Regulator problem with
stochastic noise, analyzing both model-based and model-free approaches. Convergence guarantees
were established for the model-based gradient descent and natural policy gradient methods with
adaptive step sizes, demonstrating their ability to converge to the global optimum. For the model-free
gradient descent and natural policy gradient methods, we showed that they can converge to the
optimal solution within any desired accuracy. However, it is crucial that the algorithm’s parameters
are tuned based on factors such as the noise magnitude affecting the data trajectories. To improve
convergence rates and reduce sample complexity, in addition to adaptive step sizes, we introduced
a variance reduction technique. We also provided a qualitative discussion on the impact of noise
on model-free policy gradient methods, offering insights into their robustness and providing useful
guidelines for their tuning under practical scenarios. Several open problems remain to be addressed.
As previously mentioned, implementing the model-free Gauss-Newton method presents an interesting
opportunity for future research. While this work focused primarily on direct data-driven policy
gradient approaches, it would also be valuable to explore and compare indirect data-driven policy
gradient methods, which integrate online parameter estimation with model-based gradient descent.
A thorough comparison of direct and indirect PG methods in the presence of stochastic noise is an
important topic for future study.
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A Perturbation of ΣK, C,∇C

In this section, we demonstrate that the average covariance matrix ΣK , the cost function C(K), and its gradient
∇C(K) are locally Lipschitz continuous with respect to the policy K. This property is crucial for the analysis
of model-free policy optimization.

Lemma 3 (ΣK Perturbation) Suppose K′,K ∈ S are such that:

∥K −K′∥ ≤ λ1(Σw)λ1(Q)

8C(K)∥B∥ =: h(C(K)),

it holds that:

∥ΣK − ΣK′∥ ≤ 8

(
C(K)

λ1(Q)

)2 ∥B∥
λ1(Σw)︸ ︷︷ ︸

=:hΣ(C(K))

∥K −K′∥.

Lemma 4 (C Perturbation) Suppose K′,K ∈ S are such that:

∥K −K′∥ ≤ min{h (C(K)) , ∥K∥},

it holds that:
∥C(K′)− C(K)∥ ≤ hC(C(K))∥K −K′∥,

where hC(C(K)) is defined as:

hC(C(K)) := 6

(
C(K)

λ1(Σw)λ1(Q)

)2
(
2b2K(C(K))∥R∥∥B∥+ bK(C(K))∥R∥

)
Tr(Σw), (28)

with

bK(C(K)) :=
1

λ1(R)

(√√√√ (C(K)− C(K∗))
(
∥R∥+ ∥B∥2 C(K)

λ1(Σw)

)
λ1(Σw)

+ ∥B∥∥A∥ C(K)

λ1(Σw)

)
. (29)

Lemma 5 (∇C Perturbation) Suppose K′ is such that:

∥K −K′∥ ≤ min{h(C(K)), ∥K∥},

then there exists a polynomial h∇(C(K)) such that:

∥∇C(K)−∇C(K′)∥ ≤ h∇(C(K))∥K −K′∥,

where h∇(C(K)) is defined as:

h∇(C(K)) := α1(C(K)) + α3(C(K)). (30)

with

α1(C(K)) := 2

√
(C(K)− C(K∗))

σ1(Σw)

(
∥R∥+ ∥B∥2C(K)

λ1(Σw)

)
hΣ(C(K)); (31)

α3(C(K)) :=

(
∥R∥+ ∥B∥2C(K)

λ1(Σ0)
+ α2(C(K))

(
∥B∥∥A∥+ bK(C(K))∥B∥2

))
; (32)

α2(C(K)) := 6

(
C(K)

λ1(Σw)λ1(Q)

)2 (
2b2K(C(K))∥R∥∥B∥+ bK(C(K))∥R∥

)
. (33)

The proofs of Lemma 3, Lemma 4 and Lemma 5 are provided in [32, Appendix A.3, Appendix A.4, Appendix
A.5], respectively. These proofs follow the approach used in [10, Lemma 16, Lemma 24, Lemma 25] by adapting
the expressions of ΣK , C and ∇C. In summary, Lemma 3, Lemma 4 and Lemma 5 establish that ΣK , C and
∇C are locally Lipschitz continuous.
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B Model-based Policy Gradient Methods

B.1 Proof of Theorem 1

Proof 1 Using Lemma 2 and following the step by [10, Lemma 21], if

ηi ≤
1

32
min

{(
λ1(Q)λ1(Σw)

C(Ki)

)2
1

∥B∥∥∇C(Ki)∥(1 + ∥A+BKi∥)
,

λ1(Q)

2C(Ki)∥R+B⊤PKiB∥

}
,

(34)

then,

C(Ki+1)− C(K∗) ≤
(
1− 2ηiλ1(R)λ2

1(Σw)

∥Σ∗
K∥

)
(C(Ki)− C(K∗)). (35)

Based on the upper bounds on ∥∇C(K)∥, we can derive the following from (34):

ηi ≤
1

32
min


(
λ1(Q)λ1(Σw)

C(Ki)

)2
1

2∥B∥b∇(C(Ki))
,

λ1(Q)

2C(Ki)
(
∥R∥+ ∥B∥2C(Ki)

λ1(Σw)

)
︸ ︷︷ ︸

=:hGD(C(K))

, (36)

where b∇ is defined as

b∇(C(K)) :=

√
4

(
C(K)

λ1(Q)

)2
(C(K)− C(K∗))

σ1(Σw)

(
∥R∥+ ∥B∥2C(K)

λ1(Σw)

)
. (37)

From (35), we know that C(Ki+1) ≤ C(Ki). Then we have hGD(C(Ki+1)) ≥ hGD(C(Ki)). The remainder
of the proof proceeds by setting ηi = η0, ∀i ∈ Z+, which represents the lower bound of the convergence rate,
and then following the steps outlined in [10, Lemma 22].

B.2 Natural Policy Gradient

The natural policy gradient method adjusts the standard policy gradient by considering the geometry of the
parameter space through the Fisher information matrix [18]. We now present the theorem that establishes the
convergence guarantee of the natural policy gradient method

Theorem 5 (Natural Policy Gradient with Adaptive Step Size) Suppose the initial K0 ∈ S, and consider
the natural policy gradient iteration

Ki+1 = Ki − ηi∇C(Ki)Σ
−1
Ki

, ∀i ∈ Z+, (38)

where the step size satisfies

ηi ≤
1

2∥R∥+ 2∥B∥2C(Ki)
λ1(Σw)

. (39)

Then the following relationship holds:

C(Ki+1)− C(K∗) ≤
(
1− 2ηiλ1(R)λ1(Σw)

∥ΣK∗∥

)
(C(Ki)− C(K∗)). (40)

For ηi = 1

2∥R∥+ 2∥B∥2C(Ki)
λ1(Σw)

, ∀i ∈ Z+, and given any accuracy gap ϵ > 0, if the number of iterations N

satisfies:

N ≥ ∥ΣK∗∥
2λ1(Σw)

(
∥R∥
λ1(R)

+
∥B∥2C(K0)

λ1(R)λ1(Σw)

)
log

C(K0)− C(K∗)

ϵ
,

then C(KN )− C(K∗) ≤ ϵ.

The proof of Theorem 5 relies on Lemma 2 and follows the procedure outlined in [10, Lemma 15]. Theorem 5
establishes the global convergence properties of the natural policy gradient method, when an appropriate step
size ηi is selected. The introduction of adaptive step sizes improves the convergence rate, as the step sizes
increase adaptively with the decreasing of the cost.

B.3 Gauss-Newton Method

We now present the theorem that provides the convergence guarantee for the Gauss-Newton method.
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Theorem 6 (Gauss-Newton Method) Suppose the initial K0 ∈ S, and consider the Gauss-Newton iteration

Ki+1 = Ki − η(R+B⊤PKiB)−1∇C(Ki)Σ
−1
Ki

, ∀i ∈ Z+, (41)

with η ≤ 1
2

. Then, the following relationship holds:

C(Ki+1)− C(K∗) ≤
(
1− 2ηλ1(Σw)

∥Σ∗
K∥

)
(C(Ki)− C(K∗)). (42)

For the maximum fixed step size η = 1
2

and any accuracy gap ϵ > 0, if the number of iterations N satisfies:

N ≥ ∥Σ∗
K∥

λ1(Σw)
log

C(K0)− C(K∗)

ϵ
,

then C(KN )− C(K∗) ≤ ϵ.

The proof of the Theorem 6 builds on the property shown in Lemma 2 and follows similar steps to the steps
in [10, Lemma 14]. It is important to note that the choice of step size here is independent of the specific
system parameters. To achieve the fastest convergence rate, one can always select the step size η = 1

2
, which is

equivalent to the policy iteration algorithm.

C Model-free Policy Gradient Methods

C.1 Error Bound of covariance matrix

Theorem 7 (Error bound of Σ̂K ) Given an arbitrary tolerance ϵ′ > 0, which can be expressed as ϵ′ =
ϵ′l + ϵ′n + ϵ′r , and an arbitrary probability δ′ ∈ (0, 1), which can be expressed as δ′ = 1− (1− δ′n)(1− δ′x)

with δ′n, δ
′
x ∈ (0, 1), for a given K ∈ S, the estimated average covariance Σ̂K from Algorithm 1 enjoys the

following bound:

P
{
∥Σ̂K − ΣK∥ ≤ ϵ′

}
≥ 1− δ′, (43)

if the parameters r, l, n in Algorithm 1 satisfy:

r ≤ r′max(C(K), ϵ′r), l ≥ l′min(C(K), ϵ′l), n ≥ n′
min(C(K), ϵ′r, ϵ

′
l, ϵ

′
n, δ

′
x, δ

′
n), (44)

where the detailed expressions of functions r′max, l′min and n′
min are given in (59) (60) and (61) in the Proof C.6,

respectively.

The proof of Theorem 7 is given in [32, Appendix C.6].

C.2 Gradient estimation with variance reduction algorithm

Algorithm 3 Gradient estimation with variance reduction
Require: Gain matrix K ∈ S , number of rollouts nb, rollout length l, exploration radius r, an upper

bound of the initial state L0

for k = 1, ..., nb do
1. Generate a sample initial state x

(k)
0 with ∥x(k)

0 ∥ ≤ L0;
2. Estimate the baseline function b̂s(x

(k)
0 ) using Algorithm 2

3. Generate a sample gain matrix K̂k = K + Uk, where Uk is drawn uniformly at random over
matrices of compatible dimensions with Frobenius norm r;
4. Excite the closed-loop system with u

(k)
t = K̂kx

(k)
t for l-steps starting from x

(k)
0 , yielding the

state sequence
{
x
(k)
t

}l−1

t=0
;

5. Collect the empirical finite-horizon cost estimate Ĉk := 1
l

∑l−1
t=0 x

(k) ⊤
t (Q+ K̂⊤

k RK̂k)x
(k)
t

end for
return Gradient estimate ∇̂C(K) := 1

nb

∑nb

k=1
nxnu

r2 (Ĉk − b̂s(x
(k)
0 ))Uk
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C.3 Model-free gradient descent with adaptive step size

Algorithm 4 Model-free gradient descent with adaptive step size

Require: An initial stabilizing gain matrix K̂0, desired accuracy ϵ and probability δ.
for i = 1, ...,∞ do

1. Compute the required rollouts ni, exploration radius ri and rollout length li based on Theorem
2 or 3 to achieve the accuracy stated in Theorem 4.
2. Use Algorithm 1 or 3 to estimate the gradient ∇̂C(K̂i).
3. Update the gradient as K̂i+1 = K̂i − ηi∇̂C(K̂i), with ηi ≤ hGD(C(K̂i)).

end for

In Algorithm 4, the required rollouts ni, exploration radius ri and rollout length li are determined adaptively
to the cost C(K̂i), i.e., they are computed online inside the for-loop. This design is aligned with Theorem 4,
which shows that the cost function C(K̂i) decreases probabilistically with each iteration. As the cost C(K̂i)
decreases, this leads to a reduction in the required rollouts ni and rollout length li, while the exploration radius
ri increases. Alternatively, the algorithm can be modified to compute these parameters offline, where for all
iterations i, ni, li, ri are calculated once based on the initial cost C(K̂0).

C.4 Natural Policy Gradient with Adaptive Step Size

Analogous to the model-free gradient descent method, we now turn to analyzing the convergence of the natural
policy gradient method.

Theorem 8 (Model-free Natural Policy Gradient with Adaptive Step Size) Suppose the initial K̂0 ∈ S,
and consider natural policy gradient with adaptive step size:

K̂i+1 = K̂i − ηi∇̂C(K̂i)Σ̂
−1

K̂i
, ∀i ∈ Z+, (45)

where ∇̂C(K̂i) and Σ̂K̂i
are the gradient and covariance estimates from Algorithm 1 and 0 < ηi ≤

1

2∥R∥+ 2∥B∥C(K̂i)
λ1(Σw)

.

Given any accuracy ϵ > 0 and σ ∈ (0, 1), defining ηNPG := inf
i
ηi and the number of iterations nNPG:

nNPG ≥ ∥ΣK∗∥
2(1− σ)ηNPGλ1(Σw)

log
C(K0)− C(K∗)

ϵ
.

Given any probability δ ∈ (0, 1) satisfying δnNPG ∈ (0, 1), if the estimation error of the gradient ∇̂C(K̂i) and
the covariance Σ̂K̂i

satisfy:

P

{
∥∇̂C(K̂i)−∇C(K̂i)∥ ≤ σϵλ1(R)λ2

1(Σw)

4h∇(C(K̂i))∥Σ∗
K∥

}
≥

√
1− δ, (46a)

P

∥Σ̂K̂i
− ΣK̂i

∥ ≤ σϵλ1(R)λ3
1(Σw)

4h∇(C(K̂i))∥Σ∗
K∥
√

b∇(C(K̂i))

 ≥
√
1− δ, (46b)

where h∇ was introduced in Lemma 5 and b∇ was defined in (37). This can be ensured by choosing (li, ri, ni)

according to Theorem 2 and Theorem 7. then for any C(K̂i) ≥ C(K∗) + ϵ, the following inequality holds:

P
{
C(K̂i+1)− C(K∗) ≤ κi(C(K̂i)− C(K∗))

∣∣∣C(K̂i)
}
≥ 1− δ,

where κi :=
(
1− (1− σ) 2ηiλ1(R)λ1(Σw)

∥Σ∗
K

∥

)
and κi < 1, ∀i ∈ Z+.

As a result, the natural policy gradient method enjoys the following performance bound:

P
{

min
i∈[0,nNPG]

C(K̂i)− C(K∗) ≤ ϵ

}
≥ 1− δnNPG,

The proof of Theorem 2 is provided in [32, Appendix C.9]. From Theorem 2, we can select the values of
l∇i , r∇i , n∇

i to satisfy the requirement for the gradient estimation error, as indicated in (46a). Similarly, we can
select lΣi , r

Σ
i , n

Σ
i to satisfy the requirement for the covariance estimation error, as described in (46b). To ensure
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both requirements are met, we can then set: ni ≥ max{n∇
i , nΣ

i }, li ≥ max{l∇i , lΣi }, ri ≤ min{r∇i , rΣi }.
These choices guarantee that the estimates of both the gradient and the covariance matrix satisfy their respective
accuracy requirements. This combined selection of parameters is implemented in Algorithm 5 to ensure
convergence with the desired accuracy and probability.

Algorithm 5 Model-free natural policy gradient with adaptive step size

Require: An initial stabilizing gain matrix K̂0, desired accuracy ϵ and probability δ.
for i = 0, ...,∞ do

1. Compute the required rollouts ni, exploration radius ri and rollout length li based on Theorem
2 to achieve the accuracy stated in Theorem 8.
2. Use Algorithm 1 to estimate the gradient ∇̂C(K̂i) and covariance Σ̂K̂i

.
3. Update the gradient as K̂i+1 = K̂i − ηi∇̂C(K̂i)Σ̂

−1

K̂i
with ηi ≤ 1

2∥R∥+ 2∥B∥C(K̂i)

λ1(Σw)

.

end for

Remark 1 (Qualitative effect of gradient and covariance errors on convergence)

C.5 Comparison of Model-free PG for Noise and Noise-free Case

In Algorithm 1, three key quantities, exploration radius r, rollout length l, and the required rollouts n, play
a central role in determining the estimation errors on gradient and covariance estimation. The presence of
stochastic noise acting on the system (1b) during data collection influences these quantities in the following
ways:

• Exploration radius: The selection of the exploration radius is fully determined by the desired
accuracy and the specific model parameters. The choice of r directly influences the estimation error
by affecting the bias term Ui, which represents the difference between quantities ∥∇C(K)∥ and
∥∇C(K + Uk)∥, as well as ∥ΣK∥ and ∥ΣK+Uk∥. These differences are crucial in the error analysis,
as detailed in Appendix [32, Appendix C.3] and [32, Appendix C.6], respectively. The estimation
error of the gradient is discussed in detail in (47) for the noise case and in [10, Lemma 27] for the
noise-free case. Similarly, the estimation error of the covariance is analyzed in (59) for the noise case
and in [10, Theorem 30] for the noise-free case. Due to the differences in cost functions, the noise-free
case considers the infinite-horizon cost, while the noisy case considers the average infinite-horizon
cost. Consequently, for the noisy case, r is determined by Σw whereas for the noise-free case, it is
determined by Σ0.

• Rollout length: The rollout length l is different for the noise-free case and the noise case. In both
scenarios, the rollout length plays a crucial role in estimating the gradient and covariance, whose
true values are defined over an infinite horizon. However, finite approximations must be used. In
the noise-free case, as described in [10, Lemma 23], the rollout length is determined by the desired
accuracy, model parameters, and initial covariance Σ0. In the presence of noise, as discussed in [32,
Lemma C.1], the rollout length is influenced not only by Σ0, but also by the noise covariance Σw.
Therefore, the rollout length in the noisy case must account for both the system’s initial conditions and
noise disturbances. These relationships are quantitatively explored in through (48) and (60).

• Required rollouts: The most significant difference between the noisy and noise-free cases comes
from using the matrix concentration inequality for the trajectories consisting of noisy data. In the
noise-free case, the boundedness of the data is guaranteed by an upper bound on the initial state, i.e.,
∥x(k)

0 ∥ ≤ L0 (see [10, Lemmas 27, 29]). In contrast, in the noisy case, particularly with unbounded
Gaussian noise, the state remains bounded only with a certain probability ([32, Appendix C.4]). This
boundedness in probability is then used to apply matrix concentration inequalities, providing an upper
bound on the covariance of the samples([32, Appendix C.5]).

C.6 Detailed Expressions

rmax = min{h(C(K)), ∥K∥, ϵr
h∇(C(K))

}, (47)

where h∇ is defined in (30).

lmin =
2(C(K) + rhCC(K))2

ϵlλ1(Σw)

(
∥Σ0∥λ1(Σw) + C(K) + rhCC(K)

λ1(Q)λ2
1(Σw)

+
1

λ1(Q)

)
. (48)
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N1 :=
2min{nx, nu}

ϵ2n

(
α2
4(C(K), ϵr) +

α5(C(K), ϵr)ϵn

3
√

min(nx, nu)

)
log

[
nx + nu

δn

]
, (49a)

N2 :=
2min{nx, nu}

ϵ2d

(
α2
7(C(K), δx) +

α8(C(K), δx)ϵd

3
√

min(nx, nu)

)
log

[
nx + nu

δd

]
; (49b)

where α4, α5, α7 and α8 are defined in (50), (51), (53) and (54) respectively.

α4(C(K), ϵ1) :=
nxnu (C(K) + rhC(C(K)))

r
+ ϵ1 + b∇(C(K)). (50)

α5(C(K), ϵ1) := max{nx, nu}2
(
nxnu (C(K) + rhC(C(K)))

r

)2

+ (ϵ1 + b∇(C(K)))2 , (51)

with hC defined in (28) and b∇ defined in (37).

α6(C(K), δx) :=
nxnu

r

C(K) + rhC(C(K))

λ1(Σw)

(
L0 + (l − 1)

Tr(Σw)

1− (1− δx)1/l

)2

. (52)

α7(C(K), δx) := ϵl + ϵnr + b∇(C(K)) + α6(C(K), δx). (53)

α8(C(K), δx) := max{nx, nu}2α2
6(C(K), ϵx) + (ϵl + ϵnr + b∇(C(K)))2 . (54)

N3 :=
2min{nx, nu}

ϵ2d

(
α2
7(C(K), δx) +

α11(C(K), δx, b̂s(x0))ϵd

3
√

min(nx, nu)

)
log

[
nx + nu

δd

]
, (55)

where
α11(C(K), δx, b̂s(x0)) := max{nx, nu}2α2

12(b̂s(x0)) + (ϵl + ϵnr + b∇(C(K)))2 ,

and
α12(b̂s(x0)) :=

nxnu

r
{max{Ĉk − b∗s(x0), b

∗
s(x0)}+ ∥bs(x0)− b̂s(x0)∥}.

ñmin =
2

(ϵ′v)2

(
(C̄V

E + C̄V )2 +
((C̄V

E )2 + (C̄V (δ̃x))
2)ϵv

3

)
log

[
2

(δ̃v)

]
. (56)

where

C̄V (δ̃x) :=
C(K)

λ1(Σw)

(
L0 + (l − 1)

Tr(Σw)

1− (1− δx)1/l

)2

, (57)

and

C̄V
E :=

C(K)

λ1(Σw)
(L0 + (l − 1)∥Σw∥)2 . (58)

r′max := min

{
h(C(K)), ∥K∥, ϵ′r

b∇(C(K))

}
. (59)

l′min :=
2C(K)

ϵ′lλ1(Σw)

(
C(K)∥Σ0∥

λ1(Q)λ1(Σw)
+

C2(K)

λ1(Q)λ2
1(Σw)

+
C(K)

λ1(Q)

)
. (60)

n′
min :=

2nx

(ϵ′n)2

(
α10(C(K), δ′x) +

α9(C(K), δ′x)ϵ
′
n

3
√
nx

)
log

[
2nx

δ′n

]
, (61)

where α9(C(K), δ′x) and α10(C(K), δ′x) are defined as

α9(C(K), δ′x) :=
C(K) + rhC(C(K))

λ1(Q)
+ (L̄′(δ′x))

2, (62)

α10(C(K), δ′x) := n2
x

[
(L̄′(δ′x))

2 +

(
C(K) + rhC(C(K))

λ1(Q)

)2
]
, (63)

with L̄′(δ′x) := L0 + (l − 1) Tr(Σw)

1−(1−δx)1/l
.

D Simulation Results

In this subsection, we use numerical simulations 1 to demonstrate the benefits of incorporating the variance
reduction technique and adaptive step sizes in model-free policy gradient algorithms and the overall effect of
noise on them. The matrices (A,B,Q,R) and K̂0 are the same as described in Section 3. The rollout length,
exploration radius, and number of rollouts are set to l = 100, r = 0.05, n = 1000, respectively. The simulation
results are obtained from a Monte Carlo simulation over 10 data samples.

1The Matlab codes used to generate these results (in Section 3 and Section D) are accessible from the
repository: https://github.com/col-tasas/2025-PGforLQRwithStochastic
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D.1 Noise Level and Stepsize

The policy is updated using the gradient descent method defined in (27). Figure 2 illustrates the relative
suboptimality gap of the cost associated with the iterated policy K̂i as a function of the iteration index i, for
different noise levels and step sizes.
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Figure 2: Model-free GD: Effect of Noise Level on Step Size

When the noise level is low, Σw = 10−4I , the step size is empirically chosen as 30, as shown by the red dashed
line. In this case, we observe a persistent suboptimality gap, which originates from the estimation error of the
gradient inherent to the zeroth-order method. When the noise level increases to Σw = 10−2I , maintaining the
same step size leads to divergence of the cost function (as shown in black dotted line). As stated in Theorem 4,
when the noise level is higher, it is necessary to decrease the step size to ensure convergence. By reducing the
step size to η = 0.3, as illustrated by the blue points in the figure, the cost converges again with suboptimality
gap.

D.2 GD with/out variance reduction

The update of the policy is according to the gradient descent method, whose update law was defined in (27).
The step size η is chosen based on the noise level: for Σw = 10−4I is set to 30, while for Σw = 10−2I , it is
reduced to 0.3, qualitatively in accordance with the bounds established in Theorem 4. For the variance reduction
technique, the number of rollouts to estimate the baseline function, nb, is set as 20.
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Figure 3: Model-free GD with/out Variance Reduction
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Figure 3 illustrates the relative suboptimality gap of the cost associated with the iterated policy K̂i as a function
of the iteration index i. Several observations can be made regarding the impact of variance reduction. We
compare two groups of curves corresponding to different noise levels: the red points and black solid lines for
the noise level Σw = 10−4, and the blue points and magenta lines for Σw = 10−2. The dotted point curves
represent results without variance reduction. It can be observed that the performance improvement achieved
through variance reduction is more pronounced in high-noise scenarios, which is consistent with the analysis in
Theorem 3.

D.3 Model-free NPG with Adaptive Step Sizes

The natural policy gradient algorithm updates the gain K̂i according to the update law defined in (45). A fixed
step size is chosen as η = a

b+cTr(PK0
)

which follows the structure of the step size derived in Theorem 8 and

is applied uniformly across all noise levels Σw = 10−4I, , 10−2I, , 100I . Due to the conservative nature of
the theoretical bound, the parameters a, b, and c are selected empirically as 0.09, 1, and 2, respectively. In
addition, an adaptive step size is considered, defined as ηi = a

b+cTr(PKi
)
, where Tr(PKi) reflects the current

cost associated with the policy at iteration i.
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Figure 4: Model-free NPG with/out Adaptive Step Size

Comparing the black dashed line and the green solid line in Figure 4, we observe that using adaptive step sizes
yields a faster convergence rate than fixed step sizes, further highlighting the benefits of adaptive strategies. As
shown in Figure 4 (red dotted, green solid, and blue dot–dashed lines), the model-free NPG algorithm achieves
nearly the same accuracy even as the noise Σw increases, provided that l, r, and n remain unchanged. At higher
noise levels, the estimation errors of both ∇̂C(K̂i) and Σ̂K̂i

grow. These errors are explicitly accounted for
in our analysis (Theorems 2 and 7). Due to the natural policy gradient update rule (see (45)), the estimated
gradient is multiplied by the inverse of the estimated covariance, which causes the errors in these two quantities
to partially offset each other. If the analysis were performed directly on the product ∇̂C(K̂i)Σ̂

−1

K̂i
rather than

treating them separately (as in [32, Appendix C.9, Proof of Theorem 4.5]), substantially stronger theoretical
guarantees could be established. This observation points to an important direction for future research.
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