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ABSTRACT

We design new differentially private algorithms for the problems of adversar-
ial bandits and bandits with expert advice. For adversarial bandits, we give a
simple and efficient conversion of any non-private bandit algorithm to a private
bandit algorithm. Instantiating our conversion with existing non-private ban-
dit algorithms gives a regret upper bound of O

(√
KT√
ϵ

)
, improving upon the

existing upper bound O

(√
KT log(KT )

ϵ

)
for all ϵ ≤ 1. In particular, our al-

gorithms allow for sublinear expected regret even when ϵ ≤ 1√
T

, establish-
ing the first known separation between central and local differential privacy for
this problem. For bandits with expert advice, we give the first differentially pri-

vate algorithms, with expected regret O
(√

NT√
ϵ

)
, O

(√
KT log(N) log(KT )

ϵ

)
, and

Õ
(

N1/6K1/2T 2/3 log(NT )
ϵ1/3

+ N1/2 log(NT )
ϵ

)
, where K and N are the number of

actions and experts respectively. These rates allow us to get sublinear regret for
different combinations of small and large K,N and ϵ.

1 INTRODUCTION

In the adversarial bandit problem, a learner plays a sequential game against nature over T ∈ N
rounds. In each round t ∈ {1, . . . , T}, nature picks a loss function ℓt : [K] → [0, 1], hidden to
the learner. The learner, using the history of the game up to time point t − 1, selects a potentially
random action It ∈ {1, . . . ,K} and nature reveals only the loss ℓt(It) of the selected action. For
any sequence of loss functions ℓ1, . . . , ℓT , the goal of the learner is to select a sequence of actions
I1, . . . , IT , while only observing the loss of selected actions, such that its expected regret

E

[
T∑

t=1

ℓt(It)

]
− argmin

i∈[K]

T∑
t=1

ℓt(i)

is minimized, where the expectation is taken with respect to the randomness of the learner.

Bandit algorithms, and in particular adversarial bandit algorithms (Auer et al., 2002), have been of
significant interest for over two decades (Bubeck et al., 2012) due to their applications to online
advertising, medical trials, and recommendation systems. In many of these settings, one would like
to publish the actions selected by bandit algorithms without leaking sensitive user information. For
example, when predicting treatment options for patients with the goal of maximizing the number of
cured patients, one may want to publish results about the best treatment without leaking sensitive
patient medical history (Lu et al., 2021). In online advertising, a goal is to publish the recommended
ads without leaking user preferences. In light of such privacy concerns, we study adversarial bandits
under the constraint of differential privacy (Dwork, 2006). Surprisingly, unlike the stochastic setting
(Azize & Basu, 2022), the price of privacy in adversarial bandits is not well understood. Existing
work by Agarwal & Singh (2017) and Tossou & Dimitrakakis (2017) give ϵ-differentially private

bandit algorithms with expected regret at most O
(√

KT log(K)

ϵ

)
1. However, their algorithms

1Tossou & Dimitrakakis (2017) also claim to give an algorithm with regret Õ
(

T2/3
√

K ln(K)

ϵ1/3

)
, however,

we are unable to verify its correctness. See Appendix G.1.
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Table 1: Summary of upper bounds with constant factors and dependencies on log 1
δ suppressed. The

three rows for Bandits with Experts represent different algorithms with incomparable guarantees.
Existing Work Our Work Best Non-private

Adversarial Bandits
√

KT log(KT )

ϵ

√
KT√
ϵ

√
KT

Bandits with Experts NA
√
NT√
ϵ

√
NT

Bandits with Experts NA
√

KT log(N) log(KT )

ϵ

√
KT log(N)

Bandits with Experts NA N1/6K1/2T 2/3 log(NT )
ϵ1/3

+ N1/2 log(NT )
ϵ

√
KT log(N)

satisfy the stronger notion of local differential privacy and become vacuous for tasks with high
privacy requirements, where one might take ϵ < 1√

T
. In fact, it was not known how large ϵ needs to

be in order to obtain sublinear expected worst-case regret.

Main Contributions. Motivated by this gap, we provide new, differentially private algorithms for
adversarial bandits and bandits with expert advice with better trade-offs between privacy and regret.
In the adversarial bandits setting, we provide a simple and efficient conversion of any non-private
bandit algorithm into a private bandit algorithm. By instantiating this conversion with existing (non-
private) bandit algorithms, we get ϵ-differentially private bandit algorithms with expected regret at
most O

(√
KT√
ϵ

)
, improving upon the best known upper bounds for all ϵ ≤ 1. In particular, this

result shows that sublinear regret is possible for any ϵ ∈ ω
(
1
T

)
. Since private online learning is not

possible when ϵ ∈ O( 1
T ), our result provides a characterization of when sublinear regret is possible

under differential privacy.

For bandits with expert advice (Auer et al., 2002), we give the first differentially pri-
vate algorithms. In particular, we give three different (ϵ, δ)-differentially private ban-

dit algorithms, obtaining expected regret O
(√

NT√
ϵ

)
, O

(√
KT log(N) log(KT )

ϵ

)
, and

Õ
(

N1/6K1/2T 2/3 log(NT )
ϵ1/3

+ N1/2 log(NT )
ϵ

)
respectively. These regret guarantees cover regimes

with high-privacy requirements and regimes with a large number of experts N . In both settings, our
techniques involve combining the Laplace mechanism with batched losses.

1.1 RELATED WORKS

Adversarial Bandits and Bandits with Expert Advice. We refer the reader to the excellent book
by Bubeck et al. (2012) for a history of stochastic and adversarial bandits. The study of the ad-
versarial bandit problem dates back at least to the seminal work of Auer et al. (2002), who show
that a modification to the Multiplicative Weights Algorithm, known as EXP3, achieves worst-case
expected regret O

(√
TK log(K)

)
. Following this work, there has been an explosion of interest in

designing better adversarial bandit algorithms, including, amongst others, the work by Audibert &
Bubeck (2009), who establish that the minimax regret for adversarial bandits is Θ

(√
TK

)
. More

recently, there has been interest in unifying existing adversarial bandit algorithms through the lens of
Follow-the-Regularized Leader (FTRL) and Follow-the-Perturbed-Leader (FTPL) (Abernethy et al.,
2015). Surprisingly, while it was known since the work of Audibert & Bubeck (2009) that an FTRL-
based approach can lead to minimax optimal regret bounds, it was only recently shown that this is
also the case for FTPL-based bandit algorithms (Honda et al., 2023).

The first works for bandits with expert advice also date back at least to that of Auer et al. (2002),
who propose EXP4 and bound its expected regret by O

(√
TK log(N)

)
, where N is the number

of experts. When N ≥ K, Seldin & Lugosi (2016) prove a lower bound of Ω
(√

K
log(K)T log(N)

)
on the expected regret, showing that EXP4 is already near optimal. As a result, EXP4 has become

2
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an important building block for related problems, like online multiclass classification (Daniely &
Helbertal, 2013; Raman et al., 2024) and sleeping bandits (Kleinberg et al., 2010), among others.

Private Online Learning. Dwork et al. (2010a) initiated the study of differentially private on-
line learning. Jain et al. (2012) extend these results to broad setting of online convex program-
ming by using gradient-based algorithms to achieve differential privacy. Following this work,
Guha Thakurta & Smith (2013) privatize the Follow-the-Approximate-Leader template to obtain
sharper guarantees for online convex optimization. In the special case of learning with expert ad-
vice, Dwork et al. (2014); Jain & Thakurta (2014) give private online learning algorithms with

regret bounds of O

(√
T log(N)

ϵ

)
. More recently, Agarwal & Singh (2017) design private algo-

rithms for online linear optimization with regret bounds that scale like O(
√
T ) + O( 1ϵ ). In par-

ticular, for the setting of learning with expert advice, they show that it is possible to obtain a re-
gret bound that scales like O

(√
T log(N) + N log(N) log2 T

ϵ

)
, improving upon the work by Dwork

et al. (2014); Jain & Thakurta (2014). For large N , this upper bound was further improved to
O
(√

T log(N) + T 1/3 log(N)
ϵ

)
by Asi et al. (2023) in the oblivious setting.

Private Bandits. The majority of existing work on differentially private bandits focus on the
stochastic setting (Mishra & Thakurta, 2015; Tossou & Dimitrakakis, 2016; Sajed & Sheffet, 2019;
Hu et al., 2021; Azize & Basu, 2022), linear contextual bandits (Shariff & Sheffet, 2018; Neel
& Roth, 2018), or adjacent notions of differential privacy (Zheng et al., 2020; Tenenbaum et al.,
2021; Ren et al., 2020). To our knowledge, there are only three existing works that study dif-
ferentially private adversarial bandits. The first is by Guha Thakurta & Smith (2013) who give
an (ϵ, δ)-differentially private bandit algorithm with expected regret O

(
KT 3/4

ϵ

)
. Finally, and in

parallel, Agarwal & Singh (2017) and Tossou & Dimitrakakis (2017) improve the upper bound

to O

(√
KT log(K)

ϵ

)
. We note that the private algorithms given by Agarwal & Singh (2017) and

Tossou & Dimitrakakis (2017) satisfy the even stronger notion of local differential privacy (Duchi
et al., 2013).

2 PRELIMINARIES

2.1 NOTATION

Let K ∈ N denote the number of actions and ℓ : [K] 7→ [0, 1] denote an arbitrary loss function
that maps an action to a bounded loss. For an abstract sequence z1, . . . , zn, we abbreviate it as
z1:n and (zs)

n
s=1 interchangeably. For a measurable space (X , σ(X )), we let Π(X ) denote the set

of all probability measures on X . We let Lap(λ) denote the Laplace distribution with mean zero
and scale λ such that its probability density function is fλ(x) = 1

2λ exp
(

−|x|
λ

)
. Finally, we let

[N ] := {1, . . . , N} for N ∈ N.

2.2 THE ADVERSARIAL BANDIT PROBLEM

In the adversarial bandit problem, a learner plays a sequential game against nature over T ∈ N
rounds. In each round t ∈ [T ], the learner selects (potentially randomly) an action It ∈ [K] and
observes only its loss ℓt(It). The goal of the learner is to adaptively select actions I1, . . . , IT ∈ [K]
such that its cumulative loss is close to the best possible cumulative loss of the best fixed action
i⋆ ∈ [K] in hindsight. Crucially, we place no assumptions on the sequence of losses ℓ1, . . . , ℓT , and
thus they may be chosen adversarially.

Before we quantify the performance metric of interest, we provide a formal definition of a bandit
online learning algorithm. This definition will be useful for precisely formalizing the notion of
privacy (Section 2.4) and describing our generic transformation of non-private bandit algorithms to
private ones (Section 3).

3
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Definition 1 (Bandit Algorithm). A bandit algorithm is a deterministic map A : ([K] × R)⋆ →
Π([K]) which, for every t ∈ N, maps a history of actions and observed losses (Is, ℓs(Is))

t−1
s=1 ∈

([K]× R)t−1 to a distribution µt ∈ Π([K]). The learner then samples an action It ∼ µt.

We will slightly abuse notation by using A((Is, ℓs(Is))t−1
s=1) to denote the random action It drawn

from µt, the distribution thatA outputs when run on (Is, ℓs(Is))
t−1
s=1. In addition, we will sometimes

use Ht := (Is, ℓs(Is))
t−1
s=1 to denote the history of selected actions and observed losses induced by

running A up to, but not including, timepoint t ∈ N. Note thatHt is a random variable and we may
write the action selected by algorithm A on round t ∈ N as A(Ht). For our lower bounds, it will
also be helpful to think aboutHt as the View ofA as a result of its interaction with the adversary up
to, but not including, timepoint t.

Given a bandit online learner A, we define its worst-case expected regret as

RA(T,K) = sup
ℓ1,...,ℓT

(
E

[
T∑

t=1

ℓt(A(Ht))

]
− inf

i∈[K]

T∑
t=1

ℓt(i)

)
,

where the expectation is taken only with respect to the randomness of the learner. Our goal is
to design a bandit algorithm A such that RA(T,K) = o(T ). Note that our definition of regret
means that we are assuming an oblivious adversary, one that selects the entire sequence of losses
ℓ1, . . . , ℓT before the game begins. This assumption is in contrast to that of an adaptive adversary
which, for every t ∈ N, may select the loss ℓt based onHt. We leave quantifying the rates for private
adversarial bandits under adaptive adversaries for future work. That said, we do note that the lower
bounds for adaptive adversaries established in full-information setting by Asi et al. (2023) also carry
over to the bandit feedback setting. Accordingly, Corollary 2 and Theorems 4 and 5 in Asi et al.
(2023) show that the strong separation in the possible rates for oblivious and adaptive adversaries
also holds under bandit feedback.

2.3 THE BANDITS WITH EXPERT ADVICE PROBLEM

In adversarial bandits with expert advice (Auer et al., 2002), we distinguish between a set of experts
[N ] and the set of available actions [K]. In each round t ∈ [T ], each expert j ∈ [N ] predicts
a distribution µj

t ∈ Π([K]). The learner uses these predictions to compute its own distribution
µ̂t ∈ Π([K]), after which it samples It ∼ µ̂t and observes the loss ℓt(It). The goal of the learner
is to compete against the best fixed expert in hindsight while observing bandit feedback. We need
a new definition of a bandit with expert advice algorithm to account for the fact that the learner has
access to expert advice.
Definition 2 (Bandits with Expert Advice Algorithm). A bandit with expert advice algorithm is a
deterministic mapA : ([K]×R)⋆×(Π([K])N )⋆ → Π([K]) which, for every t ∈ N, maps the history
of actions and observed losses (Is, ℓs(Is))t−1

s=1 ∈ ([K]×R)t−1 as well the sequence of expert advice
µ1:N
1:t ∈ ((Π([K])N )t to a distribution µ̂t ∈ Π([K]). The learner then samples an action action

It ∼ µ̂t.

One can now take an analogous definition of worst-case expected regret to be

RA(T,K,N) := sup
ℓ1,...,ℓT

sup
µ1:N
1:T

(
E

[
T∑

t=1

ℓt(A(Ht, µ
1:N
1:t ))

]
− inf

j∈[N ]

T∑
t=1

K∑
i=1

µi
t(j) · ℓt(i)

)
.

where the expectation is taken only with respect to the randomness of the learner. As for adversar-
ial bandits, our definition of minimax regret for bandits with experts advice implicitly assumes an
oblivious adversary.

2.4 DIFFERENTIAL PRIVACY

In this work, we are interested in designing bandit algorithms that have low expected regret while
satisfying the constraint of differential privacy. Roughly speaking, differential privacy quantifies
the following algorithmic property: an algorithm A is a private bandit algorithm if, for any two
sequences of losses that differ in exactly one position, the distributions over actions induced by
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running A on the two loss sequences are close. Definition 3 formalizes this notion of privacy in
adversarial bandits.

Definition 3 ((ϵ, δ)-Differential Privacy in Adversarial Bandits (Dwork et al., 2014)). A bandit al-
gorithmA is (ϵ, δ)-differentially private if for every T ∈ N, any two sequences of loss functions ℓ1:T
and ℓ′1:T differing at exactly one time point t′ ∈ [T ], and any E ⊂ [K]T , we have that

P [(A(H1),A(H2), . . . ,A(HT )) ∈ E] ≤ eϵP [(A(H′
1),A(H′

2), . . . ,A(H′
T )) ∈ E] + δ,

where we letHt = (Is, ℓs(Is))
t−1
s=1 andH′

t = (I ′s, ℓ
′
s(Is))

t−1
s=1.

We note that the our notion of differential privacy in Definition 3 is inherently for an oblivious ad-
versary. A different definition of privacy is required if the adversary is allowed to be adaptive i.e.,
having the ability to pick the loss ℓt using the realized actions I1, . . . , It−1 played by the learner
(see Definition 2.1 in Asi et al. (2023) for more details). While the utility guarantees of our ban-
dit algorithms hold only for oblivious adversaries, their privacy guarantees hold against adaptive
adversaries.

We use an analogous definition of differential privacy for bandits with expert advice.

Definition 4 ((ϵ, δ)-Differential Privacy in Bandits with Expert Advice (Dwork et al., 2014)). A
bandit with expert advice algorithm A is (ϵ, δ)-differentially private if for every T ∈ N, any two
sequences of loss functions ℓ1:T and ℓ′1:T differing at exactly one time point t′ ∈ [T ], and any
E ⊂ [K]T , we have that

P [(A(H1),A(H2), . . . ,A(HT )) ∈ E] ≤ eϵP [(A(H′
1),A(H′

2), . . . ,A(H′
T )) ∈ E] + δ,

where we letHt = (Is, ℓs(Is))
t−1
s=1 andH′

t = (I ′s, ℓ
′
s(Is))

t−1
s=1.

Note that Definition 4 implicitly assumes that only the sequence of losses is sensitive information
and that expert predictions are public.

Our main focus in this work will be on designing bandit algorithms that satisfy pure differential
privacy (i.e. when δ = 0). In Appendix A, we review several fundamental properties of privacy and
privacy-preserving mechanisms that serve as important building blocks.

3 FASTER RATES FOR PRIVATE ADVERSARIAL BANDITS

In this section, we establish a connection between non-private bandit algorithms that can handle
negative losses and ϵ-differentially private bandit algorithms. Let B be any bandit algorithm and
define

R̃B(T,K, λ) := sup
ℓ1:T

(
E

[
T∑

t=1

ℓ̃t(B(H̃t))

]
− inf

i∈[K]
E

[
T∑

t=1

ℓ̃t(i)

])
= sup

ℓ1:T

(
E

[
T∑

t=1

ℓt(B(H̃t))

]
− inf

i∈[K]

T∑
t=1

ℓt(i)

)
.

where ℓ̃t(i) = ℓt(i) + Zt(i) with Zt(i) ∼ Lap(0, λ), H̃t = (Is, ℓ̃s(Is))
t−1
s=1, and the expectation is

taken with respect to both the randomness of B and the losses ℓ̃1:T . Theorem 1 states that one can
always convert B into an ϵ-differentially private bandit algorithm A whose regret guarantees can be
written in terms of R̃B(T,K, λ).

Theorem 1 (Generic Conversion). Let B be any bandit algorithm. Then, for every τ ≥ 1 and ϵ ≤ 1,
there exists an ϵ-differentially private bandit algorithm Aτ such that

RAτ
(T,K) ≤ τ R̃B

(
T

τ
,K,

1

ϵτ

)
+ τ.

In particular, picking τ = ⌈ 1ϵ ⌉ means that there exists a ϵ-differentially private bandit algorithm A
such that

RA(T,K) ≤ 2

ϵ
R̃B (ϵT,K, 1) +

2

ϵ
.
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As a corollary of Theorem 1, we establish new upper bounds on the expected regret under the
constraint of ϵ-differential privacy that improves on existing work in all regimes of ϵ > 0. Corollary
1 follows by letting B be the classical EXP3 algorithm (Auer et al., 2002). See Appendix D for the
pseudocode of EXP3.
Corollary 1 (EXP3 Conversion). For every ϵ ≤ 1, if B is EXP3 run with learning rate

η =

√
log(K)

22 ϵKT log2(ϵKT )

and mixing parameter γ = 4ηK log(ϵKT ), then Algorithm 1, when run with B and τ = ⌈ 1ϵ ⌉, is
ϵ-differentially private and suffers worst-case expected regret at most

36
√
TK log(K) log(KT )√

ϵ
+

4

ϵ
.

Corollary 2 follows by using the HTINF algorithm from Huang et al. (2022) which modifies Follow-
the-Regularized-Leader (FTRL) for heavy-tailed losses.

Corollary 2 (FTRL Conversion). For every ϵ ∈ [ 1T , 1], if B is HTINF with α = 2 and σ =
√
6,

then Algorithm 1, when run with B and τ = ⌈ 1ϵ ⌉, is ϵ-differentially private and suffers worse-case
expected regret at most

208
√
TK√
ϵ

+
2

ϵ
.

Corollary 3 follows by using Follow-the-Perturbed-Leader (FTPL) with Geometric Resampling
(Neu & Bartók, 2016). The pseudocode for FTPL with Geometric Resampling is provided in Ap-
pendix D.
Corollary 3 (FTPL Conversion). For every ϵ ∈ [ 1T , 1], if B is FTPL with perturbation distribution

Lap
(

1
η

)
and Geometric Resampling threshold M (see Algorithm 4), where M =

√
ϵKT and

η = min

{√
log(K)

(ϵKT + 10ϵKT log2(ϵKT ))
,

1

M(1 + 4 log(ϵT ))

}
,

Algorithm 1, when run with B and τ = ⌈ 1ϵ ⌉, is ϵ-differentially private and suffers worse-case ex-
pected regret at most

32

√
KT log(K) log(KT )√

ϵ
+

2

ϵ
.

All three corollaries establish the first known separation in rates between differential privacy and
local differential privacy for this problem. Namely, while the lower bounds from Basu et al. (2019)
show that any local ϵ-differentially private bandit algorithm must suffer linear Ω(T ) expected regret
when ϵ < 1√

T
, our upper bounds in Corollaries 1, 2, and 3 give algorithms whose expected regret is

sublinear o(T ) even when ϵ < 1√
T
. The remainder of this section is dedicated to proving Theorem

1. Corollaries 1, 2, and 3 are proven in Appendix D.

3.1 PROOF OF THEOREM 1

The conversion behind Theorem 1 is remarkably simple. At a high-level, it just requires simulating
the non-private bandit algorithm on noisy batched losses. That is, instead of passing every loss to the
non-private bandit algorithm, we play the same arm for a batch size τ , average the loss across this
batch, add independent Laplace noise to the batched loss, and then pass this noisy batched loss to the
non-private bandit algorithm. By adding Laplace noise to batched losses as opposed to the original
losses (as is done by Tossou & Dimitrakakis (2017) and Agarwal & Singh (2017)), the magnitude
of the required noise is reduced by a multiplicative factor of the batch size.

However, a key issue that needs to be handled when adding noise (whether to batched or un-batched
losses) is the fact that the losses fed to the non-private bandit algorithm can now be negative and

6
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unbounded. Accordingly, in order to get any meaningful utility guarantees, Theorem 1 effectively
requires our non-private bandit algorithm to handle unbounded, negative (but still unbiased) losses.
Fortunately, there are several existing adversarial bandit algorithms that can achieve low expected
regret while observing negative losses. Three of these are presented in Corollary 1, 2, and 3. To
the best of our knowledge, this is the first work to establish a connection between handling negative
losses (for example in works that handle heavy-tailed losses) and (non-local) differential privacy.

Algorithm 1 provides the pseudo code for converting a non-private bandit algorithm B to a private
bandit algorithm A.

Algorithm 1 Non-Private to Private Conversion
Input: Bandit algorithm B, batch size τ , privacy parameter ϵ ∈ (0, 1]

1 Initialize: j = 1
2 for t = 1, . . . , T do
3 if t = (j − 1)τ + 1 then
4 Receive action Ij from B.
5 Play action It := Ij
6 Observe loss ℓt(It).
7 if t = jτ then
8 Define ℓ̂j(i) :=

1
τ

∑jτ
s=(j−1)τ+1 ℓs(i)

9 Pass ℓ̂j(Ij) + Zj to B, where Zj ∼ Lap( 1
τϵ ).

10 Update j ← j + 1.
11 end

Lemma 1 (Privacy guarantee). For every bandit algorithm B, batch size τ ≥ 1, and ϵ ≤ 1, Algo-
rithm 1 is ϵ-differentially private.

Proof. (sketch of Lemma 1) Observe that Algorithm 1 applies the bandit algorithm B on the loses
ℓ̂1, . . . , ℓ̂⌊T

τ ⌋ in a black box fashion. Accordingly, the privacy guarantee of Algorithm 1 follows

from the privacy guarantee of ℓ̂1(I1), . . . , ℓ̂⌊T
τ ⌋(I⌊T

τ ⌋) and post-processing. The privacy of each

ℓ̂j(Ij) follows from the Laplace mechanism. ■

A rigorous proof of Lemma 1 can be found in Appendix C.
Lemma 2 (Utility guarantee). For every bandit algorithm B, batch size τ ≥ 1, and ϵ ≤ 1, the
worst-case expected regret of Algorithm 1 is at most τ R̃B(

T
τ ,K, 1

ϵτ ) + τ .

The proof of Lemma 2 follows from the following result by Arora et al. (2012).
Theorem 2 (Theorem 2 in Arora et al. (2012)). Let B be any bandit algorithm. Let τ ≥ 1 be a
batch size and let Aτ be the batched version of B. That is, the bandit algorithm Aτ groups the
rounds 1, . . . , T into consecutive and disjoint batches of size τ such that the j’th batch begins on
round (j − 1)τ +1 and ends on round jτ . At the start of each batch j the algorithmAτ calls B and
receives an action Ij drawn from B’s internal distribution. Then, Aτ plays this action for τ rounds.
At the end of the batch, Aτ feeds B with the average loss value 1

τ

∑jτ
s=(j−1)τ+1 ℓs(Ij). For such an

algorithm Aτ , its worst-case expected regret is at most τ RB
(
T
τ ,K

)
+ τ.

Note that Algorithm 1 is precisely the batched version of its input B. Accordingly, Theorem 2
immediately implies that on any sequence ℓ1:T , the expected regret of Algorithm 1 is at most
τ R̃B(

T
τ ,K, 1

ϵτ ) + τ . We provide a complete proof of Lemma 2 in Appendix C.

4 UPPER BOUNDS FOR BANDITS WITH EXPERT ADVICE

Theorem 1 also allows us to give guarantees for bandits with expert advice. To do so, we need
Theorem 3, due to Auer et al. (2002), which shows that any bandit algorithm can be converted into
a bandit with expert advice algorithm in a black-box fashion. For completeness, we provide this
conversion and the proof of Theorem 3 in Appendix E.

7
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Theorem 3 (Bandit to Bandit with Expert Advice). Let B be any bandit algorithm and RB(T,K)
denote its worst-case expected regret. Then, the worst-case expected regret of Algorithm 5 when
initialized with B is at most RB(T,N).

By treating each expert as a meta-action, Theorem 1 and Theorem 3 can be used to convert a non-
private bandit algorithm B into a private bandit with expert advice algorithmA in the following way:
given a non-private bandit algorithm B, use Theorem 1 to convert it into a private bandit algorithm
B′. Then, use Theorem 3 to convert B′ into a private bandit with expert advice algorithm A. By
post-processing, the corresponding actions played by A are also private. In fact, its not hard to see
that this conversion also satisfies a stronger notion of privacy where the expert advice is also taken
to be sensitive information. Theorem 4 formalizes this conversion.
Theorem 4 (Generic Conversion). Let B be any bandit algorithm. Then, for every τ ≥ 1 and ϵ ≤ 1,
there exists an ϵ-differentially private bandit with expert advice algorithm Aτ such that

RAτ
(T,K,N) ≤ τ R̃B

(
T

τ
,N,

1

ϵτ

)
+ τ.

In particular, by setting τ = ⌈ 1ϵ ⌉, there exists an ϵ-differentially private bandit with expert advice
algorithm A such that

RA(T,K,N) ≤ 2

ϵ
R̃B (ϵT,N, 1) +

2

ϵ
.

The proof of Theorem 4 is deferred to Appendix E since it closely follows that of Theorem 1. Using
HTINF for B in Theorem 4 gives the following corollary.
Corollary 4 (FTRL Conversion). For every ϵ ∈ [ 1T , 1], if B is HTINF with α = 2 and σ =

√
6,

then Theorem 4 guarantees the existence of an ϵ-differentially private algorithm whose worst-case
expected regret at most 208

√
TN√
ϵ

+ 2
ϵ .

The upper bound in Corollary 4 is non-vacuous for constant or small N (i.e. N ≤ K). However, this
bound is vacuous when N grows with T . To address this, we consider EXP4 which enjoys expected
regret O

(√
KT log(N)

)
in the non-private setting, exhibiting only a poly-logarithmic dependence

on N (Auer et al., 2002). The following theorem shows that by adding independent Laplace noise
to each observed loss, a similar improvement over Corollary 4 can be established for large N , at the
cost of a worse dependence on ϵ.
Theorem 5 (Locally Private EXP4). For every ϵ ≤ 1, Algorithm 6 when run with η =√

log(N)

3TK
(
1+

10 log2(KT )

ϵ2

) and γ = 4ηK log(KT )
ϵ is ϵ-differentially private and suffers worst-case ex-

pected regret at most 16
√

TK log(N) log(KT )

ϵ + 1.

Due to space constraints, we defer Algorithm 6, which just adds independent Laplace noise to each
observed loss, to Appendix E. Note that when N ≤ K, the upper bound in Corollary 4 is still
superior to that of Theorem 5 for all ranges of ϵ ≤ 1. The proof of Theorem 5 is also deferred to
Appendix E.

Algorithm 6 provides a stronger privacy guarantee than what is actually necessary. Indeed, by adding
independent Laplace noise to each observed loss, Algorithm 6 actually satisfies ϵ-local differential
privacy (Duchi et al., 2013). Accordingly, in contrast to Corollary 2, the upper bound in Theorem
5 is vacuous for ϵ ≤ 1√

T
. The following algorithm uses the batching technique from Section 3 to

improve the dependence in ϵ from Theorem 5 while also improving the dependence on N from
Corollary 4.
Theorem 6 (Private, Batched EXP4). For every ϵ, δ ∈ (0, 1], Algorithm 2, when run

with η =
(N log( 1

δ ))
1/6 log1/3(NT ) log1/3(N)

T 1/3K1/2ϵ1/3
, τ =

(N log( 1
δ ))

1/3 log2/3(NT )T 1/3

ϵ2/3 log1/3(N)
, and γ =

max

{
η1/3N1/3K2/3 log2/3(NT )

ϵ2/3τ2/3 ,
12ηK
√

N log( 1
δ ) log(NT )

ϵτ

}
, satisfies (ϵ, δ)-differentially privacy and

suffers worst-case expected regret at most

100N1/6K1/2T 2/3 · log1/6( 1δ ) log
1/3(NT ) log1/3(N)

ϵ1/3
+

N1/2 · log( 1δ )
1/2 log(NT ) log(N)

ϵ
.
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Algorithm 2 Private, Batched EXP4
Input: Action space [K], Number of experts N , batch size τ , privacy parameters ϵ, δ > 0, learning

rate η, mixing parameter γ > 0
1 Initialize: r = 1, w1(j) = 1 for all j ∈ [N ]
2 for t = 1, . . . , T do
3 Receive expert advice µ1

t , . . . , µ
N
t ∈ Π([K])

4 if t = (r − 1)τ + 1 then
5 Set Pr(j)← wr(j)∑

j∈[N] wr(j)

6 Set Qt(i)← (1− γ)
∑N

j=1 Pr(j)µ
j
t (i) +

γ
K .

7 Draw It ∼ Qt

8 Observe loss ℓt(It) and construct unbiased estimator ℓ̂t(i) =
ℓt(i)I{It=i}

Qt(i)

9 if t = rτ then
10 Define ℓ̃r(j) :=

1
τ

∑rτ
s=(r−1)τ+1 ℓ̂s · µj

s and ℓ̃′r(j) := ℓ̃r(j) + Zj
r where

Zj
r ∼ Lap

(
0,

3K
√

N log( 1δ )

γτϵ

)
.

11 Update wr+1(j)← wr(j) · exp{−ηℓ̃′r(j)}
12 Update r ← r + 1.
13 end

The proof of Theorem 6 modifies the standard proof of EXP4 to handle the noisy, batched losses.
See Appendix E for the full proof. Compared to Theorem 4 and 5, Theorem 6 shows that Algorithm
2 enjoys sublinear regret even when N ≥ T 1/4 and ϵ = 1√

T
. In Appendix E, we provide a further

improved version of Algorithm 2 that adapts to the sensitivity of the queries ℓ̃r(j) in Line 11. Our
upper bounds for bandits with expert advice become vacuous when ϵ ≤ 1√

T
and N ≥ T. We leave

deriving non-vacuous upper bounds for this regime as an interesting direction for future work.

5 DISCUSSION ON LOWER BOUNDS FOR PRIVATE ADVERSARIAL BANDITS

In this work, we provided new algorithms for the private adversarial bandit problem and its expert
advice counterpart. In the adversarial bandits setting, we provided a generic conversion of a non-
private bandit algorithm into a private bandit algorithm. Instantiating our conversion with existing
bandit algorithms resulted in private bandit algorithms whose worst-case expected regret improve
upon all existing work in all privacy regimes. In the bandits with expert advice setting, we provide,
to the best of our knowledge, the first private adversarial bandit algorithms by modifying EXP4.

An important direction of future work is answering whether it is possible to achieve an additive
separation in ϵ and T . We note that this is possible in the stochastic bandit setting (Azize & Basu,
2022) as well as the the full-information adversarial online setting (Agarwal & Singh, 2017). To this
end, we end our paper by discussing some road blocks when attempting to derive such guarantees
for the adversarial bandit setting.

5.1 ON THE HARDNESS OF PRIVATIZING EXP3

First, we comment on the difficulty of privatizing EXP3. In the full-information setting, a standard
privacy analysis for exponential weights shows that for every t ∈ [T ], the per-round privacy loss at
time step t is at most 2η, and for η = ϵ√

T
advanced composition yields (ϵ, δ)-differential privacy

with expected regret O(
√
T log(K)/ϵ) (Dwork et al., 2014).

Unfortunately, it is not easy to bound the per-round privacy loss of EXP3 uniformly across time. This
is because EXP3 uses Inverse-Probability-Weighted estimators (Robins et al., 1994) (see Algorithm
3). Thus the algorithm needs to know not just the arm It but also the probability Pt with which it

9
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was selected. It is, however, not clear how to account for the privacy cost of releasing Pt and indeed
we can construct examples where the per-round privacy loss grows with the time horizon T . We
provide a more formal analysis of this issue in Appendix G.1.

5.2 ALGORITHM-SPECIFIC LOWER BOUNDS

All existing lower bounds for private bandits are in the stochastic setting and effectively show a
lower bound of Ω(Kϵ ) (up to log factors) (Azize & Basu, 2022). In Appendix G.2, we prove a
stronger lower bound for a large class of bandit algorithms by exploiting the ability to pick arbitrary
sequences of loss functions. Informally, our lower bound holds for any (adaptively) private bandit
algorithm that “quickly” reduces the probability of playing a sub-optimal arm.

Consider an instance on two arms where arm 1 has loss 1
2 at each step, while arm 2 has loss 1 at

each step. Any algorithm that has regret R must play arm 2 at most O(R) times on this instance.
Informally, our lower bound applies to bandit algorithms that drops the probability of playing arm
2 to be about R

T within about o(T/R) steps. We note that EXP3 drops this probability to O(RT ) in
O(log T ) steps. For algorithms of this kind, our lower bound shows that any ϵ-differentially private
algorithm (for ϵ < 1) must incur regret O(

√
T/ϵ). Intuitively, the lower bound follows from the

fact that if the loss of arm 2 falls to 0 at step ≈ T/R (while arm 1 is unchanged at 1
2 ), then an ϵ-

differentially private algorithm must pull arm 2 at least 1
ϵ times to “notice” this change. Accounting

for the accumulated regret in the time it takes to pull arm 2 sufficiently many times, and setting
parameters appropriately yields the lower bound.
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Jean-Yves Audibert and Sébastien Bubeck. Minimax policies for adversarial and stochastic bandits.
In COLT, pp. 217–226, 2009.

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multi-
armed bandit problem. SIAM journal on computing, 32(1):48–77, 2002.

Achraf Azize and Debabrota Basu. When privacy meets partial information: A refined analysis of
differentially private bandits. Advances in Neural Information Processing Systems, 35:32199–
32210, 2022.

Debabrota Basu, Christos Dimitrakakis, and Aristide Tossou. Differential privacy for multi-armed
bandits: What is it and what is its cost? arXiv preprint arXiv:1905.12298, 2019.
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A PRIVACY PROPERTIES AND PRIVACY-PRESERVING MECHANISMS

Definition 5 (ϵ-indistinguishability). Let X and Y be random variables with support X . Let

D∞(X||Y ) := max
S⊆X

[
ln
(P(X ∈ S)

P(Y ∈ S)

)]
be the max divergence. Then X and Y are ϵ-indistinguishable if and only if

max{D∞(X||Y ), D∞(Y ||X)} ≤ ϵ.

Definition 6 ((ϵ, δ)-indistinguishability). Let X and Y be random variables with support X . Let

Dδ
∞(X||Y ) := max

S⊆X ,P(X∈S)≥δ

[
ln
(P(X ∈ S)− δ

P(Y ∈ S)

)]
be the δ-approximate max divergence. Then X and Y are (ϵ, δ)-indistinguishable if and only if

max{Dδ
∞(X||Y ), Dδ

∞(Y ||X)} ≤ ϵ.

The follow lemma relates the two notions of indistiguishability to differential privacy.

Lemma 3 (Differential privacy ≡ Indistiguishability (Remark 3.2 in Dwork et al. (2014))). Let X
and Y be arbitrary sets. Let A be a randomized algorithm such that A : Xn → Y . Then, A
is ϵ-differentially private if and only if for every pair of neighboring datasets x1:n and x′

1:n, we
have that the random variables A(x1:n) and A(x′

1:n) are ϵ-indistinguishable. Likewise, A is (ϵ, δ)-
differentially private if and only if for every pair of neighboring datasets x1:n and x′

1:n, we have that
the random variables A(x1:n) and A(x′

1:n) are (ϵ, δ)-indistinguishable.

Next, we cover composition.
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Lemma 4 (Basic Composition (Corollary 3.15 in Dwork et al. (2014))). Let X ,Y1,Y2, . . . ,YT be
arbitrary sets and n ∈ N. Let A1,A2, . . . ,AT be a sequence of randomized algorithms where
A1 : Xn → Y1 and At : Y1, . . . ,Yt−1,Xn → Yt for all t = 2, 3, . . . , T. If for every t ∈ [T ] and
every y1:t−1 ∈ Y1×Y2×· · ·×Yt−1, we have thatAt(y1:t−1, ·) is ϵt-differentially private, then the
overall algorithm A : Xn → Y1 × Y2 × · · · × YT , defined as

A(x1:n) =
(
A1(x1:n),A2(A1(x1:n), x1:n), . . . ,AT (A1(x1:n),A2(A1(x1:n), x1:n), . . . , x1:n)

)
,

satisfies ϵT -differential privacy.

Lemma 5 (Basic Composition (Corollary 3.15 in Dwork et al. (2014))). Let X ,Y1,Y2, . . . ,YT be
arbitrary sets and n ∈ N. Let A1,A2, . . . ,AT be a sequence of randomized algorithms where
A1 : Xn → Y1 and At : Y1, . . . ,Yt−1,Xn → Yt for all t = 2, 3, . . . , T. If for every t ∈ [T ] and
every y1:t−1 ∈ Y1×Y2×· · ·×Yt−1, we have thatAt(y1:t−1, ·) is ϵt-differentially private, then the
overall algorithm A : Xn → Y1 × Y2 × · · · × YT , defined as

A(x1:n) =
(
A1(x1:n),A2(A1(x1:n), x1:n), . . . ,AT (A1(x1:n),A2(A1(x1:n), x1:n), . . . , x1:n)

)
,

satisfies ϵT -differential privacy.

Lemma 6 (Advanced Composition (Dwork et al., 2010b; Kairouz et al., 2015)). Let
X ,Y1,Y2, . . . ,YT be arbitrary sets and n ∈ N. Let A1,A2, . . . ,AT be a sequence of random-
ized algorithms where A1 : Xn → Y1 and At : Y1, . . . ,Yt−1,Xn → Yt for all t = 2, 3, . . . , T.
If for every t ∈ [T ] and every y1:t−1 ∈ Y1 × Y2 × · · · × Yt−1, we have that At(y1:t−1, ·) is ϵt-
differentially private, then for every δ′ > 0, the overall algorithm A : Xn → Y1 × Y2 × · · · × YT ,
defined as

A(x1:n) =
(
A1(x1:n),A2(A1(x1:n), x1:n), . . . ,AT (A1(x1:n),A2(A1(x1:n), x1:n), . . . , x1:n)

)
,

satisfies (ϵ′, δ′)-differential privacy, where

ϵ′ ≤ 3

2

T∑
t=1

ϵ2t +

√√√√6

T∑
t=1

ϵ2t log

(
1

δ′

)
.

Post-processing and group privacy will also be useful.

Lemma 7 (Post Processing (Proposition 2.1 in Dwork et al. (2014))). Let X ,Y,Z be arbitrary sets
and n ∈ N. LetA : Xn → Y and B : Y → Z be randomized algorithms. IfA is (ϵ, δ)-differentially
private then the composed algorithm B ◦ A : Xn → Z is also (ϵ, δ)-differentially private.

For our lower bounds in Section 5, the notion of group privacy will be useful.

Lemma 8 (Group Privacy (Theorem 2.2 in Dwork et al. (2014))). Let X and Y be arbitrary sets
and let n ∈ N. Suppose A : Xn → Y is an ϵ-differentially private algorithm. Then, for every pair
of datasets x1:n, x

′
1:n that differ in 1 ≤ k ≤ n positions and every event E ⊆ Y , we have that

P [A(x1:n) ∈ E] ≤ ekϵP [A(x′
1:n) ∈ E] .

Finally, for designing algorithms, the following primitive will be useful.

Definition 7 (Laplace Mechanism (Definition 3.3 in Dwork et al. (2014))). Let X be an arbitrary
set and n ∈ N. Suppose f : Xn → R is a query with sensitivity ∆ (i.e. for all pairs of datasets
x1:n, x

′
1:n ∈ Xn that differ in exactly one index, we have that |f(x1:n)− f(x′

1:n)| ≤ ∆). Then, for
every ϵ, the mechanismM : Xn → R defined asM(x1:n) = f(x1:n) + Z, where Z ∼ Lap(∆ϵ ), is
ϵ-differentially private.

B HELPER LEMMAS

Lemma 9 (Hazard Rate of Laplace distribution). Let D denote the Laplace distribution Lap(0, λ),
f and F denote its probability and cumulative density functions respectively. Define
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hD(z) :=
f(z)

1− F (z)

to be the hazard rate function of Lap(0, λ). Then

sup
z∈R

hD(z) ≤
1

λ
.

Moreover, hD(z) is non-decreasing in z.

Proof. Recall that for λ > 0, we have

f(z) =
1

2λ
exp{−|x|

λ
}

and

F (z) =

{
1
2 exp{

z
λ}, if z ≤ 0

1− 1
2 exp{−

z
λ}, if z > 0

.

Fix x ∈ R. If x ≤ 0, then

f(x)

1− F (x)
=

1
2λ exp{xλ}

1− 1
2 exp{

x
λ}
≤ 1

λ

Otherwise, note that when x ≥ 0, we have

f(x)

1− F (x)
=

1
2λ exp{−x

λ }
1
2 exp{

−x
λ }

=
1

λ
.

This shows that supx∈R hD(x) ≤ 1
λ . To see that hD(x) is non-decreasing, note that when x ≤ 0,

we have that hD(x) =
1
2λ exp{ x

λ}
1− 1

2 exp{ x
λ} is increasing in x and when x ≥ 0, hD(x) is constant. ■

Lemma 10 (Truncated Non-negativity of Noisy Losses). Let Z ∼ Lap(λ) and ℓ ∈ [0, 1]. Then, for
any M ≥ 0, we have that

E [(Z + ℓ)I{|Z + ℓ| > M}] ≥ 0.

Proof. Let M ≥ 0 and ℓ ∈ [0, 1]. Then, we can write

E [(Z + ℓ)I{|Z + ℓ| > M}] = ℓ · E [I{|Z + ℓ| > M}] + E [ZI{|Z + ℓ| > M}] .

Since ℓ ≥ 0, it suffices to show that E [ZI{|Z + ℓ| > M}] ≥ 0. To that end, note that

E [ZI{|Z + ℓ| > M}] = E [ZI{Z > M − ℓ}] + E [ZI{Z < −M − ℓ}] .

Suppose that M − ℓ ≥ 0. Then, since Z is symmetric random variable (around the origin),
E [ZI{Z < −M − ℓ}] = −E [ZI{Z > M + ℓ}]. Since M − ℓ < M + ℓ, we have that

E [ZI{|Z + ℓ| > M}] = E [ZI{Z > M − ℓ}]− E [ZI{Z > M + ℓ}] ≥ 0.

Finally, suppose that M − ℓ < 0. Then,

E [ZI{Z > M − ℓ}] = E [ZI{0 ≥ Z > M − ℓ}] + E [ZI{Z ≥ 0}] .

14
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Using again the fact that Z is symmetric, we have that

E [ZI{0 ≥ Z > M − ℓ}] = −E [ZI{0 ≤ Z < ℓ−M}] .

Finally, since ℓ−M ≤M + ℓ, we have that

E [ZI{|Z + ℓ| > M}] = E [ZI{Z ≥ 0}]− E [ZI{0 ≤ Z < ℓ−M}]− E [ZI{Z > M + ℓ}] ≥ 0,

completing the proof. ■

Lemma 11 (Norms of Laplace Vectors (Fact C.1 in (Agarwal & Singh, 2017))). If Z1, . . . , ZT ∼
(Lap(λ))N , then

P(∃t ∈ [T ] : ||Zt||2∞ ≥ 10λ2 log2(NT )) ≤ 1

T

C PROOF OF LEMMAS 1 AND 2

C.1 PROOF OF LEMMA 1

Note that the sequence of actions played by Algorithm 1 are completely determined by I1, . . . , I⌊T
τ ⌋

in a dataset-independent way. Thus, by post-processing it suffices to show that the actions
I1, . . . , I⌊T

τ ⌋ are output in a ϵ-differentially private manner. Note that the distribution over the
action I1 is independent of the dataset ℓ1, . . . , ℓT . Thus, it suffices to only prove privacy with re-
spect to the actions I2, . . . , I⌊T

τ ⌋. Consider the sequence of mechanisms M2, . . . ,M⌊T
τ ⌋, where

M2 : [K]× ℓ1:T → R× [K] is defined as

M2(i1, ℓ1:T ) =
(
ℓ̂1(i1) + Z1,B((i1, ℓ̂1(i1) + Z1))

)
,

for Z1 ∼ Lap( 1
τϵ ) and Mj : ([K]× R)j−2 × [K]× ℓ1:T → R× [K] is defined as

Mj((is, rs)
j−2
s=1, ij−1, ℓ1:T ) =

(
ℓ̂j−1(ij−1) + Zj−1,B((is, rs)j−2

s=1 ◦ (ij−1, ℓ̂j−1(ij−1) + Zj−1))
)
,

for Zj−1 ∼ Lap( 1
τϵ ). Observe that Algorithm 1 is precisely the mechanism M : ℓ1:T → ([K]×R)T

that adaptively composes M2, . . . ,M⌊T
τ ⌋. We will now show that M is ϵ-differentially private.

Consider two datasets ℓ1:T and ℓ′1:T that differ in exactly one position. Let t′ ∈ [T ] be the index
where the two datasets differ. Let j′ ∈ {1, . . . ,

⌊
T
τ

⌋
} be the batch in where the t′ lies. That is, let

j′ ∈ {1, . . . ,
⌊
T
τ

⌋
} such that t′ ∈ {(j′ − 1)τ + 1, . . . , j′τ}. For all j ≤ j′, we have that Mj(·, ℓ1:T )

and Mj(·, ℓ′1:T ) are 0-indistinguishable. We now show that Mj′+1(·, ℓ1:T ) and Mj′+1(·, ℓ′1:T ) are
ϵ-indistinguishable. Fix a sequence (is, rs)

j′−1
s=1 ∈ ([K]× R)j′−1 and ij′ ∈ [K]. Recall that

Mj′+1((is, rs)
j′−1
s=1 , ij′ , ℓ1:T ) =

(
ℓ̂j′(ij′) + Zj′ ,B((is, rs)j

′−1
s=1 ◦ (ij′ , ℓ̂j′(ij′) + Zj′))

)
.

Note that the query ℓ̂j′(ij′) has sensitivity at most 1
τ . Indeed, we have that

∣∣∣ℓ̂j′(ij′)− ℓ̂′j′(ij′)
∣∣∣ =

∣∣∣∣∣∣1τ
j′τ∑

s=(j′−1)τ+1

ℓs(ij′)− ℓ′s(ij′)

∣∣∣∣∣∣ = 1

τ
|ℓt′(ij′)− ℓ′t′(ij′)| ≤

1

τ
.

Thus, by Definition 7 and post-processing, we have that Mj′+1(·, ℓ1:T ) and Mj′+1(·, ℓ′1:T ) are ϵ-
indistinguishable. To complete the proof, we now show that for all j > j′ + 1, Mj(·, ℓ1:T ) and
Mj(·, ℓ′1:T ) are 0-indistinguishable. Fix some j > j′ + 1, a sequence (is, rs)

j−2
s=1 ∈ ([K] × R)j−2

and ij−1 ∈ [K]. Recall, that

Mj((is, rs)
j−2
s=1, ij−1, ℓ1:T ) =

(
ℓ̂j−1(ij−1) + Zj−1,B((is, rs)j−2

s=1 ◦ (ij−1, ℓ̂j−1(ij−1) + Zj−1))
)
.
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Since for every s ∈ {(j − 1)τ + 1, . . . , jτ} we have that ℓs = ℓ′s, we get that ℓ̂j−1(ij−1) +

Zj−1 and ℓ̂′j−1(ij−1) + Zj−1 are same in distribution. The same can be said about B((is, rs)j−2
s=1 ◦

(ij−1, ℓ̂j−1(ij−1)+Zj−1)) andB((is, rs)j−2
s=1◦(ij−1, ℓ̂

′
j−1(ij−1)+Zj−1)). Accordingly, Mj(·, ℓ1:T )

and Mj(·, ℓ′1:T ) are 0-indistinguishable. Since M is the composition of M2, . . . ,M⌊T
τ ⌋, by basic

composition, we have that M(·, ℓ1:T ) and M(·, ℓ′1:T ) are ϵ-indistinguishable, and therefore M is
ϵ-differentially private. This completes the proof.

C.2 PROOF OF LEMMA 2

Let ℓ1, . . . , ℓT be any sequence of loss functions. Note that the bandit algorithm B is evaluated on the
loss sequence ℓ̂1 + Z1, . . . , ℓ̂⌊T

τ ⌋ + Z⌊T
τ ⌋ where ℓ̂j(i) =

1
τ

∑jτ
s=(j−1)τ+1 ℓs(i) and Zj ∼ Lap( 1

τϵ ).
Let I1, . . . , I⌊T

τ ⌋ be the random variables denoting the predictions of B as indicated in Line 4 in

Algorithm 1. By definition of R̃B
(⌊

T
τ

⌋
,K, 1

τϵ

)
we get that

E

⌊T
τ ⌋∑

j=1

ℓ̂j(Ij)

− inf
i∈[K]

⌊T
τ ⌋∑

j=1

ℓ̂j(i) ≤ R̃B

(⌊
T

τ

⌋
,K,

1

τϵ

)
.

By definition of ℓ̂s, we have that

E

⌊T
τ ⌋∑

j=1

jτ∑
s=(j−1)τ+1

ℓs(Ij)

− inf
i∈[K]

⌊T
τ ⌋∑

j=1

jτ∑
s=(j−1)τ+1

ℓs(i) ≤ τ R̃B

(⌊
T

τ

⌋
,K,

1

τϵ

)
.

Next, note that by construction, we have that for every j ∈ {1, . . . ,
⌊
T
τ

⌋
} and s ∈ {(j − 1)τ +

1, . . . , jτ}, we have that Is = Ij . Thus, we can write

E

⌊T
τ ⌋∑

j=1

jτ∑
s=(j−1)τ+1

ℓs(Is)

− inf
i∈[K]

⌊T
τ ⌋∑

j=1

jτ∑
s=(j−1)τ+1

ℓs(i) ≤ τ R̃B

(⌊
T

τ

⌋
,K,

1

τϵ

)

which further gives

E

τ⌊T
τ ⌋∑

t=1

ℓt(It)

− inf
i∈[K]

τ⌊T
τ ⌋∑

t=1

ℓt(i) ≤ τ R̃B

(⌊
T

τ

⌋
,K,

1

τϵ

)
.

Finally, the expected regret for rounds τ
⌊
T
τ

⌋
+ 1, . . . , T can be bounded above by τ . Thus, overall,

we have that

E

[
T∑

t=1

ℓt(It)

]
− inf

i∈[K]

T∑
t=1

ℓt(i) ≤ τ R̃B

(⌊
T

τ

⌋
,K,

1

τϵ

)
+ τ ≤ τ R̃B(

T

τ
,K,

1

τϵ
) + τ.

Noting that ℓ1, . . . , ℓT was arbitrary completes the proof.

D PROOFS OF COROLLARIES 1, 2, AND 3

D.1 PROOF OF COROLLARY 1

We start with Corollary 1 which picks B in Theorem 1 to be EXP3. Algorithm 3 provides the
pseudocode for the version of EXP3 that we consider.
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Algorithm 3 EXP3 with Mixing
Input: Action space [K], learning rate η, mixing parameter γ > 0

1 Initialize: w1(i) = 1 for all i ∈ [K]
2 for t = 1, . . . , T do
3 Set Pt(i) = (1− γ) wt(i)∑

i∈[K] wt(i)
+ γ

K

4 Draw It ∼ Pt

5 Observe loss ℓt(It) and construct unbiased estimator ℓ̂t(i) =
ℓt(i)I{It=i}

Pt(i)

6 Update wt+1(i)← wt(i) · exp{−ηℓ̂t(i)} for all i ∈ [K]
7 end

The following lemma about EXP3 will be useful.

Lemma 12 (Auer et al. (2002); Bubeck et al. (2012)). For any sequence of loss functions ℓ1, . . . , ℓT ,
where ℓt : [K] → R, if η > 0 is such that ηmaxi∈[K]−ℓ̂t(i) ≤ 1 for all t ∈ [T ], then EXP3 when
run on ℓ1, . . . , ℓT outputs distributions P1:T ∈ Π([K])T such that

E

[
T∑

t=1

K∑
i=1

Pt(i)ℓ̂t(i)

]
≤ inf

i∈[K]
E

[
T∑

t=1

ℓ̂t(i)

]
+ 2γT +

log(K)

η
+ ηE

[
T∑

t=1

K∑
i=1

Pt(i)ℓ̂t(i)
2

]
,

where ℓ̂t is the unbiased estimate of the true loss ℓt that EXP3 computes in Line 5 of Algorithm 3.

Proof. (of Corollary 1) In order to use Theorem 1, we first need to bound R̃EXP3(T,K, λ). Let
ℓ1, . . . , ℓT be any sequence of loss functions such that ℓt : [K] → [0, 1] and let ℓ̃1, . . . , ℓ̃T be such
that ℓ̃t(i) = ℓt(i)+Zt(i) where Zt(i) ∼ Lap(λ). Let E be the event that there exists a t ∈ [T ] such
that maxi∈[K] |Zt(i)|2 ≥ 10λ2 log2 KT . Then, Lemma 11 shows that P [E] ≤ 1

T . Moreover, note
that E [Zt(i)|Ec] = 0 for all i ∈ [K] and t ∈ [T ]. We need to bound

R̃EXP3(T,K, λ) = E

[
T∑

t=1

ℓt(EXP3(H̃t))− inf
i∈[K]

T∑
t=1

ℓt(i)

]
.

We can write R̃EXP3(T,K, λ) as

E

[
T∑

t=1

ℓt(EXP3(H̃t))− inf
i∈[K]

T∑
t=1

ℓt(i)

∣∣∣∣∣E
]
P(E)+E

[
T∑

t=1

ℓt(EXP3(H̃t))− inf
i∈[K]

T∑
t=1

ℓt(i)

∣∣∣∣∣Ec

]
P(Ec)

Since E
[∑T

t=1 ℓt(EXP3(H̃t))− infi∈[K]

∑T
t=1 ℓt(i)

∣∣∣E] ≤ T , we have that

R̃EXP3(T,K, λ) ≤ E

[
T∑

t=1

ℓt(EXP3(H̃t))− inf
i∈[K]

T∑
t=1

ℓt(i)

∣∣∣∣∣Ec

]
+ 1

We now want to use Lemma 12 to bound E
[∑T

t=1 ℓt(EXP3(H̃t))− infi∈[K]

∑T
t=1 ℓt(i)

∣∣∣Ec
]
. Re-

call, that EXP3 is actually running on the noisy losses ℓ̃1, . . . , ℓ̃T . So, in order to use Lemma 12,

we need to pick γ, η > 0 such that ηmaxi∈[K]−ˆ̃ℓt(i) ≤ 1, where we use ˆ̃
ℓt to denote the unbiased

estimate that EXP3 constructs of the true (noisy) loss ℓ̃t. In particular, recall that EXP3 constructs
ˆ̃
ℓt(i) =

ℓ̃(i)I{It=i}
Pt(i)

where we used Pt(i) to denote the measure that EXP3 uses to select its action It
on round t ∈ [T ]. Moreover, given a mixing parameter γ > 0, we have that Pt(i) ≥ γ

K . Thus, we
need to pick γ and η such that
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η max
i∈[K]

−ˆ̃ℓt(i) ≤
ηK

γ
max
i∈[K]

|Zt(i)| ≤ 1.

Conditioned on event Ec, we have that maxi∈[K] |Zt(i)| ≤ 4λ log(KT ). Thus, it suffices to pick
γ = 4ηλK log(KT ). Now, we can apply Lemma 12 and get that

E

[
T∑

t=1

K∑
i=1

Pt(i)
ˆ̃
ℓt(i)

∣∣∣∣∣Ec

]
≤ inf

i∈[K]
E

[
T∑

t=1

ˆ̃
ℓt(i)

∣∣∣∣∣Ec

]
+2γT+

log(K)

η
+ηE

[
T∑

t=1

K∑
i=1

Pt(i)
ˆ̃
ℓt(i)

2

∣∣∣∣∣Ec

]
.

Since ˆ̃
ℓt is an unbiased estimate of the true (noisy) loss ℓ̃t, we have that

E

[
T∑

t=1

K∑
i=1

Pt(i)ℓ̃t(i)

∣∣∣∣∣Ec

]
≤ inf

i∈[K]
E

[
T∑

t=1

ℓ̃t(i)

∣∣∣∣∣Ec

]
+2γT +

log(K)

η
+ ηE

[
T∑

t=1

K∑
i=1

ℓ̃t(i)
2

∣∣∣∣∣Ec

]
.

Since Zt(i), conditioned on Ec, is zero-mean and Zt(i) conditioned on the history H̃t is independent
of Pt(i), we have that

E

[
T∑

t=1

K∑
i=1

Pt(i)ℓt(i)

∣∣∣∣∣Ec

]
≤ inf

i∈[K]

T∑
t=1

ℓt(i) + 2γT +
log(K)

η
+ ηE

[
T∑

t=1

K∑
i=1

ℓ̃t(i)
2

∣∣∣∣∣Ec

]
,

which further gives

R̃EXP3(T,K, λ) ≤ 2γT +
log(K)

η
+ ηE

[
T∑

t=1

K∑
i=1

ℓ̃t(i)
2

∣∣∣∣∣Ec

]
+ 1.

It just remains to bound E
[∑T

t=1

∑K
i=1 ℓ̃t(i)

2
∣∣∣Ec
]
. Note that we can write

ηE

[
T∑

t=1

K∑
i=1

ℓ̃t(i)
2

∣∣∣∣∣Ec

]
≤ ηKE

[
T∑

t=1

max
i∈[K]

ℓ̃t(i)
2

∣∣∣∣∣Ec

]

≤ ηKE

[
T∑

t=1

max
i∈[K]

(ℓt(i) + Zt(i))
2

∣∣∣∣∣Ec

]

≤ 2ηKE

[
T∑

t=1

(1 + max
i∈[K]

Zt(i)
2)

∣∣∣∣∣Ec

]

≤ 2ηK

T∑
t=1

(1 + 10λ2 log2 KT )

= 2ηTK(1 + 10λ2 log2 KT ).

Plugging this bound back in gives that

R̃EXP3(T,K, λ) ≤ 2γT +
log(K)

η
+ 2ηTK(1 + 10λ2 log2 KT ) + 1.

Recall that we picked γ = 4ηλK log(KT ). Substituting this selection gives
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R̃EXP3(T,K, λ) ≤ 8ηλKT log(KT ) +
log(K)

η
+ 2ηTK(1 + 10λ2 log2 KT ) + 1.

We can then write

R̃EXP3(T,K, λ) ≤ log(K)

η
+ 2ηTK(1 + 10max{λ2, λ} log2 KT ) + 1.

Picking η =
√

log(K)
2TK(1+10max{λ2,λ} log2 KT )

, we get overall that

R̃EXP3(T,K, λ) ≤ 2

√
2TK log(K)(1 + 10max{λ2, λ} log2 KT ) + 1.

Finally, Corollary 1 follows by the fact that

2

ϵ
R̃EXP3(ϵT,K, 1) +

2

ϵ
≤ 36

√
TK log(K) log(KT )√

ϵ
+

4

ϵ
.

■

D.2 PROOF OF COROLLARY 2

We now move to prove Corollary 2. The following Theorem from Huang et al. (2022) will be useful.

Theorem 7 (Theorem 4.1 in Huang et al. (2022)). Let ℓ̃1, . . . , ℓ̃T be any sequence of random loss
functions that satisfy the following two properties: (1) for every i ∈ [K] and t ∈ [T ], the random
variable ℓ̃t(i) is truncated non-negative and (2) for every i ∈ [K] and t ∈ [T ], the random variable
ℓ̃t(i) is heavy-tailed with parameters α ∈ (1, 2] and σ > 0. Then, the expected regret of HTINF
(Algorithm 1 in Huang et al. (2022)) when run on ℓ̃1, . . . , ℓ̃T is at most 30σK1− 1

α (T + 1)
1
α .

We now make precise the definition of truncated non-negativity and heavy-tails.
Definition 8 (Truncated Non-negativity). A random variable X is truncated non-negative if for
every M ≥ 0, we have that E [X · I{|X| > M}] ≥ 0.

In Appendix B, we prove that random losses of the form ℓ̃(i) = ℓ(i)+Zi are truncated non-negative
when ℓ(i) ∈ [0, 1] and Zi ∼ Lap(λ).

Definition 9 ((α, σ)-Heavy-tailed loss). A random loss ℓ̃(i) is (α, σ)-heavy tailed if E
[
|ℓ̃(i)|α

]
≤

σα.

In addition, if ℓ̃(i) = ℓ(i) + Zi, where ℓ(i) ∈ [0, 1] and Zi ∼ Lap(λ), then ℓ̃(i) is (2,
√
2 + 4λ2)-

heavy tailed. We are now ready to prove Corollary 2.

Proof. (of Corollary 2) In order to use Theorem 1, we need to upper bound R̃HTINF(T, λ). Let
ℓ1, . . . , ℓT be any sequence of loss functions such that ℓt : [K] → [0, 1] and let ℓ̃1, . . . , ℓ̃T be such
that ℓ̃t(i) = ℓt(i) + Zt(i) where Zt(i) ∼ Lap(λ). Then, since for every t ∈ [T ] and i ∈ [K], we
have that ℓ̃t(i) is truncated non-negative and (2,

√
2 + 4λ2)-heavy tailed, Theorem 7 implies that

R̃HTINF(T,K, λ) ≤ 30
√

(2 + 4λ2)K(T + 1).

Finally, to get Corollary 2, we just upper bound

2

ϵ
R̃HTINF(ϵT,K, 1) +

2

ϵ
≤ 208

√
TK√
ϵ

+
2

ϵ
,

for ϵ ≥ 1
T . ■
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D.3 PROOF OF COROLLARY 3

Finally, we prove Corollary 3. To do so, consider Algorithm 4. Lemma 13 first bounds R̃B(T,K, λ)
when B is Algorithm 4.

Algorithm 4 Bandit FTPL with Geometric Resampling (Neu & Bartók, 2016)
Input: M , η

1 Initialize: L̂0(i) = 0 for all i ∈ [K].
2 for t = 1, . . . , T do
3 Sample Z1, . . . , ZK i.i.d. from Lap(0, 1

η ).

4 Select action It ∈ argmini∈[K](L̂t−1(i) + Zi)

5 Observe loss ℓt(It)
6 Let Mt = 0.
7 for i = 1, 2, . . . ,M do
8 Sample Z ′

1, . . . , Z
′
K i.i.d. from Lap(0, 1

η ).

9 if It ∈ argmaxi∈[K](L̂t−1(i) + Z ′
i) then

10 Set Mt = i.
11 break
12 end
13 Define ℓ̂t(i) = ℓt(i)MtI{It = i}.
14 Update L̂t = L̂t−1 + ℓ̂t(i).
15 end

Lemma 13. Let B denote Algorithm 4. Then, if M =
√
KT and

η = min

{√
log(K)

(KT + 10KTλ2 log2(KT ))
,

1

M(1 + 4λ log(T ))

}
,

we have that

R̃B(T,K, λ) ≤ 11λ
√
KT log(K) log(KT ) + 10

√
KT

Proof. Let ℓ1, . . . , ℓT be any sequence of loss functions such that ℓt : [K]→ [0, 1] and let ℓ̃1, . . . , ℓ̃T
be such that ℓ̃t(i) = ℓt(i) + Gt(i) where Gt(i) ∼ Lap(λ). Let E be the event that there exists a
t ∈ [T ] such that maxi∈[K] |Gt(i)|2 ≥ 10λ2 log2 KT . Then, Lemma 11 shows that P [E] ≤ 1

T .
Moreover, note that E [Gt(i)|Ec] = 0 for all i ∈ [K] and t ∈ [T ]. We need to bound

R̃B(T,K, λ) = E

[
T∑

t=1

ℓt(B(H̃t))− inf
i∈[K]

T∑
t=1

ℓt(i)

]
.

We can write R̃B(T,K, λ) as

E

[
T∑

t=1

ℓt(B(H̃t))− inf
i∈[K]

T∑
t=1

ℓt(i)

∣∣∣∣∣E
]
P(E) + E

[
T∑

t=1

ℓt(B(H̃t))− inf
i∈[K]

T∑
t=1

ℓt(i)

∣∣∣∣∣Ec

]
P(Ec)

Since E
[∑T

t=1 ℓt(B(H̃t))− infi∈[K]

∑T
t=1 ℓt(i)

∣∣∣E] ≤ T , we have that

R̃B(T,K, λ) ≤ E

[
T∑

t=1

ℓt(B(H̃t))− inf
i∈[K]

T∑
t=1

ℓt(i)

∣∣∣∣∣Ec

]
+ 1

≤ E

[
T∑

t=1

ℓt(B(H̃t))

∣∣∣∣∣Ec

]
− inf

i∈[K]

T∑
t=1

ℓt(i) + 1
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Let i⋆ be the arm that minimizes
∑T

t=1 ℓt(i). Moreover, let ˆ̃ℓt denote the unbiased estimate that
Algorithm 4 constructs of the true (noisy) loss ℓ̃t when run on the noisy losses ℓ̃1, . . . , ℓ̃T . We start
with the following regret decomposition for FTPL from (Honda et al., 2023, Lemma 3).

E

[
T∑

t=1

ˆ̃
ℓt(It)

∣∣∣∣∣Ec

]
− E

[
T∑

t=1

ˆ̃
ℓt(i

⋆)

∣∣∣∣∣Ec

]
≤ 2EZ∼Lap( 1

η )K

[
max
i∈[K]

|Zi|
]
+ E

[
T∑

t=1

K∑
i=1

ˆ̃
ℓt(i)(Pt(i)− Pt+1(i))

∣∣∣∣∣Ec

]

where we define Pt(i) := P
[
It = i|ˆ̃ℓ1, . . . , ˆ̃ℓt−1

]
. The first term on the right can be bounded as

2EZ∼Lap( 1
η )K

[
max
i∈[K]

|Zi|
]
≤ 6 log(K)

η
.

As for the second term, Lemma 5 from Cheng et al. gives that

exp{−η||ˆ̃ℓt||1} ≤
Pt+1(i)

Pt(i)
≤ exp{η||ˆ̃ℓt||1}.

Accordingly, we have that

Pt(i)(1− exp{η||ˆ̃ℓt||1}) ≤ Pt(i)− Pt+1(i) ≤ Pt(i)(1− exp{−η||ˆ̃ℓt||1}).

Thus, we can bound

ˆ̃
ℓt(i)(Pt(i)− Pt+1(i)) ≤ ˆ̃

ℓt(i)Pt(i)(exp{η||ˆ̃ℓt||1} − 1).

For η > 0 such that η||ˆ̃ℓt||1 ≤ 1, we have that

exp{η||ˆ̃ℓt||1} ≤ 2η||ˆ̃ℓt||1 + 1.

Since ||ˆ̃ℓt||1 ≤ |Mt(ℓt(It) +Gt(It))| ≤M(1 + 4η log(T )), it suffices to pick η ≤ 1
M(1+4λ log(T )) .

For this choice of η, we have that

ˆ̃
ℓt(i)(Pt(i)− Pt+1(i)) ≤ 2Pt(i)η

ˆ̃
ℓt(i)||ˆ̃ℓt||1 ≤ 2Pt(i)η(

ˆ̃
ℓt(i))

2.

Plugging this in gives

E

[
T∑

t=1

K∑
i=1

ˆ̃
ℓt(i)(Pt(i)− Pt+1(i))

∣∣∣∣∣Ec

]
≤ 2ηE

[
T∑

t=1

K∑
i=1

Pt(i)(
ˆ̃
ℓt(i))

2

∣∣∣∣∣Ec

]

and therefore

E

[
T∑

t=1

ˆ̃
ℓt(It)− ˆ̃

ℓt(i
⋆)

∣∣∣∣∣Ec

]
≤ 6 log(K)

η
+ 2ηE

[
T∑

t=1

K∑
i=1

Pt(i)(
ˆ̃
ℓt(i))

2

∣∣∣∣∣Ec

]
.

To bound the second term on the right hand side, we have that
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E

[
T∑

t=1

K∑
i=1

Pt(i)(
ˆ̃
ℓt(i))

2

∣∣∣∣∣Ec

]
= E

[
T∑

t=1

K∑
i=1

Pt(i)(ℓ̃t(i))
2I{It = i}(Mt)

2

∣∣∣∣∣Ec

]

≤ 2E

[
T∑

t=1

K∑
i=1

Pt(i)(ℓ̃t(i))
2I{It = i} 1

(Pt(i))2

∣∣∣∣∣Ec

]

= 2E

[
T∑

t=1

K∑
i=1

(ℓ̃t(i))
2I{It = i} 1

Pt(i)

∣∣∣∣∣Ec

]

= 2E

[
T∑

t=1

K∑
i=1

(ℓt(i) +Gt(i))
2

∣∣∣∣∣Ec

]

≤ 2E

[
T∑

t=1

K∑
i=1

(1 +Gt(i)
2)

∣∣∣∣∣Ec

]
= 2KT + 20KTλ2 log2(KT ),

where the first inequality follows from Lemma 12 in Cheng et al.. Thus,

E

[
T∑

t=1

ˆ̃
ℓt(It)− ˆ̃

ℓt(i
⋆)

∣∣∣∣∣Ec

]
≤ 6 log(K)

η
+ 4ηKT + 40ηKTλ2 log2(KT ).

Next, note that

E

[
T∑

t=1

ℓ̃t(It)− ℓ̃t(i
⋆)

∣∣∣∣∣Ec

]
= E

[
T∑

t=1

ˆ̃
ℓt(It)− ˆ̃

ℓt(i
⋆)

∣∣∣∣∣Ec

]
+E

[
T∑

t=1

ℓ̃t(It)− ˆ̃
ℓt(It)

∣∣∣∣∣Ec

]
+E

[
T∑

t=1

ˆ̃
ℓt(i

⋆)− ℓ̃t(i
⋆)

∣∣∣∣∣Ec

]
.

Thus, it suffices to upper bound the latter two terms. Starting with the third term, we have that

E

[
T∑

t=1

ˆ̃
ℓt(i

⋆)− ℓ̃t(i
⋆)

∣∣∣∣∣Ec

]
= E

[
T∑

t=1

ℓ̃t(i
⋆)(1− (1− Pt(i

⋆))M )− ℓ̃t(i
⋆)

∣∣∣∣∣Ec

]

= E

[
T∑

t=1

ℓ̃t(i
⋆)− ℓ̃t(i

⋆)(1− Pt(i
⋆))M − ℓ̃t(i

⋆)

∣∣∣∣∣Ec

]

= E

[
T∑

t=1

−ℓ̃t(i⋆)(1− Pt(i
⋆))M

∣∣∣∣∣Ec

]

= E

[
T∑

t=1

−(ℓt(i⋆) +Gt(i))(1− Pt(i
⋆))M

∣∣∣∣∣Ec

]

= E

[
T∑

t=1

−ℓt(i⋆)(1− Pt(i
⋆))M

∣∣∣∣∣Ec

]
≤ 0,

where the second equality follows by Lemma 4 from Neu & Bartók (2016). Now, for the second
term, by Lemma 5 from Neu & Bartók (2016) we have that

E

[
T∑

t=1

ℓ̃t(It)− ˆ̃
ℓt(It)

∣∣∣∣∣Ec

]
≤ KT

eM
.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Combining all our bounds gives

E

[
T∑

t=1

ℓ̃t(It)− ℓ̃t(i
⋆)

∣∣∣∣∣Ec

]
≤ 6 log(K)

η
+ 4η(KT + 10KTλ2 log2(KT )) +

KT

eM
.

For M =
√
KT and η = min

{√
log(K)

(KT+10KTλ2 log2(KT ))
, 1√

KT (1+4λ log(T ))

}
, we get that

E

[
T∑

t=1

ℓ̃t(It)− ℓ̃t(i
⋆)

∣∣∣∣∣Ec

]
≤ 10λ

√
KT log(K) log(KT ) + 10

√
KT.

Since E
[∑T

t=1 ℓ̃t(It)− ℓ̃t(i
⋆)
∣∣∣Ec
]
= E

[∑T
t=1 ℓt(It)− ℓt(i

⋆)
∣∣∣Ec
]
, we have that

R̃B(T,K, λ) ≤ 10λ
√
KT log(K) log(KT ) + 10

√
KT + 1,

which completes the proof. ■

Equipped with Lemma 13, we are now ready to prove Corollary 3.

Proof. (of Corollary 3) Let B be Algorithm 4 with the hyperparameters selected according to
Lemma 13. Then, we know that

R̃B(T,K, λ) ≤ 11λ
√
KT log(K) log(KT ) + 10

√
KT.

By Theorem 1, we can convert B into an ϵ-differentially private algorithm A such that

RA(T,K) ≤ 2

ϵ
R̃B(ϵT,K, 1) +

2

ϵ

≤ 22

ϵ

√
KϵT log(K) log(KT ) + 10

√
KT +

2

ϵ

≤ 32
√
KT log(K) log(KT )√

ϵ
+

2

ϵ
,

completing the proof. ■

E PROOFS FOR BANDITS WITH EXPERT ADVICE

The following guarantee about Multiplicative Weights (MW) will be useful when proving utility
guarantees.
Lemma 14 (Cesa-Bianchi & Lugosi (2006); Littlestone & Warmuth (1994)). For any sequence of
loss functions ℓ1, . . . , ℓT , where ℓt : [N ] → R, if η > 0 is such that ηmaxj∈[N ]−ℓt(j) ≤ 1 for all
t ∈ [T ], then MW when run on ℓ1, . . . , ℓT outputs distributions P1:T ∈ Π([N ])T such that

T∑
t=1

N∑
j=1

Pt(j)ℓt(j) ≤ inf
j∈[N ]

T∑
t=1

ℓt(j) +
log(N)

η
+ η

T∑
t=1

N∑
j=1

Pt(j)ℓt(j)
2.

E.1 PROOF OF THEOREM 3

Proof. (of Theorem 3) Consider a loss sequence ℓ1, . . . , ℓT and a sequence of expert predictions
µ1:N
1:T . Let j⋆ ∈ argminj∈[N ]

∑T
t=1

∑K
i=1 µ

j
t (i)ℓt(i) denote an optimal expert in hindsight. By

definition of the bandit algorithm B, pointwise for every I1:N1:T , we have that
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Algorithm 5 Bandit to Bandit with Expert Advice
Input: Bandit algorithm B, Number of experts N , Action space [K]

1 Initialize: B with action space [N ]
2 for t = 1, . . . , T do
3 Receive expert predictions µ1

t , . . . , µ
N
t ∈ Π([K])N

4 Sample Iit ∼ µj
t for all j ∈ [N ]

5 Define ℓ̃t(j) := ℓt(I
j
t ) for all j ∈ [N ]

6 Receive expert Jt ∈ [N ] from B
7 Play action IJt

t ∈ [K] and observe loss ℓt(IJt
t )

8 Pass ℓ̃t(Jt) to B
9 end

E

[
T∑

t=1

ℓ̃t(Jt)

]
≤

T∑
t=1

ℓ̃t(j
⋆) + RB(T,N).

By definition of ℓ̃t, we then have that

E

[
T∑

t=1

ℓt(I
Jt
t )

]
≤

T∑
t=1

ℓt(I
j⋆

t ) + RB(T,N).

Taking an outer expectation with respect to the randomness of I1:N1:T , we have,

E

[
T∑

t=1

ℓt(I
j⋆

t )

]
=

T∑
t=1

K∑
i=1

µj⋆

t (i) · ℓt(i)

which completes the proof. ■

E.2 PROOF OF THEOREM 4

Let B be any bandit algorithm. Then, for every τ ≥ 1. We need to show that there exists a ϵ-
differentially private bandit with expert advice algorithm Aτ such that

RAτ
(T,K,N) ≤ τ R̃B(

T

τ
,N,

1

ϵτ
) + τ.

Proof. (of Utility in Theorem 4). Fix ϵ ≤ 1 and τ ≥ 1. By Theorem 1, we can convert B into an
ϵ-differentially private bandit algorithm Bτ such that

RBτ (T,K) ≤ τ R̃B(
T

τ
,K,

1

ϵτ
) + τ.

Then, using Theorem 3, we can convert Bτ into a bandit with expert advice algorithm Aτ such that

RAτ
(T,K,N) ≤ RBτ

(T,N) ≤ τ R̃B(
T

τ
,N,

1

ϵτ
) + τ,

completing the proof. ■

Proof. (of Privacy in Theorem 4) Consider the same algorithm as in the proof of the utility guaran-
tee. That is, let Aτ be the result of using Theorem 1 to convert B to Bτ and Theorem 3 to convert
Bτ to Aτ . By Theorem 1, we know that Bτ is ϵ-differentially private. It suffices to show that Al-
gorithm 5, when given Eτ as input is also ϵ-differentially private. To that end, let ℓ1:T and ℓ′1:T be
two sequences that differ at exactly one timepoint. Let µ1:N

1:T be any sequence of expert advice and
fix Iit ∼ µi

t for all t ∈ [T ] and i ∈ [N ]. Observe that Algorithm 5 instantiates Bτ on the action
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space [N ] and simulates Bτ on the sequence of losses ℓ̃t(j) := ℓt(I
j
t ). Let ℓ̃1:T and ℓ̃′1:T denote the

two sequences of losses that Algorithm 5 simulates Bτ on when run on ℓ1:T and ℓ′1:T respectively.
Note that ℓ̃1:T and ℓ̃′1:T differ at exactly one timepoint. Thus, Bτ outputs actions J1, . . . , JT in an
ϵ-differentially private manner. Finally, by post-processing it follows that the sequence of actions
IJt
t output by Algorithm 5 is also ϵ-differentially private. ■

E.3 PROOF OF THEOREM 5

Algorithm 6 Local-DP EXP4
Input: Action space [K], Number of experts N , privacy parameters ϵ > 0, η, γ > 0

1 Initialize:, w1(j) = 1 for all j ∈ [N ]
2 for t = 1, . . . , T do
3 Receive expert advice µ1

t , . . . , µ
N
t

4 Set Pt(j) =
wt(j)∑

j∈[N] wt(j)

5 Set Qt(i) = (1− γ)
∑N

j=1 Pt(j)µ
j
t (i) +

γ
K .

6 Predict It ∼ Qt

7 Observe loss ℓt(It) and define ℓ′t(i) := ℓt(i) + Zi
t , where Zi

t ∼ Lap(0, 1
ϵ )

8 Construct unbiased estimator ℓ̂′t(i) =
ℓ′t(i)I{It=i}

Qt(i)

9 Define ℓ̃′t(j) := µj
t · ℓ̂′t for all j ∈ [N ]

10 Update wt+1(j)← wt(j) · exp{−ηℓ̃′t(j)}
11 end

Proof. (of Utility in Theorem 5) Fix ϵ ≤ 1. Let λ = 1
ϵ . Let ℓ1, . . . , ℓT be any sequence of loss

functions and µ1:N
1:T be any sequence of advice vectors. Let E be the event that there exists a t ∈ [T ]

such that maxi∈[K] |Zi
t |2 ≥ 10λ2 log2(KT ). Then, Lemma 11 shows that P [E] ≤ 1

T . Moreover,
note that E

[
Zi
t

∣∣Ec
]
= 0 for all i ∈ [K] and t ∈ [T ]. We need to bound

R(T,K,N) := E

[
T∑

t=1

ℓt(It)− inf
j∈[N ]

T∑
t=1

µj
t · ℓt

]
.

We can write R(T,K,N) as

E

[
T∑

t=1

ℓt(It)− inf
j∈[N ]

T∑
t=1

µj
t · ℓt

∣∣∣∣∣E
]
P(E) + E

[
T∑

t=1

ℓt(It)− inf
j∈[N ]

T∑
t=1

µj
t · ℓt

∣∣∣∣∣Ec

]
P(Ec)

Since E
[∑T

t=1 ℓt(It)− infj∈[N ]

∑T
t=1 µ

j
t · ℓt

∣∣∣E] ≤ T , we have that

R(T,K,N) ≤ E

[
T∑

t=1

ℓt(It)− inf
j∈[N ]

T∑
t=1

µj
t · ℓt

∣∣∣∣∣Ec

]
+ 1.

Accordingly, for the remainder of the proof, we will assume that event Ec has occurred, which
further implies that maxt∈[T ] maxi∈[K] |Zi

t | ≤ 4λ log(KT ).

Algorithm 6 runs Multiplicative Weights using the noisy losses ℓ̃′1, . . . , ℓ̃
′
T . For γ = 4ηKλ log(KT ),

we have that

ηmax
t∈[T ]

max
j∈[N ]

−ℓ̃′t(j) = ηmax
t∈[T ]

max
j∈[N ]

−µj
t ·ℓ̂′t = ηmax

t∈[T ]
max
j∈[N ]

−µj
t (It)

(ℓt(It) + ZIt
t )

Qt(It)
≤ ηK

γ
(4λ log(KT )) ≤ 1.

Accordingly, for this choice of γ, Lemma 14 implies that
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T∑
t=1

N∑
j=1

Pt(j)ℓ̃
′
t(j) ≤ inf

j∈[N ]

T∑
t=1

ℓ̃′t(j) +
log(N)

η
+ η

T∑
t=1

N∑
j=1

Pt(j)ℓ̃
′
t(j)

2.

Taking expectation of both sides, we have that

E

 T∑
t=1

N∑
j=1

Pt(j)ℓ̃
′
t(j)

∣∣∣∣∣∣Ec

 ≤ inf
j∈[N ]

E

[
T∑

t=1

ℓ̃′t(j)

∣∣∣∣∣Ec

]
+

log(N)

η
+ηE

 T∑
t=1

N∑
j=1

Pt(j)ℓ̃
′
t(j)

2

∣∣∣∣∣∣Ec

 .

We now analyze each of the three terms with expectations separately. First,

E

 T∑
t=1

N∑
j=1

Pr(j)ℓ̃
′
t(j)

∣∣∣∣∣∣Ec

 = E

 T∑
t=1

N∑
j=1

Pt(j)

K∑
i=1

ℓ̂′t(i)µ
j
t (i)

∣∣∣∣∣∣Ec


= E

 T∑
t=1

K∑
i=1

 N∑
j=1

Pt(j)µ
j
t (i)

 ℓ̂′t(i)

∣∣∣∣∣∣Ec


= E

[
T∑

t=1

K∑
i=1

(
Qt(i)− γ

K

1− γ

)
ℓ̂′t(i)

∣∣∣∣∣Ec

]

=
1

(1− γ)
E

[
T∑

t=1

K∑
i=1

Qt(i)ℓ̂
′
t(i)

∣∣∣∣∣Ec

]
− γ

K(1− γ)
E

[
T∑

t=1

K∑
i=1

ℓ̂′t(i)

∣∣∣∣∣Ec

]

Next,

E

 T∑
t=1

N∑
j=1

Pt(j)ℓ̃
′
t(j)

2

∣∣∣∣∣∣Ec

 = E

 T∑
t=1

N∑
j=1

Pt(j)(µ
j
t · ℓ̂′t)2

∣∣∣∣∣∣Ec


≤ E

 T∑
t=1

N∑
j=1

Pt(j)

K∑
i=1

ℓ̂′t(i)
2µj

t (i)

∣∣∣∣∣∣Ec


= E

 T∑
t=1

K∑
i=1

 N∑
j=1

Pt(j)µ
j
t (i)

 ℓ̂′t(i)
2

∣∣∣∣∣∣Ec


= E

[
T∑

t=1

K∑
i=1

(
Qt(i)− γ

K

1− γ

)
ℓ̂′t(i)

2

∣∣∣∣∣Ec

]

≤ 1

(1− γ)
E

[
T∑

t=1

K∑
i=1

Qt(i)ℓ̂
′
t(i)

2

∣∣∣∣∣Ec

]
.

Finally,

inf
j∈[N ]

E

[
T∑

t=1

ℓ̃′t(j)

∣∣∣∣∣Ec

]
= inf

j∈[N ]
E

[
T∑

t=1

ℓ̂′t · µ
j
t

∣∣∣∣∣Ec

]

= inf
j∈[N ]

E

[
T∑

t=1

ℓ′t · µ
j
t

∣∣∣∣∣Ec

]

= inf
j∈[N ]

T∑
t=1

ℓt · µj
t ,
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where the second equality follows by the unbiasedness of ℓ̂′t and the last by the fact
that Zi

t is zero-mean (conditioned on Ec). Putting all the bounds together, we get that
1

(1−γ)E
[∑T

t=1

∑K
i=1 Qt(i)ℓ̂

′
t(i)
∣∣∣Ec
]

is at most

inf
j∈[N ]

T∑
t=1

ℓt · µj
t +

log(N)

η
+

γ

K(1− γ)
E

[
T∑

t=1

K∑
i=1

ℓ̂′t(i)

]
+

η

(1− γ)
E

[
T∑

t=1

K∑
i=1

Qt(i)ℓ̂
′
t(i)

2

∣∣∣∣∣Ec

]

Multiplying both sides by (1− γ), we have that E
[∑T

t=1

∑K
i=1 Qt(i)ℓ̂

′
t(i)
∣∣∣Ec
]

is at most

(1− γ) inf
j∈[N ]

T∑
t=1

ℓt · µj
t +

(1− γ) log(N)

η
+

γ

K
E

[
T∑

t=1

K∑
i=1

ℓ̂′t(i)

]
+ ηE

[
T∑

t=1

K∑
i=1

Qt(i)ℓ̂
′
t(i)

2

∣∣∣∣∣Ec

]

which implies that

E

[
T∑

t=1

K∑
i=1

Qt(i)ℓ̂
′
t(i)

∣∣∣∣∣Ec

]
≤ inf

j∈[N ]

T∑
t=1

ℓt · µj
t +

log(N)

η
+ γT + ηE

[
T∑

t=1

K∑
i=1

Qt(i)ℓ̂
′
t(i)

2

∣∣∣∣∣Ec

]
.

Using the fact that ℓ̂′t is an unbiased estimator of ℓ′t gives that

E

[
T∑

t=1

K∑
i=1

Qt(i)ℓ
′
t(i)

∣∣∣∣∣Ec

]
≤ inf

j∈[N ]

T∑
t=1

ℓt · µj
t +

log(N)

η
+ γT + ηE

[
T∑

t=1

K∑
i=1

ℓ′t(i)
2

∣∣∣∣∣Ec

]

Since Zi
t is zero-mean (conditioned on Ec) and independent of Qt(i), we get that,

E

[
T∑

t=1

K∑
i=1

Qt(i)ℓt(i)

∣∣∣∣∣Ec

]
≤ inf

j∈[N ]

T∑
t=1

ℓt · µj
t +

log(N)

η
+ γT + ηE

[
T∑

t=1

K∑
i=1

ℓ′t(i)
2

∣∣∣∣∣Ec

]
.

It suffices to bound the expectation on the right-hand side. To that end, observe that

E

[
T∑

t=1

K∑
i=1

ℓ′t(i)
2

∣∣∣∣∣Ec

]
= E

[
T∑

t=1

K∑
i=1

(ℓt(i) + Zi
t)

2

∣∣∣∣∣Ec

]

≤ 2E

[
T∑

t=1

K∑
i=1

(ℓt(i)
2 + (Zi

t)
2)

∣∣∣∣∣Ec

]

≤ 2E

[
T∑

t=1

K∑
i=1

(1 + (Zi
t)

2)

∣∣∣∣∣Ec

]
≤ 2KT (1 + 10λ2 log2 KT )

Thus, overall we have that

E

[
T∑

t=1

K∑
i=1

Qt(i)ℓt(i)

∣∣∣∣∣Ec

]
≤ inf

j∈[N ]

T∑
t=1

ℓt · µj
t +

log(N)

η
+ γT + 2ηKT (1 + 10λ2 log2 KT ).

Plugging in our choice of γ = 4ηKλ log(KT ),
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E

[
T∑

t=1

K∑
i=1

Qt(i)ℓt(i)

∣∣∣∣∣Ec

]
≤ inf

j∈[N ]

T∑
t=1

ℓt·µj
t+

log(N)

η
+4ηKTλ log(KT )+2ηKT (1+10λ2 log2 KT ).

which for λ ≥ 1 gives

E

[
T∑

t=1

K∑
i=1

Qt(i)ℓt(i)

∣∣∣∣∣Ec

]
≤ inf

j∈[N ]

T∑
t=1

ℓt · µj
t +

log(N)

η
+ 3ηKT (1 + 10λ2 log2 KT ).

Picking η =
√

log(N)
3TK(1+10λ2 log2 KT )

, we have

E

[
T∑

t=1

K∑
i=1

Qt(i)ℓt(i)

∣∣∣∣∣Ec

]
≤ inf

j∈[N ]

T∑
t=1

ℓt · µj
t + 16

√
TK log(N)λ log(KT ).

For our choice λ = 1
ϵ , we get

E

[
T∑

t=1

K∑
i=1

Qt(i)ℓt(i)

∣∣∣∣∣Ec

]
≤ inf

j∈[N ]

T∑
t=1

ℓt · µj
t +

16
√

TK log(N) log(KT )

ϵ
.

Finally, noting that

R(T,K,N) ≤ E

[
T∑

t=1

K∑
i=1

Qt(i)ℓt(i)

∣∣∣∣∣Ec

]
− inf

j∈[N ]

T∑
t=1

µj
t · ℓt + 1

completes the proof. ■

The proof of privacy in Theorem 5 is identical to the proof of Lemma 1 after taking batch size τ = 1,
so we omit the details here.

E.4 PROOF OF THEOREM 6

Proof. (of Utility in Theorem 6) Fix ϵ, δ ∈ (0, 1] and batch size τ . Let λ =
3K
√

N log( 1
δ )

γτϵ . Let
ℓ1, . . . , ℓT be any sequence of loss functions and µ1:N

1:T be any sequence of advice vectors. Let E
be the event that there exists a r ∈ {1, . . . ,

⌊
T
τ

⌋
} such that maxj∈[N ] |Zj

r |2 ≥ 10λ2 log2(N
⌊
T
τ

⌋
).

Then, Lemma 11 shows that P [E] ≤ τ
T . Moreover, note that E

[
Zj
r

∣∣Ec
]
= 0 for all j ∈ [N ] and

r ∈ [
⌊
T
τ

⌋
]. We need to bound

R(T,K,N) := E

[
T∑

t=1

ℓt(It)− inf
j∈[N ]

T∑
t=1

µj
t · ℓt

]
.

We can write R(T,K,N) as

E

[
T∑

t=1

ℓt(It)− inf
j∈[N ]

T∑
t=1

µj
t · ℓt

∣∣∣∣∣E
]
P(E) + E

[
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ℓt(It)− inf
j∈[N ]

T∑
t=1

µj
t · ℓt

∣∣∣∣∣Ec

]
P(Ec)

Since E
[∑T

t=1 ℓt(It)− infj∈[N ]

∑T
t=1 µ

j
t · ℓt

∣∣∣E] ≤ T , we have that

R(T,K,N) ≤ E

[
T∑

t=1

ℓt(It)− inf
j∈[N ]

T∑
t=1

µj
t · ℓt

∣∣∣∣∣Ec

]
+ τ (1)
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Accordingly, for the remainder of the proof, we will assume that event Ec has occurred, which
further implies that maxr∈[⌊T

τ ⌋] maxj∈[N ] |Zj
r | ≤ 4λ log(N

⌊
T
τ

⌋
).

Algorithm 2 runs Multiplicative Weights using the noisy, batched losses ℓ̃′1, . . . , ℓ̃
′
⌊T

τ ⌋
. For γ ≥

12ηK
√

N log( 1
δ ) log(NT )

ϵτ , we have that

max
r∈[⌊T

τ ⌋]
max
j∈[N ]

−η(ℓ̃′r(j)) ≤ max
r∈[⌊T

τ ⌋]
max
j∈[N ]
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j∈[N ]

−ηZj
r ≤ η

12K
√
N log

(
1
δ

)
log(NT )

ϵτγ
≤ 1.

Accordingly, for any choice γ ≥ 12ηK
√

N log( 1
δ ) log(NT )

ϵτ , Lemma 14 implies that

⌊T
τ ⌋∑

r=1

N∑
j=1

Pr(j)ℓ̃
′
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ℓ̃′r(j) +
log(N)

η
+ η

⌊T
τ ⌋∑

r=1

N∑
j=1

Pr(j)ℓ̃
′
r(j)

2.

Taking expectation of both sides, we have that

E

⌊T
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r=1

N∑
j=1

Pr(j)ℓ̃
′
r(j)
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E
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+ηE

⌊T
τ ⌋∑

r=1

N∑
j=1

Pr(j)ℓ̃
′
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2

∣∣∣∣∣∣∣Ec

 .

Using the fact that Zj
r is zero-mean and conditionally independent of Pr given the history of the

game up to and including time point (r − 1)τ , we have that

E
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N∑
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+ηE
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2
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 .

We now analyze each of the three terms with expectations separately. First,
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Pr(j)ℓ̃r(j)
2

∣∣∣∣∣∣∣Ec

+ E

⌊T
τ ⌋∑

r=1

10λ2 log2(N

⌊
T

τ

⌋
)

∣∣∣∣∣∣∣Ec


= E

⌊T
τ ⌋∑

r=1

N∑
j=1

Pr(j)ℓ̃r(j)
2

∣∣∣∣∣∣∣Ec

+ 10

⌊
T

τ

⌋
λ2 log2(N

⌊
T

τ

⌋
)

To bound the first of the two terms above, note that:
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E

⌊T
τ ⌋∑

r=1

N∑
j=1

Pr(j)ℓ̃r(j)
2

∣∣∣∣∣∣∣Ec

 ≤ E

⌊T
τ ⌋∑

r=1

N∑
j=1

Pr(j)

1

τ

rτ∑
s=(r−1)τ+1

ℓ̂s · µj
s

2
∣∣∣∣∣∣∣Ec


≤ E

⌊T
τ ⌋∑

r=1

N∑
j=1

Pr(j)
1

τ2

 rτ∑
s=(r−1)τ+1

ℓ̂s · µj
s

2
∣∣∣∣∣∣∣Ec


≤ E

⌊T
τ ⌋∑

r=1

N∑
j=1

Pr(j)
1

τ

rτ∑
s=(r−1)τ+1

(
ℓ̂s · µj

s

)2∣∣∣∣∣∣∣Ec


≤ 1

τ
E

⌊T
τ ⌋∑

r=1

N∑
j=1

Pr(j)

rτ∑
s=(r−1)τ+1

ℓ̂2s · µj
s

∣∣∣∣∣∣∣Ec


=

1

τ
E

⌊T
τ ⌋∑

r=1

rτ∑
s=(r−1)τ+1

N∑
j=1

Pr(j)

K∑
i=1

ℓ̂2s(i)µ
j
s(i)

∣∣∣∣∣∣∣Ec


=

1

τ
E

⌊T
τ ⌋∑

r=1

rτ∑
s=(r−1)τ+1

K∑
i=1

 N∑
j=1

Pr(j)µ
j
s(i)

 ℓ̂2s(i)

∣∣∣∣∣∣∣Ec


=

1

τ
E

τ⌊T
τ ⌋∑

t=1

K∑
i=1

(
Qt(i)− γ

K

1− γ

)
ℓ̂2t (i)

∣∣∣∣∣∣∣Ec


≤ 1

τ(1− γ)
E

τ⌊T
τ ⌋∑

t=1

K∑
i=1

Qt(i)ℓ̂
2
t (i)

∣∣∣∣∣∣∣Ec

 .

Finally,

inf
j∈[N ]

E

⌊T
τ ⌋∑

r=1

ℓ̃r(j)

∣∣∣∣∣∣∣Ec

 =
1

τ
inf

j∈[N ]
E

⌊T
τ ⌋∑

r=1

rτ∑
s=(r−1)τ+1

ℓ̂s · µj
s

∣∣∣∣∣∣∣Ec


=

1

τ
inf

j∈[N ]
E

τ⌊T
τ ⌋∑

t=1

ℓ̂t · µj
t

∣∣∣∣∣∣∣Ec


=

1

τ
inf

j∈[N ]

τ⌊T
τ ⌋∑

t=1

ℓt · µj
t ,

where the last equality follows by the unbiasedness of ℓ̂t. Putting all the bounds together, we get
that
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1

τ(1− γ)
E

τ⌊T
τ ⌋∑

t=1

K∑
i=1

Qt(i)ℓ̂t(i)

∣∣∣∣∣∣∣Ec

 ≤ 1

τ
inf

j∈[N ]

τ⌊T
τ ⌋∑

t=1

ℓt · µj
t +

log(N)

η
+

γ

(1− γ)

⌊
T

τ

⌋

+
η

τ(1− γ)
E

τ⌊T
τ ⌋∑

t=1

K∑
i=1

Qt(i)ℓ̂
2
t (i)

∣∣∣∣∣∣∣Ec


+ 10η

⌊
T

τ

⌋
λ2 log2(N

⌊
T

τ

⌋
).

Multiplying both sides by τ(1− γ), gives

E

τ⌊T
τ ⌋∑

t=1

K∑
i=1

Qt(i)ℓ̂t(i)

∣∣∣∣∣∣∣Ec

 ≤ (1− γ) inf
j∈[N ]

τ⌊T
τ ⌋∑

t=1

ℓt · µj
t +

τ(1− γ) log(N)

η
+ τγ

⌊
T

τ

⌋

+ ηE

τ⌊T
τ ⌋∑

t=1

K∑
i=1

Qt(i)ℓ̂
2
t (i)

∣∣∣∣∣∣∣Ec


+ 10η(1− γ)τ

⌊
T

τ

⌋
λ2 log2(N

⌊
T

τ

⌋
),

which implies that

E

τ⌊T
τ ⌋∑

t=1

K∑
i=1

Qt(i)ℓ̂t(i)

∣∣∣∣∣∣∣Ec

 ≤ inf
j∈[N ]

τ⌊T
τ ⌋∑

t=1

ℓt · µj
t +

τ log(N)

η
+ γT

+ ηE

τ⌊T
τ ⌋∑

t=1

K∑
i=1

Qt(i)ℓ̂
2
t (i)

∣∣∣∣∣∣∣Ec


+ 10ηTλ2 log2(N

⌊
T

τ

⌋
).

Using the fact that ℓ̂t is an unbiased estimator of ℓt gives that

E

τ⌊T
τ ⌋∑

t=1

K∑
i=1

Qt(i)ℓt(i)

∣∣∣∣∣∣∣Ec

 ≤ inf
j∈[N ]

τ⌊T
τ ⌋∑

t=1

ℓt·µj
t+

τ log(N)

η
+γT+ηE

τ⌊T
τ ⌋∑

t=1

K∑
i=1

ℓ2t (i)

∣∣∣∣∣∣∣Ec

+10ηTλ2 log2(N

⌊
T

τ

⌋
).

By the boundedness of the loss, we have

E

τ⌊T
τ ⌋∑

t=1

K∑
i=1

Qt(i)ℓt(i)

∣∣∣∣∣∣∣Ec

 ≤ inf
j∈[N ]

τ⌊T
τ ⌋∑

t=1

ℓt·µj
t+

τ log(N)

η
+γT+ηKτ

⌊
T

τ

⌋
+10ηTλ2 log2(N

⌊
T

τ

⌋
).

Bounding the regret in the last τ rounds by τ , gives
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E

[
T∑

t=1

K∑
i=1

Qt(i)ℓt(i)

∣∣∣∣∣Ec

]
≤ inf

j∈[N ]

T∑
t=1

ℓt · µj
t +

τ log(N)

η
+ γT + ηTK + 10ηTλ2 log2(NT ) + τ

≤ inf
j∈[N ]

T∑
t=1

ℓt · µj
t +

τ log(N)

η
+ γT + ηTK +

90ηTNK2 log( 1δ ) log
2(NT )

ϵ2γ2τ2
+ τ

Using Equation 1, then gives that

R(T,K,N) ≤ τ log(N)

η
+ γT + ηTK +

90ηTNK2 log( 1δ ) log
2(NT )

ϵ2γ2τ2
+ 2τ

Since η < 1, we trivially have that

R(T,K,N) ≤ 3τ log(N)

η
+ γT + ηTK +

90ηTNK2 log( 1δ ) log
2(NT )

ϵ2γ2τ2
.

Now, choosing γ = max

{
η1/3N1/3K2/3 log2/3(NT )

ϵ2/3τ2/3 ,
12ηK
√

N log( 1
δ ) log(NT )

ϵτ

}
, gives

R(T,K,N) ≤ 3τ log(N)

η

+ 90max

η1/3(N log( 1δ ))
1/3K2/3 log2/3(NT )

ϵ2/3τ2/3
,
ηK
√

N log( 1δ )) log(NT )

ϵτ

T + ηTK.

Choosing η =
(N log( 1

δ ))
1/6 log1/3(NT ) log1/3(N)

T 1/3K1/2ϵ1/3
and τ =

(N log( 1
δ ))

1/3 log2/3(NT )T 1/3

ϵ2/3 log1/3(N)
gives

R(T,K,N) ≤
95(N log( 1δ ))

1/6K1/2 log1/3(NT ) log1/3(N)T 2/3

ϵ1/3

+
(95N log( 1δ ))

1/3K1/2 log2/3(NT ) log2/3(N)T 1/3

ϵ2/3

≤
100N1/6K1/2T 2/3 log1/6( 1δ ) log

1/3(NT ) log1/3(N)

ϵ1/3

+
N1/2 log( 1δ )

1/2 log(NT ) log(N)

ϵ
.

which completes the proof. ■

Proof. (of Privacy in Theorem 6) Fix ϵ, δ ∈ (0, 1]. Note that the sequence of actions played by
Algorithm 2 are completely determined by P1, . . . , P⌊T

τ ⌋ in a dataset-independent way. Thus, by
post-processing it suffices to show that the distributions P1, . . . , P⌊T

τ ⌋ are output in a ϵ-differentially
private manner. Note that P1 is independent of the dataset ℓ1, . . . , ℓT . Thus, it suffices to only prove
privacy with respect to P2, . . . , P⌊T

τ ⌋. Algorithm 2 can be viewed as the adaptive composition M of

the sequence of mechanisms M2, . . . ,M⌊T
τ ⌋, where M2 : ([K]×Π([K]))τ ×ℓ1:T → RN ×Π([N ])

is defined as

M2(I1:τ , µ
1:τ
1:T , ℓ1:T ) = (ℓ̃′1(1), . . . , ℓ̃

′
1(N))
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for ℓ̃′1(j) defined as in Line 10 of Algorithm 2. Likewise, for s ∈ {3, . . . ,
⌊
T
τ

⌋
}, define Ms :

(RN )s−2 × (Π([K])× [K])τ × ℓ1:T → RN such that

Ms(ℓ̃
′
1:s−2, µ

1:N
(s−2)τ+1:(s−1)τ , I(s−2)τ+1:(s−1)τ , ℓ1:T ) = (ℓ̃′(s−1)τ (1), . . . , ℓ̃

′
(s−1)τ (N))

Since Ps depends on only the outputs of M1, . . . ,Ms−1, by post-processing, it suffices to show that
M is (ϵ, δ)-differentially private.

To do so, fix two neighboring data sets ℓ1:T and ℓ′1:T . Let t′ be the index where the two datasets
differ. Let r′ ∈ {1, . . . ,

⌊
T
τ

⌋
} be the batch in where t′ lies. For all r ≤ r′, we have that Mr(·, ℓ1:T )

and Mr(·, ℓ′1:T ) are 0-indistinguishable. We now show that Mr′+1(·, ℓ1:T ) and Mr′+1(·, ℓ′1:T ) are
(ϵ, δ)-indistinguishable. For any fixed sequence of inputs ℓ̃′1:r′−1, µ

1:N
(r′−1)τ+1:r′τ , I(r′−1)τ+1:r′τ ∈

(RN )s−2 × (Π([K])× [K])τ and every expert j ∈ [N ], the mechanism Mr′+1 computes ℓ̃′r′τ (j) =

ℓ̃r′τ (j) + Zj
r′ , where Z(s−1)τ (j) ∼ Lap(0, 3K

√
N log( 1

δ )

γτϵ ) and

ℓ̃r′τ (j) =
1

τ

r′τ∑
m=(r′−1)τ+1

K∑
i=1

µj
m(i)ℓm(i)I{Im = i}

Qm(i)
.

Observe that for every fixed sequence of inputs, the global sensitivity of ℓ̃r′τ (j) with respect to
neighboring datasets is at most K

γτ since Qt(i) ≥ γ
K for all t ∈ [T ]. Accordingly, by the Laplace

Mechanism and advanced composition, we have that Mr′+1(·, ℓ1:T ) and Mr′+1(·, ℓ′1:T ) are (ϵ, δ)-
indistinguishable.

To complete the proof, it suffices to show that for all r > r′ + 1, we have that Mr(·, ℓ1:T ) and
Mr(·, ℓ′1:T ) are 0-indistinguishable. However, this follows from the fact that for every r > r′ + 1,
we have that ℓ(r−1)τ+1:rτ+1 = ℓ′(r−1)τ+1:rτ and that mechanism Mr does not access the true data
ℓ1:(r−1)τ , but only the privatized, published outputs of the previous mechanisms M1, . . . ,Mr−1.
Thus, by advanced composition, we have that the entire mechanism M is (ϵ, δ)-differentially private.

■

F IMPROVED, BATCHED EXP4

In this section, we provide a slight improvement over Theorem 6 by more carefully determining
how much noise we add to each batched unbiased loss estimate. See the proof below for the specific
choices of the hyperparameters.

Theorem 8. For every ϵ, δ > 0, there exists η, γ > 0 and τ ≥ 1 such that Algorithm 7 is (ϵ, δ)-
differentially private and suffers worst-case expected regret at most the minimum of

100N1/6K1/2T 2/3 · log1/6( 1δ ) log
1/3(NT ) log1/3(N)

ϵ1/3
+

N1/2 · log( 1δ )
1/2 log(NT ) log(N)

ϵ

and

18(N log( 1δ ) log(NT ) log(N))2/5(KT )3/5

ϵ2/5
.
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Algorithm 7 Improved, Private, Batched EXP4
Input: Action space [K], Number of experts N , batch size τ , privacy parameters ϵ, δ > 0

1 Initialize: r = 1, w1(j) = 1 for all j ∈ [N ]
2 for t = 1, . . . , T do
3 Receive expert advice µ1

t , . . . , µ
N
t

4 if t = (r − 1)τ + 1 then
5 Set Pr(j) =

wr(j)∑
j∈[N] wr(j)

6 Set Qt(i) = (1− γ)
∑N

j=1 Pr(j)µ
j
t (i) +

γ
K .

7 Draw It ∼ Qt

8 Observe loss ℓt(It) and construct unbiased estimator ℓ̂t(i) =
ℓt(i)I{It=i}

Qt(i)

9 if t = rτ then
10 Define ∆j

r = maxs∈{(r−1)τ+1,...rτ}
µj
s(Is)

τQs(Is)

11 Define ℓ̃r(j) :=
1
τ

∑rτ
s=(r−1)τ+1 ℓ̂s · µj

s and ℓ̃′r(j) := ℓ̃r(j) + Zj
r where

12

Zj
r ∼ Lap

0,
3∆j

r

√
N log( 1δ )

ϵ

 .

13 Update wr+1(j)← wr(j) · exp{−ηℓ̃′r(j)}
14 Update r ← r + 1.
15 end

Proof. (of Utility in Theorem 8) Fix ϵ, δ > 0 and batch size τ . Let λj
r =

3∆j
r

√
N log( 1

δ )

ϵ . Let
ℓ1, . . . , ℓT be any sequence of loss functions and µ1:N

1:T be any sequence of advice vectors. Let E be
the event that there exists a r ∈ {1, . . . ,

⌊
T
τ

⌋
} such that maxj∈[N ] |Zj

r |2 ≥ 10(λj
r)

2 log2(N
⌊
T
τ

⌋
).

Then, Lemma 11 shows that P [E] ≤ τ
T . Moreover, note that E

[
Zj
r

∣∣Ec
]
= 0 for all j ∈ [N ] and

r ∈ [
⌊
T
τ

⌋
]. Using the same analysis as in the proof of Theorem 6, we have that

R(T,K,N) ≤ E

[
T∑

t=1

ℓt(It)− inf
j∈[N ]

T∑
t=1

µj
t · ℓt

∣∣∣∣∣Ec

]
+ τ. (2)

Accordingly, for the remainder of the proof, we will assume that event Ec has occurred, which
further implies that maxr∈[⌊T

τ ⌋] maxj∈[N ] |Zj
r | ≤ 4λj

r log(N
⌊
T
τ

⌋
).

Algorithm 7 runs Multiplicative Weights using the noisy, batched losses ℓ̃′1, . . . , ℓ̃
′
⌊T

τ ⌋
. For any

choice γ ≥ 12ηK
√

N log( 1
δ ) log(NT )

ϵτ , Lemma 14 implies that

⌊T
τ ⌋∑

r=1

N∑
j=1

Pr(j)ℓ̃
′
r(j) ≤ inf

j∈[N ]

⌊T
τ ⌋∑

r=1

ℓ̃′r(j) +
log(N)

η
+ η

⌊T
τ ⌋∑

r=1

N∑
j=1

Pr(j)ℓ̃
′
r(j)

2.

Taking expectation of both sides, we have that

E

⌊T
τ ⌋∑

r=1

N∑
j=1

Pr(j)ℓ̃
′
r(j)

∣∣∣∣∣∣∣Ec

 ≤ inf
j∈[N ]

E

⌊T
τ ⌋∑

r=1

ℓ̃′r(j)

∣∣∣∣∣∣∣Ec

+log(N)

η
+ηE

⌊T
τ ⌋∑

r=1

N∑
j=1

Pr(j)ℓ̃
′
r(j)

2

∣∣∣∣∣∣∣Ec

 .

Using the fact that Zj
r is zero-mean and conditionally independent of Pr given the history of the

game up to and including time point (r − 1)τ , we have that

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

E

⌊T
τ ⌋∑

r=1

N∑
j=1

Pr(j)ℓ̃r(j)

∣∣∣∣∣∣∣Ec

 ≤ inf
j∈[N ]

E

⌊T
τ ⌋∑

r=1

ℓ̃r(j)

∣∣∣∣∣∣∣Ec

+log(N)

η
+ηE

⌊T
τ ⌋∑

r=1

N∑
j=1

Pr(j)ℓ̃
′
r(j)

2

∣∣∣∣∣∣∣Ec

 .

We now analyze each of the three terms with expectations separately. First, using an identical
analysis to that in Theorem 6, we have that
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Next,

E

⌊T
τ ⌋∑

r=1

N∑
j=1

Pr(j)ℓ̃
′
r(j)

2

∣∣∣∣∣∣∣Ec

 = E

⌊T
τ ⌋∑

r=1

N∑
j=1

Pr(j)(ℓ̃r(j) + Zj
r )

2

∣∣∣∣∣∣∣Ec


= E

⌊T
τ ⌋∑

r=1

N∑
j=1

Pr(j)(ℓ̃r(j)
2 + (Zj

r )
2)

∣∣∣∣∣∣∣Ec


= E

⌊T
τ ⌋∑

r=1

N∑
j=1

Pr(j)ℓ̃r(j)
2

+ E

⌊T
τ ⌋∑

r=1

N∑
j=1

Pr(j)(Z
j
r )

2

∣∣∣∣∣∣∣Ec



To bound the second of the two terms above, note that:
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Then, note that for γ < 1
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Thus,
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and we get that
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We can use an identical analysis as in the one in Theorem 6 to bound

E

⌊T
τ ⌋∑

r=1

N∑
j=1

Pr(j)ℓ̃r(j)
2

∣∣∣∣∣∣∣Ec

 ≤ 1

τ(1− γ)
E

τ⌊T
τ ⌋∑

t=1

K∑
i=1

Qt(i)ℓ̂
2
t (i)

∣∣∣∣∣∣∣Ec

 .
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Putting all the bounds together, we get that
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Multiplying both sides by τ(1− γ), we have that
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which implies that
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Using the fact that ℓ̂t is an unbiased estimator of ℓt gives that
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By the boundedness of the loss, we have
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Bounding the regret in the last τ rounds by τ , gives
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Using Equation 2, then gives that
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Since η < 1, we trivially have that
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Now, choosing γ =
12η1/2N log( 1

δ )K log(NT )

ϵτ ≥ 12ηK
√

N log( 1
δ ) log(NT )

ϵτ , gives

R(T,K,N) ≤ 3τ log(N)

η
+

14η1/2KNT log(NT ) log(1δ )

ϵτ
+ ηTK

Choosing τ =
η3/4K1/2 log1/2(NT )(N log( 1

δ ))
1/2T 1/2

ϵ1/2 log1/2(N)
gives

R(T,K,N) ≤
17K1/2 log1/2(NT )(N log( 1δ ))

1/2T 1/2 log1/2(N)

η1/4ϵ1/2
+ ηTK.

Finally, picking η =
log2/5(NT )(N log( 1

δ ))
2/5 log2/5(N)

ϵ2/5T 2/5K2/5 gives that R(T,K,N) is at most

18(N log( 1δ ) log(NT ) log(N))2/5(KT )3/5

ϵ2/5
(3)

On the other hand, for the same choice of η, γ and τ from Theorem 6, we have that R(T,K,N) is
at most

100N1/6K1/2T 2/3 · log1/6( 1δ ) log
1/3(NT ) log1/3(N)

ϵ1/3
+

N1/2 · log( 1δ )
1/2 log(NT ) log(N)

ϵ
(4)

Thus, the overall worst-case expected regret is the minimum of Equations 3 and 4. ■

Proof. (of Privacy in Theorem 8) The proof is identical to that of Theorem 6 with the only difference
being that we can use a tighter bound on the global sensitivity of

ℓ̃r′τ (j) =
1

τ

r′τ∑
m=(r′−1)τ+1

K∑
i=1

µj
m(i)ℓm(i)I{Im = i}

Qm(i)
.

Namely, for every j ∈ [N ], the global sensitivity of ℓ̃r′τ (j) over any two neighboring datasets
can be bounded above by maxs∈{(r−1)τ+1,...,rτ}

µj
s(Is)

τQs(Is)
. Note that we can adaptively select the

noise parameter to the Laplace mechanism because the quantity maxs∈{(r−1)τ+1,...,rτ}
µj
s(Is)

τQs(Is)
only

depends on previously published values. ■

G LOWER BOUNDS

G.1 PRIVACY LEAKAGE IN EXP3

To better understand its per-round privacy loss, it is helpful to view EXP3 as the adaptive composi-
tion of T−1 mechanisms M2, . . . ,MT where Mt : [K]i−1×ℓ1:T → [K]. For every t ∈ {2, . . . , T},
the mechanism Mt, given as input the previously selected actions I1, . . . , It−1 and the dataset ℓ1:T ,
computes the distribution

Pt(i) = (1− γ)
wt(i)∑K
j=1 wt(j)

+
γ

K

where wt(j) = exp{−η
∑t−1

s=1 ℓ̂s(j)} and ℓ̂s(j) =
ℓs(j)I{Is=j}

Ps(j)
. Then, Mt samples an action It ∼

Pt. The mechanism Mt is ϵt-differentially private if for any pair of neighboring data sets ℓ1:T and
ℓ′1:T , we have that
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Figure 1: Probabilities on action 2 assigned by EXP3 when run with γ = η = 0.0001, and T =
100 · 1η on datasets ℓ1:T and ℓ′1:T .

sup
I1,...,It−1∈[K]t−1

sup
i∈[K]

P[Mt(I1:t−1, ℓ1:T ) = i]

P[Mt(I1:t−1, ℓ′1:T ) = i]
≤ eϵt .

Now, consider two neighboring datasets ℓ1:T and ℓ′1:T that differ at the first time point t = 1. Let
P1, . . . , PT denote the sequence of probabilities output by the mechanisms when run on ℓ1:T and let
P ′
1, . . . , P

′
T denote the same for ℓ′1:T . Since ℓ1 ̸= ℓ′1, we have that ℓ̂1 ̸= ℓ̂′1. Accordingly, P2 ̸= P ′

2.

The key insight now is that because P2 ̸= P ′
2, we have that ℓ̂2 ̸= ℓ̂′2, and so P3 ̸= P ′

3. Continuing this
process gives that Pt ̸= P ′

t and ℓ̂t ̸= ℓ̂′t for all t ≥ 2. Unfortunately, this difference in probabilities
can cause the privacy loss to grow with t. To get some intuition, fix some t ≥ 2 and sequence
I1, . . . , It−1 ∈ [K]t−1. Consider the ratio

sup
i∈[K]

Pt(i)

P ′
t (i)
≈ sup

i∈[K]

wt(i)

w′
t(i)

∑K
j=1 w

′
t(j)∑K

j=1 wt(j)
≈ sup

i∈[K]

wt(i)

w′
t(i)

Observe that

sup
i∈[K]

wt(i)

w′
t(i)

= sup
i∈[K]

exp
{
η

t−1∑
s=1

ℓ̂′s(i)− ℓ̂s(i)
}

= sup
i∈[K]

exp
{
η
(ℓ′1(i)− ℓ1(i))I{I1 = i}

P1(i)
+ η

t−1∑
s=2

ℓs(i)I{Is = i}( 1

P ′
s(i)
− 1

Ps(i)
)
}
.

Since P ′
s(i) ̸= Ps(i) for every s ≤ t − 1, we can actually pick two neighboring sequences of

losses and a sequence of actions I1, . . . , IT such that supi∈[K]
ws(i)
w′

s(i)
grows very quickly with s. For

example, the following choices for neighboring datasets and sequences of actions will do. Let K = 2
and pick ℓ1:T such that ℓ1(1) = 1, ℓ1(2) = 0, and ℓt(1) = ℓt(2) = 1 for all t ∈ {2, . . . , T}. Pick
neighboring dataset ℓ′1:T such that ℓ′t(1) = ℓ′t(2) = 1, for all t ∈ [T ]. Finally, consider the sequence
of actions I1, . . . , IT such that It = 2 if t is odd and It = 1 if t is even. That is, the sequence
of actions I1, . . . , IT alternates between 2 and 1, starting with action 2. We verify empirically in
Figure 1 that Pt(2) and P ′

t (2) diverge rapidly with Pt(2) approaching 1− γ
2 and P ′

t (2) approaching
γ
2 . The code generating the figure above is provided below.
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import numpy as np
import matplotlib.pyplot as plt

eta = 0.0001
T = 100 * int(1/eta)
gamma = eta

# Execute EXP3 on loss sequence l_1, \dots, l_T
w_1 = 1
w_2 = 1
P_2 = 0
P_2_hist = []

for t in range(T):
Q_2 = (w_2/(w_2 + w_1)) #unmixed prob.
P_2 = (1-gamma) * Q_2 + gamma/2 #mixed prob.
P_2_hist.append(P_2)
if t == 0:

w_2 = w_2 * np.exp(0*eta/(P_2))
elif t % 2 == 0:

w_2 = w_2 * np.exp(-1*eta/(P_2)) #pull action 2 in even rounds
else:

w_1 = w_1 * np.exp(-1*eta/((1-P_2))) #pull action 1 in odd rounds

plt.plot(P_2_hist, label= "P_t(2)")

# Execute EXP3 on loss sequence l'_1, \dots, l'_T
w_1 = 1
w_2 = 1
P_2 = 0
P_2_hist = []

for t in range(T):
Q_2 = (w_2/(w_2 + w_1))
P_2 = (1-gamma) * Q_2 + gamma/2
P_2_hist.append(P_2)
if t % 2 == 0:

w_2 = w_2 * np.exp(-1*eta/(P_2)) #pull action 2 in even rounds
else:

w_1 = w_1 * np.exp(-1*eta/((1-P_2))) #pull action 1 in odd rounds

plt.plot(P_2_hist, label= "P'_t(2)")

plt.xlabel("t")
plt.legend()
plt.show()

We note that the authors of Tossou & Dimitrakakis (2017) acknowledge that this issue was over-
looked when stating Theorem 3.3 in Tossou & Dimitrakakis (2017). Therefore, we are unable to
verify the Theorem 3.3. Unfortunately, Tossou & Dimitrakakis (2017) use Theorem 3.3 in the proof
of Corollary 3.3, which claims to give a private adversarial bandit algorithm with expected regret

Õ

(
T 2/3
√

K ln(K)

ϵ1/3

)
, ignoring log factors in 1

δ . Thus, we are unable to verify whether Corollary 3.3

is correct.

G.2 ALGORITHM-SPECIFIC LOWER BOUNDS

All existing lower bounds for private bandits are in the stochastic setting and effectively show a
lower bound of Ω(Kϵ ), ignoring log factors (Azize & Basu, 2022). Here, we prove a stronger lower
bound for a large class of bandit algorithms by exploiting the ability to pick arbitrary sequences of
loss functions. Our lower bound considers a class of bandit algorithms that satisfy two assumptions.
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Fix K = 2 and T ∈ N. For γ ∈ [0, 1], τ ∈ {1, . . . , T} and p ∈ [T ], define the sets

Eγ =
{
i1:T :

T∑
t=1

I{it = 2} ≥ γT
}

and Ep
γ,τ =

{
i1:T :

τ+ p
γ∑

s=τ+1

I{is = 2} ≤ p

}
.

Consider the sequence of loss functions ℓ1, . . . , ℓT , such that ℓ1:T (2) = 1 and ℓ1:T (1) = 1
2 . Our

assumptions on the bandit algorithms are with respect to their behavior on ℓ1, . . . , ℓT . In particular,
we will consider bandit algorithms A for which there exists γ ∈ [0, 1], τ < T

2 and p ≤ γ(T − τ)
such that:

(1) P(I1, . . . , IT ∈ Eγ) ≥
1

2
and (2) P(I1, . . . , IT ∈ Ep

γ,τ ) ≥
1

2
where I1:T are the random variables denoting the actions played by A when run on the sequence of
loss functions ℓ1:T . The first condition simply lower bounds the probability thatA plays action 2 by
γ, whenA is run on ℓ1:T . The second condition states thatA drops, and subsequently maintains, the
probability of playing action 2 to γ in roughly τ rounds. Accordingly, when τ is small, condition
(2) states that A drops the probability of playing action 2 down to γ relatively quickly. One should
really think of γ as being O

(
RA(ℓ1:T )

T

)
, where RA(ℓ1:T ) denotes the expected regret of A when

run on ℓ1:T . Then, condition (1) is trivially satisfied, while condition (2) states thatA roughly drops
and keeps the probability of playing action 2 around O

(
RA(ℓ1:T )

T

)
by round τ . The latter property

is reasonable for bandit algorithms given that ℓt(2) − ℓt(1) =
1
2 for all t ∈ [T ]. For example, one

can verify that EXP3 with mixing satisfies this property. Lemma 15 provides a lower bound on the
expected regret of private bandit algorithms that satisfy these two conditions.
Lemma 15. For any ϵ-differentially private algorithm A (for ϵ ≤ 1), if A satisfies conditions (1)
and (2) with parameters γ ∈ [0, 1

2 ], τ < T
2 and p ≤ γ(T − τ), then the worst-case expected regret

of A is at least (
1− 1

2
eϵp
)
max

{
γT

2
,
p

4γ
− τ

2

}
≥
(
1− 1

2
eϵp
)(√

pT

8
− τ

2

)
.

In particular, if A satisfies conditions (1) and (2) with parameters γ ∈ [0, 1
2 ], τ ∈ o

(√
T
ϵ

)
, and

p = ⌈ 1
2ϵ⌉, then the worst-case expected regret of A is Ω

(√
T
ϵ

)
.

Lemma 15 shows that if one wants to design an ϵ-differentially private algorithm (for ϵ ≤ 1) whose
upper bound enjoys an additive separation between T and ϵ, then there cannot exist a γ ∈ [0, 1

2 ] such

that it satisfies conditions (1) and (2) with τ ∈ o
(√

T
ϵ

)
, and p ≤ γ(T − τ).

Proof. Let A be any ϵ-differentially private algorithm (for ϵ ≤ 1) that satisfies condition (1) and
(2) with parameters γ ∈ [0, 1

2 ], τ < T
2 and p ≤ γ(T − τ). Consider the alternate sequence of loss

functions ℓ′1, . . . , ℓ
′
T such that ℓ′1:τ = ℓ1:τ but ℓ′τ+1:T is such that ℓ′t(2) = 0 and ℓ′t(1) = 1

2 for all
t ∈ {τ + 1, . . . , T}.
It suffices to show that

P(I ′1, . . . , I ′T /∈ Ep
γ,τ ) ≤ eϵp · P(I1, . . . , IT /∈ Ep

γ,τ ) ≤
1

2
eϵp (5)

where I1:T and I ′1:T are the random variables denoting the selected actions of A when run on ℓ1:T
and ℓ′1:T respectively. Indeed, when I ′1, . . . , I

′
T ∈ Ep

γ,τ , we have that the regret of A when run on
ℓ′1:T is at least p

2γ −
p
2 −

τ
2 . On the other hand, if I1:T ∈ Eγ , we have that the regret of A on ℓ1:T

is at least γ
2T . So with probability 1

2 , the regret of A on ℓ1:T is γ
2T and with probability at least

1 − 1
2e

ϵp, the regret of A on ℓ′1:T is at least p
2γ −

p
2 −

τ
2 ≥

p
4γ −

τ
2 , where the inequality follows

from the fact that γ ≤ 1
2 . Therefore, the worst-case expected regret is at least

max

{
1

2
· γT

2
, (1− 1

2
eϵp)

(
p

4γ
− τ

2

)}
≥
(
1− 1

2
eϵp
)
max

{
γT

2
,
p

4γ
− τ

2

}
.
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To prove Equation 5, recall that we may write any randomized algorithm A as a deterministic func-
tion of an input x and an infinite sequence of bits b1, b2, . . . generated uniformly at random. From
this perspective, we can think of a randomized bandit algorithm A as a deterministic mapping from
a sequence of losses ℓ1:T and an infinite sequence of bits b ∈ {0, 1}N to a sequence of T actions.
That is,

A : {0, 1}N ×
(
[0, 1]K

)T → [K]T .

Using this perspective, Equation 5 is equivalent to showing that:

P
b∼{0,1}N

(A(b, ℓ′1:T ) /∈ Ep
γ,τ ) ≤ eϵpPb∼{0,1}N(A(b, ℓ1:T ) /∈ Ep

γ,τ ).

Consider the following sequence of losses parameterized by S ⊂ {τ + 1, . . . , T}, |S| ≤ p:

ℓSt (i) =


1/2, if i = 1

0, if i = 2 and t ∈ S

1, i = 2 and t /∈ S

Let L := {ℓS1:T : S ⊂ {τ + 1, . . . , T}, S ≤ p } be the collection of all such sequences of loss
functions. Note that every ℓS1:T ∈ L differs from ℓ1:T only at time points t ∈ S. Thus, by group
privacy (see Lemma 8), we have that

sup
ℓS1:T∈L

P
b∼{0,1}N

(A(b, ℓS1:T ) /∈ Ep
γ,τ ) ≤ eϵpP

b∼{0,1}N
(A(b, ℓ1:T ) /∈ Ep

γ,τ )

Now, fix the sequence of random bits b ∈ {0, 1}N. Let i′1:T = A(b, ℓ′1:T ). Define S′ := {t ≥ τ +1 :

i′t = 2} and S′
≤p be the first p such time points. Let i

S′
≤p

1:T = A(b, ℓS
′
≤p

1:T ). Let t′ = max{t ≥ τ + 1 :∑t
s=τ+1 I{i′s = 2} ≤ p} and tS

′
≤p = max{t ≥ τ + 1 :

∑t
s=τ+1 I{i

S′
≤p

s = 2} ≤ p}. Because
bandit algorithms only observe the losses of the selected action, we have that t′ = tS

′
≤p . In addition,

we have that i′1:T ∈ Ep
γ,τ if and only if t′ ≥ τ + p

γ , and likewise for i
S′
≤p

1:T . Therefore,

I{i′1:T ∈ Ep
γ,τ} = I{iS

′
≤p

1:T ∈ Ep
γ,τ}

and therefore

I{i′1:T /∈ Ep
γ,τ} = I{iS

′
≤p

1:T /∈ Ep
γ,τ}.

Taking expectation on both sides with respect to b ∼ {0, 1}N, gives that

Pb∼{0,1}N(A(b, ℓ′1:T ) /∈ Ep
γ,τ ) = Pb∼{0,1}N(A(b, ℓS

′
≤p

1:T ) /∈ Ep
γ,τ )

≤ sup
ℓS1:T∈L

P
b∼{0,1}N

(A(b, ℓS1:T ) /∈ Ep
γ,τ )

≤ eϵpP
b∼{0,1}N

(A(b, ℓ1:T ) /∈ Ep
γ,τ ),

completing the proof. ■
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