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ABSTRACT

We design new differentially private algorithms for the problems of adversar-
ial bandits and bandits with expert advice. For adversarial bandits, we give a
simple and efficient conversion of any non-private bandit algorithm to a private
bandit algorithm. Instantiating our conversion with existing non-private ban-

dit algorithms gives a regret upper bound of O (—VKT>, improving upon the

Ve
existing upper bound O (VKTl?g(KT)) for all ¢ < 1. In particular, our al-

gorithms allow for sublinear expected regret even when ¢ < #, establish-

ing the first known separation between central and local differential privacy for
this problem. For bandits with expert advice, we give the first differentially pri-

vate algorithms, with expected regret O (—VNT) , 0 ( v KTlog(iv) Log(KT) ), and

Ve

- 1/6 7-1/252/3
O (N KT log(NT) ), where K and N are the number of

c1/3 +

actions and experts respectively. These rates allow us to get sublinear regret for
different combinations of small and large K, N and e.

N'/2log(NT)
€

1 INTRODUCTION

In the adversarial bandit problem, a learner plays a sequential game against nature over 7' € N

rounds. In each round ¢ € {1,...,T}, nature picks a loss function ¢; : [K] — [0, 1], hidden to
the learner. The learner, using the history of the game up to time point ¢ — 1, selects a potentially
random action I; € {1,..., K} and nature reveals only the loss ¢;([;) of the selected action. For
any sequence of loss functions /1, ..., ¢, the goal of the learner is to select a sequence of actions
I, ..., Ip, while only observing the loss of selected actions, such that its expected regret

T T

E Z ﬁt(It)] — arg min Z £4(7)
t=1 i€lK] =

is minimized, where the expectation is taken with respect to the randomness of the learner.

Bandit algorithms, and in particular adversarial bandit algorithms (Auer et al.| 2002)), have been of
significant interest for over two decades (Bubeck et al., [2012)) due to their applications to online
advertising, medical trials, and recommendation systems. In many of these settings, one would like
to publish the actions selected by bandit algorithms without leaking sensitive user information. For
example, when predicting treatment options for patients with the goal of maximizing the number of
cured patients, one may want to publish results about the best treatment without leaking sensitive
patient medical history (Lu et al.||2021). In online advertising, a goal is to publish the recommended
ads without leaking user preferences. In light of such privacy concerns, we study adversarial bandits
under the constraint of differential privacy (Dworkl [2006). Surprisingly, unlike the stochastic setting
(Azize & Basul [2022), the price of privacy in adversarial bandits is not well understood. Existing
work by |Agarwal & Singh|(2017) and [Tossou & Dimitrakakis| (2017) give e-differentially private

bandit algorithms with expected regret at most O (KTEIOg(K)) H However, their algorithms

~ 2/3 K In(K)
ITossou & Dimitrakakis|(2017) also claim to give an algorithm with regret O (TiKI(K)) , however,

1/3

we are unable to verify its correctness. See Appendix|G.1]
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Table 1: Summary of upper bounds with constant factors and dependencies on log % suppressed. The
three rows for Bandits with Experts represent different algorithms with incomparable guarantees.
[ Existing Work Our Work Best Non-private |

Adversarial Bandits M i VKT
Bandits with Experts NA v \]/VET VNT
Bandits with Experts NA VKT 1og(1€\/) log(KT) KT log(N)
Bandits with Experts NA NOR 25;;3 log(NT) | N7 lig(NT) KTlog(N)

satisfy the stronger notion of local differential privacy and become vacuous for tasks with high
privacy requirements, where one might take € < ﬁ In fact, it was not known how large € needs to

be in order to obtain sublinear expected worst-case regret.

Main Contributions. Motivated by this gap, we provide new, differentially private algorithms for
adversarial bandits and bandits with expert advice with better trade-offs between privacy and regret.
In the adversarial bandits setting, we provide a simple and efficient conversion of any non-private
bandit algorithm into a private bandit algorithm. By instantiating this conversion with existing (non-
private) bandit algorithms, we get e-differentially private bandit algorithms with expected regret at

most O (—V\I/(ET) improving upon the best known upper bounds for all ¢ < 1. In particular, this

result shows that sublinear regret is possible for any € € w (). Since private online learning is not
possible when € € O(%), our result provides a characterization of when sublinear regret is possible
under differential privacy.

For bandits with expert advice (Auer et al., [2002), we give the first differentially pri-
vate algorithms. In particular, we give three different (e, d)-differentially private ban-

m) 0 <\/KT log(V) log<KT>>, and

dit algorithms, obtaining expected regret O (7

O N6 R1/272/3 10g(NT) +N1/210g(NT)
e1/3 €

with high-privacy requirements and regimes with a large number of experts N. In both settings, our
techniques involve combining the Laplace mechanism with batched losses.

) respectively. These regret guarantees cover regimes

1.1 RELATED WORKS

Adversarial Bandits and Bandits with Expert Advice. We refer the reader to the excellent book
by [Bubeck et al.| (2012) for a history of stochastic and adversarial bandits. The study of the ad-
versarial bandit problem dates back at least to the seminal work of |Auer et al.| (2002), who show
that a modification to the Multiplicative Weights Algorithm, known as EXP3, achieves worst-case

expected regret O (\/TK log(K )) . Following this work, there has been an explosion of interest in
designing better adversarial bandit algorithms, including, amongst others, the work by |Audibert &
Bubeckl| (2009), who establish that the minimax regret for adversarial bandits is © (\/ TK ) More

recently, there has been interest in unifying existing adversarial bandit algorithms through the lens of
Follow-the-Regularized Leader (FTRL) and Follow-the-Perturbed-Leader (FTPL) (Abernethy et al.,
2015). Surprisingly, while it was known since the work of |Audibert & Bubeck! (2009) that an FTRL-
based approach can lead to minimax optimal regret bounds, it was only recently shown that this is
also the case for FTPL-based bandit algorithms (Honda et al.|[2023).

The first works for bandits with expert advice also date back at least to that of |Auer et al.| (2002),
who propose EXP4 and bound its expected regret by O ( TK log(N )), where N is the number

of experts. When N > K, Seldin & Lugosi|(2016) prove a lower bound of €2 (, / %T log(N ))
on the expected regret, showing that EXP4 is already near optimal. As a result, EXP4 has become
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an important building block for related problems, like online multiclass classification (Daniely &
Helbertall, 2013; [Raman et al.,2024) and sleeping bandits (Kleinberg et al., [2010), among others.

Private Online Learning. Dwork et al| (2010a) initiated the study of differentially private on-
line learning. [Jain et al.| (2012) extend these results to broad setting of online convex program-
ming by using gradient-based algorithms to achieve differential privacy. Following this work,
Guha Thakurta & Smith| (2013) privatize the Follow-the-Approximate-Leader template to obtain
sharper guarantees for online convex optimization. In the special case of learning with expert ad-
vice, Dwork et al.|(2014); Jain & Thakurtal (2014) give private online learning algorithms with

regret bounds of O (”Tlog(N)> . More recently, | Agarwal & Singhl (2017) design private algo-

€

rithms for online linear optimization with regret bounds that scale like O(v'T) + O(2). In par-
ticular, for the setting of learning with expert advice, they show that it is possible to obtain a re-

gret bound that scales like O ( Tlog(N) + w> , improving upon the work by Dwork

et al.[ (2014); [Jain & Thakurta (2014). For large IV, this upper bound was further improved to
1/3

0 ( Tlog(N) + W) by |Asi et al.{(2023) in the oblivious setting.

Private Bandits. The majority of existing work on differentially private bandits focus on the
stochastic setting (Mishra & Thakurtal 2015} Tossou & Dimitrakakis| 2016} Sajed & Sheffet, [2019;
Hu et al.| 2021} [Azize & Basu, 2022)), linear contextual bandits (Shariff & Sheffet, 2018; Neel
& Roth| [2018)), or adjacent notions of differential privacy (Zheng et al., 2020; [Tenenbaum et al.,
2021; Ren et al) [2020). To our knowledge, there are only three existing works that study dif-
ferentially private adversarial bandits. The first is by |Guha Thakurta & Smith| (2013) who give
KT3/4

an (e, §)-differentially private bandit algorithm with expected regret O ( ) Finally, and in

parallel, |Agarwal & Singh| (2017) and [Tossou & Dimitrakakis| (2017) improve the upper bound
0 O (\/KTlog(K)

Tossou & Dimitrakakis| (2017)) satisfy the even stronger notion of local differential privacy (Duchi
et al.l [2013).

. We note that the private algorithms given by |Agarwal & Singh|(2017) and

2 PRELIMINARIES

2.1 NOTATION

Let K € N denote the number of actions and ¢ : [K] — [0, 1] denote an arbitrary loss function

that maps an action to a bounded loss. For an abstract sequence z1, ..., 2,, we abbreviate it as

21., and (z5)"_, interchangeably. For a measurable space (X, (X)), we let II(X') denote the set

of all probability measures on X'. We let Lap(\) denote the Laplace distribution with mean zero
— ||

and scale A such that its probability density function is fy(z) = 55 exp (T) . Finally, we let
[N]:={1,...,N} for N e N.
2.2 THE ADVERSARIAL BANDIT PROBLEM

In the adversarial bandit problem, a learner plays a sequential game against nature over 7' € N
rounds. In each round ¢t € [T, the learner selects (potentially randomly) an action I; € [K] and

observes only its loss ¢;(I;). The goal of the learner is to adaptively select actions I, ..., It € [K]
such that its cumulative loss is close to the best possible cumulative loss of the best fixed action
1* € [K] in hindsight. Crucially, we place no assumptions on the sequence of losses /1, ..., {7, and

thus they may be chosen adversarially.

Before we quantify the performance metric of interest, we provide a formal definition of a bandit
online learning algorithm. This definition will be useful for precisely formalizing the notion of
privacy (Section and describing our generic transformation of non-private bandit algorithms to
private ones (Section 3)).
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Definition 1 (Bandit Algorithm). A bandit algorithm is a deterministic map A : ([K] x R)* —
TI([K]) which, for every t € N, maps a history of actions and observed losses (I, 05(I,))'Z] €

([K] x R)*=! to a distribution p, € TI([K]). The learner then samples an action Iy ~ .

We will slightly abuse notation by using A((I, £s(I,)) Z}) to denote the random action I; drawn
from 41, the distribution that A outputs when run on (I, £, (1)) Z}. In addition, we will sometimes
use H; := (I, £s(I5))"Z} to denote the history of selected actions and observed losses induced by
running A up to, but not including, timepoint ¢ € N. Note that H; is a random variable and we may
write the action selected by algorithm .4 on round ¢ € N as A(H;). For our lower bounds, it will
also be helpful to think about #; as the View of A as a result of its interaction with the adversary up
to, but not including, timepoint ¢.

Given a bandit online learner A, we define its worst-case expected regret as

RA(T,K) = sup (E
l1,... 0T

T
S G(AH))

where the expectation is taken only with respect to the randomness of the learner. Our goal is
to design a bandit algorithm A such that R4(T, K) = o(T). Note that our definition of regret
means that we are assuming an oblivious adversary, one that selects the entire sequence of losses
{1, ..., before the game begins. This assumption is in contrast to that of an adaptive adversary
which, for every ¢ € N, may select the loss ¢, based on H;. We leave quantifying the rates for private
adversarial bandits under adaptive adversaries for future work. That said, we do note that the lower
bounds for adaptive adversaries established in full-information setting by Asi et al.|(2023) also carry
over to the bandit feedback setting. Accordingly, Corollary [2] and Theorems 4 and 5 in [Asi et al.
(2023) show that the strong separation in the possible rates for oblivious and adaptive adversaries
also holds under bandit feedback.

2.3 THE BANDITS WITH EXPERT ADVICE PROBLEM

In adversarial bandits with expert advice (Auer et al.,|2002), we distinguish between a set of experts
[N] and the set of available actions [K]. In each round ¢ € [T, each expert j € [N] predicts
a distribution g7 € II([K]). The learner uses these predictions to compute its own distribution
i € TI([K]), after which it samples I; ~ fi; and observes the loss ¢;(1I;). The goal of the learner
is to compete against the best fixed expert in hindsight while observing bandit feedback. We need
a new definition of a bandit with expert advice algorithm to account for the fact that the learner has
access to expert advice.

Definition 2 (Bandits with Expert Advice Algorithm). A bandit with expert advice algorithm is a
deterministic map A : ([K]xR)* x (II([K])N)* — TI([K]) which, for every t € N, maps the history
of actions and observed losses (I, 05(I,)) 2} € ([K] x R)!~! as well the sequence of expert advice
pilN e (I([K)N) to a distribution fi, € TI([K]). The learner then samples an action action
I ~ ﬂt~

One can now take an analogous definition of worst-case expected regret to be

T T K
RA(T,K,N):= sup sup (E [Z&(A(’Ht,u%iiv))] —jier[l]fv]ZZui(jwet(i)).

ot piiyl t=1 i=1

where the expectation is taken only with respect to the randomness of the learner. As for adversar-
ial bandits, our definition of minimax regret for bandits with experts advice implicitly assumes an
oblivious adversary.

2.4 DIFFERENTIAL PRIVACY

In this work, we are interested in designing bandit algorithms that have low expected regret while
satisfying the constraint of differential privacy. Roughly speaking, differential privacy quantifies
the following algorithmic property: an algorithm A is a private bandit algorithm if, for any two
sequences of losses that differ in exactly one position, the distributions over actions induced by
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running A on the two loss sequences are close. Definition [3] formalizes this notion of privacy in
adversarial bandits.

Definition 3 ((¢, §)-Differential Privacy in Adversarial Bandits (Dwork et al.l 2014)). A bandit al-

gorithm A'is (e, 0)-differentially private if for every T € N, any two sequences of loss functions (1.7
and 0’ . differing at exactly one time point t' € [T, and any E C [K]*, we have that

P[(A(H1), A(Hs), ..., A(Hr)) € E] < eP[(A(H}), A(H)), ..., A(HY)) € E] +6,

where we let H; = (Iy, 04(1,)) ZY and H, = (I, 0.(1,))" 2.

We note that the our notion of differential privacy in Definition [3]is inherently for an oblivious ad-
versary. A different definition of privacy is required if the adversary is allowed to be adaptive i.e.,
having the ability to pick the loss ¢; using the realized actions I, ..., ;1 played by the learner
(see Definition 2.1 in |Asi et al.| (2023) for more details). While the utility guarantees of our ban-
dit algorithms hold only for oblivious adversaries, their privacy guarantees hold against adaptive
adversaries.

We use an analogous definition of differential privacy for bandits with expert advice.

Definition 4 ((¢, )-Differential Privacy in Bandits with Expert Advice (Dwork et all |[2014)). A
bandit with expert advice algorithm A is (e, §)-differentially private if for every T € N, any two
sequences of loss functions £1.7 and 0., differing at exactly one time point t' € [T, and any
E C [K]*, we have that

P[(A(H1), A(Hs), ..., A(Hr)) € E] < eP[(A(H}), A(H)), ..., A(Hy)) € E] +6,

where we let H; = (I, 04(1,)) ZY and H, = (I, 0.(1,))" 2.

§77s

Note that Definition ] implicitly assumes that only the sequence of losses is sensitive information
and that expert predictions are public.

Our main focus in this work will be on designing bandit algorithms that satisfy pure differential
privacy (i.e. when 6 = 0). In Appendix [A] we review several fundamental properties of privacy and
privacy-preserving mechanisms that serve as important building blocks.

3 FASTER RATES FOR PRIVATE ADVERSARIAL BANDITS

In this section, we establish a connection between non-private bandit algorithms that can handle
negative losses and e-differentially private bandit algorithms. Let B be any bandit algorithm and
define

Rg(T, K, \) —bup( lZef ]—lénlqu

L.

i D=sup<E [ietw(ftt»]—énlfqzet )

— L.

where 7, (i) = £,(i) + Z(i) with Z;(i) ~ Lap(0,\), H; = (Is,é (I,))iZ}, and the expectation is

taken with respect to both the randomness of B and the losses / 1.7 Theoreml states that one can
always convert /5 into an e-differentially private bandit algorithm A whose regret guarantees can be
written in terms of Rz (T, K, A).

Theorem 1 (Generic Conversion). Let B be any bandit algorithm. Then, for every 7 > 1 and e < 1,
there exists an e-differentially private bandit algorithm A, such that

~ T 1
R/AT(T7K) < TRB <7K7> + 7.
T €T

In particular, picking T = f%] means that there exists a e-differentially private bandit algorithm A
such that

2~ 2
R.A(T7K) < -Rp (€T7K7 1) + -
€ €
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As a corollary of Theorem [I] we establish new upper bounds on the expected regret under the
constraint of e-differential privacy that improves on existing work in all regimes of € > 0. Corollary
[[] follows by letting BB be the classical EXP3 algorithm (Auer et al.l [2002). See Appendix [D|for the
pseudocode of EXP3.

Corollary 1 (EXP3 Conversion). For every € < 1, if B is EXP3 run with learning rate

n— log(K)
22 eKTlog?(eKT)

and mixing parameter v = 4nK log(eKT'), then Algorithm when run with B and T = (H is
e-differentially private and suffers worst-case expected regret at most

364/TK log(K)log(KT) N 4
e .

€

Corollary[2]follows by using the HTINF algorithm from Huang et al.| (2022) which modifies Follow-
the-Regularized-Leader (FTRL) for heavy-tailed losses.

Corollary 2 (FTRL Conversion). For every € € [1.,1], if B is HTINF with o« = 2 and o = V6,
then Algorithm when run with B and T = [%] is e-differentially private and suffers worse-case

expected regret at most
208vVTK n 2
Ve €
Corollary [3] follows by using Follow-the-Perturbed-Leader (FTPL) with Geometric Resampling
(Neu & Bartok, 2016). The pseudocode for FTPL with Geometric Resampling is provided in Ap-

pendix [D]
Corollary 3 (FTPL Conversion). For every ¢ € [%, 1], if B is FTPL with perturbation distribution

Lap (%) and Geometric Resampling threshold M (see Algorithm H) where M = eK'T and

. log(K) 1
TN (KT + 10K T 1o (eKT))” M(1 + 4log(eT)) [

Algorithm (I} when run with B and 7 = [H, is e-differentially private and suffers worse-case ex-
pected regret at most

39 VKTlog(K)log(KT) N 2

Ve €

All three corollaries establish the first known separation in rates between differential privacy and

local differential privacy for this problem. Namely, while the lower bounds from |Basu et al.|(2019)

show that any local e-differentially private bandit algorithm must suffer linear Q(T") expected regret

when € < \F’ our upper bounds in Corollaries I .‘and I give algorithms whose expected regret is
1

sublinear o(T") even when € < 7 The remainder of this section is dedicated to proving Theorem
Corollaries and [3are proven in Appendix D}

3.1 PROOF OF THEOREMII]

The conversion behind Theorem |I]is remarkably simple. At a high-level, it just requires simulating
the non-private bandit algorithm on noisy batched losses. That is, instead of passing every loss to the
non-private bandit algorithm, we play the same arm for a batch size 7, average the loss across this
batch, add independent Laplace noise to the batched loss, and then pass this noisy batched loss to the
non-private bandit algorithm. By adding Laplace noise to batched losses as opposed to the original
losses (as is done by [Tossou & Dimitrakakis| (2017) and |/Agarwal & Singh|(2017)), the magnitude
of the required noise is reduced by a multiplicative factor of the batch size.

However, a key issue that needs to be handled when adding noise (whether to batched or un-batched
losses) is the fact that the losses fed to the non-private bandit algorithm can now be negative and
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unbounded. Accordingly, in order to get any meaningful utility guarantees, Theorem [I] effectively
requires our non-private bandit algorithm to handle unbounded, negative (but still unbiased) losses.
Fortunately, there are several existing adversarial bandit algorithms that can achieve low expected
regret while observing negative losses. Three of these are presented in Corollary [T} 2] and[3] To
the best of our knowledge, this is the first work to establish a connection between handling negative
losses (for example in works that handle heavy-tailed losses) and (non-local) differential privacy.

Algorithm [T] provides the pseudo code for converting a non-private bandit algorithm B to a private
bandit algorithm A.

Algorithm 1 Non-Private to Private Conversion

Input: Bandit algorithm B, batch size 7, privacy parameter € € (0, 1]
Initialize: j = 1
fort=1,...,T do
ift =(j—1)7 + 1 then
| Receive action I; from B.
Play action I; := I;
Observe loss £4(13).
if £t = j7 then

Define (1) i= £ 07,y £4(0)
Pass (;(I;) + Z; to BB, where Z; ~ Lap(=).

1
Update j < 5 + 1.

end

Lemma 1 (Privacy guarantee). For every bandit algorithm B, batch size T > 1, and ¢ < 1, Algo-
rithm([l)is e-differentially private.

Proof. (sketch of LemmalI]) Observe that Algorithm [T] applies the bandit algorithm B on the loses
ly,... 0 |z in a black box fashion. Accordingly, the privacy guarantee of Algorithm |1} follows

from the privacy guarantee of ¢1(I1),...,0 |z (I z|) and post-processing. The privacy of each

‘ ;(I;) follows from the Laplace mechanism. [ |

A rigorous proof of Lemma|I|can be found in Appendix

Lemma 2 (Utility guarantee). For every bandit algor:ithm B, batch size 7 > 1, and ¢ < 1, the
worst-case expected regret of Algorithm|l|is at most TRB(% K, i) + 7.
The proof of Lemma [2|follows from the following result by [Arora et al.| (2012).

Theorem 2 (Theorem 2 in |Arora et al.| (2012)). Let B be any bandit algorithm. Let T > 1 be a
batch size and let A, be the batched version of B. That is, the bandit algorithm A, groups the
rounds 1, ..., T into consecutive and disjoint batches of size T such that the j’th batch begins on
round (j — 1)7 + 1 and ends on round jT. At the start of each batch j the algorithm A calls B and
receives an action 1; drawn from B’s internal distribution. Then, A, plays this action for T rounds.
At the end of the batch, A, feeds B with the average loss value * Zi;(j—l)r—i-l Ls(1;). For such an

algorithm A, its worst-case expected regret is at most T R (%, K ) + 7.

Note that Algorithm [I] is precisely the batched version of its input B. Accordingly, Theorem 2]
in}mediately implies that on any sequence 1.7, the expected regret of Algorithm [I|is at most
TRB(% K, L)+ 7. We provide a complete proof of Lemmain Appendix

) €T
4 UPPER BOUNDS FOR BANDITS WITH EXPERT ADVICE

Theorem (1] also allows us to give guarantees for bandits with expert advice. To do so, we need
TheoremEl, due to|Auer et al.| (2002), which shows that any bandit algorithm can be converted into
a bandit with expert advice algorithm in a black-box fashion. For completeness, we provide this
conversion and the proof of Theorem [3]in Appendix [E]
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Theorem 3 (Bandit to Bandit with Expert Advice). Let B be any bandit algorithm and Rz (T, K)
denote its worst-case expected regret. Then, the worst-case expected regret of Algorithm |5| when
initialized with B is at most Rg(T, N).

By treating each expert as a meta-action, Theorem [I]and Theorem [3]can be used to convert a non-
private bandit algorithm B into a private bandit with expert advice algorithm A in the following way:
given a non-private bandit algorithm B, use Theorem [I]to convert it into a private bandit algorithm
B’. Then, use Theorem [3|to convert /3’ into a private bandit with expert advice algorithm A. By
post-processing, the corresponding actions played by A are also private. In fact, its not hard to see
that this conversion also satisfies a stronger notion of privacy where the expert advice is also taken
to be sensitive information. Theorem [4] formalizes this conversion.

Theorem 4 (Generic Conversion). Let B be any bandit algorithm. Then, for every T > 1 and e < 1,
there exists an e-differentially private bandit with expert advice algorithm A, such that

- (T 1
Ra (T,K,N) <7Rp <,N, ) + T
T €T
In particular, by setting T = fg there exists an e-differentially private bandit with expert advice
algorithm A such that

2 ~ 2
R.A(TvKaN) < ERB (6T>N>1)+ E

The proof of Theorem[d]is deferred to Appendix [E]since it closely follows that of Theorem|[I} Using
HTINF for B in Theorem [ gives the following corollary.

Corollary 4 (FTRL Conversion). For every € € [%7 1], if B is HTINF with o = 2 and 0 = V6,
then Theorem | guarantees the existence of an e-differentially private algorithm whose worst-case

expected regret at most 208 %%V + %

The upper bound in Corollary [d]is non-vacuous for constant or small N (i.e. N < K). However, this
bound is vacuous when N grows with 7T'. To address this, we consider EXP4 which enjoys expected

regret O (\ /KT log(N )) in the non-private setting, exhibiting only a poly-logarithmic dependence

on N (Auer et al., 2002). The following theorem shows that by adding independent Laplace noise
to each observed loss, a similar improvement over Corollary @] can be established for large NV, at the
cost of a worse dependence on e.

Theorem 5 (Locally Private EXP4). For every ¢ < 1, Algorithm [6] when run with n =

\/ log(NV) ) and v = M is e-differentially private and suffers worst-case ex-

3TK(1+ 1010g22(KT)
164/TK log(N) log(KT) +1

€

pected regret at most

Due to space constraints, we defer Algorithm[6] which just adds independent Laplace noise to each
observed loss, to Appendix [E] Note that when N < K, the upper bound in Corollary [] is still
superior to that of Theorem [5| for all ranges of € < 1. The proof of Theorem [3]is also deferred to
Appendix [E]

Algorithm[6]provides a stronger privacy guarantee than what is actually necessary. Indeed, by adding
independent Laplace noise to each observed loss, Algorithm [6] actually satisfies e-local differential
privacy (Duchi et al.| [2013). Accordingly, in contrast to Corollary [2] the upper bound in Theorem
is vacuous for ¢ < % The following algorithm uses the batching technique from Section [3|to

improve the dependence in e from Theorem [5] while also improving the dependence on N from
Corollary ]

Theorem 6 (Private, Batched EXP4). For every €,0 € (0,1], Algorithm when run
(Nlog($))"/%log"*(NT) log"/*(N) — (N log($))"/* log?/ 3 (NT)T/*

with 1 T1/3K1/2¢173 /3 Tog1/3 (V) )

VB N/ 2/3 1002/3(NT) 120K /N log(3) log(NT . . . .
max{" 275 (NT) 121 £(5) log(N'T) , satisfies (e, §)-differentially privacy and

and v =

€T
suffers worst-case expected regret at most

100NY/S K122/ . 10g" /¢ (1) 10g!/3(NT) log'/*(N) N N'/2 . log(1)1/2 1og(NT) log(N)
€l/3 € '
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Algorithm 2 Private, Batched EXP4

Input: Action space [K], Number of experts N, batch size 7, privacy parameters €, > 0, learning
rate 7, mixing parameter vy > 0

Initialize: » = 1, wy(j) = 1 forall j € [N]
fort=1,...,T do
Receive expert advice u}, ..., uY € II([K])
ift =(r —1)7 + 1 then
‘ Set P, (j) ¢ )
r ZJQ[N];T(J) .
Set Qu (i) <= (1 =) 35—y Pr(d)mi (1) + -
Draw I; ~ Q¢
Observe loss £;(I;) and construct unbiased estimator /4 (i) = %
if ¢t = r7 then . .
Define £,.(j) := £ 307 4y, 1 €s - p] and £1.(5) := £,.(j) + Z] where
, 3K,/Nlog(3)
Z) ~Lap| 0, ———— |.
yTE
Update wy11(j) < we(j) - exp{-nl; (j)}
Update r <— r + 1.
end

The proof of Theorem [6] modifies the standard proof of EXP4 to handle the noisy, batched losses.
See Appendix [E| for the full proof. Compared to Theorem @] and [5] Theorem shows that Algorithm

enjoys sublinear regret even when N > T''/4 and ¢ = ﬁ In Appendix [El we provide a further

improved version of Algorithm [2|that adapts to the sensitivity of the queries l, (7) in Line 11. Our
upper bounds for bandits with expert advice become vacuous when € < ﬁ and N > T. We leave

deriving non-vacuous upper bounds for this regime as an interesting direction for future work.

5 DISCUSSION ON LOWER BOUNDS FOR PRIVATE ADVERSARIAL BANDITS

In this work, we provided new algorithms for the private adversarial bandit problem and its expert
advice counterpart. In the adversarial bandits setting, we provided a generic conversion of a non-
private bandit algorithm into a private bandit algorithm. Instantiating our conversion with existing
bandit algorithms resulted in private bandit algorithms whose worst-case expected regret improve
upon all existing work in all privacy regimes. In the bandits with expert advice setting, we provide,
to the best of our knowledge, the first private adversarial bandit algorithms by modifying EXP4.

An important direction of future work is answering whether it is possible to achieve an additive
separation in € and T'. We note that this is possible in the stochastic bandit setting (Azize & Basu,
2022) as well as the the full-information adversarial online setting (Agarwal & Singh, 2017). To this
end, we end our paper by discussing some road blocks when attempting to derive such guarantees
for the adversarial bandit setting.

5.1 ON THE HARDNESS OF PRIVATIZING EXP3

First, we comment on the difficulty of privatizing EXP3. In the full-information setting, a standard
privacy analysis for exponential weights shows that for every ¢ € [T'], the per-round privacy loss at
time step ¢ is at most 27, and for n = ﬁ advanced composition yields (e, d)-differential privacy

with expected regret O (/T log(K)/e) (Dwork et al., [2014).

Unfortunately, it is not easy to bound the per-round privacy loss of EXP3 uniformly across time. This
is because EXP3 uses Inverse-Probability-Weighted estimators (Robins et al.,|[1994) (see Algorithm
[). Thus the algorithm needs to know not just the arm I; but also the probability P; with which it
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was selected. It is, however, not clear how to account for the privacy cost of releasing P; and indeed
we can construct examples where the per-round privacy loss grows with the time horizon T. We
provide a more formal analysis of this issue in Appendix[G.1]

5.2 ALGORITHM-SPECIFIC LOWER BOUNDS

All existing lower bounds for private bandits are in the stochastic setting and effectively show a
lower bound of Q(%) (up to log factors) (Azize & Basu, 2022). In Appendix we prove a
stronger lower bound for a large class of bandit algorithms by exploiting the ability to pick arbitrary
sequences of loss functions. Informally, our lower bound holds for any (adaptively) private bandit
algorithm that “quickly” reduces the probability of playing a sub-optimal arm.

Consider an instance on two arms where arm 1 has loss % at each step, while arm 2 has loss 1 at

each step. Any algorithm that has regret R must play arm 2 at most O(R) times on this instance.
Informally, our lower bound applies to bandit algorithms that drops the probability of playing arm
2 to be about £ within about o(7"/R) steps. We note that EXP3 drops this probability to O(4) in
O(log T) steps. For algorithms of this kind, our lower bound shows that any e-differentially private
algorithm (for ¢ < 1) must incur regret O(1/7T/¢). Intuitively, the lower bound follows from the
fact that if the loss of arm 2 falls to 0 at step =~ 7'/R (while arm 1 is unchanged at %), then an e-

differentially private algorithm must pull arm 2 at least % times to “notice” this change. Accounting
for the accumulated regret in the time it takes to pull arm 2 sufficiently many times, and setting
parameters appropriately yields the lower bound.
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A PRIVACY PROPERTIES AND PRIVACY-PRESERVING MECHANISMS

Definition 5 (e-indistinguishability). Let X and Y be random variables with support X. Let
P(X €9)
Doo(XY) 1= ma {IH(IP(YGS)H
be the max divergence. Then X andY are e-indistinguishable if and only if
max{ Do (X||Y), Do (Y]] X)} <.
Definition 6 ((¢, ¢)-indistinguishability). Let X and Y be random variables with support X. Let

P(X € 5) 6”

DS (X||Y) :=
o (XY scx,ﬁiﬁ&»{n( P(Y € S)

be the §-approximate max divergence. Then X and 'Y are (e, §)-indistinguishable if and only if

max{D, (X|[Y), D% (Y[IX)} <e.

The follow lemma relates the two notions of indistiguishability to differential privacy.

Lemma 3 (Differential privacy = Indistiguishability (Remark 3.2 in Dwork et al.|(2014))). Let X
and Y be arbitrary sets. Let A be a randomized algorithm such that A : X" — ). Then, A
is e-differentially private if and only if for every pair of neighboring datasets x1., and x.,,, we
have that the random variables A(x1.,,) and A(x’l:n) are e-indistinguishable. Likewise, A is (€,0)-

differentially private if and only if for every pair of neighboring datasets 1., and x.,,, we have that
the random variables A(x1.,) and A(x}.,,) are (e, d)-indistinguishable.

Next, we cover composition.

12
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Lemma 4 (Basic Composition (Corollary 3.15 in Dwork et al.| (2014))). Let X, Y1,Ya,..., V1 be
arbitrary sets and n € N. Let Ay, Ao, ..., Ar be a sequence of randomized algorithms where
Ay X" > YViand Ay - Yy, .o Vi1, X = Yy forallt =2,3,...,T. If for every t € [T]| and
every y1.4—1 € Y1 X Yo X -+ X Yy_1, we have that Ay(y1.c—1, -) is es-differentially private, then the
overall algorithm A : X" — Y1 X Vo X -+ X Vr, defined as

A(Ilzn) = (-/41(171:”), A2(A1 (l’l:n), Il:n), s 7~AT(-A1 (Ilzn), »AZ(»Al(xlzn)7 I1:n), ce- ,Il:n)),

satisfies €T -differential privacy.

Lemma 5 (Basic Composition (Corollary 3.15 in Dwork et al.|(2014))). Let X, Y1,)a, ..., V1 be
arbitrary sets and n € N. Let Ay, Ao, ..., Ar be a sequence of randomized algorithms where
A1 X" > Viand Ay - V1,0, Ve, X = Vi forallt = 2,3,...,T. If for every t € [T] and
every y1.4—1 € Y1 X Yo X -+ X Yy_1, we have that Ay(y1.c—1, -) is eg-differentially private, then the
overall algorithm A : X™ — Y1 X Yo X - -+ X YV, defined as

A(xlzn) = (Al (xlzn)7 AQ(Al ($1:n>7 xl:n)a cee 7-AT(A1 (xlzn)a AZ(Al (mlzn)> xl:n), e ;xlzn))a

satisfies €1 -differential privacy.

Lemma 6 (Advanced Composition (Dwork et al| 2010b; |Kairouz et all [2015)). Let
X, V1,Yo,...,Vr be arbitrary sets and n € N. Let Ay, As, ..., Ar be a sequence of random-
ized algorithms where Ay : X™ — Yy and Ay - Y1, ..., Vi1, X" = Yy forallt = 2,3,...,T.
If for every t € [T] and every y1.4—1 € Y1 X Yo X -+ X Vy_1, we have that Ay(y1.4—1,") is €-
differentially private, then for every §' > 0, the overall algorithm A : X™ — Yy X Vo X -+ X Y,
defined as

A(xlzn) - (Al (ml:n)7 A2(-A1 (xl:n)v xl:n)v e 7AT(A1 (xlzn)a AZ(AI (xlt’n,)v xl:n)» e ;xl:n)>7

satisfies (€', 8')-differential privacy, where

3 1
/ 2 2
€<72;16t—|— 6tgletlog(6/>.

Post-processing and group privacy will also be useful.

Lemma 7 (Post Processing (Proposition 2.1 in Dwork et al.|(2014))). Let X', ), Z be arbitrary sets
andn € N. Let A: X" — Y and B : Y — Z be randomized algorithms. If A is (e, 0)-differentially
private then the composed algorithm Bo A : X™ — Z is also (e, d)-differentially private.

For our lower bounds in Section[3] the notion of group privacy will be useful.

Lemma 8 (Group Privacy (Theorem 2.2 in [Dwork et al.| (2014)))). Let X and Y be arbitrary sets
and let n € N. Suppose A : X™ — Y is an e-differentially private algorithm. Then, for every pair
of datasets x1.y,, 4., that differ in 1 < k < n positions and every event E C Y, we have that

P[A(z1.,) € E] < *P[A(2).,,) € E].

Finally, for designing algorithms, the following primitive will be useful.

Definition 7 (Laplace Mechanism (Definition 3.3 in Dwork et al.|(2014))). Let X be an arbitrary
set and n € N. Suppose f : X™ — R is a query with sensitivity A (i.e. for all pairs of datasets
X1, @Y., € X™ that differ in exactly one index, we have that |f(z1.,) — f(2}.,)] < A). Then, for
every €, the mechanism M : X™ — R defined as M(x1.,) = f(x1.n) + Z, where Z ~ Lap(%), is
e-differentially private. )

B HELPER LEMMAS

Lemma 9 (Hazard Rate of Laplace distribution). Ler D denote the Laplace distribution Lap(0, ),
f and F denote its probability and cumulative density functions respectively. Define

13
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to be the hazard rate function of Lap(0, \). Then

sup hp(z) <
z€R

> =

Moreover, hp(z) is non-decreasing in z.
Proof. Recall that for A > 0, we have

£ = g vl -2y

and

1 z :

sexpi{s}, if 2 <0
F(z) = 271{)‘} . )

1—5exp{—%}, ifz2>0

Fix x € R. If x <0, then

f@) _ sxep{s) _1
1—F(x) 1-Zexp{$} ~ A

Otherwise, note that when x > 0, we have
fle)  _ sxexp{F} 1

1— F(x) sexp{=Z} DY
This shows that sup, ¢ hp(x) < ;. To see that hp(x) is non-decreasing, note that when = < 0,

ox exp{ ¥}

we have that hp(z) = ToToxp(2]
2 A

is increasing in = and when 2 > 0, hp(x) is constant. [ ]

Lemma 10 (Truncated Non-negativity of Noisy Losses). Let Z ~ Lap(\) and ¢ € [0, 1]. Then, for
any M > 0, we have that

E[(Z+ OI{|Z + ] > M}] > 0.

Proof. Let M > 0 and ¢ € [0, 1]. Then, we can write
E(Z+0OI{|Z+¢ >M} =C-E[{|Z+¢ > M} +E[ZI{|Z+ ¢ > M}].

Since ¢ > 0, it suffices to show that E [ZI{|Z + ¢| > M}] > 0. To that end, note that

E[ZI{|Z+ (| > MY =E[ZI{Z > M — ¢}] +E[ZI{Z < =M — ¢}].

Suppose that M — ¢ > 0. Then, since Z is symmetric random variable (around the origin),

E[ZI{Z < =M —¢}] = —E[ZI{Z > M + (}]. Since M — £ < M + ¢, we have that

E[ZI{|Z + (| > M} =E[ZI{Z > M — ¢}] —E[ZI{Z > M + ¢}] > 0.

Finally, suppose that M — ¢ < 0. Then,
EZI{Z>M - (}]=E[ZI{0 > Z > M — ¢}|+ E[ZI{Z > 0}].

14
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Using again the fact that Z is symmetric, we have that

E[ZI{0>Z>M —(}] = -E[ZI{0 < Z < { — M}].
Finally, since { — M < M + /¢, we have that
E[ZI{|Z + 4> M} =RE[ZI{Z >0} -E[ZI{0< Z <{— M} -E[ZI{Z > M +(}] > 0

completing the proof. |

Lemma 11 (Norms of Laplace Vectors (Fact C.1 in (Agarwal & Singh, 2017))). If Z1,...,Zp ~
(Lap(\)Y, then

1

B(3t € (1] : [|Z1]% > 10\ 1og>(NT)) < —

C PROOF OF LEMMAS [I]AND 2]

C.1 Proofr oF LEMMAII

Note that the sequence of actions played by Algorithmﬂare completely determined by I3, ..., I B

in a dataset-independent way. Thus, by post-processing it suffices to show that the actions
Ii,...,1 |z are output in a e-differentially private manner. Note that the distribution over the

action [; is independent of the dataset /1, ..., ¢p. Thus, it suffices to only prove privacy with re-
spect to the actions Io,...,I; r |. Consider the sequence of mechanisms Mo, ..., M EX where

M : [K] x l1.7 — R x [K] is defined as

Ma(iv, 1) = (gl(il) + Zy, B((i1, 01 (1) + Zl))),
for Z1 ~ Lap(%) and M; : ([K] x R)772 x [K] x {17 — R x [K] is defined as

M;((is,7s)123 g1, brr) = (éj—l(ij—l) + Zj_1,B((is, 7)) 3 0 (ij-1,0j-1(i-1) + Zj-l))),

for Z;_1 ~ Lap(Z). Observe that Algorlthmls precisely the mechanism M : ¢1.7 — ([K] xR)T
that adaptively composes Mo, ..., M r |Z]- We will now show that M is e-differentially private.

P

Consider two datasets ¢1.7 and ¢ ., that differ in exactly one position. Let ¢’ € [T'] be the index
where the two datasets differ. Let j' € {1,..., L%J} be the batch in where the ¢’ lies. That is, let
i e{l,...,| L]} suchthatt’ € {(j' = 1)7 +1,...,5'7}. Forall j < j’, we have that M; (-, {1.7)
and M; (-, El o) are O-indistinguishable. We now show that M] 41 (-5 ) and Mjrgq (-, £ ) are
e-indistinguishable. Fix a sequence (i, rs)szl € ([K] xR)'~'and i; € [K]. Recall that

My ia((ios oS5ty ) = (8e(iy) + Zio, Bllss ro S5t o (i By (i) + Z3)) )
Note that the query / ;(i;/) has sensitivity at most 2. Indeed, we have that
j'r

1 . . 1 , ,
=12 X hlip) GGy = i) — (i) <

s=(j'—1)7+1

i (ig) — 0 (i)

S =

Thus, by Definition [7] and post-processing, we have that Mj: (-, (1. T) and M +1( 0. are e-
indistinguishable. To complete the proof, we now show that for all j > 5 + 1 M; (., ﬂlzT) and

M;(-,¢;.) are O-indistinguishable. Fix some j > j' + 1, a sequence (i, 7s)._] € ([K] x R)I—2
and i;_; € [K]. Recall, that

M;((is,ms)I21 i1, br) = (Ej—l(ij—l)+Zj—175((lsars)§ To (i1, 1 (ij1) + Z;- 1)))
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Since for every s € {(j — 1)7 4+ 1,...,j7} we have that £, = ¢/, we get that {; 1(i;_1) +
j—2

Zj_1 and Eg_l(ij,l) + Zj_; are same in distribution. The same can be said about B((is, rs)?_

(ij-1,05-1(ij-1)+Zj-1)) and B((is, 7s)1 =30 (i1, 0}, (ij-1)+Z; 1)) Accordingly, M; (-, (1.7)
and M; (-, ¢}.p) are O-indistinguishable. Since M is the composition of Mo, ..., M| r B by basic

10

composition, we have that M (-, ¢1.7) and M (-, ¢} 1) are e-indistinguishable, and therefore M is
e-differentially private. This completes the proof.

C.2 PROOF OF LEMMA[Z]

Let/q,..., ¢ be any sequence of loss functions. Note that the bandit algorithm B is evaluated on the
loss sequence y + Z1, .. ZLTJ +2)z where ¢;(i) = L 377 (j—1yrt1 Us(@) and Z; ~ Lap(,).
Let I1,...,I, r| be the random variables denoting the predictions of 5 as indicated in Line 4 in

Algorithm BTy definition of R (| £, K, L) we get that

E Li:j}uj) —iier[lifq Lijéj(i)<RB(HJ,K,Tl€>.

By definition of és, we have that

% f: s(1;) _ié?}iz i e(i)<TRB<EJ,K,:€>,

j=1 s=(j—-1)7+1 j=1 s=(—-1)7+1
Next, note that by construction, we have that for every j € {1,...,|Z|} and s € {(j — 1)7 +
1,...,j7}, we have that I, = I;. Thus, we can write

% > 1&@12 5 e < i (| 7] 5

=1 s=(G—-1)7+1 J=1 s=(j—-1)7+1

which further gives

50| - g, 3 0= (2] e ).

Finally, the expected regret for rounds 7 L%J +1,...,T can be bounded above by 7. Thus, overall,
we have that

T
T 1 ~ T 1
E ZML)] - o Zt’t <TRB(M,K,n>+T<TRB(T,K,T€)+T.
t=1

Noting that ¢, ..., {7 was arbitrary completes the proof.

D PROOFS OF COROLLARIES 1], [2, AND[3]

D.1 PROOF OF COROLLARY[I]

We start with Corollary [T] which picks B in Theorem [I] to be EXP3. Algorithm [3] provides the
pseudocode for the version of EXP3 that we consider.
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Algorithm 3 EXP3 with Mixing
Input: Action space [K], learning rate 7, mixing parameter v > 0
Initialize: w; (i) = 1 for all i € [K]
fort=1,...,Tdo
N — wy(#) 2

Set Pi(i) = (1 — )Ze o) + &

Draw It ~ Pt

Observe loss #;(I;) and construct unbiased estimator ¢;(i) =

Update wey 1 (i) < wy (i) - exp{—nl;(i)} forall i € [K]
end

£ ()] I =i}
PG

The following lemma about EXP3 will be useful.

Lemma 12 (Auer et al.|(2002); Bubeck et al.|(2012)). For any sequence of loss functions {1, . .., {p,
where Uy : [K] — R, if n > 0 is such that n max;e k) —0y(i) < 1 forallt € [T), then EXP3 when
run on {1, . .., 1 outputs distributions Py.p € TI([K])T such that

T K T
E ZZPt(i)ét(i)] giér[llqulZét(i) + 2y T+1

t=1 i=1

323 0|

t=1 i=1

where U, is the unbiased estimate of the true loss ¢, that EXP3 computes in Line 5 of Algorithm

Proof. (of Corollary (1)) In order to use Theorem |1} we first need to bound f{Eng(T, K,)\). Let
{1, ..., 01 be any sequence of loss functions such that ¢; : [K] — [0,1] and let l1, ..., 07 be such
that £, (i) = £4(i) + Z.(i) where Z,(i) ~ Lap()). Let E be the event that there exists a ¢ € [T] such
that max;c k1 | Z¢(7)|* > 10A*log? KT. Then, Lemma shows that P [E] < 1. Moreover, note
that E [Z,(¢)|E€] = 0 for all € [K] and ¢t € [T']. We need to bound

Zzt (EXP3(H,)) —Zénlfngt ]

t=1

REXP3 (T K )\

We can write Rgxps (T,K,\) as

T
E |> 6(EXP3(H,)) — lénlqua

t=1

E)+E

Zzt EXP3(H;)) — inf Y 44(i)

t=1

Since E [ Y1, (u(EXP3(H,)) — inficiz X1y £(7)

} < T, we have that

T
Rexes (T, K, \) <E lzgt EXP3(H,)) — inf Zzt

[K]
=1 i€

We now want to use Lemmato bound E [Zt L (EXP3(Hy)) — inf;c(x) ZtT (i ‘Ec] Re-
call, that EXP3 is actually running on the noisy losses (..., 0r. So, in order to use Lemma |1 .
we need to pick v, 1 > 0 such that n max;e Zt( ) < 1, where we use ﬁt to denote the unbiased
estimate that EXP3 constructs of the true (noisy) loss ;. In particular, recall that EXP3 constructs

(i) = % where we used P;(¢) to denote the measure that EXP3 uses to select its action I;

on round ¢ € [T]. Moreover, given a mixing parameter v > 0, we have that P;(i) > 7. Thus, we
need to pick v and 7 such that

17
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nkK
— < — Z < 1.
1 max (4(i) 5 Znel[z}g]\ t(i)] <

Conditioned on event E°, we have that max;cx1 | Z;(i)| < 4Alog(KT). Thus, it suffices to pick
v = 4nAK log(KT). Now, we can apply Lemma([12]and get that

T

E SN P)ii)|E

t=1 i=1

T

PIPILICL

t=1 i=1

(6]

< inf E
1€[K]

E°|+2y TJr +]E

T
> 4)

Since /; is an unbiased estimate of the true (noisy) loss ?;, we have that

T K

DD bl

t=1 i=1

log(K
NE| < inf E [ L GO B
0

1€[K]

T ~
A0
t=1

Since Z; (i), conditioned on E*, is zero-mean and Z; (i) conditioned on the history H; is independent
of P;(i), we have that

T

DD bl

t=1 i=1

c

lo K)
< inf S 00) + 29T E
1;?1(]2 (3) + 29T + +7

E > ) P(i)(i)|E

t=1 i=1

which further gives

T

E|>_ D 4

t=1 i=1

log
RExpg(T K, )\) < 24T 4+ ———=

It just remains to bound E [ZL KL ‘E“} Note that we can write
K T
0(i)*|E°| < nKE i
30| <o | S o
t=1 i=1
T
<nKE max (i) + Z(i))?| E
P} 1€[K]
T
Z + max Z;(i)%)|E°
—1 i€[K]
T
<2pK ) (1+10A*log” KT)
t=1

= 2TK (1 +10A%log® KT).

Plugging this bound back in gives that

Rexes (T, K, \) < 29T +

log(K
ng?) 4 2TK (1 + 1032 log? KT) + 1

Recall that we picked v = 4n\K log(KT). Substituting this selection gives

18




Under review as a conference paper at ICLR 2025

Rexps (T, K, \) < SAKT log(KT) + +29TK (14 10A\%log? KT) + 1.

log(K)
"

We can then write

log(K)

Rexps (T,K,\) < "

+ 20T K (1 + 10max{\? \}log® KT) + 1.

Picking n = \/2TK(1+10n12>gf{l/\(3,,\} ez Ty We get overall that

Rexps (T, K, \) < 2\/ 2T K log(K)(1 + 10 max{\2, A} log? KT) + 1.

Finally, Corollary [[|follows by the fact that

25 2 TK log(K) log(KT) 4
~Rexp3 (T, K, 1) + = < 36 og(K)log(KT) L2
6 6 Ve e

D.2 PROOF OF COROLLARY 2]

We now move to prove Corollary [2] The following Theorem from [Huang et al|(2022) will be useful.
Theorem 7 (Theorem 4.1 in Huang et al.| (2022)). Let €~1, e ,ZT be any sequence of random loss
functions that satisfy the following two properties: (1) for every i € [K| and t € [T, the random
variable 0,(i) is truncated non-negative and (2) for every i € [K|] and t € [T, the random variable
04(i) is heavy-tailed with parameters o € (1,2] and o > 0. Then, the expected regret of HTINF
(Algorithm 1 in|Huang et al.|(2022)) when run on Oy, ..., 0p is at most 300K~ % (T + 1)5.

We now make precise the definition of truncated non-negativity and heavy-tails.

Definition 8 (Truncated Non-negativity). A random variable X is truncated non-negative if for
every M > 0, we have that E [X - I{|X| > M}] > 0.

In Appendix we prove that random losses of the form £(i) = ¢(i) 4 Z; are truncated non-negative
when £(¢) € [0,1] and Z; ~ Lap(A).

Definition 9 (o, o)-Heavy-tailed loss). A random loss (i) is (o, 0)-heavy tailed if E {|l7(z)|"} <

o“.

In addition, if £(i) = £(i) + Z;, where £(i) € [0,1] and Z; ~ Lap()), then £(i) is (2, v/2 + 4)2)-
heavy tailed. We are now ready to prove Corollary 2]

Proof. (of Corollary [2) In order to use Theorem m we need to upper bound RHTINF(T, A). Let
lq, ..., 01 be any sequence of loss functions such that ¢; : [K] — [0,1] and let l1,. .., 0 be such
that £,(i) = £,(i) + Z;(i) where Z,(i) ~ Lap()). Then, since for every t € [T] and i € [K], we
have that /, (i) is truncated non-negative and (2, v/2 + 4A2)-heavy tailed, Theoremimplies that

Rurine (T, K, A) < 300/(2 + 4X2)K (T +1).

Finally, to get Corollary [2] we just upper bound

2~ 2 VvVIK 2
—Rumne(eT, K, 1) + — <208 + =,
€ € NG €
for e > % |
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D.3 PROOF OF COROLLARY 3]

Finally, we prove Corollary To do so, consider Algorithm@ Lemmaﬁrst bounds RB(T, K, )\)
when B is Algorithm 4]

Algorithm 4 Bandit FTPL with Geometric Resampling (Neu & Bartok, 2016)
Input: M, n

1 Initialize: Lo (i) = 0 forall i € [K].

2 fort=1,...,T do

3 | Sample Zi, ..., Z iid. from Lap(0, ;).

4 Select action [; € arg min¢ (g (L1 (i) + Z;)
5 Observe loss ¢4 (1)

6 Let Mt =0.

7 fori=1,2,...,M do

8 Sample Z1, ..., Zj i.id. from Lap(0, ;).

9 if I, € argmax; [K](Lf 1(@) + Z!) then
10 Set M; = 1.

n break

12 end

13 Define ét(l) = Et(l)MtH{It = Z}
14 Update Li=L, 1+ @t(z)
15 end

Lemma 13. Let B denote Algorithm Then, if M = v KT and

- log(K) 1
7 = min (KT + 10KT)? logQ(KT))’ M(1+4Xlog(T)) [’

we have that
Rp(T, K,\) < 1IAWKT log(K)log(KT) + 10VKT

Proof. Let{y, ..., L1 be any sequence of loss functions such that ¢; : [K] — [0, 1] and let ly,... 0p

be such that £;(i) = €;(i) + G¢(i) where G4(i) ~ Lap()). Let E be the event that there exists a

t € [T] such that max;e(x) |G¢(7)[* > 10A%log® KT. Then, Lemma shows that P[E] < 1.

Moreover, note that E [G4(i)|E°] = 0 for all ¢ € [K] and ¢t € [T]. We need to bound
T
Rz(T, K, A) £ ( — inf e(3)] -
(.06 = [ 608~ 3 3= )|
We can write R (T, K, \) as

th _ér[lif(]zgt(i)

t=1

E|P(E)+E

Since E {Zthl 0(B(Hy)) — inficix) Zt 14 )’E} < T, we have that

RB<T7K7)‘) < E

T
th(g( - 1g[11f;] th

t=1
T

<E|> 4(B(H))|E —plél}quft +1
t=1

20
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Let i* be the arm that minimizes Zthl (,(7). Moreover, let /, denote the unbiased estimate that

Algorithm constructs of the true (noisy) loss £; when run on the noisy losses El, e ,ET. We start
with the following regret decomposition for FTPL from (Honda et al.|[2023, Lemma 3).

T K .
E* SN TGP ~ P ()

t=1 i=1

T A~
E|> 4L(1)|E
t=1

- [iele

< 2]EZ~Lap(%)K |:zn€1[%?] |ZZ|:| +E

where we define P;(i) :== P {It = i|ly, ... ,Et_l} . The first term on the right can be bounded as

} - 610g(K)'
i€[K] -

2EZ~Lap(i)K {max |Z1| 1

As for the second term, Lemma 5 from |Cheng et al.| gives that

exp{-nlldh} < 3 < explnllel )

Accordingly, we have that

()1 = exp{nl[&e]l1}) < Pu(i) = Preya (i) < Pu(i)(1 = exp{-lléel|1})-

Thus, we can bound

) (i) = Prya (i) < 60(6) Po(i) (exp{nl [0l 1} — 1)

For 17 > 0 such that 77|\th|\1 < 1, we have that

exp{n[|el[1} < 2nl|Cel: + 1.

Since [|0||1 < [M;(¢:(I;) + Gi(I;))| < M(1 + 4nlog(T)), it suffices to pick n < m.
For this choice of 7, we have that

L) (PG) = Peya (3)) < 2P (i)l [alls < 2P, (D)m(£a(3))2.

Plugging this in gives
T . T K
E (D D G()(Pii) = Pa (D)) |ES| < 20E | DY Pi(i)(4(0)?
t=1 i=1 t=1 i=1
and therefore
L. 2 6log(K
B| > - i) E] < S08E) g 573" R
t=1 t=1 i=1

To bound the second term on the right hand side, we have that

21
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T K . K
B (DY P@OE@)?| B =B |0 PG L = i} (M) | B
t=1 =1 t__T Z_Il( y 2 1 |
< 2E _;;Pt(l)(gt(l)) ]I{It z} (Pt(z))2 E ]
7 K o . 1
—9E ; ;(@(z)) I{I, = Z}Pt(z‘) E 1
[ 7 K
=2E |3 S (4() + Gi(i))? | EF
Lt=1 =1
[ T K
<2 |33 0+ |

= 2KT +20KT)\?log*(KT),

where the first inequality follows from Lemma 12 in|Cheng et al., Thus,

C

log(K
< 01080 | 4 rer | 0N log? (KT

T A A
E > 6(1) — 0(i*)|E

Next, note that

)|EC|+E Zﬁt I) —ét(lt) E°|+E

t=1

th It —Et [th It _Et

Thus, it suffices to upper bound the latter two terms. Starting with the third term, we have that

t=1

GG (L= (1= P(i*)™M) = 6(0%)

NU

)| EC E°

I
Mq

2[sien

~
Il
-

I
[M]=

o) = () (L = P@)™ — L")

-
Il
-

I
[M]=

—0(i*)(1 = Py(*) M| E°

\*
Il
_

I
M=

— (i) + Ge(0) (1 = Po(i*)) M | E°

o
Il
—

[
M=

—L, (i) (1 — P(i*))M|E°

o~
Il

1

where the second equality follows by Lemma 4 from Neu & Bartok| (2016). Now, for the second
term, by Lemma 5 from Neu & Bartok| (2016) we have that

22
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Combining all our bounds gives

. . 6log(K) KT
E S 6(1) - b(*) | E°| < gT + (KT + 10K TA? 1og*(KT)) + ——.
t=1
_JrT N log(K) 1
For M = VKT and 7 = mm{ (KT+10K$)\2 10g2(KT)) > VET (144X log(T)) } we get that
T ~ ~
E | > 6(1) — 6(i%)|E¢| < 10AVKT log(K)log(KT) + 10VKT.
t=1
Since E [Zt (1) - 66| E ] —E [23;1 0(L) — 0,(%) E] , we have that
Rp(T, K, \) < 10AVKT log(K)log(KT) + 10VKT + 1,
which completes the proof. ]

Equipped with Lemma|[I3] we are now ready to prove Corollary

Proof. (of Corollary [3) Let B be Algorithm [] with the hyperparameters selected according to
Lemmal[I3] Then, we know that

Rp(T, K, \) < 11IAWKT log(K)log(KT) + 10VKT.

By Theorem|[I] we can convert 3 into an e-differentially private algorithm A such that

2~ 2
RA(T,K) < -Rp(eT, K, 1) + —
€ €

22 2
—VKeTlog(K)log(KT)+ 10VKT + -
€ €

32V KT log(K)log(KT) 2
< + 2,
< e c

completing the proof. ]

IN

E PROOFS FOR BANDITS WITH EXPERT ADVICE

The following guarantee about Multiplicative Weights (MW) will be useful when proving utility
guarantees.

Lemma 14 (Cesa-Bianchi & Lugosi| (2006); [Littlestone & Warmuth| (1994)). For any sequence of
loss functions {1, ..., 0, where £ : [N] — R, if n > 0 is such that n manG[N] —4(45) < 1 forall
t € [T), then MW when run on {1, . . ., {1 outputs distributions Py.7 € TI([N])T such that

el . log() v
ZZPt e (j) < g[ljliqut e +UZZPt(j)€t(j)2-
j t=1 j=1

t=1 j=1

E.1 PROOF OF THEOREM[3|

Proof. (of Theorem [3) Consider a loss sequence /1, ..., {r and a sequence of expert predictions
pblN. Let j* € arg min; ey Z? 1 ZZK 1 11 (3)€,(4) denote an optimal expert in hindsight. By
definition of the bandit algorlthm B, pointwise for every I1:Y¥, we have that
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Algorithm 5 Bandit to Bandit with Expert Advice

Input: Bandit algorithm 3, Number of experts IV, Action space [K]
Initialize: 55 with action space [N]

fort=1,...,Tdo

Receive expert predictions p}, ..., u¥ € I([K])Y

Sample I} ~ ] forall j € [N]

Define /() := £,(I}) for all j € [N]

Receive expert J; € [N] from B

Play action I;* € [K] and observe loss £;(I;"*)

Pass /,(.J;) to B

end

E zT:Zt(Jt] ZT: Y+ Rg(T,N).

By definition of Zt, we then have that

T T
E Zet(ﬂf ] Z ')+ Rp(T, N).

Taking an outer expectation with respect to the randomness of ;¥ , we have,

T T K
E zetuz*)] =Dl (i)t
t=1

t=1 i=1

which completes the proof. |

E.2 PROOF OF THEOREM [4]

Let B be any bandit algorithm. Then, for every 7 > 1. We need to show that there exists a e-
differentially private bandit with expert advice algorithm A such that
. T 1
Ra, (T,K,N) <TRp(—,N,—)+T.
T

€T

Proof. (of Utility in Theorem . Fixe < 1land 7 > 1. By Theorem we can convert BB into an
e-differentially private bandit algorithm B, such that

- T 1
RBT(T,K) < TRB(f,K,f) —+ 7.
T €T

Then, using Theorem 3] we can convert B into a bandit with expert advice algorithm A, such that

~ T 1
Ra, (T,K,N)<Rp, (T,N) <7Rp(—,N,—)+,
T

€T

completing the proof. |

Proof. (of Privacy in Theorem ) Consider the same algorithm as in the proof of the utility guaran-
tee. That is, let A, be the result of using Theorem|[I]to convert B to B, and Theorem [3| to convert
B- to A;. By Theorem [I] we know that B; is e-differentially private. It suffices to show that Al-
gorithm when given &, as input is also e- differentially private. To that end, let ¢1.7 and ;.- be
two sequences that differ at exactly one timepoint. Let /iy ¥ be any sequence of expert adv1ce and
fix I} ~ pi forallt € [T] and ¢ € [N]. Observe that Algorlthmllnstantlates B; on the action

24
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space [N] and simulates /3, on the sequence of losses /;(j) := £;(I}). Let £1. and £, denote the
two sequences of losses that Algorithm |5|simulates B, on when run on /1.7 and ¢, respectively.

Note that 171;T and lZ’lzT differ at exactly one timepoint. Thus, B, outputs actions J, ..., Jp in an
e-differentially private manner. Finally, by post-processing it follows that the sequence of actions
I ;’ ¢ output by Algorithmis also e-differentially private. ]

E.3 PROOF OF THEOREM[3

Algorithm 6 Local-DP EXP4

Input: Action space [K], Number of experts N, privacy parameters € > 0,7,y > 0
Initialize:, wy(j) = 1 for all j € [N]
fort=1,...,Tdo

Receive expert advice ju}, . .., ul
S\ wt(j)
Set P,(j) = e we@)

Set Qu(i) = (1 =) 3252 Pe(f)pi (8) + -
Predict I; ~ Q;
Observe loss £;(I;) and define ¢} (i) := ¢,(i) + Z}, where Z; ~ Lap(0, 1)

_ L=}

Construct unbiased estimator 7} (i) onO)

Define £, (5) := p - ¢} forall j € [N]
Update wy1(5) < we(j) - exp{—nti(5)}

end

Proof. (of Utility in Theorem [5) Fix ¢ < 1. Let A = % Let ¢1,..., ¢ be any sequence of loss
functions and p}i¥ be any sequence of advice vectors. Let E be the event that there exists a t € [T]]
such that max;e (k) | Zi|> > 10A*log®(KT). Then, Lemma 11| shows that P[E] < . Moreover,

note that E [Z{|E¢] = O forall i € [K] and ¢ € [T]. We need to bound

R(T,K,N) :=E

T T )
0 — it S 0]
> blly) jler[lN];ut t]

t=1

We can write R(T, K, N) as

T T
E[me— int Syl -4/ E| P(E) + E B | p(E°)
t=1 7 t=1

T T _
(1) — inf )
; ¢(11) jE[N]tz::llit t

Since E [ZL Le(I;) — inf ey S ~€t‘E} < T, we have that

T

T
0,(I,) — inf Iy
Zt( t) jlel[lN]t:ZIMt t

t=1

R(T,K,N)<E E°| +1.

Accordingly, for the remainder of the prqof, we will assume that event ¢ has occurred, which
further implies that max; ¢y max;e[x] |Zf| < 4\ log(KT).

Algorithm@runs Multiplicative Weights using the noisy losses 57’17 ey Z'IT Fory = 4nK X\ log(KT),
we have that
j i (g G + 21

nmax max —/}(j) = nmax max —p?-¢; = nmax max —p (I;)

<
te[T] je[N] ° te[T] jE[N] te[T] jE[N] Qq(Iy) =

nkK
gl
Accordingly, for this choice of -y, Lemma [T4]implies that

25
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Under review as a conference paper at ICLR 2025

T N )
> S RGGG)

t=1 j=1

T

N
SN RGYGG)

t=1 j=1

EC

We now analyze each of the three terms with expectations separately. First,

7 N )
E Y P )

t=1 j=1

Next,

Finally,

EC

o S gy 08 SRS o
< if Y 40)+ +0> > PG)G3G)
JEINT = N t=1 j=1
T T N
inf E[Z i) || + B g | 303
JelnN i t=1 j=1
[7 N~ K . 1
LA A DRAGIAGI2E
| =1 j=1 i=1 l
[7 k [N . R
ENY (ZPt(J)ui(i)) (i) B¢
[t=1i=1 \j=1
5= (LD = | e
E Z 1—~ G(0)|E
Lt=1 i=1 i
1 e g
]E El EC _
(1 — ’)/) ;;Qt(z) t(Z) K(l _’Y)
T N X
oD PGl - 6)? E]
=1 j=1
[T N K 4
<SE|Y D PG G0)3 ()| E
=1 j=1 i=1
[ 7 Kk [N . .
_E|YY (Z P (z’)) B (iy?
t=1i=1 \j=1
7 K N R
—-F Z (Qtiﬂ_y}() fé(i)Q E°
t=1i=1
) T K
! (2| e
< (1_7)1}3 ;iil Qi(i),(i)”|E
T T
TR ¢| — inf A c
; ()| E jg[lN]E[;ft pi| B
T .
= o L;Kt |
T
_jler[lzfv]zét.ﬂt’
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where the second equality follows by the unbiasedness of lz and the last by the fact
that Z; is zero-mean (conditioned on FE€). Putting all the bounds together, we get that

THE {Zthl S Qt(z)f;(z)‘Ec} is at most

j log(N) Y
inf V4 4+ E
Je[mZ et "

T K
ﬂzzwmw

t=1 i=1

Multiplying both sides by (1 — ), we have that E [E;";l ZZK:1 Q:(0)0, (i) ‘EC is at most

[EE———

(=) Zet i+ )nlog(N)—&—;ElZZé;(i)

which implies that

T

DD Qi)

t=1 i=1

 log(N
E B[ < inf th i 4 o8l )+7T+7]]E

Using the fact that ll is an unbiased estimator of ¢} gives that

T
. i log(N
< 41nf] E O -l + g( )—l- vT + nE

t=1

D) WACE

t=1 i=1

Since Z; is zero-mean (conditioned on E°) and independent of Q; (i), we get that,

T K

E ZZQt(l)th E

t=1 i=1

T K
DD 46y

t=1 i=1

+T+771E

It suffices to bound the expectation on the right-hand side. To that end, observe that

i=1
T K
<2E (D) (i (Z)?)|E*
t=1 i=1
T K
E > Y 1+ (Z)?)|E°
t=11=1

Thus, overall we have that

T

< inf Y 4y -pl + 2 ) +4T + 2nKT(1 + 1022 log® KT).
1

JENI 2

T K
E lz D Qi) (i) |E

t=1 i=1

log(N
n

Plugging in our choice of v = 4nK \log(KT),
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T K
N ) 2
E Y4 E¢| < inf Ly AnKTAog(KT)+2nKT(1+10\* log” KT).
;;Qt@ 10| Jnf Z v+ ———+4nKTAlog(KT)+2nK T (1+10)* log® KT)
which for A > 1 gives
T K N)
[ZZQt( GLG)|EC| < meV]ZEt p +3nKT(1 + 10\*log” KT).
t=1 i=1 g€l

. Tog(V
Picking 7 = \/ 3TK(1+;)§E\2 1)og2 T)» We have

< inf Z&g ut+16\/TKlog YA log(KT).

JE[N]

T K
E ZZQt(z)Et(

For our choice A = %, we get

< inf th ; 16\/TKlog(N)log(KT).
€

T K
ZZQt JEIN] %

t=1 i=1

E

Finally, noting that

T K
E|D Y Qu)e(i)|E

t=1 i=1

R(T,K,N) < — inf Z“t 1

JE[N]

completes the proof. |

The proof of privacy in Theorem[3]is identical to the proof of LemmalT|after taking batch size 7 = 1,
so we omit the details here.

E.4 PROOF OF THEOREMI6]

Proof. (of Utility in TheoremEl) Fix €,6 € (0,1] and batch size 7. Let A = LUSVARLC DR P

yTE
4q,...,0r be any sequence of loss functions and fi;: ¥ be any sequence of advice vectors. Let
be the event that there exists a r € {1,..., | L} such that max;c(n] | 2|2 > 10A2log*(NV | L )).

Then, Lemma shows that P’ [E] < Z. Moreover, note that E [Z]|E¢] = 0 for all j € [N] and
r € [| £]]. We need to bound

R(T,K,N) :

Zzt (I) — 1nf Z“t 4.

We can write R(T, K, N) as

T T T T
E > (L) — inf > pd - 0|E|P(E)+E | Y 4(L) — inf > pl-6|E°| P(E)
t=1 JEN] t=1 t=1 JEN] t=1
SmceE{Zt Lle(Iy) —inf e Zt e }<T, we have that
R(T,K,N)<E Zet L) — 1nf Z“t GIE| +7 1)
t=1
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Accordingly, for the remainder of the proof,l we will assume that event ¢ has occurred, which

further implies that max, | r | max;je(v] | 27| < 4\ log(N 1 Z]).

Algorithm 2| runs Multiplicative Weights using the noisy, batched losses 17’1, e ,Z’LZ E For v >
A/ ylo

120K/ Nlog(5) ! g(NT), we have that

€T

- N 12K ,/Nlog (3)log(NT)
" ()+Z7) < max max—nZ7<n <1

max max —n(¢.(j)) < max max —n(l,
re[| £ |1 5€IN] (6-(9)) re[| £ ]14€IN] ! re[| L] JEN] €Ty

Accordingly, for any choice v > 120K/ N log(3) log(NT) Lemmaimplies that

€T

oy o B
> P(i)(d) < inf > L)+ p +0 ) P()G)?
r=1 j=1 1 r=1 j=1

Taking expectation of both sides, we have that

N . - log(N) al NAY
Z < inf B | 2()|E°|+ P ZPT(J)ET(J) E°

ﬁ
i Mm

Using the fact that Z7 is zero-mean and conditionally independent of P, given the history of the
game up to and including time point (r — 1)7, we have that

We now analyze each of the three terms with expectations separately. First,
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To bound the first of the two terms above, note that:

Next,
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T T 2
L7J N ~ L?J N rT .
E(Y D P(MGGPE| <E|Y. > PG |= >, f-wl] |E°
r=1 j=1 r=1 j=1 s=(r—1)7+1
_L%J N 1 rT . 2
B DS EN I S
r=1 j=1 s=(r—1)7+1
_L%J N 1 rT R N
<E(YY G- > (Lew)|E
r=1 j=1 s=(r—1)7+1

T

S e
r=1 j=1 s=(r—1)7+1

IA
%
E
=

K

N
- E S RO Bam)|E

r=1 s=(r—1)7+1 j=1 i=1

K N .
-l PON DINAGIEON FAGI

IA
&
[~
o
=
&
|
o

Finally,

2] | [
inf E +()|E°| == inf E Cs - pi| B
JEN] | TIEINT T e T
X HEI
=— inf E | EC
T 2 t " Hi

where the last equality follows by the unbiasedness of 0. Putting all the bounds together, we get
that
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K
— E > Qu(i)l(i)|EC| < = inf

T jE[N]

Multiplying both sides by 7(1 — ), gives

T\_% K T\_%
E ZQt <(1—7) inf Zét-,u
t=1 i=1 JEINT
which implies that
2] 12

; JE[N]

1 =1

K
E > Qi) (i)|EC| < inf Z -

Z R aa =ik

T
+ 10nT A% log? (N {J ).
T

Using the fact that 7, is an unbiased estimator of ¢, gives that

K |z
E ()| E¢| < inf i
2 ;Qt( )24 (3) < b ; ¢

K
E ZQt(i)ﬁt(z‘ < inf Z e

JE[N]
Bounding the regret in the last 7 rounds by 7, gives
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7 log(N) 21 2
< inf S ¢ + AT 4+ nTK + 10nTA2 1og?(NT) +
jler[lN E bou o+ , T +n n og”(NT) + 7

T K
E 1YY Qi) |E
t=11

1

- rlog(N
< inf Zét-ungToi()ﬂTmTKJr

i€V = e*y?r?
Using Equation|[I] then gives that
log(N 90nTNK?1 1 NT
R K, N) < T8 4 g g 20 o8()l0g"(NT)

€2~272

Since 7 < 1, we trivially have that

37 log(N) 90nT N K?log(%)log® (NT)

€2y272

+4T +nTK +

R(T,K,N) <

. 1/3 N1/3 (2/3 162/3 12nK+/Nlog(%)log(NT .
ow, choosing v = max og ("(NT) 121 g(5) log(N'T) , gives
Now, choosing v ! 2737273 ; - g
37 log(N)

R(T,K,N) <
n

/3 (N log(1)/3K?/310g®3(NT) nKy/Nlog(5))log(NT)

+ 90 max 2/3,2/3 , o

T+nTK.

(N log(§))"/®log!/*(NT) log!/* (N)
T1/3K1/261/3

(N log(1))"/® log®/*(NT) T/

and 7 = 62/310g1/3(N)

Choosing n = gives

95(N log (1)) /6 K1/ log"/*(NT) log/*(N)T?/3
el/3
(95N log(1))/3 K" /2 10g®*(NT)log®*(N)T"/?
+ €2/3
_ 100NY/SK2T/3 log!/0(3) log! *(NT) log/* ()
= c1/3
N N'/21og(1)1/210g(NT)log(N)

€

R(T,K,N) <

which completes the proof. |

Proof. (of Privacy in Theorem @) Fix €,6 € (0,1]. Note that the sequence of actions played by
Algorithm [2| are completely determined by Py, .. PLT in a dataset-independent way. Thus, by

post-processing it suffices to show that the distributions P, .. ., PF are output in a e-differentially
private manner. Note that P, is independent of the dataset /1, . .., ¢7. Thus, it suffices to only prove
privacy with respect to P, ..., PL - Algorithm [2{can be viewed as the adaptive composition M of

the sequence of mechanisms Mo, . . . ’MLZJ , where My : ([K] < II([K]))" x £1.7 — RN x TI([N])
is defined as

Ma(Liir, pii, i) = (63(1), -, G (N)

33
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for £} (j) defined as in Line 10 of Algorithm [2| Likewise, for s € {3,...,|Z]}, define M;
(RN)s=2 x (I([K]) x [K])T x £1.7 — R such that

MS(EII:S—Q’ :LL%;]XQ)T—‘,-l:(s—l)T? I(S—Z)T"rl:(S—l)T’ e15T) = (gl(s—l)T<]‘)’ ] ~/(S—1)’T(N))

Since P depends on only the outputs of M7, ..., M,_1, by post-processing, it suffices to show that
M is (e, §)-differentially private.

To do so, fix two neighboring data sets £1.7 and ;... Let ¢’ be the index where the two datasets
differ. Let ' € {1,..., L%J } be the batch in where ¢’ lies. For all r < r/, we have that M,.(-, {1.7)
and M,.(-, ¢ 1) are O-indistinguishable. We now show thaE M,r41(-,01.7) and M4 (-, 0).) are
(€, 6)-indistinguishable. For any fixed sequence of inputs ¢}, ;, 'u%'r:"{v—l)7'+1:7'/7" I —1yr 1007 €
(RN)*=2 x (TI([K]) x [K])™ and every expert j € [N], the mechanism M, computes ¢, (j) =

lrir () + 21 7,, where Z,_1),(j) ~ Lap(0, @) and

YTE

’
T

b=t S Sl

=(r'—1)7+1 i=1

Observe that for every fixed sequence of inputs, the global sensitivity of ZT/T( j) with respect to
neighboring datasets is at Inost = since Q;(i) > # forall t € [T]. Accordingly, by the Laplace

Mechanism and advanced composmon we have that Myr41(-,1.7) and My (-, €).7) are (€, 5)-
indistinguishable.

To complete the proof, it suffices to show that for all » > 7’ + 1, we have that M, (-, ¢1.7) and
M,.(-,¢].p) are O-indistinguishable. However, this follows from the fact that for every r > ' + 1,
we have that £, _1)r 410741 = 2 and that mechanism M, does not access the true data

(r—=1)7+1:r7
1.(r—1)7> but only the privatized, published outputs of the previous mechanisms My, ..., M, ;.
Thus, by advanced composition, we have that the entire mechanism M is (e, §)-differentially private.
|

F IMPROVED, BATCHED EXP4

In this section, we provide a slight improvement over Theorem [6] by more carefully determining
how much noise we add to each batched unbiased loss estimate. See the proof below for the specific
choices of the hyperparameters.

Theorem 8. For every ¢,0 > 0, there exists 1,y > 0 and T > 1 such that Algorithm [2] is (€,0)-
differentially private and suffers worst-case expected regret at most the minimum of

100NY/SK1/2T2/3 10g /¢ (1) 1og!/3(NT) log'/*(N) N N1/2 . Jog(1)1/21og(NT) log(N)
€l/3 €

and

18(N log (%) log(NT)log(N))¥>(KT)3/®
€2/5 :
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Algorithm 7 Improved, Private, Batched EXP4

Input: Action space [K], Number of experts N, batch size 7, privacy parameters €, > 0
Initialize: » = 1, w1 (j) = 1 forall j € [N]
2fort=1,...,T do

Receive expert advice p}, ..., pul¥
ift =(r —1)7 + 1 then
N wr(5)
‘ Set P.(j) = Sieiv wr@) _
Set Qi(i) = (1 — )Zj:1 Pr(f)pi (i) + -
Draw I; ~ ¢
Observe loss £;(I;) and construct unbiased estimator /4 (i) = %
if ¢t = r7 then

. I(I
Define A} = maXgef(r—1)r+1,..rr} %

Define /,.(j) := 1y (r— 1T+1€ -y and 2.(5) := £,.(5) + ZI where

4 SAZ,/Nlog(%)
77 ~Lap |0, — Y0

€

Update w,1(5) < w,(§) - exp{—n.(j)}
Update r <— r + 1.

end

. 3AI/Nioa(1)
Proof. (of Utility in Theorem [8)) Fix ¢,6 > 0 and batch size 7. Let A\l = 84y v/ Nlog(s ). Let
{1, ..., 07 be any sequence of loss functions and ;}:% be any sequence of advice vectors Let E be
the event that there exists ar € {1,..., | L} such that max;e(n) |24 > 10(M)2log*(N | Z)).

Then, Lemma |1 1| shows that P [E] < 7. Moreover, note that E [ZJ|E¢] = 0 for all j € [N] and
T e [L%J] Using the same analysis as in the proof of Theorem@ we have that

R(T, K,N) )

Zﬁt L) — g[lf]Zut A |E

Accordingly, for the remainder of the proof,' we will assume that event £ has occurred, which
further implies that max, ¢ || = || max;eqyy | 27| < 4M log(N | ).

re|

Algorithm [7| runs Multiplicative Weights using the noisy, batched losses ¢}, . .. ,Z’L ) For any

choice v > 215V IV log(3) log(N'T) Lemmaimplies that

€T

N ) 7] log 7] ~ )
D P(EG) < imf > LG)+ Z ZPAj)é’ ()

E P.(j)l"(j)|E°| < inf E 0 ()| E° E PV ()2 B
;; DEDIET = z:: ’ r— ;; (1)

Using the fact that Z7 is zero-mean and conditionally independent of P, given the history of the
game up to and including time point (r — 1)7, we have that
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£l v kN oay) | E &
EN> D P0G\ E| < imf B> LG E | +—= 4B | DD P ()EG)|E

We now analyze each of the three terms with expectations separately. First, using an identical
analysis to that in Theorem[6] we have that

EI "2 x o
B |30 POLG)| | = [ 3 Y @il = M
r=1 j=1 t=1 i=1
Next,
1] ~ ) [1%] v )
E > PG| E°| =E > P () + Z1)? B
r=1 j=1 r=1 j=1
[1z] ~ i
=E Y > PO)EG) +(Z0)%)|E
r=1 j=1
IHE 2] w
=E > P(j)i(j)?| +E > P.(j)(Z])*|E°
r=1 j=1 r=1 j=1
To bound the second of the two terms above, note that:
N } 7] ~
SN T PG)NZPE| < 1010g*(NT)E | Y > " P(5)(M)?
r=1 j=1 r=1 j=1
10N log (%) log®(NT) [ P
= 2 E ZPT(J)(AT) E
r=1 j=1
10N log (1) log? (NT)]E & ip(.) (ui(h))Q pe
= r max
6272 =1 =1 J se{(r—1)7+1,...r7} Qs(lé)
Then, note that for v < %
pI)N\2_ . K? 2
max <min{—, —— ;-
se{(rfl)‘r%»l,...rf}(QS(IS)) - {,),2 Pr(j)z}
Thus,
5] 1 (I)\2 K2 KN |T
E P.(j 525 E°| <2min —} =1,
r:lj:zl se{(r— 1)T+1 TT}(Q (I )) { y } \‘TJ
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and we get that

) min{ —- 5
, e2r
r=1 j=1

Y T

N
E|S S PGz | < PV K2 KN 515

and

| %] 7]

(5 — inf 14
jeln | = T el Z o

T T jEN
t=1 i=1 acINy 3

2017N10g( ) log? (NT) . K2 KN
2.2 { 2 ’}{ J
€21 v

Multiplying both sides by 7(1 — ), we have that

N
—
~|H

=1 =1 Je[

K
E ZQt inf Zﬁt ut ’)/7)71og(]\7)+7_7 BTJ

N
—
~|H

K
nE ZQt

t=1 i=1

2077N10g( )log*(NT) . {K2 KN ANy T
min - |=].
272 N2 VTS

which implies that
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T|7] K A L] log(N)
E ZQt(z)ft(z) E°¢| < inf Z Oy -l + +A~T
t=1 i=1 JENT 1
T|7] K
B | Y D Q@G
t=1 i=1
2077N10g( Jlog> (NT) . K2 KN
) min{—-, —}7.
€T v 07
Using the fact that ét is an unbiased estimator of /; gives that
7] & 7]
j log(N
E Qt Et E < 1nf Z Et /tt &()—F’YT
t=1 i=1 JEIN n
)
+7E D Qi) ()| B
t=1 i=1
2077N10g( Jlog? (NT) . K2 KN
D) min{ —- 7 — 7.
€T y 0
By the boundedness of the loss, we have
gsd N ; Tlog(N)
E > Qi) E°| < mf Z O + . +9T
t=1 i=1
T
+nKt \‘J
-
2017N10g( Jlog? (NT) . K2 KN
D) min{ —- 7 — 7.
€T 5y 0
Bounding the regret in the last 7 rounds by 7, gives
T K Tlog(N)
E [ZZQt(i)et(i) E°| < g[l]fv]Za ; +~T +nKT
t=1 i=1 J
QOanog( Jlog* (NT) . K2 KN
53 min{—-, —}T + 7.
€T vy vy
Using Equation 2] then gives that
log(N 20nN'1 log“(NT K2 KN
R(T, K, N) < T8 ke 4 20 Og(2)2°g (NT) i T+
n €T ok
Since 1 < 1, we trivially have that
log(N 20nN 1 log“(NT K? KN
R(T K, N) < T8N e 4 200 08(;) log™( ) min{ 2 BNy
U 72 7y

38



Under review as a conference paper at ICLR 2025

12n'/2 N log(3) K log(NT) > 12nK+/N log(1) log(NT)

Now, choosing v = p =

, gives

3rlog(N) 14n'/2 K NT log(NT) log(5)
n €T

R(T, K, N) < +0TK

773/4K1/2 logl/Z(NT)(Nlog(%))1/2T1/2

Choosing 7 = T2 log1 72 ()

gives

17K /2 1og"?(NT)(N log(1))/2T"/? 1og'/?(N)

R(T, K, N) < A2

+nTK.

log®/® (NT) (N log(§))*/® log*/® (N)

Finally, picking n = 3757275 135

gives that R(T', K, N) is at most

18(N log (%) log(NT)log(N))*>(KT)3/?
2/ (3)

On the other hand, for the same choice of 7,y and 7 from Theorem@ we have that R(T, K, N) is
at most

100N/ K1/2T%/3 . 10g /S (1) log!/3(NT) log'/*(N) N1/2-log(%)l/Qlog(NT)log(N) @
el/3 €

Thus, the overall worst-case expected regret is the minimum of Equations [3|and 4] ]

Proof. (of Privacy in Theorem[8) The proof is identical to that of Theorem 6] with the only difference
being that we can use a tighter bound on the global sensitivity of

’
T

T (G) = % > Z fiul H{;m =3

=(r'—1)7+1 =1

Namely, for every j € [N], the global sensitivity of ZTIT(j) over any two neighboring datasets

can be bounded above by max,e((r—1)r41,...,rr} % Note that we can adaptively select the

i
noise parameter to the Laplace mechanism because the quantity maxge(r—1)741,....r7} T“QS F(I;)) only

depends on previously published values.

G LOWER BOUNDS

G.1 PRIVACY LEAKAGE IN EXP3

To better understand its per-round privacy loss, it is helpful to view EXP3 as the adaptive composi-
tion of T'— 1 mechanisms Mo, . .., Mr where M, : [K|*~! x¢1.7 — [K]. Forevery t € {2,...,T},
the mechanism M;, given as input the previously selected actions I, . .., I;_; and the dataset /1.7,
computes the distribution

< wy (i)
P(i)=(01—-v)——"—"—
D=0 ) *

where w(j) = exp{— nz 05(j)} and Z,(5) = % Then, M, samples an action I; ~
P,. The mechanism M; is €;- dlfferentially private if for any pair of neighboring data sets ¢;.7 and
¢}, we have that

==
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1.0
0.8
0.6
— P'_t(2)
P_t(2)
0.4 1
0.2 1
0.0
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
t leb

Flgure 1: Probabilities on action 2 assigned by EXP3 when run with v = = 0.0001, and T" =
100 - 5 on datasets ¢1.7 and £} .

< eft

sup sup PM(I1.4-1,1.7) =1
eIy e[K]-1 ie[k) PIMe(T1:e—1, 0).p) = 1]

Now, consider two neighboring datasets ¢1.7 and ¢} .- that differ at the first time point ¢ = 1. Let
Py, ..., Pr denote the sequence of probabilities output by the mechanisms when run on ¢1.7 and let

P/, ..., P} denote the same for /.. Since {1 # ¢}, we have that /| # 7. Accordingly, P, # P}
The key insight now is that because P, # Py, we have that {5 # ¢}, and so P3 # Pj. Continuing this

process gives that P, # P/ and 0, # ll for all ¢ > 2. Unfortunately, this difference in probabilities
can cause the privacy loss to grow with ¢. To get some intuition, fix some ¢ > 2 and sequence
Ii,...,I;_1 € [K]'~1. Consider the ratio

. ) K . )
sup Py (i) /A sup wy (1) Zj:l wy(j) ~ sup wy(7)
ieli] P/ ier wh(0) 200 w(g) et wh(0)

Observe that

t—1

p L) _ gy, eXp{nZ }

ielk] wi(i)  iclk] pot

— sup ex (01(3) = £:.(1))[{ I, = i} = ; _; 11
- sup p{n e +n;zs<>m— Mo Ps(iy}.

Since P!(i) # Ps(i) for every s < t — 1, we can actually pick two neighboring sequences of
losses and a sequence of actions Iy, ..., I such that sup;¢ ws(lg grows very quickly with s. For
example, the following choices for neighboring datasets and sequences of actions will do. Let K = 2
and pick ¢1.7 such that £1(1) = 1, ¢1(2) = 0, and ¢;(1) = ¢,(2) = 1forallt € {2,...,T}. Pick
neighboring dataset ¢}, such that ¢,(1) = ¢,(2) = 1, for all ¢t € [T]. Finally, consider the sequence
of actions Iy, ...,Ir such that I; = 2 if ¢ is odd and I; = 1 if ¢ is even. That is, the sequence
of actions Iy, ..., I alternates between 2 and 1, starting with action 2. We verify empirically in
Figuremthat P;(2) and P/(2) diverge rapidly with P;(2) approaching 1 —  and P/(2) approaching
7. The code generating the figure above is provided below.
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import numpy as np
import matplotlib.pyplot as plt

eta = 0.0001
T = 100 % int(l/eta)
gamma eta

# Execute EXP3 on loss sequence 1_1, \dots, 1_T
w_ 1l =1
w_2 = 1
P_2 =20
P_2 _hist = []
for t in range(T):
Q.2 = (w_2/(w_2 + w_1)) #unmixed prob.
P_2 = (l-gamma) = Q_2 + gamma/2 #mixed prob.
P_2_hist.append(P_2)
if t ==
* np.exp (0Oxeta/ (P_2))

*.np.exp(fl*eta/(P_Z)) #pull action 2 in even rounds
w_1 = w_1 % np.exp(-lxeta/((1-P_2))) #pull action 1 in odd rounds

plt.plot (P_2_hist, label= "P_t (2)")

Execute EXP3 on loss sequence 1'_1, \dots, 1'_T

#

w_
w_
P_
P_

NN
Il
o

for t in range(T):

Q2 = (w_2/(w_2 + w_1))
P_2 = (l-gamma) * Q_2 + gamma/2
P_2_hist.append(P_2)
if t $ 2 == 0:
w_2 = wW_2 * np.exp(-lxeta/(P_2)) #pull action 2 in even rounds
else:

w_1 = w_1 » np.exp(-lxeta/((1-P_2))) #pull action 1 in odd rounds

plt.plot (P_2_hist, label= "P'_t(2)")

plt.xlabel ("t")
plt.legend()
plt.show ()

We note that the authors of [Tossou & Dimitrakakis| (2017) acknowledge that this issue was over-
looked when stating Theorem 3.3 in Tossou & Dimitrakakis| (2017). Therefore, we are unable to
verify the Theorem 3.3. Unfortunately, [Tossou & Dimitrakakis| (2017)) use Theorem 3.3 in the proof
of Corollary 3.3, which claims to give a private adversarial bandit algorithm with expected regret

5 (T2/3./K1n(K)

v ) , ignoring log factors in %. Thus, we are unable to verify whether Corollary 3.3

is correct.

G.2 ALGORITHM-SPECIFIC LOWER BOUNDS

All existing lower bounds for private bandits are in the stochastic setting and effectively show a
lower bound of Q(%) ignoring log factors (]Azize & Basul, 2022[). Here, we prove a stronger lower
bound for a large class of bandit algorithms by exploiting the ability to pick arbitrary sequences of
loss functions. Our lower bound considers a class of bandit algorithms that satisfy two assumptions.
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Fix K =2andT € N. Fory € [0,1], 7 € {1,...,T} and p € [T, define the sets

T +%
B, = {z‘LT S iy = 2) > yT} and B — {im : Z I{i, = 2} < p}.
t=1

s=14+1
Consider the sequence of loss functions ¢1, ..., {7, such that ¢1.7(2) = 1 and ¢1.7(1) = % Our
assumptions on the bandit algorithms are with respect to their behavior on ¢4, . .., ¢7. In particular,

we will consider bandit algorithms A for which there exists v € [0,1], 7 < % andp < (T — 1)
such that: 1 )

(HP(Ly,...,Ir € E,) > 3 and 2) P(1y,...,Ir € EY ) > 3
where ;.7 are the random variables denoting the actions played by .A when run on the sequence of
loss functions ¢1.7. The first condition simply lower bounds the probability that A plays action 2 by
~, when A is run on ¢1.7. The second condition states that .4 drops, and subsequently maintains, the
probability of playing action 2 to ~ in roughly 7 rounds. Accordingly, when 7 is small, condition
(2) states that .A drops the probability of playing action 2 down to ~ relatively quickly. One should

Ra(f1:1)
T

really think of ~ as being O ( ), where R 4(¢1.7) denotes the expected regret of A when

run on ¢1.7. Then, condition (1) is trivially satisfied, while condition (2) states that .A roughly drops

Ra(lir)
T

and keeps the probability of playing action 2 around O ( ) by round 7. The latter property

is reasonable for bandit algorithms given that ¢;(2) — ¢,(1) = % for all ¢ € [T]. For example, one

can verify that EXP3 with mixing satisfies this property. Lemma [I5] provides a lower bound on the
expected regret of private bandit algorithms that satisfy these two conditions.

Lemma 15. For any e-differentially private algorithm A (for ¢ < 1), if A satisfies conditions (1)
and (2) with parameters v € |0, %], T < % and p < (T — 1), then the worst-case expected regret

of A is at least
1 YT p T 1 pT T
— _efP 2 > _ _ptP — — _ .
(1 3¢ )max{ 5 Iy 2} (1 3¢ ) ( 3 5

In particular, if A satisfies conditions (1) and (2) with parameters v € [0, %} TEoO (\/E) and

€

p =[5, then the worst-case expected regret of A is ) (\/é) )

Lemma [[5]shows that if one wants to design an e-differentially private algorithm (for e < 1) whose
upper bound enjoys an additive separation between T and e, then there cannot exista y € [0, %] such

that it satisfies conditions (1) and (2) with 7 € o (\/?) and p < ~(T — 7).

Proof. Let A be any e-differentially 7private algorithm (for e < 1) that satisfies condition (1) and
(2) with parameters v € [0, 3], 7 < % and p < (T — 7). Consider the alternate sequence of loss

functions ¢, ..., ¢/ such that £}, = ¢y, but £, ;. is such that £}(2) = 0 and ¢;(1) = 1 for all
te{r+1,....,T}.
It suffices to show that

P(Iy,.... Iy ¢ B2 ) <eP-P(Iy,...,Ip ¢ E ) < %e“’ (5)
where I1.7 and I7.; are the random variables denoting the selected actions of .4 when run on 1.7

and ¢}, p respectively. Indeed, when I7,..., I € Ef _, we have that the regret of A when run on

04 is at least % — £ — Z. On the other hand, if I.7 € E.,, we have that the regret of A on £y.7
is at least 27". So with probability 3, the regret of A on /.7 is 27" and with probability at least
1 — JeP, the regret of A on ¢} is at least 3 — % — % = £ — 5, where the inequality follows

from the fact that v < % Therefore, the worst-case expected regret is at least

1 AT 1 1 T
max 7-7—,(1—76@) E— > (1—=e? ) max L7£,Z .
2 2 2 4y 2 2 2 4y 2
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To prove Equation 3} recall that we may write any randomized algorithm A as a deterministic func-
tion of an input x and an infinite sequence of bits by, bs, ... generated uniformly at random. From
this perspective, we can think of a randomized bandit algorithm 4 as a deterministic mapping from
a sequence of losses /1.7 and an infinite sequence of bits b € {0,1}" to a sequence of T actions.
That is,

A (0,13 x ([0,11%)" = [K]".

Using this perspective, Equation [3]is equivalent to showing that:

B, oo (A Log) € E2) < PPy o1y (A, i) ¢ B2 ).

Consider the following sequence of losses parameterized by S C {7+ 1,...,T}, |S| < p:

1/2, ifi=1
02(i) =40, ifi=2andte S
1, i=2andt ¢ S

Let £ := {¢{{7: S C{r+1,...,T},S < p} be the collection of all such sequences of loss

functions. Note that every ¢5.. € L differs from ¢;.7 only at time points ¢ € S. Thus, by group
privacy (see Lemma E[), we have that

sup B, (AG ) € B2) <P, (AW, bur) & BL)
€L '
Now, fix the sequence of random bits b € {0, 1}V, Let i zl 7 = A(b, 6’1 7). Define 8" :={t >7+1:
iy = 2} and S_, be the first p such time points. Let i zl 7= A, }p) Lett! =max{t >7+1:

S’

S il =2} < p}and 550 = max{t>7+1: 3"_ +41 His=" = 2} < p}. Because

bandit algorithms only observe the losses of the selected action, we have that ¢’ = t° /SP. In addition,

. . . . . .S
we have that ), € ET _if and only if ' > 7 4+ Z, and likewise for i\ 5" Therefore,

S’
H{ZlT E E’YT} == ]I{Z sp E EpT}
and therefore

S<p

Witr ¢ BY Y =iy ¢ BN}

Taking expectation on both sides with respect to b ~ {0, 1}, gives that

Pygo,10 (A, 1.1) ¢ EE -) = Pygo,1p (A, £ ) ¢E 5

< sup PbN{O,I}N( ( ) 1:T) ¢ El;)
05 EL
< PP (A(b, él:T) ¢ E'I;,T)7

— b~{0,1}N

completing the proof. |
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