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ABSTRACT

Large language models (LLMs) have shown remarkable potential as autonomous
agents, particularly in web-based tasks. However, existing LLM web agents
face significant limitations: high-performing agents rely on expensive proprietary
LLM APIs, while open LLMs lack the necessary decision-making capabilities.
This paper introduces WEBRL, a novel self-evolving online curriculum reinforce-
ment learning framework designed to train high-performance web agents using
open LLMs. Our approach addresses key challenges in this domain, including
the scarcity of training tasks, sparse feedback signals, and policy distribution drift
in online learning. WEBRL incorporates a self-evolving curriculum that gener-
ates new tasks from unsuccessful attempts, a robust outcome-supervised reward
model (ORM), and adaptive reinforcement learning strategies to ensure consis-
tent improvement. We apply WEBRL to transform Llama-3.1 models into profi-
cient web agents, achieving remarkable results on the WebArena-Lite benchmark.
Our Llama-3.1-8B agent improves from an initial 4.8% success rate to 42.4%,
while the Llama-3.1-70B agent achieves a 47.3% success rate across five diverse
websites. These results surpass the performance of GPT-4-Turbo (17.6%) by
over 160% relatively and significantly outperform previous state-of-the-art web
agents trained on open LLMs (AutoWebGLM, 18.2%). Our findings demon-
strate WEBRL’s effectiveness in bridging the gap between open and proprietary
LLM-based web agents, paving the way for more accessible and powerful au-
tonomous web interaction systems. Code, model, and data will be available at
https://anonymous.4open.science/r/WebRL-dev-1D63/.

1 INTRODUCTION

Large language models (LLMs) have exhibited not only superior comprehension of human language,
commonsense reasoning, and knowledge acquisition, but also significant potential in complex plan-
ning and logical reasoning, indicating their promising trajectory towards serving as autonomous
LLM agents (Liu et al., 2024a). A diverse array of applications for LLM agents has proliferated, en-
compassing domains such as code generation (Jimenez et al., 2024), database manipulation (Zhou
et al., 2023; Gu et al., 2024), and graphical user interface (GUI) interaction (Yang et al., 2023;
Rawles et al., 2024; Xie et al., 2024). Among these, web agents powered by LLMs (Deng et al.,
2024; Zheng et al., 2024; Lai et al., 2024; Pan et al., 2024) have garnered particular attention due
to their extensive application prospects and unique potential for fostering authentic autonomous
intelligence within the digital ecosystem.

Notwithstanding these advancements, existing LLM web agents, regardless of their performance
metrics or architectural paradigms, remain under-developed. High-performing LLM web agents
predominantly rely on meticulously crafted prompts in conjunction with proprietary LLM APIs
(e.g., OpenAI GPT-4) for web page comprehension and manipulation, which is both expensive and
time-intensive. Conversely, open-source LLMs exhibit notable deficiencies in their capability to
function as proficient web agents, primarily due to the scarcity of decision-centric data in both pre-
training and post-training periods. Despite recent endeavors (Lai et al., 2024; Pan et al., 2024) to
train web agents on open LLMs via imitation learning, these approaches insufficiently leverage the
inherently online nature of web interactions and fail to yield consistent, continual improvements.
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Figure 1: Overview of WEBRL. WEBRL is a self-evolving online curriculum reinforcement learn-
ing framework for LLM-based web agents, yielding consistent continual improvements throughout
the iterative self-evolution.

Challenges. In this work, we propose to train high-performance web agents based on open LLMs
within online environments, specifically utilizing WebArena (Zhou et al., 2024a). Our investiga-
tion has identified several critical challenges inherent to this task: 1) Insufficiency of training tasks:
In contrast to offline datasets (Deng et al., 2024; Rawles et al., 2024) that facilitate agent training
and evaluation on human-annotated oracle trajectories, online benchmarks such as WebArena (Zhou
et al., 2024a) typically provide only a limited test set for evaluation purposes. This dearth of prede-
fined training tasks significantly impedes the effective training of agents within these environments.
2) Sparsity and cost of feedback signals: The assessment of success for arbitrary web browsing tasks
is difficult in the absence of task-specific evaluation functions. Moreover, unlike tasks in certain GUI
datasets (e.g., AITW (Rawles et al., 2024) and WebShop (Yao et al., 2022)), those in WebArena are
typically of long horizons, with oracle solutions averaging 10 steps. This characteristic introduces
substantial sparsity in the available signals during online exploration. 3) Policy distribution drift in
online learning: The absence of a predefined training set necessitates online exploration, inevitably
leading to distribution drift in the agent’s policy. This phenomenon is likely to induce catastrophic
forgetting and performance degradation over time.

Contribution: The WEBRL framework. In response to these challenges, we introduce WEBRL,
a self-evolving online curriculum reinforcement learning framework designed for training LLM
web agents. To the best of our knowledge, this represents the first systematic framework enabling
effective reinforcement learning for LLM web agents from initialization in online web environments.
Through the application of WEBRL, we have successfully transformed a Llama-3.1-8B model into
a proficient LLM web agent, elevating its success rate (SR) on WebArena-Lite (Zhou et al., 2024a;
Liu et al., 2024b) from an initial 4.8% to 42.4% across a diverse set of five websites. Furthermore,
when applied to Llama-3.1-70B, we achieve a remarkable 47.3% SR, surpassing the performance
of the most advanced proprietary LLM API (GPT-4-Turbo, 17.6% SR) by over relatively 160%
and significantly outperforming previous state-of-the-art web agents trained on open-source LLMs
(AutoWebGLM (Lai et al., 2024), 18.2% SR).

The substantial performance gains from WEBRL can be attributed to several key architectural de-
signs. To address the scarcity of web agent training tasks, we have devised a self-evolving online
curriculum that harnesses the trial-and-error process inherent in exploration. This curriculum is un-
derpinned by a robust outcome-supervised reward model (ORM) that we have newly developed. In
each training phase, novel tasks are autonomously generated from unsuccessful attempts in the pre-
ceding phase, facilitating a progressive learning trajectory. To mitigate the policy distribution shift
induced by curriculum-based reinforcement learning, we incorporate a KL-divergence term between
the reference and actor policies into our learning algorithm, thereby constraining policy updates and
promoting stability. We implement an experience replay buffer augmented with a novel actor con-
fidence filtering strategy to ensure the fidelity of replayed experiences and prevent over-fitting to
previously acquired knowledge.

In summary, our work makes the following significant contributions to the field:

• We introduce WEBRL, a novel self-evolving online curriculum RL framework for training LLM-
based web agents. For the first time, it implements the infrastructure for RL in the WebArena
environment, together with a strong ORM, to drive open LLMs to become capable web agents.
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• WEBRL advances the RL for LLM agent training by addressing key challenges including the
scarcity of training tasks, sparsity of feedback signals, and distribution drift in online learning.
The self-evolving curriculum and adaptive learning strategies allow the consistent continual im-
provement of LLM web agents during iteration.

• We demonstrate WEBRL’s substantial performance improvements over existing methodologies
such as AWR and DigiRL, achieving state-of-the-art results on the WebArena-Lite benchmark.
It surpasses the best proprietary LLM API and previously trained web agent on open LLMs by
over 160% relatively.

2 WEBRL: SELF-EVOLVING ONLINE CURRICULUM REINFORCEMENT
LEARNING FOR LLM AGENTS ON WEB

We present a self-evolving online curriculum learning framework designed for training web agents,
targeting the WebArena (Zhou et al., 2024a) environment. In this system, the agent continuously
interacts with its environment to collect real-time trajectory data. We train an outcome-supervised
reward model (ORM) to assess task success and use a KL-constrained policy update algorithm to
prevent severe policy distribution drift during curriculum learning. A replay buffer is employed to
retain knowledge and mitigate catastrophic forgetting. Furthermore, a self-evolving strategy is inte-
grated to dynamically generate tasks that align with the agent’s evolving capabilities. This approach
enables the agent to improve incrementally, progressively handling more complex tasks. The overall
training process can be found in Algorithm 1.

Problem Formulation. We model the process of completing the web task as a finite-horizon
Markov Decision Process (MDP), denoted by (S,A,R, T ). Given a user instruction I , the agent
is required to complete the corresponding task. The state s is defined as the HTML content of
the current web page along with the history of previous actions. The agent receives a reward of
1 upon successful task completion, and 0 otherwise. In the finite-horizon setting, the trajectory
ends either when the task is accomplished or when the maximum number of interactions T is ex-
ceeded. To explain our method clearly, we introduce the following notation. The policy π(·|st, I)
represents the distribution over actions given the state st and the instruction I . The value function
V (sh, I) = Eπ

[∑T
t=h r(st, at, I)

]
represents the expected cumulative reward from the state sh

under policy π. The action-value function Q(st, at, I) is the expected cumulative reward for taking
action at on state st and following policy π thereafter: Q(st, at, I) = r(st, at) + V (st+1, I).

ORM Training. In the curriculum learning process, we need to determine whether the correspond-
ing instruction is completed based on the trajectory generated by the agent. Due to the lack of
feedback from the environment, we train an LLM as the outcome-supervised reward modelMORM
to achieve this task success evaluation. MORM is utilized to assess whether the agent’s rollout tra-
jectory accomplishes a given task, providing a binary reward signal (0 for failure and 1 for success).

Similar to the approach in (Zhang et al., 2024e), we configureMORM to output “YES” or “NO” to
indicate whether a trajectory successfully completes a task, leveraging the learned knowledge from
the language head of MORM. Given the limited context window of LLMs and the typically long
length of HTML documents, we adopt a strategy akin to (Pan et al., 2024), keeping the HTML of
only the final state to the input. In addition, the historical actions of agents, which provide informa-
tion about previous steps are also included. Thus, the input to the model consists of: the instruction
I , historical actions, and HTML of the final state. We wrap these components into the prompt asking
the model to determine whether the trajectory successfully completes the task described by instruc-
tion I . To obtain the outcome, we compare the probabilities of generating “YES” and “NO” from
MORM. If the probability of generating “YES” is higher than that of generating “NO”, the task is
considered successful, and the reward is set to 1. Otherwise, the reward is set to 0.

2.1 SELF-EVOLVING NEW INSTRUCTION FOR CURRICULUM LEARNING

A typical challenge in training LLM web agents within WebArena is the scarcity of training tasks,
resonating with the situation of developing real-world web agents. Although the recent work (Liu
et al., 2024b) has curated a trajectory fine-tuning set for WebArena, it only contains around 1k in-
structions with oracle trajectories, far from enough for training strong LLM web agents. To address
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this limitation and drive continuous improvement, we employ a self-evolving curriculum learning
strategy. This method generates new training instructions at each phase. As the phase progresses,
the generated instructions become increasingly complex, allowing the agent’s capabilities to improve
gradually. We implement a two-step process of generation and filtering, to produce tasks that are
incrementally more challenging, while still being suitable for the agent’s current capability. During
the generation step, we use the in-breadth evolving approach (Xu et al., 2023) to create new instruc-
tions. We select instructions the model failed to complete in previous interaction phases as seeds for
generating new instructions. Detailed prompts are provided in the Appendix § D. To ensure that the
generated instructions are both feasible in the target environment and aligned with the desired diffi-
culty level, we first filter them using the trained critic. Specifically, we use the critic to evaluate each
new instruction by considering its initial state. We select instructions with critic scores between
0.05 and 0.75, ensuring that only tasks meeting our difficulty criteria are retained. We manually
review generated tasks and identify tasks that cannot be completed in WebArena. Based on these
findings, we develop a prompt (Figure 15) and use GPT-4o to exclude infeasible tasks in WebArena
automatically. The resulting set of instructions is used for interaction and training in this phase.

2.2 REINFORCEMENT LEARNING FOR LLMS IN ONLINE WEB ENVIRONMENTS

In each phase of curriculum learning, the model progressively encounters and learns a new set of
tasks. Considering this setting, a major challenge here is to avoid excessive policy distribution drift
during each learning phase, which could lead to the catastrophic forgetting of previously acquired
knowledge. Traditional approaches typically mitigate the issue by mixing data from different phases.
However, in web agent tasks, intermediate steps do not receive direct process rewards, with only
weak signals from the outcome of the final state. Consequently, even if an intermediate step is
executed correctly, an error in later steps can easily lead to the final failure, resulting in misjudgment
of the intermediate step and making it difficult to be reused. As a result, in this work, we primarily
seek algorithmic improvements to address policy distribution drift more directly.

A potential solution comes from ideas in reinforcement learning from human feedback
(RLHF) (Ouyang et al., 2022), where the Kullback-Leibler (KL) divergence between two policies is
constrained to mitigate policy distribution drift. By adapting this to our curriculum learning setup,
we aim to ensure that the policy in the current phase does not deviate too much from the policy in the
previous phase, while still optimizing performance on new tasks. Let the policy from the previous
phase be denoted as πref, and the current policy being optimized as πθ. The instruction distribution
for the current phase is represented as ρ(I). The objective for optimizing πθ in the current phase can
then be written as follows:

max
πθ

EI∼ρ(I),at∼πθ(·|st)

[
T∑

t=0

(r(st, at, I) + β log πref(at|st, I)) + βH(πθ)

]
(1)

where β is a coefficient controlling the strength of the KL divergence constraint and H(πθ) repre-
sents the entropy of the current policy.

Following the work of (Rafailov et al., 2024a), the objective of eq. 1 can be interpreted as a maximum
entropy reinforcement learning problem. The optimal policy π∗ for this problem can be expressed
as:

π∗(at|st, I) = e(Q
∗(st,at,I)−V ∗(st,I))/β (2)

where V ∗(st, I) is the optimal value function, representing the expected cumulative reward under
the optimal policy π∗. Q∗(st, at, I) is the optimal action-value function. The relationship between
Q∗ and V ∗ is given by:

Q∗(st, at, I) =

{
r(st, at, I) + β log πref(at|st, I) + V ∗(st+1, I), if st+1 is not terminal
r(st, at, I) + β log πref(at|st, I), if st+1 is terminal

(3)

Based on eq. 2 and eq. 3, we can derive:

β log
π∗(at|st, I)
πref(at|st, I)

= r(st, at, I) + V ∗(st+1, I)− V ∗(st, I) = A∗(st, at, I) (4)

Here, A∗(st, at, I) indicates the advantage of taking action at in state st compared to the average
reward expected in that state. Based on the condition, we can formulate the loss function of policy
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πθ as:

L(πθ) = Eν

[(
β log

πθ(a|s, I)
πref(a|s, I)

−A∗(s, a, I)

)2
]

(5)

where ν(s) represents the distribution of experience used for training. Note that our algorithm
operates in the off-policy manner. A comprehensive derivation, thorough analysis, and a detailed
comparison with other RL algorithms can be found in Appendix A.

What does the update do? To gain a mechanistic understanding of the loss function, we analyze
the gradient of the loss function, L(πθ). The gradient with respect to the parameters θ can be
expressed as:

∇θL(πθ) = −2βEν

[ (
A∗(s, a, I)︸ ︷︷ ︸

update direction

− β log
πθ(a|s, I)
πref(a|s, I)︸ ︷︷ ︸

KL divergence constraint

)
∇θ log πθ(a|s, I)︸ ︷︷ ︸

sft loss

]
(6)

The gradient demonstrate the following attributions:

• When the advantage A∗(s, a, I) > 0, action a is valuable, so its probability should increase. If
πθ is lower than πref, this increase will be amplified, especially as the gap between them grows.
If πθ is already higher than πref, the increase will be moderated to avoid excessive deviation.

• When A∗(s, a, I) < 0, the action is suboptimal, so its probability should decrease. If πθ is lower
than πref, the KL divergence constraint will limit how much it can be reduced to avoid a large
divergence. If πθ is higher than πref, a larger decrease will be allowed.

• The parameter β controls the strength of the KL divergence constraint. Adjusting β can help
fine-tune this constraint. For instance, increasing β can prevent unnecessary boosts in action
probabilities when πref already assigns a high probability to an action.

Training a Reliable Advantage Estimator. A reliable advantage estimator is essential for effec-
tive policy updates. We train a value network V (st, I) and use Generalized Advantage Estimation
(GAE) (Schulman et al., 2015) to compute the advantage. In our setting, we only receive a binary
reward (0 or 1) at the final step, with no intermediate rewards (i.e., intermediate rewards are ef-
fectively zero). Following recent approaches (Farebrother et al., 2024), we train the value network
using a cross-entropy objective. The loss function for the value network V is defined as:

L(V ) = −Eν

[
r(sT , aT , I) log V (s, a, I) + (1− r(sT , aT , I)) log(1− V (s, a, I))

]
(7)

In line with (Bai et al., 2024), we focus solely on the next-step and final-step advantage estimators,
since there is no intermediate reward.

A(st, at, I) = λ
(
r(st, at, I) + V (st+1, I)− V (st, I)

)
+ (1− λ)

(
r(sT , aT , I)− V (st, I)

)
(8)

where λ is a balancing factor that controls the trade-off between bias and variance in advantage
estimation. We set λ as 0.5 in our work.

Experience Replay Buffer with Actor Confidence Filtering. In addition to controlling the policy
distribution drift at the algorithmic level through KL, we also implement an adaptive replay buffer
to alleviate knowledge forgetting at the data level. Specifically, we only store those successful
trajectories (which can be sparse) from each phase in the replay buffer. During phase i, we use
the actor from the last phase to compute the perplexity of all actions in the buffer. Actions with a
perplexity within the range of 1/0.95 to 1/0.5, along with their corresponding states, are added to
the training data for the current phase. This filtering process excludes both over-familiar data and
data that remains too challenging for the actor. Additionally, by storing only successful trajectories,
we avoid the challenge of accurately estimating intermediate states for incorrect trajectories from
previous phases.

3 EXPERIMENTS

3.1 ENVIRONMENTS AND BASELINES

Environments. The effectiveness of our method and the baseline models is evaluated using the
WebArena environment (Zhou et al., 2024a). WebArena is particularly well-suited to our needs,
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Table 1: Task success rate (SR) of WEBRL and other comparison methods, evaluated on WebArena-
Lite (Zhou et al., 2024a; Liu et al., 2024b), a human-verified subset of WebArena (* denotes results
on full WebArena taken from literature reporting). The best and second-best models are highlighted.

Models #Params Reddit Gitlab CMS Map OSS Avg. SR

Prompting

GPT-4-Turbo N/A 10.5 16.7 14.3 36.7 13.3 17.6
GPT-4o N/A 10.5 10.0 20.0 20.0 11.1 13.9
Llama3.1-Instruct (Dubey et al., 2024) 8B 0.0 3.3 2.9 3.3 11.1 4.8
Llama3.1-Instruct (Dubey et al., 2024) 70B 10.5 16.7 17.1 20.0 4.4 12.7
AWM +GPT-4-0613∗ (Wang et al., 2024b) N/A 50.9 31.8 29.1 43.3 30.8 35.5
WebPilot + GPT-4o∗ (Zhang et al., 2024f) N/A 65.1 39.4 24.7 33.9 36.9 37.2

Training

AutoWebGLM (Lai et al., 2024) 6B 9.4 15.0 28.6 24.8 17.1 18.2
Llama3.1 + SFT (BC) 8B 36.8 6.7 20.0 33.3 17.8 20.6
Llama3.1 + Filtered BC 8B 52.6 20.0 31.4 23.3 8.9 23.0
Llama3.1 + AWR (Peng et al., 2019) 8B 57.9 26.7 31.4 26.7 17.8 28.5
Llama3.1 + DigiRL (Bai et al., 2024) 8B 57.9 26.7 37.1 33.3 17.8 30.3
Llama3.1 + WEBRL (ours) 8B 63.2 46.7 54.3 36.7 31.1 42.4

Llama3.1 + SFT (BC) 70B 52.6 20.0 20.0 26.7 13.3 23.0
Llama3.1 + WEBRL (ours) 70B 73.7 53.3 54.3 43.3 35.6 47.3

as it provides a highly interactive platform that supports online learning. Additionally, WebArena
encompasses a variety of websites, including OpenStreetMap (Map), Reddit, GitLab, online store
content management system (CMS), and OneStopShop (OSS), making it an ideal benchmark for
comprehensively assessing model performance on web tasks. In the original WebArena environ-
ment, a total of 812 instructions are provided. Considering the cost of testing, we use 165 test cases
from WebArena-Lite (Liu et al., 2024b) for evaluation.

Baselines. We compare WEBRL with several methods utilizing prompting techniques, as well as
models trained with alternative methods. For proprietary models, we select GPT-4-Turbo-2024-0409
(GPT-4-Turbo) (Achiam et al., 2023) and GPT-4o. In addition to AWM (Wang et al., 2024b) and
WebPilot (Zhang et al., 2024f), we also use the results of models under the simple prompt as base-
lines. Details of the simple prompt can be seen in Appendix § D. For the open-source models, we
train Llama3.1 (Dubey et al., 2024) using various approaches as baselines. Specifically, we employ
imitation learning, also referred to as supervised fine-tuning (SFT), to train both the Llama3.1-8B
and Llama3.1-70B. The training data is derived from publicly available human-labeled demonstra-
tions, sourced from the WebArena-Lite. In addition, we also explore several reinforcement learn-
ing methods for comparison, including Filtered Behavior Cloning (Filtered BC) (Pan et al., 2024),
advantage-weighted regression (AWR) (Peng et al., 2019) and DigiRL (Bai et al., 2024). For WE-
BRL and the reinforcement learning-based baselines, we utilize SFT-trained Llama3.1-8B as the
initial model for the actor. For the critic, we employ Llama3.1-8B, augmented with a randomly
initialized value head to serve as the initial model. The training details of WEBRL and baselines
can be found in Appendix § B.

ORM. WebArena-Lite (Liu et al., 2024b) provides training samples along with a corresponding
reward function. We further enhance this set of data by introducing task rewrites, as well as mod-
ifying certain data variables, such as place names and product names. We also make adjustments
to the associated reward function. MORM is trained using rollouts of WEBRL and part of baseline
methods on this set of tasks, with evaluation results determined by the reward function.

3.2 MAIN RESULTS

Our main results, presented in Table 1, show that Llama3.1-8B trained using WEBRL achieves
an average accuracy of 42.4%, outperforming all baselines, including prompting and training al-
ternatives. Notably, WEBRL excels in specific tasks such as Gitlab (46.7%) and CMS (54.3%),
demonstrating its ability to address complex web tasks effectively. Reinforcement learning-based
approaches outperform those based on imitation learning, such as SFT and Filtered BC, which tend

6
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to over-repeat certain actions. For instance, in CMS, SFT models often over-optimize “Scroll Down”
actions. This over-optimize can cause the model to become trapped in local loops, thereby hinder-
ing its ability to achieve the overall task objective effectively. In contrast, reinforcement learning
mitigates this by using a critic to estimate the value of each step, optimizing for long-term rewards,
hence enabling better handling of complex, multi-step tasks. WEBRL also consistently outperforms
DigiRL. A key limitation of DigiRL is that it performs policy updates on a fixed set of tasks, which
can lead to the model learning only a subset of operations within these tasks due to sparse feedback.
This may cause the model to converge to suboptimal solutions and limit its ability to fully explore
its potential. WEBRL addresses this by employing self-evolving curriculum learning, adjusting
task complexity based on the model’s abilities, and promoting broader exploration and continuous
improvement.

3.3 SCALING EFFECT OF WEBRL

We further validate the effectiveness of WEBRL on larger-scale models by training Llama3.1-70B
using WEBRL. Due to cost constraints, we only conduct 4 phases of curriculum learning. The
specific results are presented in Table 1. After training with WEBRL, Llama3.1-70B achieves an
overall accuracy of 47.3%, reflecting a 24.3% improvement over the accuracy achieved with SFT.
This indicates that WEBRL is scalable and can be effectively applied to larger-scale models. Further-
more, when comparing the performance improvement from Llama3.1-8B to Llama3.1-70B achieved
through SFT, WEBRL demonstrates even greater performance gains as the model scale increases.

3.4 DISTRIBUTION ANALYSIS OF ERROR TYPES

We compare the performance of Llama 3.1-8B trained with WEBRL against baseline methods across
different error types: “Fail to Recover”, “Get Stuck Midway”, “Stop at Wrong Page”, and “Fail to
Make Reasonable Attempt”, as shown in Figure 4. WEBRL demonstrates significant advantages
in reducing the ”Get Stuck Midway” error, especially compared to SFT and Filtered BC. The “Get
Stuck Midway” error typically arises when the model gets trapped in a loop, repeatedly executing the
same action without making progress. Reinforcement learning helps mitigate this issue by optimiz-
ing each action while considering its overall impact on the task, enabling the model to make more
effective decisions. Additionally, models trained with WEBRL demonstrate enhanced robustness in
handling the “Fail to Recover” error. Through curriculum learning, the model gradually learns how
to adapt its actions when encountering failures. For example, if the search query “Pharmacy near
CMU within a 20-minute walking distance” does not yield the desired results, the model learns to
modify the query to “Pharmacy near CMU” and attempts the search again, rather than repeating in-
effective actions. In addition, WEBRL exhibits the lowest error rate on both “Stop at Wrong Page”
and “Fail to Make Reasonable Attempt” errors, indicating the model trained with WEBRL has a
more profound comprehension of the relationship between tasks and web pages. It can better iden-
tify the correct page needed to complete a specific task, reducing the chances of mistakenly stopping
on the wrong page or navigating to an incorrect page.

3.5 PERFORMANCE ON TASKS WITH VARYING COMPLEXITY
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Figure 4: Distribution analysis of error types for WEBRL and baseline methods.
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Figure 5: Accuracy of WE-
BRL and baselines for tasks
with different complexity.

We further analyze the performance of WEBRL and baselines
across instructions of varying complexity, as shown in Figure 5.
Instruction complexity is measured by the number of requirements
in the task. For example, the instruction “What are the top-3 best-
selling products in Jan 2023” has two requirements: identifying the
top-3 products and specifying the timeframe, giving it a complexity
level of 2. Our results show that WEBRL performs well across dif-
ferent complexity levels, particularly excelling in more complex in-
structions. In contrast, while DigiRL uses online learning, it strug-
gles with higher complexity due to its focus on a fixed set of tasks,
limiting its adaptability. This highlights the effectiveness of our
self-evolving curriculum learning strategy, which progressively in-
creases task complexity based on the model’s capacity, enabling
better performance on challenging tasks.

3.6 PERFORMANCE ON TASKS WITH VARYING STEP REQUIREMENTS

We evaluate the performance of Llama3.1-8B, trained using WEBRL and baseline methods, on
tasks with varying step requirements. To determine the required step count for each task, we ex-
clude any tasks that no model completes and use the trajectory with the fewest steps as the required
step count for each remaining task. The results are shown in Figure 2. It can be seen that the per-
formance of both the SFT and Filtered BC trained models shows a noticeable decline as the task
length increases. This is likely because these models optimize individual steps without considering
the cumulative impact, making them less effective on long-horizon tasks. DigiRL-trained model
improves performance on medium-length tasks but struggles with longer tasks (more than 10 steps).
This limitation may stem from DigiRL’s online learning on a fixed set of tasks. Even when the model
executes intermediate steps correctly, it doesn’t receive positive rewards if errors occur in later steps,
making it harder for the model to learn how to complete tasks that require many steps effectively. In
contrast, WEBRL overcomes this issue with curriculum learning, progressively increasing task dif-
ficulty. This approach enhances the model’s ability to handle long sequences, leading to significant
performance improvements on tasks requiring long-term planning compared to other methods.

3.7 ABLATION STUDY

We conduct an ablation study to evaluate the impact of the replay buffer, KL-constrained policy
update algorithm, and the curriculum learning strategy on WEBRL. To assess their contributions,
we compare WEBRL with four alternative models: (1) WEBRL w/o replay buffer, where training
uses only the current interaction trajectory, (2) WEBRL w/o KL, where the policy is updated using
REINFORCE with value function baseline (the gradient is Eν [(A(s, a, I)∇θ log πθ(a|s, I)]) but
retains the replay buffer, (3) WEBRL w/o KL & replay buffer, which uses neither a replay buffer nor
the KL-constrained policy update algorithm, and (4) WEBRL w/o CL, which ablates the curriculum
learning approach, utilizing only the instructions generated in the first phase. The results, shown in
Figure 3, reveal that when the replay buffer is removed, both WEBRL w/o replay buffer and WEBRL
w/o KL & replay buffer experience worsening performance over time. This decline occurs because
the models lose access to earlier experiences and focus only on recent data, leading to knowledge
degradation. Comparing WEBRL and WEBRL w/o KL, WEBRL consistently performs better, due
to the incorporation of KL-constrained policy update algorithm. When the replay buffer is not used,
the KL-constrained policy update algorithm degrades more slowly than REINFORCE with a value
function baseline. This is because the KL constraint better retains knowledge from past policy
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Table 3: Evaluation on output-supervised methods (baselines adopted from (Pan et al.,
2024)). Our ORM, without accessing proprietary GPT-4, performs the best among all.

Our ORM (8B) GPT-4 Captioner + GPT-4 GPT-4V

Test Dataset (%) 80.8 71.9 72.6 71.2
Rollout (%) 79.4 71.2 73.3 70.5

iterations by explicitly controlling the divergence between the current and previous policies. In
contrast, REINFORCE with a value function baseline is more prone to overfitting the data from the
current phase of training, leading to less stable performance over time. Overall, the KL-constrained
policy update algorithm is more effective at balancing the retention of past knowledge with the
learning of new information. When comparing WEBRL to WEBRL w/o CL, both exhibit an overall
upward trend due to online learning. However, WEBRL w/o CL progresses more slowly and reaches
a lower performance ceiling because it operates within a fixed task framework, whereas WEBRL
generates new tasks that adapt to its evolving capabilities. This highlights the effectiveness of our
self-evolving curriculum learning approach.
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Figure 6: The impact of β of KL-constrained pol-
icy update algorithm on the model’s performance.

The impact of β. We investigate the effect of
β on performance with and without the replay
buffer, as shown in Figure 6. The study in-
volves curriculum learning in a single phase.
First, when β is too small (e.g., β = 0.01),
performance declines regardless of the use of
the replay buffer. This happens because a
small β leads to weak control over KL diver-
gence, causing the model to overfit the current
data. Second, without the replay buffer, per-
formance initially improves as β increases but
declines when β becomes too large, indicating
that larger β (e.g., β ≥ 1) will overly restrict
KL divergence, limiting the model’s ability to
update its policy and learn effectively. In contrast, with the replay buffer, performance stays high
even at larger β values. The replay buffer’s historical experiences allow for more frequent parameter
updates, supporting steady improvement despite higher β.

Table 2: The impact of perplexity in re-
play buffer filtering of WEBRL.

[1,∞] [1,109 ] [109 ,105 ] [105 ,∞]

29.1 28.5 30.9 23.0

The influence of perplexity. We analyze the impact of
using perplexity to select data from replay buffer for train-
ing. Various perplexity thresholds are tested in the first
learning phase, and the results are summarized in Table 2.
It can be observed that training on data with very low per-
plexity (range [1, 10/9]) leads to performance deteriora-
tion. This suggests that repeatedly learning overly famil-
iar data harms the model. Similarly, training exclusively on data with high perplexity (above 10/5)
also degrades performance, likely due to the model struggling with unfamiliar data, causing a signifi-
cant shift in policy distribution and hindering generalization. Optimal performance is achieved when
training on data with a perplexity range of [10/9, 10/5], indicating that a balance between simple and
complex data enhances model performance by focusing on moderately difficult examples.

3.8 EVALUATION OF ORM

In the WEBRL framework, continuous improvement relies heavily on the performance of ORM,
which plays a crucial role in evaluating interaction trajectories to guide the agent’s learning. To
assess ORM’s effectiveness, we compare its performance with several baseline models, including
GPT-4-Turbo using identical inputs of our ORM, Captioner + GPT-4-Turbo, and GPT-4V, both using
the same prompts with Pan et al. (2024). We evaluate ORM and the baselines on two datasets: the
WebArena-Lite test set and 100 sampled rollouts which are manually labeled. For the WebArena-
Lite test data, we use its reward function outputs as labels. The results, shown in Table 3, indicate
that while the baseline models achieve a consistent accuracy just above 70%, our ORM outperforms
them with approximately 80% accuracy.
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4 RELATED WORKS

Adopting LLMs as Agent. As LLM capabilities advance, their applications extend beyond text
generation (Zheng et al., 2023; Zhao et al., 2023) and complex reasoning (Zelikman et al., 2024;
Zhang et al., 2024d), and increasingly involve acting as agents for device control. Current research
in this area falls into two main categories: training-free and training-based approaches. Training-
free methods enhance pre-existing LLMs through prompt engineering (Yan et al., 2023; He et al.,
2024; Zhang et al., 2024c) and constructing complex systems (Liu et al., 2023; Yang et al., 2023;
Wang et al., 2024a; Wu et al., 2024; Iong et al., 2024; Zhang et al., 2024a). However, their per-
formance is constrained by the limitations of the underlying LLMs, and the absence of fine-tuning
restricts further improvement (Chen et al., 2023; Zeng et al., 2023; Xie et al., 2024). Training-based
approaches, primarily relying on imitation learning, require extensive expert demonstrations (Zhang
& Zhang, 2023; Gur et al., 2024; Deng et al., 2024; Hong et al., 2024; Rawles et al., 2024; Zhang
et al., 2024b), which are costly to obtain. Although some methods use powerful LLMs like GPT-4 to
generate demonstrations (Chen et al., 2023), their accuracy remains insufficient for complex tasks.
These methods often maximize the likelihood of individual actions without adequately consider-
ing long-term effects, limiting generalization (Ghosh et al., 2021; Bai et al., 2024). To mitigate this,
some studies use sampling-based methods to estimate long-term effects (Lai et al., 2024; Putta et al.,
2024), while others, like ours, leverage reinforcement learning (Carta et al., 2023; Bai et al., 2024;
Pan et al., 2024; Tan et al., 2024; Zhai et al., 2024). However, most existing methods rely on static
task sets, which hinder the agent’s continuous improvement as its capabilities evolve. To overcome
this, we propose a dynamic task generation framework that adjusts task complexity based on the
agent’s progress, alongside a policy-update algorithm for ongoing performance enhancement.

Reinforcement Learning for LLMs. Reinforcement learning (RL) has gained traction in training
large language models (LLMs), with applications ranging from preference optimization (Ouyang
et al., 2022; Casper et al., 2024) to complex reasoning (Hao et al., 2023; Pang et al., 2024). A grow-
ing area of interest involves using RL for device control tasks, which require multi-step interactions
where the model selects appropriate actions based on the device state. This sequential decision-
making aligns well with RL techniques. Existing research has explored RL-trained LLM agents
for complex device control, primarily using online learning methods. For instance, AgentQ (Putta
et al., 2024) uses DPO (Rafailov et al., 2024b) for policy updates based on interaction data, while
other methods (Bai et al., 2024; Zhou et al., 2024b; Zhai et al., 2024) utilize actor-critic architec-
tures, which we also adopt. However, in web tasks, feedback is often limited to binary success or
failure after multiple interaction rounds. This can penalize correct intermediate actions due to later
mistakes, complicating the reuse of previous data. Moreover, current research tends to focus on a
fixed set of tasks for comparison with imitation learning, limiting the potential for continuous im-
provement through trial and error. To address this, we propose an autonomous curriculum learning
mechanism that dynamically generates tasks based on the agent’s evolving skills, fostering ongoing
progress. Additionally, we introduce a KL-constrained policy update algorithm and a specialized
replay buffer to reuse valuable historical data and prevent knowledge forgetting during iterative cur-
riculum updates.

5 CONCLUSION

In this work, we introduce WEBRL, a novel self-evolving online curriculum reinforcement learning
framework for training LLM-based web agents. By addressing key challenges such as the scarcity
of training tasks, feedback signal sparsity, and policy distribution drift, WEBRL enables continual
and consistent improvement in agent performance within online environments like WebArena. Our
approach demonstrates substantial performance gains, significantly surpassing existing state-of-the-
art web agents and proprietary LLM APIs. These results highlight the effectiveness of WEBRL in
advancing the capabilities of open-source LLMs for web-based tasks.
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A DETAILS OF POLICY UPDATE ALGORITHM IN WEBRL

A.1 DERIVATION

By substituting eq. 3 into eq. 2, we can obtain:

β log
π∗(at|st, I)
πref(at|st, I)

= r(st, at, I) + V ∗(st+1, I)− V ∗(st) = A∗(st, at, I) (9)

π∗(at|st, I) = πref(at|st, I) exp
(
1

β
A∗(st, at, I)

)
(10)

π∗ is the optimal solution to our target (eq. 1). If πθ is represented by a function approximator, we
aim to make it as close as possible to π∗.

argmin
θ

Eν

[
(log πθ(a|s, I)− log π∗(a|s, I))2

]
=argmin

θ
Eν

[(
log πθ(a|s, I)− log πref(a|s, I)−

1

β
A∗(s, a, I)

)2
]

=argmin
θ

Eν

[(
β log

πθ(a|s, I)
πref(a|s, I)

−A∗(s, a, I)

)2
] (11)

Hence, the loss function can be defined as:

L(πθ) = Eν

[(
β log

πθ(a|s, I)
πref(a|s, I)

−A∗(s, a, I)

)2
]

(12)

where ν represents the distribution of experience used for training. For any given state-action pair,
πθ is expected to match the target policy π∗(a|s, I). There is no restriction on the data distribution
ν, indicating the algorithm can function effectively in an off-policy setting. We use eq. 7 and eq. 8
to estimate A∗(s, a, I). The training of critic (eq. 7) also operates in an off-policy manner.

Further Analysis. Although ν can follow any distribution, achieving stable policy improvement
often requires some control over ν. The primary goal is to enhance the probability of actions that
successfully complete the task and to address the deficiencies of the current policy πθ. Therefore, ν
typically consists of data sampled from the current policy being trained and prior successful experi-
ences.

Why not use KL divergence to measure the distance between π∗ and πθ. For eq. 11, many
studies use KL divergence to measure the distance between two policies. When KL divergence is
used, the optimization goal of θ is:

argmin
θ

Es∼d(s) [DKL (π
∗(·|s, I)||πθ(·|s, I))]

= argmax
θ

Es∼d(s)Ea∼π∗(a|s,I) [log πθ(a|s, I)]

= argmax
θ

Es∼d(s)

∫
a

πref(a|s, I) exp(
1

β
A∗(s, a, I) log πθ(a|s, I)da

=argmax
θ

Es∼d(s)Ea∼πref(a|s,I)

[
log πθ(a|s, I) exp(

1

β
A∗(s, a, I))

]
(13)

where d(s) is a distribution of state. The choice of using eq. 11 instead of eq. 13 as the
optimization target can be explained as follows: (1) Eq. 13 imposes stronger restrictions on
the training data. Specifically, it requires the training data to conform to the distribution of
πref. When πref fails to capture previous successful experiences, it becomes difficult to sample
these experiences from πref, which in turn, can lead to further forgetting of those experiences.
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Figure 7: Comparison of using
eq. 11 and eq. 13 as target.

(2) Both eq. 11 and eq. 13 aim to approximate the distance be-
tween two distributions. The use of Mean Squared Error as a
metric to measure the distance between policy distributions is
also employed in Fujimoto & Gu (2021). (3) Eq. 13 is unable
to decrease the probability of actions with negative advantage.
When correct action is hard to sample from πref, eq. 13 may
instead increase the probability of actions with negative advan-
tage, compounding the challenge of sampling correct actions.
We also conduct experiments to further validate the superior-
ity of eq. 11, with the results presented in Figure 7. In these
experiments, eq. 13 is trained exclusively on data sampled from πref, while eq. 11 utilize both replay
buffer data and sampled data.

When discount factor γ is used. When considering the discount factor, eq. 9 is modified as follows:

β log
π∗(at|st, I)
πref(at|st, I)

= r(st, at, I) + γV ∗(st+1, I)− V ∗(st) = A∗(st, at, I) (14)

This will not affect the subsequent derivation of the policy loss function (eq. 12). The loss function
for the critic remains unchanged. However, the equation to calculate the advantage is modified as
follows:
A(st,at,I)=λ

(
r(st,at,I) + γV (st+1,I)−V (st,I)

)
+(1−λ)

(
γT−tr(sT ,aT ,I)−V (st,I)

)
(15)

In our experiment, we use the discount factor and set its value to 0.9.

A.2 COMPARISON

The comparison result between the policy update algorithm of WEBRL and other algorithms is
shown in Table 4.

Table 4: Comparison between WEBRL and different algorithms based on various criteria.

Algorithm Off-policy Pair-wise Data KL-constrained Target Reduce Error Prob
WEBRL
DPO
PPO
AWR

Comparison with DPO (Rafailov et al., 2024b). DPO also solves for the optimal value of eq. 1,
obtaining the relationship between the optimal policy π∗ and the reward r. Rather than explicitly
solving for the reward r, DPO employs contrastive learning by constructing paired data to build the
learning target of πθ. This approach allows DPO to bypass the need to estimate r. In contrast, our
approach explicitly fits the value function V to guide the optimization of πθ, making it converge
towards the optimal policy π∗. However, DPO requires pair-wise data, which is challenging to
obtain in web tasks. This is primarily because implementing state backtracking on web pages is
difficult, making it hard to collect outcomes of different actions on the same page state.

Comparison with PPO (Schulman et al., 2017). Eq.1 is also the target of RLHF. Prior work
often employs PPO to optimize this objective. However, as an on-policy algorithm, PPO has low
sampling efficiency and requires large amounts of data for stable improvement. This limitation
makes it unsuitable for environments such as WebArena and real-world websites, where interaction
is expensive and inefficient. Instead, our approach operates in an off-policy manner.

Comparison with AWR (Peng et al., 2019). AWR is one of the widely used offline RL algorithms.
The loss function of AWR is argmaxθ Eν [log πθ(a|s, I) · exp(A(s, a, I)/β]. Compared to our
method, AWR has a different optimization goal. Our approach explicitly minimizes the KL
divergence between the reference policy πref and the current policy πθ, while AWR focuses on
constraining the KL divergence between the current policy and the behavioral policy derived from
training data ν (instead of the reference policy πref). Additionally, AWR does not directly reduce
the probability of incorrect actions. In web tasks, sampled data often include unsuccessful traces.
Ignoring such data wastes valuable information, while using it risks increasing the likelihood of
incorrect actions. In contrast, our method effectively reduces the probability of incorrect actions.
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B TRAINING DETAILS

B.1 DETAILS OF WEBRL

The agent observation consists of three components:

• User instruction: The instruction provided by the user.
• Action history: A record of the actions the agent has previously taken.
• Webpage HTML: HTML content of the current webpage.

We process the HTML, simplifying its structure and assigning distinct element IDs to all clickable
elements. This facilitates the model’s ability to identify and indicate which specific element requires
manipulation.

The agent actions are mostly similar to those defined in WebArena-Lite (Liu et al., 2024b), with
some additional actions.

• Click: Clicks an element with a specific ID.
• Hover: Hovers over an element with a specific ID.
• Type: Types a message into an input box with a specific ID.
• Search: Types a message into an input box with a specific ID and presses Enter to initiate a

search.
• Press: Emulates a specific keyboard key combination.
• Scroll: Scrolls the page up or down.
• Select dropdown option: Selects an option from a dropdown menu with a specific ID.
• New tab: Opens a new tab in the current browser.
• Tab focus: Switches focus to a browser tab at a specified index.
• Close tab: Closes the current tab.
• Goto: Navigates to a specific URL.
• Go back: Returns to the previous page.
• Go forward: Moves to the next page if available.
• Exit: Terminates the operation, returns the response, and exits.

To provide more detailed information about the action, we include comments labeled with “# Ele-
ment:” in the action, which describe the operated element. Similarly, we include comments labeled
“# Note:”, which quote relevant information from the current webpage that supports completing the
instruction. An example of the agent’s specific input and output is shown in Figure 8. The input is the
observation, while the output specifies the action to be performed on the webpage. The “element”
argument identifies the target element for the action. More examples can be found in Appendix F.

The detailed training process of WEBRL is shown in Algorithm 1. First, we perform supervised
fine-tuning using the WebArena-Lite training dataset. We then initialize the replay buffer and failure
set by running the SFT-trained model on instructions corresponding to the WebArena-Lite training
dataset. Subsequently, in each phase of the self-evolving curriculum reinforcement learning process,
500 new instructions that meet the filtering criteria are selected from those generated by GPT-4o.
Both newly generated interaction data on these instructions and historical data with perplexity be-
tween 1/0.95 and 1/0.5 from the replay buffer are used to train the actor and critic. The amount
of historical data used is limited to twice the size of the interaction data. The hyperparameters
employed in WEBRL are presented in Table 5.

B.2 DETAILS OF BASELINES

For RL-based baselines (except DigiRL), the interaction data from WEBRL’s first phase is used,
while DigiRL is trained using the first-phase instructions in an online learning setup. Hence, except
for DigiRL, the other RL baselines fall under offline reinforcement learning.
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We reproduce the same framework used in DigiRL within the WebArena environment. Specifically,
we use the same components, including the AWR method, the instruction-level and step-level value
functions, and the replay buffer described in DigiRL. To apply DigiRL in WebArena-Lite, the main
modifications we make are adjusting the data format to align with WEBRL and tweaking certain
hyperparameters. DigiRL also conducts 8 rounds of interaction and training. The hyperparameters
employed in those baselines are presented in Table 5.

Agent Input

Agent Output

Task Instruction: List orders where the status is Canceled and the recipient is Jennifer White, ordering them by decreasing total value.

Round 0
user:
List orders where the status is Canceled and the recipient is Jennifer White, ordering them by decreasing total value.
assistant:
# Element: the 'Sales' menu item on the left sidebar, second from the top
do(action="Click", element="2")

Round 1
user:
** Simplified html **
assistant:
# Element: the 'Orders' link
do(action="Click", element="4")

Round 2
user:
<html data-bbox="0,0,1280,720"><body data-bbox="0,0,1280,968"><div data-bbox="0,0,88,721"> <ul data-bbox="0,75,88,646"> 
<span id="1" data-bbox="14,112,60,13"> Dashboard </span> 
<-- middle content omitted --> 
<button id="24" type="button" data-bbox="548,305,18,17"> </button> </li> </ul> 
<button id="25" type="button" data-bbox="1167,304,83,19"> Clear all </button> </div>
<-- middle content omitted --> 
</div> </main> </div> </body> </html>
assistant:

# Element: the 'Clear all' button
do(action="Click", element="25")

Figure 8: The input and output format of WEBRL and baselines, where the input is composed of
task instruction (in green), action history (in blue), and HTML of the current webpage (in orange).
The output (in red) is the action taken on the current webpage.

B.3 DETAILS OF ORM

WebArena-Lite provides 1,186 training samples each comprising an instruction, a trajectory, and
a reward function. To train the MORM, we first enhance the WebArena-Lite training dataset by
rewriting the instructions. Then, we collect rollouts from all baseline methods on this augmented
dataset. These rollouts, combined with the original WebArena-Lite training samples, form the com-
plete training dataset for theMORM, with a total of 12,200 samples. We use the associated reward
function to label these trajectories, identifying whether they successfully complete the task. These
trajectories are subsequently used to train the ORM, with the specific hyperparameters listed in Ta-
ble 6. The prompt forMORM is shown in Figure 12. MORM is required to produce either “YES”
or “NO” as its output. To determine the evaluation result, we compare the probabilities assigned
to “YES” and “NO” and select the one with the higher probability. We need to train MORM be-
cause new tasks that do not have predefined reward functions will be generated in the subsequent
self-evolving curriculum reinforcement learning process. We rely on the trained MORM to judge
whether each task is successfully completed.

C OTHER QUANTITATIVE EXPERIMENTS

Figure 9 illustrates the performance variation curves of Llama3.1-8B trained with WEBRL on each
website. It can be seen that in all the sites except for Map, there is a clear upward trend. However,
in the case of Map, there is an initial upward trend followed by a decline. We hypothesize that the
final decline is caused by a significant increase in OSS and CMS implementation, which creates a
trade-off. This trade-off leads to a performance drop in Map and a slight decline in GitLab.
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Algorithm 1 WEBRL
Input: WebArena-Lite training set D0 and corresponding instruction set I0, Base model Mbase,
Replay buffer B, Failure setF , Reward modelMORM, Number of phases N , Number of instructions
per phase K

Part 1. SFT Training
1: MSFT ←− perform supervised fine-tuning on modelMbase with dataset D0

2: Drollout ←− rollout trajectories ofMSFT on I0
3: Dsuccess, Dfail ←− evaluate Drollout using WebArena-Lite reward function
4: B ←− Dsuccess # Initialize replay buffer with successful trajectories
5: F ←− Dfail # Initialize failure set with instructions of failing trajectories
Part 2. Self-evolving Curriculum RL
6: π1←−MSFT # Initialize actor/policy
7: V1←−MSFT with a randomly initialized value head # Initialize critic
8: for n in 1...N do
9: In←− {}

10: while size(In) ≤K do
11: Igeneration ←− instructions generated by GPT-4o with instructions from F as examples #

instruction generation process
12: Ifilter ←− filter(Igeneration) # instruction filtering process
13: In ←− In ∪ Ifilter
14: end while
15: Drollout ←− rollout trajectories of πn on In
16: Dsuccess, Dfail ←− evaluate Drollout withMORM # useMORM to label the rollout trajectories
17: Dexperience ←− experiences from B with perplexity computed by πn between 1

0.95 and 1
0.5

18: πn+1,Vn+1←− train(πn, Vn, Drollout ∪Dexperience) # use loss functions from eq. 4 and eq. 7
19: B ←− B ∪Dsuccess
20: F ←− F ∪Dfail
21: end for

Figure 10 illustrates the error bars for WEBRL across each phase. We conduct four sets of exper-
iments, each utilizing a distinct random seed. The results from these four sets of experiments are
presented in Figure 10. Despite some fluctuations in accuracy, WEBRL consistently demonstrates
an overall upward trend. Furthermore, its accuracy consistently surpasses all baseline methods after
completing the final phase of training.

Figure 11 presents the success rate of WEBRL and DigiRL, both with and without the applica-
tion of our self-evolving curriculum learning. The results indicate that incorporating curriculum
learning significantly enhances the performance of DigiRL. However, its performance still remains
below that of WEBRL. Conversely, when WEBRL is implemented without curriculum learning, its
performance experiences a notable decline, yet it still slightly surpasses that of DigiRL.

D PROMPTS EMPLOYED IN WEBRL

The prompt used forMORM is shown in Figure 12. We require the model to output “YES” or “NO”
to determine whether a certain trajectory successfully completes the corresponding task. Consider-
ing the limited context size, we only input the HTML content of the last state.

The prompt for generating new instructions is presented in Figure 13. We use tasks that the model
fails to complete successfully in previous phases as seeds for generating new tasks of similar diffi-
culty but with greater variety.

The simple prompt we use to test models including GPT-4-Turbo, GPT-4o, Llama3.1-8B-Instruct,
and Llama3.1-70B-Instruct is shown in Figure 14. In this prompt, we define the feasible actions and
provide illustrative examples. Additionally, we outline a set of requirements in the “REMEMBER”
part to guide the model’s behavior.
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Table 5: The hyperparameters we employ in WEBRL and baselines.

Method Hyperparameter Value

SFT

learning rate 1e-5
lr scheduler type cosine

warmup ratio 0.1
batch size 128

training epoch 1
cutoff length 16384

Filtered BC

learning rate 1e-6
lr scheduler type constant

batch size 128
training epoch 1
cutoff length 16384

filtering threshold 70th percentile

AWR

actor learning rate 1e-6
actor lr scheduler type constant

critic learning rate 1e-6
critic lr scheduler type constant

batch size 128
discount factor 0.9

actor training epoch 1
critic training epoch 1

cutoff length 16384

DigiRL

actor learning rate 1e-6
actor lr scheduler type constant

critic learning rate 1e-6
critic lr scheduler type constant

instruction value function lr 1e-6
instruction value function lr scheduler type constant

batch size 128
discount factor 0.9

actor training epoch 1
critic training epoch 1

instruction value function epoch 1
rollout temperature 1
replay buffer size 10000

cutoff length 16384

WEBRL

actor learning rate 1e-6
actor lr scheduler type constant

critic learning rate 1e-6
critic lr scheduler type constant

batch size 128
discount factor 0.9

actor training epoch 1
critic training epoch 1
rollout temperature 1
replay buffer size 100000

cutoff length 16384

The prompt we use to filter the instructions generated by GPT-4o is presented in Figure 15. In
this prompt, we provide a rule defining the feasibility of instructions across the five websites in
WebArena.

E CASE STUDY

Figure 16 presents some instructions generated by the self-evolving curriculum learning strategy
across different phases. Although these instructions are grouped by phase, the instructions shown
in phase i + 1 are not necessarily generated using the instructions from phase i as seeds. As the
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Table 6: The hyperparameters we employ to train the ORM.

Hyperparameter Value

learning rate 5e-6
lr scheduler type cosine

warmup ratio 0.1
batch size 128

training epoch 4
cutoff length 16384
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Figure 9: Performance variation curves of Llama3.1-8B on each website under WebRL training

phase increases, two types of augmentation occur for previously incomplete instructions. In one
case, new instructions with similar task requirements or lower difficulty levels are generated. These
new instructions help the model to successfully complete previously unfinishable tasks by allowing
it to practice and build competence with the easier or related tasks first. For example, in phase 2,
the instruction improves upon the phase 1 instruction by offering a clearer task description and ex-
plicitly requiring results in “yearly interval”. This enhancement enables the model to complete the
task successfully by removing ambiguity. Additionally, changing the description of the instruction
can improve agent exploration. With the positive feedback from the clarified phase 2 instruction,
the model can better understand and accurately perform the original phase 1 task as well. In another
case, tasks with increased complexity and diversity are generated. This task complication facilitates
a continuous improvement in the model’s capabilities by challenging its performance boundaries.
Therefore, the process of instruction generation exhibits such a pattern: for tasks that the model
is unable to perform, analogous tasks are created to provide incremental steps that facilitate learn-
ing how to accomplish that type of task. Furthermore, tasks that remain challenging for the model
are also generated and undergo the aforementioned iterative process. Through this cycle of chal-
lenge and refinement, the model’s capabilities gradually expand, enabling it to handle increasingly
complex tasks over time.
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Figure 10: Error bars of WEBRL for each
phase.
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Figure 11: Comparison of WEBRL and DigiRL with
and without curriculum learning (CL).

System Prompt:
You are an expert in evaluating the performance of a website navigation agent. The agent is designed to help a 
human user navigate the website to complete a task. Given the user's intent, the agent's action history, and the 
final state of the screen, your goal is to decide whether the agent's execution is successful or not. You must 
respond with YES or NO.

User Prompt:
The User Intent: {instruction}
Action History: {action history}
The Current Screenshot: {html of last state}

Figure 12: Prompts forMORM to assess the completion of Instructions.

User Prompt:
You are a smart task creator for a website intelligent assistant. Your goal is to generate clear and practical tasks 
that the assistant can assist people with when they use {web} in their daily lives. These tasks should encompass a 
wide range of possible instructions and questions that may arise when using {web} website.

Your need to draw inspiration from the #Given Task# to create new tasks. These new tasks should belong to the 
same domain as the #Given Task# but be more diverse. The difficulty level of the #Created Task# should be 
similar to that of the #Given Task#. The #Created Task# must be reasonable, understandable and realistic. 
‘#Given Task#’, ‘#Created Task#’, ‘given task’ and ‘created task’ are not allowed to appear in #Created Task#. 

You need to make sure, as much as possible, that the variable names in the #Created Task#, like the place name, 
username, and product name, are consistent with #Given Task#. You need to avoid making up some new variable 
names yourself.

#Given Task#
{task examples}

#Created Task#

Figure 13: Prompts for instruction generation.
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System Prompt:
# Setup
You are a professional web browsing agent assistant that can fulfill user's high-level instructions. Given 
Simplified html of the browsed webpage at each step, you plan operations in python-style pseudo code using 
provided functions, or customize functions (if necessary) and then provide their implementations. 
# More details about the code
Your code should be readable, simple, and only **ONE-LINE-OF-CODE** at a time, avoid using loop statement 
and only use if-else control if necessary. Predefined functions are as follow:

```
def do(action, argument, element):

"""A single browsing operation on the webpage.
Args:

:param action: one of the actions from ["Click", "Right Click", "Type", "Search", "Hover", "Scroll Up",
"Scroll Down", "Press Enter", "Switch Tab", "Select Dropdown Option", "Wait"].
:param argument: optional. Only for "Type", "Search", "Switch Page", and "Select Dropdown Option", 
indicating the content to type in, page number(start from 0) to switch, or key to press. "Search" action is 
equivalent to "Type" action plus "Enter" key press.
:param element: optional. Only for "Click", "Right Click", "Type", "Search", "Select Dropdown Option", 
and "Hover". Should be specific element id in the html.

Returns:
None. The webpage will be updated after executing the action.

"""

def exit(message):
"""Ending the browsing process if the assistant think it has fulfilled the goal.
Args:

:param message: optional. If user's instruction is a question, return assistant's answer in the message 
based on the browsing content.

Returns:
None.

"""

def go_backward():
"""Go back to the previous page.
"""

def go_forward():
"""Go forward to the next page.
"""

```

Here are some examples:
- # Element: the 'REPORTS' section on the left sidebar
do(action="Click", element="7")
- # Element: the 'Period' dropdown, middle center
do(action="Select Dropdown Option", argument="Month", element="20")
[part of all examples in the used prompt]

REMEMBER: 
- only **ONE-LINE-OF-CODE** at a time
- Don't generate an operation element that you do not see in the screenshot.
- Use "# Element" to describe the element you choose in the html.
- Use '# Note" to record information useful to answer the instruction if needed.
- If you find yourself fallen into some sort of loop, try to use another method or change your action.
- If you think a page is still loading or still playing animation and you want to wait a while, use "Wait" action.
- You are acting in a real world, try your best not to reject user's demand. Solve all the problem you encounter.
- If you think you didn't get expected webpage, you should try using more precise and locative description of the 
element.
- You should **NEVER** try to use the browser's address bar at the top of the page to navigate.
- Your answer shouldn't be in a code snippet format. Just write the function name and its arguments.
- If you use do function to perform "Click", "Right Click", "Type", "Search", "Select Dropdown Option", and 
"Hover", the param element must not be None.
'''

User Prompt:
Task Instruction: {instruction}
Action History: {action history}
The Current HTML: {html of last state}

Figure 14: The simple prompt employed in baselines.
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User Prompt:
You are a task filtering expert, and you need to determine whether a given task is feasible or not.
These tasks are primarily distributed across the following five platforms: MAP (OpenStreetMap), Reddit, GitLab, 
CMS (online store content management system), and OSS (OneStopShop). You need to make judgments based on 
the following criteria:

1. For tasks in MAP:
Tasks that are supported by MAP itself are feasible unless they involve the following goals, which are deemed 
infeasible:
- Viewing traffic flow, accidents, and road closure information.
- Checking the weather conditions of a specific location.
- Marking and saving favorite locations, such as home, work, or travel destinations.
- Sharing real-time location.
- Making reservations and bookings, such as restaurant reservations or hotel bookings.
- Flight and train inquiries.
- Viewing event locations and activities, such as concerts, exhibitions, and their details.

2. For tasks in Reddit:
Tasks supported by Reddit is feasible.

3. For tasks in GitLab:
Tasks supported by GitLab is feasible.

4. For tasks in CMS:
Tasks that are supported by CMS itself are feasible unless they involve the following goals, which are deemed 
infeasible:
- Sending order information to customers via email.
- Automatically generating e-invoices for customers.
- Handling customer returns or refund requests.
- Supporting profile updates.
- Recommending products based on customer behavior.

5. For tasks in OSS:
Tasks that are supported by OSS itself are feasible unless they involve the following goals, which are deemed 
infeasible:
- Filtering out discounted products.
- Modifying the delivery address for a product.
- Adding payment information such as credit cards, e-wallets, or bank transfers.
- Displaying order status (e.g., pending payment, to be shipped, in transit, completed).
- Providing order tracking functionality to view real-time logistics.
- Offering online customer service to answer questions.
- Supporting after-sales service requests, such as refunds or repairs.

You should evaluate the following tasks based on these rules and respond in the following format:
Reason + Answer (where the answer is ''[YES]'' or ''[NO]'').

The website of the task is: {web}
The task is:{task}

Figure 15: The prompt used to filter instructions.
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Acquire "Order Quantity" from the 
best-selling items report between 
January 1, 2022 and January 31, 
2022, with a yearly interval.

Retrieve the "Purchase Date" details 
for the 8 orders with the highest 
transaction values that are currently 
pending, placed between March 1, 
2022, and April 30, 2023.

Fetch "Order Quantity" from the 
report on best-selling products 
between October 1st and 31st, 
2022, for the year.

Fetch "Order Quantity" from the 
report on best-selling products 
between October 1st and 31st, 
2022, for the year.

Compare the largest transaction 
values of orders between March 1, 
2022, and April 30, 2023, for those 
currently pending and those that 
have been completed.

......

Retrieve the "Ship-to Name" details 
for orders with a status of 
'Completed' that have the lowest 
transaction values between April 1, 
2022, and May 30, 2022.

Retrieve the "Purchase Date" details 
for the 8 orders with the highest 
transaction values that are currently 
pending, placed between March 1, 
2022, and April 30, 2023.

Phase 1 Phase 2 Phase 3 Phase 4

Figure 16: Examples of instructions generated in different phases under self-evolving curriculum
learning.

F QUALITATIVE EXAMPLES

We list one example of WEBRL on each of the five sites in WebArena.

Figure 17: CMS Example.
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Figure 18: Gitlab Example.

Figure 19: MAP Example.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Figure 20: Reddit Example.

Figure 21: OSS Example.
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