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Abstract

Multi-hop retrieval-augmented generation (RAG) is a promising strategy for com-
plex reasoning, yet existing iterative prompting approaches remain inefficient. They
often regenerate predictable token sequences at every step and rely on stochastic
stopping, leading to excessive token usage and unstable termination. We propose
TSSS (Think Straight, Stop Smart), a structured multi-hop RAG framework de-
signed for efficiency. TSSS introduces (i) a template-based reasoning that caches
recurring prefixes and anchors sub-queries to the main question, reducing token
generation cost while promoting stable reasoning, and (ii) a retriever-based termi-
nator, which deterministically halts reasoning once additional sub-queries collapse
into repetition. This separation of structured reasoning and termination control
enables both faster inference and more reliable answers. On HotpotQA, 2Wiki-
MultiHop, and MuSiQue, TSSS achieves state-of-the-art accuracy and competitive
efficiency among RAG-CoT approaches, highlighting its effectiveness in efficiency-
constrained scenarios such as on-device inference.

1 Introduction

On-device large language models (LLMs) [[113]] are increasingly appealing for privacy-preserving
and latency-sensitive applications such as personal assistants, mobile knowledge agents, and offline
reasoning systems [4]]. Unlike server-scale LLMs, however, on-device models operate with orders of
magnitude fewer parameters, which severely limits their reasoning capacity [5]. At the same time,
computational efficiency is critical: every generated token incurs latency and energy cost, making it
essential to reduce token generation during inference [6]].

Multi-hop question answering (QA) [7H9] exemplifies these challenges. It requires combining infor-
mation across multiple documents, often through iterative reasoning. Multi-hop retrieval-augmented
generation (RAG) has therefore been studied extensively as a powerful strategy for improving reason-
ing accuracy [10H14]]. However, most existing methods are designed for larger server-based models
and prioritize accuracy gains over efficiency. Iterative reasoning loops frequently regenerate pre-
dictable prefixes or boilerplate sub-questions, and weak termination control often leads to duplicated
queries. These inefficiencies, while tolerable in server settings, make current multi-hop RAG methods
impractical for efficiency-constrained on-device inference.

Recent efforts such as EfficientRAG [[15]] begin to address this gap by modeling when to stop reasoning.
Yet, termination alone is insufficient: as shown in [Figure Th, token usage also balloons from repetitive
and predictable generation patterns, which not only increase inference cost but may also obscure
the final answer. In addition, EfficientRAG requires a dedicated termination module trained on
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Figure 1: Comparison of multi-hop reasoning processes. (a) The baseline method (e.g., Self-Ask)
suffers from inefficiencies such as repetitive prefix generation and duplicated queries, which increase
token generation usage and may lead to incorrect answers. (b) Our TSSS framework addresses these
issues through a structured reasoning template that reuses recurring token sequences and anchors
sub-queries to the main question, together with a retriever-based terminator that halts reasoning once
further queries collapse into repetition. This combination reduces token usage while maintaining
accuracy, resulting in faster and more reliable inference.

Duplicated question

external data. While such training can be performed on servers, it introduces additional cost, model
complexity, and potential domain dependence. By contrast, Our approach requires no additional
parameter training; only heuristic template design and hyperparameter selection are performed,
making it effectively training-free. This plug-and-play design makes it lightweight and directly
deployable to diverse on-device models without fine-tuning, while still tackling the two fundamental
obstacles in efficient multi-hop RAG: predictable repetition and generator-based termination.

To this end, we propose TSSS (Think Straight, Stop Smart), a structured multi-hop RAG framework
explicitly designed for efficient on-device reasoning. TSSS introduces two key innovations: (i)
Template-based reasoning, which encodes recurring reasoning traces as structured templates and
prefills them at each hop. This systematically eliminates redundant token generation (e.g., repeated
prefixes) while keeping sub-queries anchored to the main question, thereby improving both efficiency
and stability. (ii) Retriever-based terminator, which shifts stopping control from the generator to
the retriever. By detecting when newly generated queries collapse into repetition, the retriever
deterministically halts the loop, preventing unnecessary duplication.

Together, these innovations enable TSSS to maintain alignment with the main question while reducing
token usage. As illustrated in [Figure Tp, unlike baseline methods such as Self-Ask, which waste
tokens on repetitive patterns and duplicated queries, TSSS generates concise and well-structured
reasoning steps, leading to faster and more reliable inference.

Our contributions are: (1) We formally identify predictable repetition and generator-based termination
as fundamental efficiency bottlenecks in multi-hop RAG; (2) We introduce TSSS, combining a struc-
tured reasoning template with a retriever-based terminator to reduce token usage while maintaining
reasoning accuracy; (3) We demonstrate that TSSS achieves substantial token savings alongside
accuracy improvements, enabling practical multi-hop reasoning in on-device settings.

2 Methodology

2.1 Template-Based Reasoning with KV-Cache

In standard multi-hop prompting, the LLM generates entire reasoning traces in free-form natural
language. This approach is token-inefficient, since recurring prefixes such as restating the main
question, retrieved evidence, or scaffolding phrases are regenerated at every iteration. Without
structural constraints, the model expends computation on predictable token sequences rather than
focusing on the essential reasoning content.



HotpotQA 2WikiMultiHop MuSiQue

Method EM(T) ACCL(h) T{) EM() ACCL() Td) EM(M) ACCL() Td)
No-RAG 17.7 29.1 0.1 16.6 16.6 0.2 2.6 72 0.2
Standard-RAG 27.7 40.1 33 11.3 16.2 3.7 4.1 7.6 33
Self-Ask [12] 25.6 374 152 21.7 314 13.6 82 14.6 18.0
Iter-RetGen [10] 304 43.5 279 127 17.8 299 58 10.6 272
IRCoT [[L1] 28.0 47.7 19.2 238 35.8 249 6.5 13.8 21.2
TSSS (Ours) 34.1 50.9 81 33.6 42.3 9.0 145 22.8 9.5

Table 1: Overall performance comparison of TSSS with baselines. The evaluation metrics EM and
ACCY, are defined in and T indicates the average inference time (seconds) per sample.
Bold marks the best score; for 7', it indicates the lowest among RAG-CoT methods.

To address this inefficiency, we introduce a template-based reasoning framework that leverages the
KV-Cache (See for details). Each reasoning step is embedded into a fixed scaffold (gray
regions in[Figure Ib), where the scaffold tokens are treated as prefilled and their Key-Value states can
be pre-computed and cached. As a result, the LLM only generates the variable components (green
regions), such as the specific sub-query or extracted evidence. This design significantly reduces
the number of newly generated tokens at each hop. By reusing the cached Key-Value states for the
prefilled parts, it also lowers the computational cost for each iteration, resulting in a substantial
decrease in overall latency.

Additionally, the template explicitly incorporates the main question and accumulated evidence at every
iteration. By consistently anchoring sub-queries to these elements, the framework not only improves
efficiency but also promotes stability in reasoning traces, mitigating the tendency of sub-queries to

drift away from the original task (See for prompt template).

2.2 Retriever-Based Terminator

A common limitation of prior iterative prompting methods (e.g., Self-Ask) is the generation of
near-duplicate or semantically overlapping sub-queries. Such repetition increases token usage and
retrieval cost without contributing new information. To prevent this inefficiency, we introduce a
retriever-based termination rule that deterministically decides when to halt the reasoning process.

Formally, let the current sub-query at iteration ¢ be denoted as g;, the main question as ¢, and the

set of previously generated sub-queries as {q1, - ,¢;—1 }. We compute embedding representations
¢(+) for each query from the retriever, and define a similarity score:

score(g;) = max cos(¢(¢:), ¢(q)), ()
where cos(-, -) denotes cosine similarity, and Q; = {gm U {q1, -, qi-1}.

If score(g;) > T, the process terminates and the model produces the final answer; otherwise, reasoning
continues with the next sub-query. This retriever-based termination prunes repetitive queries early,
eliminating unnecessary retrievals and token generations. Consequently, it improves efficiency (fewer
iterations, fewer tokens). In our experiments, we set 7 = 0.85, which we found to balance between
avoiding duplication and allowing sufficient reasoning depth (See[Appendix D.T]for details).

3 Experiment

3.1 Implementation Details

We adopt three benchmark datasets: HotpotQA [7]], 2WikiMultiHopQA [9]], and MuSiQue [§]].
Wikipedia passages serve as the 21M retrieval corpus for all datasets. To verify the effectiveness
of TSSS, we select several baselines ranging from No-RAG to RAG-CoT (e.g., Self-Ask [12], Iter-
RetGen [10], and IRCoT [11]), focusing on methods that do not require additional training cost.
For fair comparison, all methods use Llama3.1-8B [1]] as the generator. To reduce retrieval cost,
we use the FAISS library [[16] with the e5-base-v2 retriever [17], retrieving 3 documents per query.
Baseline implementations are based on the open-source RAG framework FlashRAG [18]. For iterative
RAG-CoT methods (e.g., Iter-RetGen, IRCoT), we set the maximum number of retrieval iterations to
10 to allow self-termination. All experiments are conducted on a single NVIDIA H100 GPU.
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Figure 2: Performance vs. efficiency on the Figure 3: Effect of retriever-based termina-
MuSiQue dataset. TSSS achieves a superior tor. TSSS proves efficient and stable termination
performance-efficiency trade-off, with the high- mechanism by stopping fewer retrieval iterations
est EM score and the fewest tokens. than the other baselines.

3.2 Results

Overall performance. [Table 1|summarizes the results on HotpotQA, 2WikiMultiHop, and MuSiQue.
TSSS achieves the best EM and AC'C', across all three benchmarks while also maintaining competitive
inference efficiency. Compared to Standard-RAG, TSSS is about 2-3 times slower (e.g., 8.1s vs. 3.3s
on HotpotQA, 9.0s vs. 3.7s on 2WikiMultiHop, and 9.5s vs. 3.3s on MuSiQue), but this overhead
stems from structured iterative reasoning that substantially boosts accuracy. Importantly, TSSS is
significantly faster than other RAG-CoT methods. For example, it reduces inference time by more than
half compared to Iter-RetGen (e.g., 9.0s vs. 29.9s on 2WikiMultiHop, 9.5s vs. 27.2s on MuSiQue)
while keeping higher performance. These results highlight its key strength: effective multi-hop
reasoning with both superior accuracy and practical efficiency.

Performance vs. efficiency. shows the trade-off between EM performance and the number
of generated tokens on the MuSiQue dataset (See [Appendix D.2]for other datasets). In this setting,
methods that appear closer to the upper-left corner achieve better efficiency while maintaining strong
accuracy. Compared to existing baselines, TSSS achieves the highest EM score with the fewest
generated tokens. This indicates that our method is not only more accurate but also significantly more
efficient in terms of token usage.

Effectiveness of retriever-based terminator. Appropriate iteration is crucial for both performance
and efficiency. As shown in[Figure 3] Iter-RetGen and IRCoT often require too many iterations, which
leads to unnecessary overhead. In contrast, our method derives the answer with only 2-3 iterations,
which can be regarded as a reasonable number. This effectiveness comes from the retriever-based
terminator, which halts once sufficient context is gathered, enabling efficient reasoning without
sacrificing accuracy.

4 Related Works

Retrieval-augmented generation (RAG) is a key approach for knowledge-intensive tasks but struggles
with multi-hop questions. SuRe [19] proposes a framework integrating reasoning-aware retrieval
and answer synthesis, while RECOMP [20] leverages query decomposition and retrieval fusion.
RePlug [21]] enhances single-turn RAG by incorporating structured intermediate reasoning signals
during retrieval. However, these single-turn methods often fail when intermediate reasoning is
required, motivating iterative approaches (i.e., RAG-CoT). Self-Ask [12] decomposes queries into
follow-up questions, IRCoT [L1]] interleaves retrieval and reasoning, and Iter-RetGen [[10] introduces
an iterative retrieval-generation loop for more relevant evidence.

5 Conclusion

We presented TSSS, a multi-hop RAG framework that enhances efficiency with template-based
reasoning and a retriever-based terminator. It improves accuracy on HotpotQA and MuSiQue, and
yields faster inference on 2WikiMultiHop with minor accuracy loss, showing its value in efficiency-

constrained settings (See for limitations).
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-Supplementary Material-

Think Straight, Stop Smart: Structured Reasoning
for Efficient Multi-Hop RAG

A Preliminary: KV-Cache for Efficient Decoding

In Transformer-based LLMs, auto-regressive decoding at step ¢ requires computing the interaction
between the current token and all ¢ previously generated tokens. Let 7" be the total sequence length
and d the model (hidden) dimension. For clarity, the following costs are per layer and omit constant
factors from the number of heads.

Without KV-cache. At decoding step ¢, a naive implementation recomputes the entire prefix of
length t. The cost is O(t d?) for the Q, K,V projections and O(t2d) for self-attention (scores and
the weighted sum). Summed over all steps, this is formulated as below.

T
Y (0(td®) + O(t*d)) = O(T%d) + O(T?d),

t=1

i.e., cubic scaling in T" due to recomputing past states at every step. (By contrast, a single full-sequence
forward pass of length T costs O(T'd? + T?d).)

With KV-cache. At step t+1, we keep the cached keys/values K;.;, V1., and only compute the
incremental components K, V;1. The attention becomes

Attn(Qer1, K1, Viser1) = Attn(Qer1, (K1t | Keg1], Vi || Via]),

where || denotes concatenation along the sequence dimension. The per-step cost is then O(d?) for the
new token’s projections plus O(t d) for attending to ¢ cached tokens, i.e., O(d? + t d). Summed over
T steps, the total cost is calculated as follow.

O(Td? + T?d).

Thus, the KV-cache removes the cubic term caused by recomputation, but total decoding time remains
quadratic in 7" because each new token attends to all prior tokens The memory footprint of the
KV-cache is O(T d) per layer.

B Prompt Template for TSSS

The following template illustrates the structured reasoning format used in TSSS for multi-hop question
answering. In this template, {main question} represents the original user query that the reasoning
process aims to answer. Each {LLM-generated Question ¢} is a sub-question created by the model at
iteration ¢-th to gather additional evidence. The placeholder {Retrieved contexts with LLM-generated
Question ¢ } refers to the top-k passages retrieved from the external knowledge source (e.g., Wikipedia)
based on that sub-question. { LLM-generated Response ¢} is the model’s answer to the sub-question
using the retrieved contexts.

'If attention is restricted to a fixed window W (e.g., sliding-window attention), the attention cost becomes
O(T - W - d), which is linear in T for fixed W.



Prompt template for TSSS

To answer the Main Question ({main question}), | propose the following additional question:
Question: {LLM-generated Question1}

{Retrieved contexts with LLM-generated Questioni}

Based on the contexts, {LLM-generated Responsel}

To answer the Main Question ({main question}), using the following facts:
— {LLM-generated Responsel}

| propose the following additional question:

Question: {LLM-generated Question2}

{Retrieved contexts with LLM-generated Question2}

Based on the contexts, {LLM-generated Response2}

To answer the Main Question ({main question}), using the following facts:
— {LLM-generated Responsel}

— {LLM-generated Response2}

| propose the following additional question:

Question: {LLM-generated Question3}

{Retrieved contexts with LLM-generated Question3}

Based on the contexts, {LLM-generated Response3}

Finally , based on the fact that {LLM-generated ResponseN}, the complete answer to the
main question ({main question}) is:

C Evaluation Metrics

During the evaluation phase, we adopt exact-match (EM) as our primary metric, which determines
whether the predicted answer exactly matches the golden answer. To further refine our evaluation,
we employ an LLM-as-Judge approach [22], using GPT-40 [23] as the evaluation model to assess
whether the predicted answer is correct. This accuracy metric is referred to as ACC',. The evaluation
prompt is as follows.

Prompt template for LLM-as-Judge

Given a Question and its Golden Answer, verify whether the Predicted Answer is correct. The
prediction is correct if it fully aligns with the meaning and key information of the Golden
Answer. Respond with True if the prediction is corret and False otherwise.

Question: {question}
Golden Answer: {ground truth}
Predicted Answer: {prediction}

D Ablation Studies

D.1 Effect of Threshold on Retriever-based Terminator

We conduct an ablation study to examine the effect of the threshold (7) in the retriever-based
terminator. As shown in the threshold controls the termination criteria: A larger threshold
7 makes the stopping criterion stricter, since only highly similar sub-queries will be considered
redundant. This leads to later termination and thus more iterations. With 7 = 0.8, the model halts
earlier, yielding shorter inference time (e.g., 6.5s on HotpotQA) but lower accuracy. In contrast,
7 = 0.9 permits more iterations, improving EM and ACC/, but at the cost of increased latency
(e.g., 12.7s on 2WikiMultiHop). The intermediate setting 7 = 0.85 provides a favorable balance,
delivering competitive accuracy with moderate inference time. Overall, these results confirm a trade-
off: stricter termination accelerates inference but limits reasoning, while looser termination enhances
accuracy at the expense of efficiency. 7 = 0.85 emerges as a robust default across datasets.

D.2 Performance vs. Efficiency across Datasets

[Figure 4] further examines the trade-off between accuracy and efficiency on HotpotQA, 2WikiMulti-
Hop, and MuSiQue. On HotpotQA, TSSS achieves the highest EM score, while Iter-RetGen generates



HotpotQA 2WikiMultiHop MuSiQue
T EM() ACC:() Td) EMM®)  ACCch) Td) EMM®)  ACCM)  Td)
0.8 327 50.0 6.5 322 40.9 7.3 144 22.8 7.9
0.85 341 50.9 8.1 33.6 423 9.0 14.5 22.8 9.5
0.9 345 514 9.8 343 434 12.7 134 21.2 10.8

Table 2: Effect of threshold (7) on performance and inference time across datasets. A higher
threshold corresponds to looser termination criteria, allowing more iterations before answering the
question. This can improve EM and AC'C', but also increases inference time, reflecting the trade-off
between accuracy and efficiency.
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Figure 4: Performance-efficiency trade-off of different methods on three datasets. TSSS achieves
the highest performance (EM) with fewer tokens than other baselines, demonstrating a superior
balance of performance and efficiency.

fewer tokens but suffers a clear performance drop, showing that reducing token usage alone is insuffi-
cient without preserving strong reasoning ability. In contrast, on both 2WikiMultiHop and MuSiQue,
TSSS simultaneously achieves the fewest generated tokens and the highest EM among all baselines,
highlighting its superior balance of performance and efficiency in more complex multi-hop settings.
Taken together, these results confirm that TSSS consistently delivers state-of-the-art accuracy while
maintaining efficiency, offering the most favorable trade-off under resource-constrained settings.

E Limitations & Future Work

While our framework alleviates key inefficiencies in multi-hop RAG, the termination mechanism
still depends on heuristic redundancy detection, which may not capture all cases where additional
reasoning is necessary. A promising direction is to train LLMs to self-terminate, enabling more
reliable and adaptive stopping. Beyond this, an exciting avenue for future work is the development
of adaptive templates that extend the benefits of our structured reasoning beyond multi-hop QA.
Such templates could dynamically adjust to diverse tasks while maintaining efficiency, offering the
potential to preserve high accuracy under on-device constraints by further reducing the computational
cost of reasoning. This direction highlights the broader vision of enabling lightweight yet powerful
reasoning systems deployable across a wide range of real-world scenarios.
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