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Abstract

Recurrent Neural Networks (RNNs) are versatile and widely used models of complex
decision-making behavior across many fields including artificial intelligence (AI) and
neuroscience. Understanding how RNNs learn to perform complex tasks through
interaction with an environment, i.e., as agents or controllers, is therefore broadly
important. A lot of previous work has analyzed RNNs trained using supervised
learning, and relatively less attention has been paid to reinforcement learning (RL)
in the context of recurrent architectures and their learning dynamics. Here, we
take a step towards addressing this gap by thoroughly analyzing the learning dy-
namics of RNN-based artificial agents trained by reinforcement to solve a classic
nonlinear continuous control problem—the Inverted Pendulum. Our analysis found
that training gradually sharpened the policy landscape and pruned the recurrent
dynamics into a ring to efficiently represent the angle between the pendulum and
its goal location, a circular variable. During training, a stable fixed point (FP)
emerged and moved across the state space until it approached the goal location.
Furthermore, the FP’s proximity to the goal location was significantly correlated
with the reward obtained by the controller, providing a direct link between the
RNN’s representational geometry and the agent’s task performance. The memory
capacity of the agent, quantified by its stimulus integration time, exhibited distinct
regimes in its evolution over training. Our framework provides key intuitions on
the evolution of the control policy, neural dynamics, representational geometry, and
memory in RNN-based agents. In future work, we will extend this framework to
investigate more complex environments, with longer evidence integration memory
requirements, and more complex sequential decision making and planning.

1 Introduction

Recurrent Neural Networks (RNNs) are versatile and widely used models of neural activity and
behavior in Neuroscience (Rajan et al., 2016; Barak, 2017). Most current research has focused on
analyzing the internal dynamics in fully trained networks (Rajan & Abbott, 2006; Vyas et al., 2020).
However, how such dynamics emerge through the process of learning and how changes in learning
dynamics affect task performance are relatively less well explored. In recent work (Marschall &
Savin, 2023; Hocker et al., 2024; Driscoll et al., 2022; Turner & Barak, 2024), early progress has
been made towards understanding how the attractor landscape of RNNs changes during learning in
the supervised learning setting. Here we consider the less studied setting of reinforcement learning
(RL) to train RNN agents or controllers, where the interaction between an artificial agent and an
external environment shapes its internal dynamics and behavioral policy throughout learning. We
provide a thorough analysis of the inverted pendulum problem as a first step, developing a flexible
analysis framework that can be applied to probe the learning dynamics and resulting behaviors of
neural network-based agents in more complex or ethologically relevant RL tasks.
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2 Methods

2.1 Agent and training

Figure 1: Schematic rep-
resentation of the Pen-
dulum, with different state
spaces in fully observable
(FO) and partially observable
(PO) environments.

We trained RNN agents to balance an Inverted Pendulum in the
upright position by applying appropriate torque (Fig. 1) in the
OpenAI Gym Pendulum environment (Brockman et al., 2016) using
policy gradients (Ni et al., 2021). Agents consisted of vanilla RNNs
followed by 1-layer feedforward policy and value networks (all 64
units wide, tanh nonlinearity).

We considered both partially observable (PO) agents which only
received the angular position θ as inputs, and fully observable (FO)
agents, which additionally received the angular velocity θ̇. Training
was performed for 100 gradient updates, with 1024 simulation steps
per update.

2.2 Policy landscape analysis

To understand how the controller’s policy evolved during training,
we visualized the policy in relation to the state variables (θ, θ̇). At
each training checkpoint, we froze the network weights and system-
atically swept through the observation space, assessing the agent’s
expected actions for all possible values of the state variables.

2.3 Fixed point analysis

The fixed points (FPs) in an RNN provides a mechanistic account of
how the network implements a particular computation. We there-
fore performed fixed point analysis on the network activity of the
RNN to shed light on the agent’s internal dynamics. The update
equation for the RNN is

ht = F (ht−1, xt) = tanh (Whht−1 + Wxxt + b) ,

where ht is its hidden state, Wh the recurrent weight matrix, xt the input vector, Wx the input-
to-hidden weight matrix, and b a bias term (Sussillo & Barak, 2013). We define a fixed point in
the hidden state space as h∗ = F (h∗, x), which can be relaxed to h∗ ≈ F (h∗, x) to also include slow
points. Here, we primarily focus on the network’s fixed points when the input x is zero and find the
fixed points by minimizing the kinetic energy minh

1
2 ∥h − F (h, x = 0)∥2

2.

2.4 Stimulus integration time

Linearizing the RNN’s update equation around an expansion point (he, xe), we obtain a linear
dynamical system approximation:

ht ≈ F (he, xe) + Jrec|(he,xe) ∆ht−1 + Jinp∣∣
(he,xe) ∆xt

where ∆ht−1 = ht−1 −he represents the linearized system’s state, ∆xt = xt − xe denotes the input,
Jrec is the recurrence Jacobian matrix, and Jinp is the input Jacobian matrix. Jrec|(0,0) = Wh and
Jinp

∣∣
(0,0) = Wx.

Previous studies have investigated the eigenvalues and eigenvectors of the recurrence matrix and
recurrence Jacobian to understand the impact of connectivity on network dynamics (Rajan & Ab-
bott, 2006; Singh et al., 2023). In particular, (Maheswaranathan et al., 2019) derive the stimulus
integration timescale τi for a stable eigenvalue λi (i.e., |λi| ≤ 1) by considering the discrete-time



RLJ | RLC 2024

iteration hi(t) = λt
ihi(0), which governs stimulus integration along the direction of the eigenvec-

tor vi corresponding to λi and then compare this with the equivalent continuous-time equation
hi(t) = hi(0)e−t/τi to get τi = |(1/ ln |λi|)|. We use 1000 timesteps (5 episodes) to generate esti-
mates of τi.

   𝜏 
(torque)

(a)

(b)

Figure 2: Policy evolution of the recurrent neural controller, visualized as a function of θ
and θ̇. (a) Policy evolution in the PO environment; (b) the FO environment. Training gradually
sharpens the policy decision boundaries between positive and negative torques, with sharper bound-
aries observed for the FO environment.

3 Results

3.1 Policy landscape analysis

We visualized the policy as a function of the state variables (θ, θ̇) for both the FO and PO en-
vironment at different time points during training (Fig. 2). For both PO and FO environments,
training sharpens the policy landscape, distinguishing between positive and negative torques
more clearly. In the FO environment, the controller seems to use the extra θ̇ information to learn a
more precise control policy, as indicated by the near-zero torques at high θ̇ values.

3.2 Geometry of neural dynamics and fixed point analysis

To investigate the internal dynamics of the controller, we then performed both dimensionality re-
duction and fixed point analysis on the network activities during the test episodes at different points
during training (Fig. 3). In the PO case, training prunes recurrent dynamics into a ring to effi-
ciently represent the circular state variable θ. During training, the stable FP moves across the state
space, gradually approaching the goal location where θ = 0 (or equivalently, θ = 2π). Meanwhile,
an unstable FP, representing the free-hanging pendulum, emerges later in the training process and
converges to the coordinates corresponding to the vertically-down pendulum position. Together,
these FPs help the agent represent both its goal and key aspects of environmental physics within
its recurrent dynamics. Note that the controller’s stable FP corresponds to the unstable FP of the
physical system, and vice versa.

Next, we ask if the movement of the stable FP toward the goal location is correlated with the agent’s
improved policy during learning. To shed light on this question, we superimposed the location of the
stable FP across training and colored it by the average episode reward obtained by the corresponding
policy (Fig. 4). Interestingly, how close the FP is to its goal location seems to be correlated with
reward. We quantify this trend over five seeds to find that indeed the proximity of the FP to its
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Figure 3: Recurrent dynamics in the PO environment, shown in the top two principal com-
ponents, colored by θ at different training points. Training prunes the recurrent dynamics into a
ring to efficiently represent the circular state variable θ. During training, a stable fixed point (FP)
colored in yellow, associated with the upright pendulum, emerges earlier, followed by the appearance
of an unstable FP for the free-hanging pendulum state, colored in green.

final state is correlated with the episode reward-to-go (the difference between final reward
and episode reward at the corresponding time point. This demonstrates a statistically significant
linear relationship between reward-to-go and FP-goal location proximity, directly linking the RNN’s
representational geometry to the agent’s behavioral performance. Data is pooled across five seeds
to verify the robustness of this relationship.

reward

Figure 4: Trajectory of the stable FP moving across the state space in the PO envi-
ronment, colored by 10-episode-average reward at the corresponding time point (left panel). The
stable FP’s proximity to the goal location is significantly correlated with the reward obtained by the
controller (right panel).

3.3 Stimulus integration time

To understand the memory capacity of the agent, we plotted the evolution of top-5 stimulus inte-
gration times τi over training steps in the PO environment. (Fig. 5). Initially, we see an increase
in τs, suggesting that the agent is extending its period of information integration to gather more
stimulus information. This increase is followed by a decrease in τs, indicating a transition to more
efficient memory usage that retains only task-relevant information in the shorter timescale.

This pattern, which we call “explore then compress”, reflects the balance between thorough
information integration during the exploration phase and a more focused, efficient retention of only
task-relevant information in the compression phase.

4 Discussions

Our study presents a thorough analysis on the evolution of the control policy, network dynamics,
and representational geometry of Recurrent Neural Controllers in the classic Inverted-Pendulum
environment.



RLJ | RLC 2024

Figure 5: Evolution of top-5 stimulus integration times τi over training steps in the PO
environment. The stimulus integration timescale τ , calculated at various training stages in the PO
environment. Stimulus integration exhibits distinct regimes in its evolution. The error bar indicates
99% confidence interval in the estimation of τ .

We applied techniques from Dynamical Systems theory, such as fixed point analysis, that are popular
in the Computational Neuroscience community (Vyas et al., 2020). In the future, we hope to further
cross-pollinate interpretability techniques being developed in Computer Science and Computational
Neuroscience to further analyze agent behavior and neural-activity.

We also plan to investigate more complex and biologically inspired environments, with longer evi-
dence integration memory requirements, and complex sequential decision making and planning, to
test how well our aforementioned findings generalize.

Broader Impact Statement

Our research contributes to a deeper understanding of neural processes in artifical systems across
Computer Science and mathematical models in Neuroscience. We hope this will lead to the devel-
opment of both more reliable artificial control systems and better theories of brain function.
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