C-NAYV: Towards Self-Evolving Continual Object
Navigation in Open World

Ming-Ming Yu!, Fei Zhu?’, Wenzhuo Liu>*, Yirong Yang',
Qunbo Wang®*, Wenjun Wu'®, Jing Liu3*
! Beihang University, 2Centre for Artificial Intelligence and Robotics, HKISI-CAS
STnstitute of Automation, Chinese Academy of Sciences
“4University of Chinese Academy of Sciences
®Hangzhou International Innovation Institute, Beihang University, ®Beijing Jiaotong University
mingmingyu@buaa.edu.cn wangqb6@outlook.com

Abstract

Embodied agents are expected to perform object navigation in dynamic, open-world
environments. However, existing approaches typically rely on static trajectories and
a fixed set of object categories during training, overlooking the real-world require-
ment for continual adaptation to evolving scenarios. To facilitate related studies,
we introduce the continual object navigation benchmark, which requires agents
to acquire navigation skills for new object categories while avoiding catastrophic
forgetting of previously learned knowledge. To tackle this challenge, we propose
C-Nav, a continual visual navigation framework that integrates two key innovations:
(1) A dual-path anti-forgetting mechanism, which comprises feature distillation
that aligns multi-modal inputs into a consistent representation space to ensure
representation consistency, and feature replay that retains temporal features within
the action decoder to ensure policy consistency. (2) An adaptive sampling strategy
that selects diverse and informative experiences, thereby reducing redundancy
and minimizing memory overhead. Extensive experiments across multiple model
architectures demonstrate that C-Nav consistently outperforms existing approaches,
achieving superior performance even compared to baselines with full trajectory
retention, while significantly lowering memory requirements. The code is available
athttps://bigtree765.github.io/C-Nav-project!

1 Introduction

Successful navigation to a target object [1} 2} 3] 14} 5] is a fundamental capability for embodied agents
and serves as a prerequisite for any meaningful interaction, making it a central topic in recent research.
Current state-of-the-art methods [6} 7, 18} 19} [10] typically depend on pre-trained models [[11} 12} |13]]
and large-scale demonstration trajectories [7,|10], operating under the assumption of complete access
to the training dataset and a fixed set of object categories. However, these approaches generally lack
continual learning ability [14] and are vulnerable to catastrophic forgetting, which restricts their
applicability in dynamic, open-world applications [15]. In contrast, practical deployment demands
that agents adapt continuously to new object categories and evolving user instructions. Addressing
this need requires agents to incrementally refine their navigation capabilities by learning from new
data, without revisiting all previously seen data or retraining the model from scratch.

To enable the acquisition of new skills without forgetting previously learned knowledge, numerous
studies have achieved promising results in uni-modal settings like image classification [16} [17].

tProject lead. *Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://bigtree765.github.io/C-Nav-project

Navigation for old task

Find the table Fin Find the sink Find the
Find the sofa Finc Find the stool Find the

-) cprune
Find the Findlii @ Find the Filth

Navigation capability of Navigation capability of Navigation capability of
common objects new objects arbitrary objects
Stage 1 Stage 2

Figure 1: Continual Object Navigation: The robot must continually learn from new data while
retaining its ability to navigate to previously seen object goals. After training across multiple phases,
the baseline model suffers from representation drift and policy degradation, leading to a loss of
navigation capability on previously learned tasks, whereas C-Nav enables cumulative knowledge
retention across phases.

However, their application to embodied decision-making tasks, particularly object-goal navigation,
remains largely unexplored. This might be because the task requires long-horizon decision-making
and the integration of diverse multi-modal inputs, including RGB images, depth images, pose
information, and textual instructions. Moreover, a single training trajectory can span hundreds
of steps, which significantly increases the complexity of the learning process. To the best of our
knowledge, continual learning in the context of object navigation has not been previously studied. To
advance this important yet under-explored area, it is necessary to propose a comprehensive evaluation
framework to assess the continual learning capabilities of object navigation models.

In related embodied navigation systems [6} [7, 8], 2, (18 9 [10], the multi-modal encoder is often
used for processing egocentric visual inputs, pose information, and other sensory signals to build
a semantic representation of the environment. Simultaneously, the action decoder integrates tem-
poral observations to predict navigation actions. As the agent is exposed to new tasks over time,
distributional shifts in sensory inputs and action patterns introduce biases into the model compo-
nents, leading to representation drift and policy degradation. This results in catastrophic forgetting
of previously acquired knowledge, as illustrated in Figure[I] The agent often becomes capable
of semantic exploration only for objects in the current task, losing its ability to navigate to goals
learned earlier. Although naive data replay has demonstrated potential in mitigating catastrophic
forgetting, they face several notable limitations when applied to navigation tasks characterized by
long sequences of temporally and spatially correlated observations: (1) storage overhead scales
quickly with the number of tasks, making memory management increasingly costly; (2) retaining
continuous scene observations raises privacy concerns, as these may inadvertently reveal sensitive
spatial information; and (3) the reliance on fine-grained, atomic-level action representations results in
substantial redundancy across adjacent frames, leading to inefficient memory usage and the replay of
repetitive experiences.

To advance embodied Al research in realistic settings, we introduce a continual object navigation
benchmark built upon the HM3D [20]] and MP3D datasets using the Habitat simulator [22]].
This benchmark enables a comprehensive evaluation of mainstream navigation model architectures
(including Bev-based [9], RNN-based [23]], Transformer-based [18]], and LLM-based models [8]]) and
several widely adopted continual learning techniques such as LoRA [24], model merge [25]], LwF [26]],
and naive data replay [19]. Further, we propose C-Nav, a continual object navigation framework
that incorporates a dual-path forgetting mitigation strategy. Specifically, a feature distillation path
is employed to ensure representational consistency across multi-task, multi-modal encoders, while
a feature replay path is designed to preserve decision stability within the policy decoder. This
architectural design addresses the representational drift that occurs in both the encoder and policy
modules as the agent encounters new tasks, while avoiding the storage overhead and privacy risks
associated with raw trajectory retention. To mitigate the high visual redundancy inherent in navigation
trajectories, C-Nav introduces an adaptive experience selection module. This module treats keyframe

selection as an outlier detection problem in the learned representation space and leverages the Local
Outlier Factor (LOF) [27] algorithm to automatically identify critical navigation moments, such as
“goal discovery” or “spatial transitions.” In summary, our contributions include:

* To evaluate the continual learning ability of agents in dynamic task settings, we establish a
continual object goal navigation benchmark, enabling a systematic assessment of state-of-the-
art navigation architectures and continual learning strategies.

* We propose C-Nav, a continual Object Navigation framework that mitigates catastrophic forget-
ting via a dual-path strategy, enforcing representation consistency through feature distillation
and policy consistency through feature replay, without relying on extensive raw trajectories.

* We develop an adaptive experience selection mechanism that identifies and retains informative
features of navigation frames by leveraging representation-space outlier detection, significantly
reducing memory redundancy while maintaining policy performance.

» Extensive experiments verify the effectiveness of C-Nav across architectures and continual
learning methods, demonstrating superior performance in both accuracy and efficiency.

2 Related Work

2.1 Object Goal Navigation

The task of locating a specified object in an unknown environment is fundamental to robotic systems.
Current approaches to object-goal navigation can be categorized into two types. (1) The first
category focuses on Zero-Shot Object Navigation [28| 29, 4, 13| [30]. These methods explicitly
construct maps and utilize VLMs [31} 132} [33]] or LLMs [34, 135]] for reasoning to select the most
valuable frontier or waypoint for exploration. For instance, in Cow [29]], the robot explores the
nearest frontier point until the target is detected using CLIP features [[11] and open-vocabulary
object detectors [13]]. ESC [3]], L3AMVN [36]], and Voronav [3] leverage LL.Ms for reasoning and
decision-making to enhance performance. VLFM [4]] employs a VLM to assign semantic values
to the map based on first-person observations and textual prompts, selecting the highest-scoring
frontier. These approaches exhibit strong zero-shot generalization and avoid catastrophic forgetting,
as they do not update model parameters. However, they rely on complex reasoning pipelines
and manually designed exploration rules, making them cumbersome and computationally costly.
Moreover, their inability to fine-tune on newly collected navigation data limits task-specific adaptation,
often resulting in suboptimal performance in complex or novel environments. (2) The second category
involves using pre-trained visual encoders to transform first-person observations into visual vectors,
which are then processed by a navigation policy trained via large-scale imitation or reinforcement
learning [6} 7, 18} 12,118, 19,110,137, 38]], thereby equipping agents with semantic navigation capabilities.

These approaches, often trained via imitation or supervised learning, provide robust performance for
object-goal navigation tasks by incorporating large-scale datasets. However, these methods typically
assume fixed environments and task categories, lacking the ability to learn continually. As a result,
they struggle to adapt to dynamic settings where new objects and tasks emerge over time and are
prone to catastrophic forgetting, which limits their generalization to open-world scenarios. Recent
advances such as FSTTA [39]] and NavMorph [40]] enhance test-time adaptability through fast—slow
gradient updates or self-evolving world models, but primarily focus on fine-grained, step-by-step
navigation. In contrast, our work addresses coarse-grained, long-horizon navigation, where the
agent interprets high-level object-goal instructions to perform long-range exploration. Moreover,
unlike prior methods that train on static datasets, our framework progressively introduces new object
categories across multiple training stages, enabling continual skill acquisition. To this end, we
propose C-Nav, a continual navigation framework that equips agents with the ability to incrementally
learn new capabilities and adapt to novel settings without forgetting previously acquired knowledge.

2.2 Continual Learning

Continual learning [14} 41} 42], also known as incremental learning or lifelong learning, has attracted
significant attention in recent years. Existing methods mainly focus on image classification. Regular-
ization methods [26] |41]] aim to prevent catastrophic forgetting by constraining the changes in model
parameters during learning. Data replay methods [43| [44]], which store and reuse old data, can retain

}

projector

5
7 gLl Feature
(I ;
= Fusion
4
:

@

©

S| ot T F oy oy] L

g x

w ===

= 1

B | Image Depth Text

€| Encoder | Encoder Encoder i P

S ' ¢ (| LLM J i ey

§ T ot I S— — i | features |
-0 KOO0 0 oo i 0-oo0-0 B "m"
RGBimage Depth Pose Action Object \.______Transformer-based »_________| LLM-based ______ !\ Current_.'

Figure 2: Different navigation model architectures. According to the action decoder, they can be
categorized into a) RNN-Based, b) Bev-Based, ¢) Transformer-Based, and d) LLM-Based.

prior knowledge but introduce additional storage and privacy concerns [45]. Architecture-based meth-
ods [46] add new submodules for each task, leading to an increase in model parameters as the learning
progresses. Recently, some studies [47, 48l 149, 50] have explored continual learning of multimodal
large language models with parameter-efficient fine-tuning techniques (e.g., LoRA [51} 52]], prompt
tuning [S3]) to facilitate continual fine-tuning without significant computational overhead. However,
these methods do not extend well to embodied intelligence, especially in long-range, multimodal
ObjectNav tasks. In contrast, embodied navigation poses greater challenges, requiring agents to
process multimodal inputs and adapt to evolving environments and goals. Existing continual learning
techniques fall short in addressing such complexity, particularly in long-horizon, multimodal tasks
demanding both spatial and semantic reasoning. This gap motivates our C-Nav framework, which
enables continual learning for visual navigation, with a focus on long-horizon tasks, multimodal
integration, and dynamic adaptation in real-world settings.

3 Problem Definition and Benchmark

Problem Setting. We propose Continual-ObjectNav, where an embodied agent must incrementally
master navigation skills through K sequential tasks. Each task k € {1,..., K} introduces a distinct
set of goal object categories Cj,, with strict disjointness between tasks (C; N C; = () for all i # 7).

The agent receives training data Dy, = {(s¥, ¢, 7F)} X% at each stage, where s¥ denotes a 3D indoor
environment, c¥ € Cj, specifies the target object category, and 7% = {(oﬁ " aﬁ)} provides expert

PR R

demonstration trajectories. The observation oiﬁ . integrates egocentric RGB-D sensing, agent pose

(position/orientation), action history, and object name. The action aﬁ . 1s selected from a discrete

action space A = {move_forward, turn_left,turn_right, look_up, look_down, stop}.

Evaluation. We evaluate the agent at the end of each training stage k, using a test set of unseen
environments Sy, and object goals sampled from the cumulative category set Cy.,, = U?:l C;. This
setup requires the agent to retain and apply previously learned navigation skills while adapting to new
categories. Each episode starts from a random position, and the agent must navigate to a target object
category ¢ € Cy.x. A success is recorded if the agent issues a stop action within a specified distance
to a valid instance of the target object within 500 time steps. We report the most widely used metrics:
Success Rate (SR) and Success weighted by Path Length (SPL), averaged across all categories in
Cy.x- SPL measures the efficiency of the agent’s trajectory by comparing it to the shortest possible
path from the starting position to the nearest valid instance of the target object category.

Model Architecture Notation. As illustrated in Figure 2| the agent policy, shared across different
architectures, can be parameterized as a composition of two learnable modules: a multimodal encoder
f: O — R9, which maps observations to compact feature representations h; = f(0;), and an action
decoder 7 that predicts navigation actions conditioned on both the current encoded feature and the
trajectory history. At each time step ¢, the decoder receives hy.. = {f(01), ..., f(0:)} and produces
a distribution over actions 7 (a¢|hy.¢).

Dataset. We adopt two widely used object goal navigation datasets: ObjectNav (HM3D) consists of
2,000 episodes sampled from 20 validation scenes in the HM3D dataset, covering 6 object categories.
ObjectNav (MP3D), introduced in the Habitat 2020 Challenge, contains 2,195 episodes from 11
MP3D validation scenes, spanning 21 object categories. For model training, we utilize human
demonstration trajectories collected via Habitat-Web [54] and PIRL [7]. The HM3D training set
contains 75,488 trajectories, while the MP3D training set includes 59,604 trajectories after filtering

Table 1: Continual-ObjectNav splits for MP3D and HM3D.

MP3D HM3D
Type
Stagel Stage2 Stage3 Stage4 Total Stagel Stage2 Stage3 Stage4 Total
Category 12 3 3 3 21 3 1 1 1 6
Trajectory (training data) 40,608 7,306 7,484 4,206 59,604 36,667 13,640 13,182 11,999 75,488
Episode (evaluation data) 1,783 1,934 2,039 2,195 2,195 945 1,343 1,624 2,000 2,000
;T
- (@) ->E
. C . LOF
= T | T
]
oy

bie

= N ‘ | a3
: A / Multimodal Encoder

Ol § N S

3 T

= F\; Action; § - ‘1

PRl e Multimod?l Encoder % & " Action Decode
___________ : — -
Multimodal Inputs
Time Dual-Path Anti-Forgetting

Figure 3: Overview of the proposed C-Nav framework for continual object navigation. It consists of
two key components: (1) adaptive experience selection, which identifies semantically meaningful
keyframes via LOF in the representation space, reducing storage and redundancy; and (2) dual-path
anti-forgetting, which mitigates representation and policy drift through a feature distillation path
(bottom left) and a feature replay path (bottom right), ensuring stability across encoder and decoder
modules. For each task, C-Nav retains p sparse trajectory features in the deep feature space.

out samples involving 6 synthetic objects. To adapt to the continual Object Navigation setting, we
divide the object categories and corresponding trajectories into four incremental learning stages. The
detailed splits are shown in Table[I] and a full list of object category assignments per stage can be
found in the supplementary materials.

4 The Proposed Method: C-Nav

To address the continual object navigation task more effectively, we propose a new method described
in this section. The overall framework of our approach is illustrated in Figure. [3]

4.1 Dual-Path Anti-Forgetting

In continual learning of object navigation, catastrophic forgetting can be attributed to representational
drift in both the multimodal encoder and the action decoder. As the model sequentially learns new
tasks, the distribution of learned features may shift, resulting in degraded performance on earlier
tasks. To address this, we propose a dual-path anti-forgetting strategy that constrains both the feature
extraction and policy prediction stages.

Representation Consistency with Feature Distillation. The multimodal encoder integrates visual
and goal-related information. To prevent drift in the learned feature representation, we apply feature-
level distillation. Specifically, we enforce the consistency between the old and current encoder outputs
by minimizing the /5 distance between their extracted features across time:

L
Lo = Y || fe-1(0r) = fu(or)3, M

t=1

where fj_1 denotes the frozen encoder from a previous task, and fy, is the current encoder. Both take
as input the observation o, ensuring multimodal alignment is preserved during continual learning.

Policy Consistency with Feature Replay. To mitigate the policy forgetting during continual learning,
we replay stored trajectory features of previous tasks along with their corresponding action labels to
maintain policy consistency. The feature replay loss is defined as:

L
1
Lrr = 7] E —wy¢log m(aglhie), we =1+ 1g,24, ,, 2
t=1

where h; € R4 represents the t-th frame feature stored in the feature buffer, and 7 denotes the
current action decoder. The weighting factor v [54] emphasizes action transitions by assigning
higher importance to time steps where the expert action differs from the previous one. This objective
function ensures that the policy maintains consistent interpretations of previously learned features
while adapting to new tasks. The gradient updates through this loss term preserve the mapping
between historical observations and their originally learned actions, thereby mitigating catastrophic
forgetting in the continual learning scenario.

4.2 Adaptive Experience Selection

In continual object navigation, replaying previously collected trajectories is critical for mitigating
catastrophic forgetting. However, storing all frames in a trajectory is memory-intensive and often
wasteful, as many frames are visually redundant and contain little novel information. From a data
distribution perspective, frames that exhibit significant semantic shifts tend to be rare and thus can
be considered outliers. These frames often correspond to moments such as entering new spaces,
approaching target objects, or reaching decision points. Therefore, we propose to transform the
task of selecting salient experience points into the detection of outliers within the feature space of

visual observations. Specifically, given a trajectory 7 = {01, 09, ...,0r}, we first encode visual
observations using a pretrained CLIP model to obtain feature representations: v; = CLIP(RGB(o;))
fori ={1,...,L}. Letdist(v,, v;) denote the Cosine distance in feature space:
Ty,
d(vi,v;) =1 MRS 3)

[villz - [[v;ll2
Base that, we define the k-distance neighborhood: Ny (v;) = {v; | d(v;,v;) < di(v;)}, where
di(v;) is the distance to the k-th nearest neighbor. For each neighbor v; € Ni(v;), the reacha-
bility distance is defined as reach-dist (v;, v;) = max{dy(v;),d(v;,v;)}. Using this, the local
reachability density (LRD) of v; is the inverse of its mean reachability distance:

-1

1
LRDy(v;) = | ——— reach-disty (v;, v, . (@]
{0 =\ e, 2 v vi)
Vv k(Vi)
Then, the LOF is calculated as the relative density of v; compared to its neighbors:

1 LRDy(v;)
LOFg(v;) = —— —r 5)

k(vi) | Nk (V)] V]'E%k:(vi) LRDy(v;)

According to this formulation, the set of selected keyframe indices is defined as Z = {i | LOFy(v;) >
1}, where a higher LOF(v;) indicates that the frame is considered as an outlier, typically corre-
sponding to a navigation state with significant semantic change. These keyframes are subsequently
encoded through a multimodal encoder f; and stored in a feature buffer to mitigate catastrophic
forgetting in the action decoder during training.

4.3 Overall Learning Objective of C-Nav

Our continual navigation policy is optimized using a composite loss function that integrates supervi-
sion from the current task, feature-space knowledge distillation, and feature replay consistency:

L = Lcur + Xkp - Lxp + Arr - LEr, (6)

where Agp and Apg are weighting coefficients that balance the influence of feature-level knowledge
distillation and feature replay loss, respectively. The current task k using behavior cloning with

inflection weighting [54]: Leyyr = % ZtL:l —wy log (at |fk (01), .-+, [(ot)) .

—— Finetuning - SR LoRA - SR —— LwF - SR —— Merge - SR —— DP-SR —— C-Nav - SR
---_Finetuning - SPL LoRA-SPL__ --- LwF-SPL___--- Merge-SPL___---_DP-SPL___---_C-Nav-SPL

HM3D-RNN HM3D-Trans HM3D-LLM

o
=}

S
[}

Percentage (%)

N
o

0
stagel stage2 stage3 stage4 stagel stage2 stage3 stage4 stagel stage2 stage3 stage4 stagel stage2 stage3 staged

MP3D-RNN MP3D-Trans MP3D-Bev MP3D-LLM

Percentage (%)

k]

stagel stage2 stage3 stage4 stagel stage2 stage3 staged4 stagel stage2 stage3 stage4 stagel stage2 stage3 staged

Figure 4: Results of SR and SPL on the MP3D and HM3D datasets. Solid lines represent SR, while
dashed lines represent SPL.

Table 2: Performance comparison on the HM3D benchmark. DP indicates data replay, and Merge
denotes model merging. Avg reports the average performance across all stages, while Last reflects the
performance at the final stage.

HM3D-RNN HM3D-Trans HM3D-Bev HM3D-LLM

Methods Avg Last Avg Last Avg Last Avg Last
SR SPL SR SPL SR SPL SR SPL SR SPL SR SPL SR SPL SR SPL
Finetuning 32.8 13.0 213 78 314 129 195 7.6 320 133 208 82 284 113 164 6.0

LoRA - - - - 340 144 225 96 363 154 241 92 399 162 241 9.2
LwF 344 135 251 85 317 126 192 69 326 13.1 21.7 81 262 10.8 117 45
Merge 408 164 204 65 451 184 245 72 450 178 185 4.6 425 164 199 56
Dp 441 18.6 33.6 132 527 221 39.6 165 532 23.0 442 183 522 212 409 159

C-Nav 50.0 21.0 40.3 16,5 558 248 46.5 202 563 24.0 465 196 522 231 422 193

5 Experiments

5.1 Experimental Setup

Implementation Details. We implement our multi-modal encoder using CLIP-ResNet50 [[11] for
visual encoding and a PointNav-pretrained ResNet-50 [55] for depth encoding. Following previous
work [23] 9], we keep both encoders frozen during training. The feature fusion is implemented by the
feature concatenation. We train our model using AdamW optimization with a linear warmup over
1,000 steps to reach our initial learning rate of 3 x 10, followed by linear decay. We train each task
stage for 25 epochs with a batch size of 32. For action prediction, the RNN-based model employs a
2-layer LSTM [56] architecture. The transformer-based and Bev-based [9]] decoders utilize a 4-layer
transformer [57] as the action decoder with a dropout rate of 0.1. For the LLM-based approach, we
adopt Qwen2-0.5B [33] as the action decoder, incorporating six special tokens to represent atomic
actions. We set the inflection weight « to 3.48 and configure our loss balance weights Agp and Agp
to 5. All experiments are conducted using two NVIDIA A6000 GPUs. Additional implementation
details are provided in the supplementary materials.

Comparison Methods. We compare our method against several representative continual learning
strategies across four backbone architectures. Specifically, we evaluate the following baselines. Naive
Fine-tuning serves as the simplest approach, where models are sequentially fine-tuned on each stage
without any mechanism to mitigate forgetting. LoRA [24] introduces low-rank adaptation modules
during training; after each stage, the LoRA branches are merged into the main model for inference.
LwF [26] applies knowledge distillation by computing the KL divergence between the logits of the

Table 3: Performance comparison of different methods on MP3D benchmark.

MP3D-RNN MP3D-Trans MP3D-Bev MP3D-LLM

Methods Avg Last Avg Last Avg Last Avg Last
SR SPL SR SPL SR SPL SR SPL SR SPL SR SPL SR SPL SR SPL
Finetuning 194 5 141 21 201 53 199 37 274 60 235 35 147 40 31 05

LoRA - - - - 242 67 235 59 295 76 271 7.1 311 82 271 6.0
LwF 22 56 191 32 207 53 171 28 276 59 238 33 146 39 64 10
Merge 303 84 173 36 338 103 257 65 41.7 109 360 69 265 74 146 3.7
DP 338 93 303 69 377 108 372 101 418 114 381 98 263 7.7 221 64

C-Nav 364 110 343 9.7 381 121 368 119 424 123 390 112 361 108 350 10.7

current model and those of the previous one, encouraging the model to preserve past knowledge.
Model merge preserves prior knowledge by linearly interpolating the weights of the current and
previous models using a 0.7/0.3 ratio. Lastly, data replay stores p = 80 original trajectories per
object category, which are reused in subsequent training stages to mitigate forgetting. Additional
implementation details are provided in the supplementary materials.

5.2 Experimental Results and Analysis

Main Results. We compare several baseline methods and model architectures for Continual-
ObjectNav task. As shown in Figure] naive fine-tuning leads to severe catastrophic forgetting
across all four architectures, with an average decline of approximately 40% in navigation success rate
on previously seen categories by the final stage. Additionally, the results show that the Bev-based
architecture consistently outperforms others. Meanwhile, LLM-based models do not exhibit a clear
performance advantage, likely due to limited training trajectories. The LWF method demonstrates
limited effectiveness across all models. In contrast, LoORA and model merge help mitigate forgetting
by either reducing the number of trainable parameters or integrating knowledge from previous models.
Notably, LoRA shows a significant advantage when applied to LLM-based models compared to other
model architectures. Data replay achieves effective performance retention, but it incurs substantial
storage overhead and raises privacy concerns. As shown in Table[2]and Table[3] the proposed C-Nav
generalizes well across various architectures and datasets. Specifically, compared to data replay,
C-Nav achieves an average SR improvement of 3.35% on MP3D and 2.75% on HM3D across four
model architectures, while requiring lower storage costs. A detailed breakdown of performance on old
versus new tasks at each training stage is provided in Appendix [C.1] illustrating how C-Nav balances
retention of prior knowledge with adaptation to new tasks. These results demonstrate the effectiveness
of our dual-path forgetting mitigation mechanism, which ensures consistent representation and policy
learning as the agent encounters new tasks.

Table 4: Ablation studies of dual-path anti-forgetting. KD denotes feature distillation, and FP denotes
feature replay.

HM3D-RNN HM3D-Trans HM3D-Bev HM3D-LLM
Methods Avg Last Avg Last Avg Last Avg Last
SR SPL SR SPL SR SPL SR SPL SR SPL SR SPL SR SPL SR SPL

w/o KD 282 11.7 169 6.6 314 132 202 81 325 139 219 89 336 134 199 173
w/o FP 379 156 279 107 459 219 326 145 389 165 267 103 427 172 302 11.6

All 500 21.0 403 165 558 24.8 465 20.2 563 24.0 465 19.6 522 231 422 193
MP3D-RNN MP3D-Trans MP3D-Bev MP3D-LILM
Methods Avg Last Avg Last Avg Last Avg Last

SR SPL SR SPL SR SPL SR SPL SR SPL SR SPL SR SPL SR SPL

w/o KD 169 47 104 20 206 58 212 46 261 6.6 235 52 257 64 240 48
w/o FP 259 81 220 73 272 89 227 85 313 9.6 292 995 289 9.0 247 8.0

All 364 11.0 343 97 381 121 368 119 424 123 39.0 112 36.1 10.8 350 10.7

Ablation Studies of Dual-Path Anti-forgetting. To assess the contribution of each component in our
proposed dual-path anti-forgetting mechanism, we conduct ablation studies by separately removing

the feature-space alignment loss and the feature replay loss in the action decoder. As presented
in Table 4] and Appendix [C-4] the removal of either component leads to significant performance
degradation. Specifically, eliminating the feature-space KD loss results in an average SR drop of 22%
and 16% across four model architectures on the HM3D and MP3D datasets, respectively. Similarly,
removing the feature replay loss from the action decoder causes a reduction of 12% and 10% on the
same datasets. These results highlight the complementary roles of the two components: the feature-
space constraint stabilizes representation learning, while feature replay ensures consistent decision-
making under distributional shifts. Additionally, we further examine representation consistency in
continual learning. As detailed in Appendix [C.2} we compare fully freezing the multimodal encoder
against selectively fine-tuning only the modality-specific projectors with consistency regularization
to softly align old and new feature spaces. The results show that fully freezing the encoder degrades
performance, whereas selective fine-tuning of projectors under consistency constraints enables the
model to learn representations that remain effective for both previous and new tasks.

Ablation Studies of Adaptive Experience Selection. To validate the effectiveness of the proposed
adaptive experience selection in C-Nav, we compare it with a uniform sampling baseline that assumes
redundancy among adjacent frames. For a fair comparison, both methods replay trajectories truncated
to 50% of their original length. As shown in Table [5]and Appendix [C.5] our method consistently
outperforms uniform sampling across model architectures and datasets, achieving SR improvements
of 3.65% on HM3D and 3.2% on MP3D. Notably, compared to full-length feature replay in C-Nav,
SR drops only marginally by 1.9% and 1.3%, despite using half the data. In addition, compared to full
data replay, our adaptive method achieves an average SR improvement of 0.8% on HM3D and 2.0%
on MP3D across four model architectures. These results demonstrate the efficiency and effectiveness
of our adaptive strategy in preserving critical experiences for the Continual-ObjectNav task.

Table 5: Ablation studies of adaptive experience selection. "Uniform", "Adaptive", and "Full" refer
to uniform sampling, adaptive sampling, and no sampling, respectively.

HM3D-RNN HM3D-Trans HM3D-Bev HM3D-LLM
Methods Avg Last Avg Last Avg Last Avg Last
SR SPL SR SPL SR SPL SR SPL SR SPL SR SPL SR SPL SR SPL

Uniform 432 19.7 322 150 505 220 405 17.6 494 21.7 37.6 165 477 224 370 184
DP (Full) 44.1 18.6 33.6 132 527 221 396 165 532 230 442 183 522 212 409 159

Adaptive 47.3 20.7 36.1 160 53.7 232 425 184 52.8 224 421 180 516 238 40.1 194

Full 50.0 21.0 403 165 547 243 465 202 563 24.0 465 19.6 522 231 422 193
MP3D-RNN MP3D-Trans MP3D-Bev MP3D-LLM
Methods Avg Last Avg Last Avg Last Avg Last

SR SPL SR SPL SR SPL SR SPL SR SPL SR SPL SR SPL SR SPL

Uniform 30.5 103 245 82 352 114 319 9.7 350 110 292 9.7 340 11.1 314 109
DP (Full) 338 93 303 69 377 10.8 372 10.1 41.8 114 381 9.8 263 7.7 221 64

Adaptive 34.1 114 384 101 384 12.6 366 11.7 409 123 388 113 342 112 324 10.7
Full 364 11.0 343 9.7 381 121 368 119 424 123 390 112 361 108 350 10.7

Moreover, Figure [5] presents an
ablation study of different ex-
perience selection strategies on
MP3D-Trans across all training
stages. First, we compare our
method against uniform sam-
pling and clustering-based sam-

pling, both using half—length tra- 15 Stagel Stage2 Stage3 Staged Stagel Stage2 Stage3 Staged
jectories. Our approach con-
sistently outperforms both base-
lines because it explicitly pre-
serves semantically salient frames, such as those captured at decision points or near target objects.
These frames often reside in outlier regions of the feature space and are typically discarded by
conventional samplers. Second, we reduce the key-frame selection ratio. Remarkably, our method

B Clustering-based @ Uniform B C-Nav mol mos3 moS5 @m1

N w w IS
@ S v S

Percentage (%)

~
S

Figure 5: Ablation on experience selection and retention ratio on
MP3D with a Transformer-based navigation architecture.

—— Order1 (SR) Order2 (SR) —e— Order3 (SR)
=~ Orderl (SPL) Order2 (SPL) =~ Order3 (SPL)

Find the bed
—@— CNav(Bev) —— VLFM —A— Finetuning o ihe be et the bed

50147.06

47.66 4235 a1lz0 3000
R 40{37.69 -
B— . 352

~— i 34.33 34.26|
S sths

w
s

NN w
& 8

Percentage (%)
5

Success Rate (%)
~
S

=

S
-
&

10 B

Stagel Stage2 Stage3 Staged Btage 1 Stage 2 Stage 3 Stage 4 (a) Finetuning (b) C-Nav

Figure 6: Comparison with the Figure 7: Sensitivity to stage Figure 8: Qualitative navigation
Zero-Shot Method. order on MP3D. results.

maintains strong performance even at very low retention rates, achieving comparable or better results
while using only 20% of the memory required by the clustering-based or uniform sampling baselines.
This demonstrates the high efficiency and robustness of our approach.

Comparison with the Zero-Shot Method. We reproduce VLFM as a zero-shot baseline and
evaluate it against C-Nav over four continual learning stages in Figure[§] VLEM selects waypoints
using a pretrained vision-language model on an explicit map and executes navigation with a fixed
reinforcement learning policy. Because its parameters are frozen, it avoids catastrophic forgetting
and maintains stable but limited performance. This limitation stems from its inability to learn from
new trajectories, leaving it constrained by the static priors of the large model. In contrast, C-Nav is
an end-to-end trainable system that continuously improves from experience, adapts to new tasks, and
mitigates forgetting.

Ablation Study on Stage Order Sensitivity. To evaluate the robustness of C-Nav to variations
in task sequence during continual learning, we conduct ablation studies under three different stage
orderings. As shown in Figure[7] the minimal performance variation across orderings further validates
the effectiveness of our Dual-Path Anti-Forgetting mechanism. This insensitivity to task sequence is
crucial for real-world deployment, where object categories may be encountered in arbitrary order.

Case Study. Figure [8] shows navigation trajectories of C-Nav and the Finetuning baseline in an
unseen HM3D scene, where the target object (bed) was introduced in an earlier training stage. Both
models were trained sequentially over four stages, with the sofa added as the target in the final stage.
The baseline suffers from catastrophic forgetting and navigates toward a sofa despite the goal being a
bed. In contrast, C-Nav successfully reaches the bed, demonstrating its ability to retain knowledge
of previously learned categories. This highlights C-Nav’s superior stability-plasticity balance in
continual learning.

6 Conclusion

In this work, we establish a benchmark for evaluating continual learning in the context of object
navigation. We assess various model architectures and mainstream continual learning methods.
Building on this benchmark, we propose C-Nav for continual object navigation, a dual-path framework
that mitigates catastrophic forgetting by jointly enforcing representation consistency through feature
distillation and preserving policy consistency via feature replay. Additionally, we introduce an
adaptive experience selection method to further reduce memory usage, ensuring efficient knowledge
retention. Extensive experiments demonstrate that our approach outperforms existing methods,
achieving superior performance across different architectures and tasks, while reducing memory
overhead and mitigating forgetting more effectively than previous solutions.

Limitations. Despite the strong performance of C-Nav on the Continual-ObjectNav task, several
limitations remain. First, real-world factors such as dynamic lighting and sensor noise may affect
generalization, highlighting the need for validation on physical robots to assess robustness in real
environments. Second, although C-Nav significantly reduces memory usage, its storage demands still
grow linearly with task complexity. Future work may explore generative replay or trajectory-free
approaches to further reduce memory overhead. Addressing these limitations is crucial for deploying
continual navigation systems in practical applications.

10

Acknowledgments and Disclosure of Funding

This research is supported by the Artificial Intelligence National Science and Technology Major
Project (2023ZD0121200), the National Natural Science Foundation of China (62437001, 62436001,
62206279), the Key Research and Development Program of Jiangsu Province (BE2023016-3), the
Beijing Natural Science Foundation (.252146), and the InnoHK program.

References

(1]

2

—

[3

—

(4]

[5

—

[6

—_

[7

—

[8

—

[9

—

(10]

(11]

[12]

[13]

[14]

[15]

Devendra Singh Chaplot, Dhiraj Prakashchand Gandhi, Abhinav Gupta, et al. Object goal navigation using
goal-oriented semantic exploration. In Advances in Neural Information Processing Systems, volume 33 of
NeurlPS, pages 4247-4258, 2020.

Dhruv Batra, Aaron Gokaslan, Aniruddha Kembhavi, Oleksandr Maksymets, Roozbeh Mottaghi, Manolis
Savva, Alexander Toshev, and Erik Wijmans. Objectnav revisited: On evaluation of embodied agents
navigating to objects. arXiv preprint arXiv:2006.13171, 2020.

Pengying Wu, Yao Mu, Bingxian Wu, Yi Hou, Ji Ma, Shanghang Zhang, and Chang Liu. Voronav:
Voronoi-based zeroshot object navigation with large language model. In International Conference on
Machine Learning (ICML), 2024.

Naoki Yokoyama, Sehoon Ha, Dhruv Batra, Jiuguang Wang, and Bernadette Bucher. VIfm: Vision-
language frontier maps for zero-shot semantic navigation. In 2024 IEEE International Conference on
Robotics and Automation (ICRA), pages 42-48. IEEE, 2024.

Kaiwen Zhou, Kaizhi Zheng, Connor Pryor, Yilin Shen, Hongxia Jin, Lise Getoor, and Xin Eric Wang.
Esc: Exploration with soft commonsense constraints for zero-shot object navigation. In International
Conference on Machine Learning, pages 42829-42842. PMLR, 2023.

Karmesh Yadav, Arjun Majumdar, Ram Ramrakhya, et al. Ovrl-v2: A simple state-of-the-art baseline for
imagenav and objectnav. arXiv preprint arXiv:2303.07798, 2023. Version 2.

Ram Ramrakhya, Dhruv Batra, Erik Wijmans, et al. Pirlnav: Pretraining with imitation and rl finetuning
for objectnav. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 17896-17906. IEEE/CVF, 2023.

Jiazhao Zhang, Kunyu Wang, Rongtao Xu, Gengze Zhou, Yicong Hong, Xiaomeng Fang, Qi Wu, Zhizheng
Zhang, and He Wang. Navid: Video-based vlm plans the next step for vision-and-language navigation.
arXiv preprint arXiv:2402.15852, 2024.

Siyuan Chen, Thomas Chabal, Ivan Laptev, et al. Object goal navigation with recursive implicit maps. In
2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 7089-7096.
IEEE, 2023.

Ram Ramrakhya, Erik Undersander, Dhruv Batra, et al. Habitat-web: Learning embodied object-search
strategies from human demonstrations at scale. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5173-5183. IEEE/CVF, 2022.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
J. Clark, G. Krueger, and 1. Sutskever. Learning transferable visual models from natural language
supervision. In Proceedings of the 38th International Conference on Machine Learning, volume 139, pages
8748-8763, feb 2021.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, et al. Sigmoid loss for language image pre-training. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 11975-11986.
IEEE/CVF, 2023.

M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin. Emerging properties in
self-supervised vision transformers. In Proceedings of the International Conference on Computer Vision
(ICCV), 2021.

Haiyang Guo, Fanhu Zeng, Fei Zhu, Jiayi Wang, Xukai Wang, Jingang Zhou, Hongbo Zhao, Wenzhuo
Liu, Shijie Ma, Xu-Yao Zhang, et al. A comprehensive survey on continual learning in generative models.
arXiv preprint arXiv:2506.13045, 2025.

Fei Zhu, Shijie Ma, Zhen Cheng, Xu-Yao Zhang, Zhaoxiang Zhang, and Cheng-Lin Liu. Open-world
machine learning: A review and new outlooks. arXiv e-prints, pages arXiv—2403, 2024.

11

(16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]
(33]

(34]

Marc Masana, Xialei Liu, Barttomiej Twardowski, Mikel Menta, Andrew D. Bagdanov, and Joost Van
De Weijer. Class-incremental learning: Survey and performance evaluation on image classification.
volume 45, pages 5513-5533. IEEE, 2022.

Xiangyu Gao, Yang He, Shanshan Dong, Yujia Chen, Lei Wang, Wei Zhang, Hao Li, and Mingyuan
Zhou. Dkt: Diverse knowledge transfer transformer for class incremental learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 24236-24245.
IEEE/CVF, 2023.

Kiana Ehsani, Tanmay Gupta, Ryan Hendrix, et al. Spoc: Imitating shortest paths in simulation enables
effective navigation and manipulation in the real world. arXiv preprint arXiv:2312.02976, 2023.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert. iCaRL: incre-
mental classifier and representation learning. In CVPR, 2017.

Karmesh Yadav, Ram Ramrakhya, Santhosh K. Ramakrishnan, Dhruv Batra, Yonatan Bisk, and Roozbeh
Mottaghi. Habitat-matterport 3d semantics dataset. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 4927-4936. IEEE/CVF, 2023.

Angel Chang, Angela Dai, Thomas Funkhouser, and et al. Matterport3d: Learning from rgb-d data in
indoor environments. arXiv preprint arXiv:1709.06158, September 2017.

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain, Julian
Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for embodied ai research. In
Proceedings of the IEEE/CVF international conference on computer vision, pages 9339-9347, 2019.

Apoorv Khandelwal, Luca Weihs, Roozbeh Mottaghi, and Aniruddha Kembhavi. Simple but effective:
Clip embeddings for embodied ai. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 14829-14838, 2022.

Edward J. Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al.
LoRA: Low-rank adaptation of large language models. In Advances in Neural Information Processing
Systems, volume 36, 2023.

Daniel Marczak, Barttomiej Twardowski, Tomasz Trzciniski, and Sebastian Cygert. Magmax: Leveraging
model merging for seamless continual learning. In European Conference on Computer Vision, pages
379-395. Springer, 2024.

Zhizhong Li and Derek Hoiem. Learning without forgetting. /[EEE Transactions on Pattern Analysis and
Machine Intelligence, 40(12):2935-2947, 2017.

Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jorg Sander. Lof: identifying density-based
local outliers. In Proceedings of the 2000 ACM SIGMOD international conference on Management of
data, pages 93-104, 2000.

Yuxuan Kuang, Hai Lin, and Meng Jiang. Openfmnav: Towards open-set zero-shot object navigation via
vision-language foundation models. arXiv preprint arXiv:2402.10670, 2024.

S. Y. Gadre, M. Wortsman, G. Ilharco, L. Schmidt, and S. Song. Cows on pasture: Baselines and
benchmarks for language-driven zero-shot object navigation. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, volume 2023-June, pages 23171-23181, mar
2023.

Hang Yin, Xiuwei Xu, Lingging Zhao, Ziwei Wang, Jie Zhou, and Jiwen Lu. Unigoal: Towards universal
zero-shot goal-oriented navigation. arXiv preprint arXiv:2503.10630, 2025.

H. Liu, C. Li, Q. Wu, and Y. J. Lee. Visual instruction tuning. Advances in Neural Information Processing
Systems, 36:1-19, 2023.

OpenAl. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han,
Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

12

[35]

(36]

(371

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

(52]

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Bangguo Yu, Hamidreza Kasaei, and Ming Cao. L3mvn: Leveraging large language models for visual
target navigation. In 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 3554-3560. IEEE, 2023.

Jiangyong Huang, Silong Yong, Xiaojian Ma, Xiongkun Linghu, Puhao Li, Yan Wang, Qing Li, Song-
Chun Zhu, Baoxiong Jia, and Siyuan Huang. An embodied generalist agent in 3d world. arXiv preprint
arXiv:2311.12871, 2023.

Pu Feng, Junkang Liang, Size Wang, Xin Yu, Xin Ji, Yiting Chen, Kui Zhang, Rongye Shi, and Wenjun
Wau. Hierarchical consensus-based multi-agent reinforcement learning for multi-robot cooperation tasks.
In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 642—649.
IEEE, 2024.

Junyu Gao, Xuan Yao, and Changsheng Xu. Fast-slow test-time adaptation for online vision-and-language
navigation. 2024.

Junyu Gao Xuan Yao and Changsheng Xu. Navmorph: A self-evolving world model for vision-and-
language navigation in continuous environments. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2025.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the National Academy of Sciences, 114(13):3521-3526,
2017.

Wenzhuo Liu, Xin-Jian Wu, Fei Zhu, Ming-Ming Yu, Chuang Wang, and Cheng-Lin Liu. Class incremental
learning with self-supervised pre-training and prototype learning. Pattern Recognition, 157:110943, 2025.

Francisco M Castro, Manuel J Marin-Jiménez, Nicolds Guil, Cordelia Schmid, and Karteek Alahari.
End-to-end incremental learning. In Proceedings of the European conference on computer vision (ECCV),
pages 233-248, 2018.

Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified classifier
incrementally via rebalancing. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 831-839. IEEE/CVF, 2019.

Fei Zhu, Xu-Yao Zhang, Chuang Wang, Fei Yin, and Cheng-Lin Liu. Prototype augmentation and self-
supervision for incremental learning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 5871-5880, 2021.

Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynamically expandable representation for class
incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3014-3023. IEEE/CVF, 2021.

Wenzhuo Liu, Fei Zhu, Haiyang Guo, Longhui Wei, and Cheng-Lin Liu. Llava-c: Continual improved
visual instruction tuning. arXiv preprint arXiv:2506.08666, 2025.

Hongbo Zhao, Fei Zhu, Rundong Wang, Gaofeng Meng, and Zhaoxiang Zhang. Mllm-cl: Continual
learning for multimodal large language models. arXiv preprint arXiv:2506.05453, 2025.

Haiyang Guo, Fanhu Zeng, Ziwei Xiang, Fei Zhu, Da-Han Wang, Xu-Yao Zhang, and Cheng-Lin Liu.
Hide-1lava: Hierarchical decoupling for continual instruction tuning of multimodal large language model.
arXiv preprint arXiv:2503.12941, 2025.

Fanhu Zeng, Fei Zhu, Haiyang Guo, Xu-Yao Zhang, and Cheng-Lin Liu. Modalprompt: Towards
efficient multimodal continual instruction tuning with dual-modality guided prompt. arXiv preprint
arXiv:2410.05849, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
Chen, et al. Lora: Low-rank adaptation of large language models. /CLR, 1(2):3, 2022.

Haiyang Guo, Fei Zhu, Wenzhuo Liu, Xu-Yao Zhang, and Cheng-Lin Liu. Pilora: Prototype guided
incremental lora for federated class-incremental learning. In European Conference on Computer Vision,
pages 141-159. Springer, 2024.

13

(53]

[54]

[55]

(561

[57]

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning.
arXiv preprint arXiv:2104.08691, April 2021.

R. Ramrakhya, E. Undersander, D. Batra, and A. Das. Habitat-web: Learning embodied object-search
strategies from human demonstrations at scale. In Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2022.

Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee, Irfan Essa, Devi Parikh, Manolis Savva, and
Dhruv Batra. Dd-ppo: Learning near-perfect pointgoal navigators from 2.5 billion frames. arXiv preprint
arXiv:1911.00357,2019.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735-1780,
1997.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L.ukasz

Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

14

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Please refer the abstract and introduction section.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer the Conclusions section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

15

Justification: Our paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Please refer to the Experimental Setting section.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

16

Answer: [Yes]
Justification: We will provide complete code and documentation
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please refer to the Experimental Setting section. 876 Guidelines:
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: We confirm that the large-scale dataset and fixed random seeds employed in
our experiments are sufficient to guarantee the reproducibility of results. In our experiments,
the variation in accuracy across repeated tests is minimal.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: answerYes
Justification: Please refer to the Experimental Setting section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We comply with the Neur[PS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Please refer to the Conclusions section.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

18

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The navigation model and the data all open-source by the author.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

19

paperswithcode.com/datasets

13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We provide the details of our dataset in the Datasets section.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

20

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: In evaluating continuous object navigation performance, we tested a model
that employs an LLM as its decoder, and we have described both the methodology and
purpose in our paper.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A Dataset Details

A.1 Category Splits for Continual ObjectNav
HMB3D Dataset. The object categories are split into four stages as follows:

e Stage 1: bed, chair, plant
 Stage 2: toilet

 Stage 3: tv_monitor
 Stage 4: sofa

MP3D Dataset. The object categories are divided into four continual learning stages:

o Stage 1: bed, cabinet, chair, chest_of_drawers, cushion, picture, plant, sink, sofa, stool,
table, toilet

o Stage 2: shower, towel, tv_monitor
* Stage 3: bathtub, counter, fireplace

» Stage 4: clothes, gym_equipment, seating

A.2 Demonstration Trajectory Length Distribution for Continual ObjectNav

We visualize the trajectory length distributions across different training stages in Continual ObjectNayv,
as shown in Figure[9)and Figure[T0} For the HM3D dataset, the average trajectory lengths for Stage
1 to Stage 4 are 127.51, 142.53, 168.53, and 115.77, respectively. In contrast, the MP3D dataset
exhibits longer trajectories, with average lengths of 182.79, 247.91, 227.10, and 315.75 across the
four stages. The longer demonstration sequences in MP3D highlight the increased complexity of
decision-making, making the Continual ObjectNav task more challenging.

Stage 1 Trajectory Length Distribution Stage 2 Trajectory Length Distribution
(Count: 36667) (Count: 13640)

-- Mean: 127.51 16.0%
== Median: 93.00

16.0% -= Mean: 142.53

== Median: 104.00
14.0% 14.0%

12.0% 12.0%
§ §
-g 10.0% g 10.0%
2 8.0% Q 8.0%
o <)
A 6.0% A 6.0%

4.0%: 4.0%:

2.0% 2.0%

0.0%;

0.0%;

200 400 600 800 1000 200 400 600 800 1000
Length Length
Stage 3 Trajectory Length Distribution Stage 4 Trajectory Length Distribution
(Count: 13182) (Count: 11999)

=~ Mean: 168.53 20.0%

~= Median: 119.00 17.5%

14.0% -- Mean: 115.77
: -~ Median: 85.00
12.0%
15.0%
€ 10.0%
2
£
5 8.0%
a

c

512.5%

5

g S10.0%

£ 6.0%
4.0%

IS
& 7.5%
5.0%

2.0%: 2.5%

0.0%;

200 400 00 00 1000 0.0% 200 400 600 800 1000
Length Length

Figure 9: Demonstration trajectory length distribution per stage in HM3D dataset.

B Implementation Details

B.1 Details about the Model Architecture
For the BEV-based, transformer-based, and RNN-based models, the RGB, depth, pose, previous

action, and object name inputs are transformed by linear projection layers into feature vectors with
dimensionalities of 256, 128, 64, 32, and 32, respectively. In the Qwen 0.5B LLM-based architecture,

22

Stage 1 Trajectory Length Distribution Stage 2 Trajectory Length Distribution
(Count: 40608) (Count: 7306)

== Mean: 182.79 i i === Mean: 247.91
-- Median: 124.00 8.0% ! ' --- Median: 181.00

Proportion
Proportion

9
200 400 600 800 0 U 200 400 600 800

Length Length
Stage 3 Trajectory Length Distribution Stage 4 Trajectory Length Distribution

(Count: 7484) (Count: 4206)

= Mean: 227.10 . : : --- Mean:315.75
-~ Median: 166.00 0% i i -~ Median: 223.00
| |

Proportion
Proportion

o
200 400 600 800 1000 0% 200 400 600 800 0
Length Length

Figure 10: Demonstration trajectory length distribution per stage in MP3D Dataset.

the RGB, depth, pose, and previous action inputs are projected into feature vectors of size 400, 400,
64, and 32, respectively. These vectors are concatenated to produce a unified representation with a
total dimensionality of 896. The task prompt used for the LLM-based model is formatted as follows:

<|im_start|>system You are a smart navigation assistant.<|im_end|>
<|im_start|> Your goal is to find the {object_name}. What is the next
action? <|im_end|>

The learning rate for the LLM-based model is set to 0.0001. bfloat16 precision is adopted for
efficient inference and reduced memory usage in the LLM-based navigation models. The weight decay
is set to 0.1. Additionally, several special tokens are defined. Specifically, the action tokens include
<STOP>, <MOVE_FORWARD>, <TURN_LEFT>, <TURN_RIGHT>, <LOOK_UP>, and <LOOK_DOWN>. The
observation token, <|observation|>, is used to represent the environment’s state in the model’s
input. All other hyperparameters are kept consistent with those used in the BEV-based, transformer-
based, and RNN-based models. For the representation consistency loss in our Dual-Path Anti-
Forgetting mechanism, we use the ¢, distance between old and current features on HM3D, and the
squared /5 distance on MP3D.

B.2 Details about the Compared Continual Learning Methods
* LoRA: Uses a low-rank decomposition with dimension R = 16, a scaling factor of 2 x R,
and a dropout rate of 0.1.

* LwF: Applies a KL divergence loss between the current and previous model logits with a
coefficient of 0.2.

* Model Merge: Linearly interpolates the weights of the current and previous models using a
0.7/0.3 ratio.

» Data Replay: Stores p = 80 original trajectories per object category for experience replay.

* Proposed C-Nav: Stores p = 80 trajectory features and samples 50% of each trajectory
for adaptive experience selection, ensuring a fair comparison with data replay and uniform
sampling methods.

B.3 The Pseudocode for C-Nav

The pseudocode for C-Nav is illustrated in Algorithm[I] During the initial stage, the model is trained
on trajectories from the base object navigation task. Adaptive experience selection is then applied to
identify important experiences, which are stored in the feature buffer /3. In subsequent learning stages,
the model weights from the previous phase are loaded, and the model is optimized by combining

23

the current task’s behavior cloning loss with feature space distillation and feature replay losses.
This approach ensures the consistency of the multimodal feature encoder and action decoder across
different tasks.

Algorithm 1 C-Nav for Continual ObjectNav with Adaptive Sampling

1: Initialize: Multimodal encoder fy, decoder g, feature buffer B <+ ()
2: fortask kK = 1to K do
3. Input: Dataset Dy, = {(s¥, ¥, 7)1V

171 T

4: if £ = 1 then
5: # perform behavior cloning for initial task
6: Compute Ly
7: Update f, m by minimizing Loy
8: else
9: # perform feature distillation
10: Compute Lxp (Eq. 1) between f;_1 and f
11: # perform feature replay
12: Compute Lgr with B (Eq. 2)
13: Update fj, 7, by minimizing £ = Lcyy + AxkpLkp + Arr Lrr (Eq. 10)
14: end if
15: # perform adaptive experience selection in deep feature space
16: Randomly sample p trajectories from Dy: T, = {rf,... ,Tg
17: for each trajectory 7 in 7, do
18: Encode frames {v;} via CLIP
19: Compute LOF scores (Eq. 3-5)
20: Select keyframes Z = {¢ | LOFy(v;) > 1}
21: for eacht € 7 do
22: Store (fx(o¢), at) in buffer B
23: end for
24: end for
25: end for

C More Results

C.1 Old vs. New Task Performance per Stage

To provide a more intuitive understanding of how the model adapts to new tasks and the extent of
forgetting over time, we report results on the HM3D dataset by separately evaluating performance
on new tasks (i.e., target objects in the current stage) and old tasks (i.e., all previously seen target
objects, averaged) in Table [6] and Table[7] These results reveal two key trends. First, Finetuning
suffers from severe catastrophic forgetting. Although it achieves reasonable performance on new
tasks (e.g., 64.63% in Stage 4), its success rate on old tasks drops below 10% after Stage 2. Second,
C-Nav achieves a superior trade-off between stability and plasticity. While its new-task performance
is slightly lower than that of Data Replay in later stages, it substantially outperforms all baselines
on old tasks. Notably, in Stage 4, C-Nav attains an old-task success rate of 42.61%, which is 9.7
percentage points higher than the best baseline (Data Replay at 32.9%). This demonstrates that C-Nav
effectively mitigates catastrophic forgetting while preserving the ability to learn new navigation tasks.

Table 6: SR on new tasks across stages (HM3D). Table 7: SR on old tasks across stages (HM3D).

Method Stage 1 Stage2 Stage3 Stage 4 Method Stage 1 Stage2 Stage3 Stage 4
Finetuning 69.63 60.55 29.54 64.63 Finetuning 69.63 7.72 9.83 9.05
LoRA 69.63 60.55 38.08 69.15 LoRA 69.63 17.99 8.19 11.70
LwF 69.63 54.27 19.57 5798 LwF 69.63 16.19 8.64 10.22
Merge 69.63 16.08 4.63 21.81 Merge 69.63 66.03 41.62 25.12
Data Replay 69.63 59.80 29.18 68.35 DataReplay 69.63 54.60 48.92 32.94
C-Nav 69.63 54.52 26.33 63.30 C-Nav 69.63 61.38 52.27 42.61

24

C.2 Additional Analysis on Feature Consistency Loss

—e— Frozen Unfrozen
40 14
12
35 .
;\3 X 101
~ 30 _
o
n 5 8
25 6
20

4
Stage1l Stage2 Stage3 Stage4d Stage1l Stage2 Stage3 Stage4d

Figure 11: Ablation study: Freezing vs. unfreezing the multimodal encoder on MP3D Continual
ObjectNav. We conduct experiments using a transformer-based architecture.

To validate this design choice, we conducted an ablation study on the MP3D Continual ObjectNav
dataset by fully freezing the entire multimodal encoder. The results showed a performance drop across
learning stages, confirming that full freezing harms generalization and underscoring the necessity of
our consistency loss. Our feature consistency loss is designed to learn a shared feature space that
remains effective across both past and new tasks. Simply freezing the entire multimodal encoder [IT]
may preserve old knowledge but limits the model’s adaptability, especially when the original feature
space does not sufficiently capture new task-specific semantics. Instead, we selectively fine-tune the
modality-specific projectors within the encoder while applying consistency regularization to softly
align the old and new feature spaces. This design allows the representations to stay connected, yet
remain flexible enough to adapt to new tasks. It strikes a balance between preserving past knowledge
and enabling plasticity for future learning.

C.3 Ablation on Loss Weighting Coefficient A\ (MP3D)

Table 8: Ablation on A for loss weighting (MP3D).
A Stage 1 Stage 2 Stage 3 Stage 4
SR SPL SR SPL SR SPL SR SPL

1 3988 1332 38.00 1225 3541 11.00 36.22 10.85
5 3988 1332 3837 1229 3732 1097 36.81 11.90
10 39.88 1332 36.66 11.80 36.68 11.45 2529 9.51

We study the sensitivity of C-Nav to the loss weighting coefficient A, which balances the replay
loss (for retaining old knowledge) and the current-task loss (for learning new tasks). Table [§]reports
success rate (SR) and SPL across four sequential training stages on MP3D, using A € {1,5,10};
all other model configurations are identical. As X increases, the influence of replayed data as a
regularizer grows stronger in later stages. While this helps preserve prior knowledge, an excessively
large value (e.g., A = 10) over-constrains learning and hinders adaptation to new tasks, resulting
in a sharp performance drop in Stage 4 (SR = 25.29%). On the other hand, A = 1 offers too little
regularization, causing gradual forgetting of previously acquired skills. The setting A = 5 strikes an
effective balance: it yields slightly better overall performance than A = 1 while maintaining strong
retention of old tasks. Consequently, A = 5 achieves the best trade-off between stability and plasticity
and is adopted in all main experiments.

C.4 Results for the Dual-Path Anti-Forgetting Performance at Each Stage

To intuitively analyze the contribution of each component in C-Nav, we visualize the SR and SPL
curves for each stage. As shown in the Figure[T2] removing any component leads to a significant drop
in both SR and SPL across all four model architectures and two datasets. Additionally, we report
the average success rate for each component across the four architectures in Figure The results

25

reveal that the multimodal encoder is prone to bias across tasks, leading to more severe forgetting.
Specifically, removing the KD component causes substantial performance degradation: SR drops by
22.15 and 15.92 on HM3D-SR-Avg and MP3D-SR-Avg, respectively, and by 24.15 and 16.50 on
HM3D-SR-Last and MP3D-SR-Last.

—— w/oKD-SR —— w/oFP-SR —— All-SR
------ W/OKD-SPL ----— wf/oFP-SPL ----— All - SPL

HM3D-RNN HM3D-Trans HM3D-Bev HM3D-LLM

_60

2

(]

240

2

8

520

o

S3gems

Stagel Stage2 Stage3 Stage4 Stagel Stage2 Stage3 Stage4 Stagel Stage2 Stage3 Staged Stagel Stage2 Stage3 Staged

MP3D-RNN MP3D-Trans MP3D-Bev MP3D-LLM

S
o

Percentage (%)

N
o

o .
Stagel Stage2 Stage3 Stage4 Stagel Stage2 Stage3 Stage4 Stagel Stage2 Stage3 Staged4 Stagel Stage2 Stage3 Staged

Figure 12: Results for the dual-path anti-forgetting performance at each stage.

Average Success Rate of Each Component Across Four Architectures

HM3D-SR-Avg HM3D-SR-Last MP3D-SR-Avg MP3D-SR-Last
60 > 40
53.575 43875 | 38.250 36.280
5
50 40
o 41.350 o o 28.325 o
w
< = 29.350 2 g. 24.650
31.425 .
E, E E | 22 €| 19780
20
20
E Em 19.725 ‘E, E
1
0
0 10
10
10
s
o o o o
N <& N o & D) & N o & 2
& & & & & & &° &

Figure 13: Average success rate for each component across four architectures. HM3D-SR-Avg
and MP3D-SR-Avg denote the mean SR over all stages, while HM3D-SR-Last and MP3D-SR-Last
indicate the mean SR in the final stage, averaged across architectures.

26

C.5 Results for the Adaptive Experience Selection at Each Stage

In Figure [T4] we visualize the SR and SPL curves across different training stages under various
sampling strategies. Our adaptive sampling method achieves performance comparable to training
without any sampling, while clearly outperforming both uniform interval sampling and naive data
replay approaches. As shown in Figure[T3] the gains are particularly evident when compared to data
replay: our method improves the average success rate by 0.8 and 2.0 on HM3D-SR-Avg and MP3D-
SR-Avg, respectively, and by 0.625 and 4.625 on HM3D-SR-Last and MP3D-SR-Last. Compared
to uniform sampling, our approach yields even larger improvements, boosting HM3D-SR-Last and
MP3D-SR-Last by 3.375 and 7.3, respectively. These results demonstrate that our adaptive sampling
strategy not only maintains competitive overall performance but also significantly enhances learning
stability and final-stage effectiveness. By selective revisitation of information-rich trajectory frame
features, the model better retains knowledge across tasks, leading to more robust continual learning
in navigation scenarios

—— Uniform - SR ——— DP(Full) - SR —— Adaptive - SR Full - SR
—————— Uniform - SPL ------ DP(Full) - SPL ------ Adaptive - SPL ------ Full - SPL
. HM3D-RNN 70 HM3D-Trans 70 HM3D-Bev 70 HM3D-LLM
60
50
g
240
8
§30
]
5]
%20
10
0 0 0 0
stagel stage2 stage3 stage4 sStagel stage2 stage3 stage4 sStagel stage2 stage3 stage4 Stagel stage2 stage3 staged
<0 MP3D-RNN 50 MP3D-Trans 50 MP3D-Bev 50 MP3D-LLM
40
=
@30
g
€
820
&
10
0 0 0 0
stagel stage2 stage3 stage4 stagel stage2 stage3 stage4 stagel stage2 stage3 stage4 stagel stage2 stage3 staged
Figure 14: Results for the adaptive experience selection at each stage.
Average Success Rate of Different Sampling Methods Across Four Architectures
HM3D-SR-Avg HM3D-SR-Last MP3D-SR-Avg MP3D-SR-Last
60 50
w0
50.550 51.350 53.300 43.875| w0 36.900 38250 36.550 36.275
]47.700 39.575 40.200 33.675 34900 » 31.925
“136.825 : :
L129.250
40) o>)
2 g g 2
= Ew = £
£ 3 £ £
27 S 2 g
o] D 5 o o]
a a a a
15
20
o 10
10
10
s
0 0 o . 0
N 3 N N @ D N 3 » N @ D
T o I Y
X OQ ?‘6 S OQ ?‘é S OQ ?‘b S OQ ?‘b

Figure 15: Average success rate for different sample methods across four architectures.

27

	Introduction
	Related Work
	Object Goal Navigation
	Continual Learning

	Problem Definition and Benchmark
	The Proposed Method: C-Nav
	Dual-Path Anti-Forgetting
	Adaptive Experience Selection
	Overall Learning Objective of C-Nav

	Experiments
	Experimental Setup
	Experimental Results and Analysis

	Conclusion
	Dataset Details
	Category Splits for Continual ObjectNav
	Demonstration Trajectory Length Distribution for Continual ObjectNav

	Implementation Details
	Details about the Model Architecture
	Details about the Compared Continual Learning Methods
	The Pseudocode for C-Nav

	More Results
	Old vs. New Task Performance per Stage
	Additional Analysis on Feature Consistency Loss
	Ablation on Loss Weighting Coefficient (MP3D)
	Results for the Dual-Path Anti-Forgetting Performance at Each Stage
	Results for the Adaptive Experience Selection at Each Stage

