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Abstract

Time series forecasting holds significant value in various domains such as eco-
nomics, traffic, energy, and AIOps, as accurate predictions facilitate informed
decision-making. However, the existing Mean Squared Error (MSE) loss function
sometimes fails to accurately capture the seasonality or trend within the forecasting
horizon, even when decomposition modules are used in the forward propagation
to model the trend and seasonality separately. To address these challenges, we
propose a simple yet effective Decomposition-Based Loss function called DBLoss.
This method uses exponential moving averages to decompose the time series into
seasonal and trend components within the forecasting horizon, and then calculates
the loss for each of these components separately, followed by weighting them. As a
general loss function, DBLoss can be combined with any deep learning forecasting
model. Extensive experiments demonstrate that DBLoss significantly improves
the performance of state-of-the-art models across diverse real-world datasets and
provides a new perspective on the design of time series loss functions.

Resources: https://github.com/decisionintelligence/DBLoss.

1 Introduction

Time Series Forecasting holds significant value in various domains such as economics [Wang et al.,
2025a, Li et al., 2025a, Ma et al., 2025a, Liu et al., 2025a], traffic [Yue et al., 2025a, Ma et al.,
2025b,c, Liu et al., 2025b], energy [Wang et al., 2025b, Huang et al., 2025a, Ma et al., 2025d, Miao
et al., 2024], and AIOps [Wang et al., 2025c, Yue et al., 2024, Ma et al., 2025e, Wu et al., 2024a], as
accurate predictions facilitate astute decision-making. To pursue accurate predictions, recent progress
in Long-term Time Series Forecasting focuses on effectively capturing the inherent seasonality and
trend, which reflect the changing laws of the time series, i.e., the inductive bias. Recently, dozens of
deep learning models have been designed from light-weight to multi-scale, such as DLinear [Zeng
et al., 2023], OLinear [Yue et al., 2025b], CycleNet [Lin et al., 2024a], TimesNet [Wu et al., 2023],
TimeBase [Huang et al., 2025b], PDF [Dai et al., 2024], TimeMixer [Wang et al., 2024], and
DUET [Qiu et al., 2025a], which are aiming at capturing such inductive bias consistently within data
for more accurate predictions.

Technically, to capture the seasonality and trend within data, decomposition-based techniques are
widely applied to disentangle the seasonality and trend parts explicitly. For example, DLinear and
DUET apply the moving-average technique to obtain the trend part. TimesNet, PDF and TimeMixer
apply meticulously-designed seasonal decomposition modules to process the seasonal part, and
the CycleNet uses a learnable matrix to directly capture the seasonality. All these techniques are
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Figure 1: Limitations of MSE loss in capturing seasonality or trend within the forecasting horizon.

employed in the forward propagation to effectively extract the seasonal and trend components from
the contextual time series.

However, if the purpose of extracting seasonality and trend in the contextual time series is to improve
predictions, perhaps considering seasonality and trends directly in the forecasting horizon may further
enhance prediction performance. As shown in Figure 1, we observe that current distance-based loss
functions (such as MSE) have the following limitations: 1) they may make poor seasonal predictions;
2) they may make poor trend predictions; 3) they may make both poor seasonal and trend predictions.
Even when decomposition techniques are applied in the forward propagation, the seasonality and
trend within the forecasting horizon are not effectively modeled, indicating that the inductive bias is
not well applied to the predictions.

Inspired by the above motivation, we manage to explicitly encourage the modeling of the seasonality
and trend in the forecasting horizon to enhance the performance. Specifically, we propose a simple
yet effective Decomposition-Based Loss function called DBLoss. This method involves using
exponential moving averages [Stitsyuk and Choi, 2025] to decompose the time series into seasonal
and trend components within the forecasting horizon. It then calculates the loss for each of these
components separately and combines them with appropriate weighting. As a general loss function,
combining DBLoss with any deep learning forecasting model can lead to consistent improvement in
performance, which is demonstrated on real-world datasets from multiple domains. The contributions
are summarized as follows.

• We propose a simple yet effective loss function for time series forecasting, called DBLoss, which
can refine the characterization and representation of time series through decomposition within
the forecasting horizon.

• The proposed DBLoss is generally applicable to arbitrary deep neural networks with negligible
cost. By introducing DBLoss into the baseline, we have achieved performance that generally
surpasses the state-of-the-art on eight real-world datasets.

• We conduct extensive evaluations of DBLoss using quantitative analysis and qualitative visual-
izations to verify its effectiveness.

2 Related works

2.1 Time Series Forecasting Methods

Time series forecasting (TSF) predicts future observations based on historical observations. TSF
methods are mainly categorized into four distinct approaches: (1) statistical learning-based methods,
(2) machine learning-based methods, (3) deep learning-based methods, and (4) foundation methods.

Early TSF methods primarily rely on statistical learning approaches such as ARIMA [Box and Pierce,
1970], ETS [Hyndman et al., 2008], and VAR [Godahewa et al., 2021]. With advancements in machine
learning, methods like XGBoost [Chen and Guestrin, 2016], Random Forests [Breiman, 2001], and
LightGBM [Ke et al., 2017] gain popularity for handling nonlinear patterns. However, these methods
still require manual feature engineering and model design [Ma et al., 2025f, Wang et al., 2023, Wu
et al., 2025a]. Leveraging the representation learning of deep neural networks (DNNs) [Huang
et al., 2023, Miao et al., 2025, Wang et al., 2025d], many deep learning-based methods emerge.
TimesNet [Wu et al., 2023] and SegRNN [Lin et al., 2023] model time series as vector sequences,
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Figure 2: Overview of the proposed DBLoss.

using CNNs or RNNs to capture temporal dependencies. Additionally, Transformer architectures,
including DUET [Qiu et al., 2025a], Informer [Zhou et al., 2021], FEDformer [Zhou et al., 2022],
Triformer [Cirstea et al., 2022], and PatchTST [Nie et al., 2023], capture complex relationships
between time points more accurately, significantly improving forecasting performance. MLP-based
methods, including SparseTSF [Lin et al., 2024b], CycleNet [Lin et al., 2024a], SRSNet [Wu et al.,
2025b], NLinear [Zeng et al., 2023], and DLinear [Zeng et al., 2023], adopt simpler architectures
with fewer parameters but still achieve highly competitive forecasting accuracy.

However, many of these methods struggle with generalization across domains due to their reliance on
domain-specific data [Li et al., 2025b]. To address this, foundation methods are proposed, categorized
into LLM-based methods and time series pre-trained methods. LLM-based methods [Zhou et al.,
2023, Jin et al., 2024, Liu et al., 2024a, Pan et al., 2024] leverage the strong representational capacity
and sequential modeling capability of LLMs to capture complex patterns for time series modeling.
Time series pre-trained methods [Liu et al., 2024b, Gao et al., 2024, Goswami et al., 2024, Das
et al., 2024] focus on pre-training over multi-domain time series data, enabling the method to learn
domain-agnostic features that are transferable across various applications. This strategy not only
enhances performance on specific tasks but also provides greater flexibility when adapting to new
datasets or scenarios.

2.2 Loss Functions for Time Series Forecasting

Recently, to enhance the training performance of time series forecasting models, researchers have
introduced various novel loss functions. These loss functions can be broadly categorized into three
types: shape-based losses, dependency-based losses, and patch-based structural losses.

Shape-based losses aim to capture structural similarities between true values and predictions by
tackling the issue of shape mismatch. For example, techniques based on Dynamic Time Warping
(DTW), such as Soft-DTW [Cuturi and Blondel, 2017] and DILATE [Le Guen and Thome, 2019],
can achieve alignment even when time series undergo deformation. However, despite their excellent
performance in improving shape alignment, the high computational complexity of these methods
restricts their application in large-scale scenarios. Meanwhile, TILDE-Q [Lee et al., 2022] introduces
transformation invariance, making it robust to amplitude shifts, phase changes, and scale differences,
thus focusing more on similarity at the shape level. Dependency-based losses are dedicated to
characterizing temporal correlations within the forecasting horizon. For instance, FreDF [Wang et al.,
2025e] cleverly circumvents complex correlation modeling between labels by performing learning and
prediction in the frequency domain. Furthermore, patch-based structural losses like PSLoss [Kudrat
et al., 2025] incorporate patch-wise statistical properties into the loss function, enabling a more
granular structural measurement of the data. Unlike the aforementioned loss functions, our proposed
DBLoss refines the characterization and representation of time series through decomposition within
the forecasting horizon, offering a novel perspective for the design of time series loss functions.

3 DBLoss

A time series X ∈ RN×T is a time-oriented sequence of N-dimensional time points, where T is
the number of timestamps, and N is the number of channels. If N = 1, a time series is called
univariate, and multivariate if N > 1. Time Series Forecasting aims to predict the next F future
timestamps, formulated as Y = ⟨X:,T+1, · · · ,X:,T+F ⟩ ∈ RN×F based on the historical time
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series X = ⟨X:,1, · · · ,X:,T ⟩ ∈ RN×T with N channels and T timestamps. For convenience, we
separate dimensions with commas. Specifically, we denote Xi,j ∈ R as the i-th channel at the j-th
timestamp, Xn,: ∈ RT as the time series of n-th channel, where n = 1, · · · , N .

3.1 Overview

As shown in Figure 2, we first generate the prediction Ŷ using an arbitrary backbone method. Next,
we input both the prediction Ŷ and the ground truth Y into the EMA Decomposition Module to
decompose them into seasonal and trend components. Through this process, we obtain the seasonal
component ŶS and the trend component ŶT of the prediction, as well as the seasonal component YS

and the trend component YT of the ground truth. Subsequently, we compute the errors for both the
seasonal and trend components and then combine these errors using a weighted sum to form the final
loss function. This approach allows for a more accuracy evaluation of the differences between the
predicted and ground truth values, leading to more effective optimization and training.

3.2 EMA Decomposition Module

Seasonal-trend decomposition facilitates the learning of complex temporal patterns by breaking down
time series signals into trend and seasonal components. Trend components refer to the long-term
changes or patterns that occur over time, intuitively representing the overall direction of the data.
In contrast, seasonal components capture the phenomena in the time series that repeat at specific
intervals and are typically nonlinear due to the complexity and variability of periodic behavior. This
technique is widely applied in time series analysis methods [Wu et al., 2021, Zhou et al., 2022, Zeng
et al., 2023, Wang et al., 2024, Qiu et al., 2025a]. Unlike above methods, which typically extract
the trend and seasonal representations of the time series through decomposition and then combine
these two representations to obtain a more comprehensive time series representation for downstream
tasks, our DBLoss computes the loss by separately decomposing the prediction and the ground truth
into their trend and seasonal components. We then compute the losses for the trend and seasonal
components separately and finally combine these losses using a weighted sum. This process enables
the model to better capture the trends and seasonality of the ground truth, resulting in more accurate
predictions.

There are various methods for seasonal-trend decomposition, such as STL decomposition [Cleveland
et al., 1990], Simple Moving Average (SMA) decomposition [Wu et al., 2021, Qiu et al., 2025a,
Zeng et al., 2023], and Exponential Moving Average (EMA) decomposition [Stitsyuk and Choi,
2025]. In this study, we chose EMA decomposition. Specifically, after obtaining the prediction Ŷ
and the ground truth Y , we input them into the EMA decomposition module to decompose them into
their trend and seasonal components. We then compute the final loss in the weighted loss function
described in Section 3.3. Algorithm 1 details the calculation process of EMA decomposition module.

Algorithm 1 Calculation Process of EMA Decomposition Module

Input: Time series X ∈ RB×T×N , where B is the batch size, T is the time steps, and N is the number of
channels; Smoothing factor α ∈ (0, 1)
Output: Seasonality and Trend of X , denoted as Seasonality ∈ RB×T×N , T rend ∈ RB×T×N

1: Get the shape of X: B, T,N ← X.shape
2: Calculate the weights: W ← [(1− α)T−1, (1− α)T−2, · · · , 1]
3: Copy the weights to create a divisor: Ddiv ←W.clone()
4: Update the weights for EMA calculation: W [1 :]←W [1 :]× α
5: Reshape the weights and divisor:
6: W ←W.reshape(1, T, 1)
7: Ddiv ← Ddiv.reshape(1, T, 1)
8: Compute the cumulative sum of weighted data: C ← cumsum(X ×W, dim = 1)
9: Divide the cumulative sum by the divisor: Trend← C

Ddiv
10: Calculate the residual: Seasonality ← X − Trend
11: return Seasonality, T rend
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3.3 Weighted Loss Function

Based on the EMA decomposition, we obtain the predicted seasonal component ŶS and trend
component ŶT , as well as the corresponding ground truth values YS and YT . We then propose a
weighted loss function, which consists of two parts: the seasonal loss LS and the trend loss LT .

LS :=
∣∣∣ŶS − YS

∣∣∣
2
, LT :=

∣∣∣ŶT − YT

∣∣∣
1
. (1)

To prevent the loss of one component from dominating the optimization process due to scale differ-
ences, we introduce a scale alignment mechanism. Specifically, the trend loss is adaptively adjusted
according to the relative magnitude between LS and LT :

LT
aligned := LT × stopgrad

(
LS

LT + ϵ

)
, (2)

where ϵ is a small constant to ensure numerical stability. Here, stopgrad(·) denotes a gradient
detachment operation, which prevents the gradient from back-propagating through the alignment
ratio, thereby avoiding interference between the two loss components.

Finally, we define the total loss L as:

L := β · LS + (1− β) · LT
aligned, (3)

where β is a tuning parameter used to balance the contributions of the seasonal loss and the trend
loss. By adjusting the value of β, we can optimize the model’s training process according to specific
application scenarios.

We provide a theoretical analysis in Appendix C to explain why the proposed DBLoss is more
effective than the conventional MSE loss for time series forecasting.

4 Experiments

4.1 Setup

Datasets To conduct comprehensive and fair comparisons for different models, we conduct experi-
ments on eight well-known forecasting benchmarks as the target datasets, including ETT (ETTh1,
ETTh2, ETTm1, ETTm2), Solar, Weather, Electricity, and Traffic. For more details on the benchmark
datasets, please refer to Table 5 in Appendix A.

Backbones We selected eight state-of-the-art (SOTA) time series forecasting models to serve as
baselines. Specifically, we include four time series specific models: iTransformer [Liu et al., 2024c],
Amplifier [Fei et al., 2025], PatchTST [Nie et al., 2023], and DLinear [Zeng et al., 2023], as
well as four time series foundation models: CALF [Liu et al., 2025c], UniTS [Gao et al., 2024],
TTM [Ekambaram et al., 2024], and GPT4TS [Zhou et al., 2023].

Implementation Details To keep consistent with previous works, we adopt Mean Squared Error
(MSE) and Mean Absolute Error (MAE) as evaluation metrics. We consider four forecasting horizon
F : {96, 192, 336, 720} for all datasets. We utilize the comprehensive time series forecasting
benchmark TFB [Qiu et al., 2024] for unified evaluation, with all baseline results also derived from
TFB. Please note that for all the baseline scripts, we directly use the optimal scripts provided by TFB
and only replace the training loss function with DBLoss, without making any other modifications.
The purpose of this approach is to validate the effectiveness of DBLoss to the greatest extent possible.
By doing so, we can ensure the accuracy of the experimental results and clearly demonstrate the
performance improvements brought by DBLoss. We do not apply the “Drop Last” trick [Qiu et al.,
2024, 2025b,c] to ensure a fair comparison. All experiments of DBLoss are conducted using PyTorch
in Python 3.8 and executed on an NVIDIA Tesla-A800 GPU. The training process is guided by the
MSE loss function and employs the ADAM optimizer. The initial batch size is set to 64, with the
flexibility to halve it (down to a minimum of 8) in case of an Out-Of-Memory (OOM) issue.

4.2 Main results

We present the MSE and MAE of four state-of-the-art long-term multivariate forecasting models
on eight real-world datasets in Table 1. Notably, DBLoss observes performance improvements
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Table 1: Long-term multivariate forecasting results. The table reports MSE and MAE for different
forecasting horizons F ∈ {96, 192, 336, 720}. The parameters for the baselines are kept consistent
with those of TFB [Qiu et al., 2024]. The better results are highlighted in bold.

Model iTransformer Amplifier PatchTST DLinear

Loss Ori DBLoss Ori DBLoss Ori DBLoss Ori DBLoss

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.386 0.405 0.383 0.396 0.376 0.393 0.376 0.389 0.377 0.397 0.373 0.390 0.379 0.403 0.369 0.390
192 0.424 0.440 0.405 0.421 0.414 0.42 0.409 0.415 0.409 0.425 0.395 0.413 0.408 0.419 0.402 0.409
336 0.449 0.460 0.425 0.438 0.442 0.446 0.430 0.432 0.431 0.444 0.414 0.426 0.440 0.440 0.430 0.428
720 0.495 0.487 0.478 0.463 0.48 0.479 0.459 0.465 0.457 0.477 0.425 0.451 0.471 0.493 0.449 0.475
Avg 0.439 0.448 0.423 0.430 0.428 0.435 0.419 0.425 0.419 0.436 0.402 0.420 0.425 0.439 0.412 0.425

E
T

T
h2

96 0.297 0.348 0.288 0.337 0.291 0.342 0.288 0.332 0.274 0.337 0.274 0.334 0.300 0.364 0.284 0.342
192 0.372 0.403 0.357 0.389 0.355 0.4 0.344 0.379 0.348 0.384 0.334 0.376 0.387 0.423 0.357 0.390
336 0.388 0.417 0.385 0.416 0.384 0.42 0.377 0.405 0.377 0.416 0.349 0.392 0.490 0.487 0.407 0.430
720 0.424 0.444 0.427 0.443 0.422 0.451 0.400 0.437 0.406 0.441 0.390 0.422 0.704 0.597 0.586 0.533
Avg 0.370 0.403 0.364 0.396 0.363 0.403 0.352 0.388 0.351 0.395 0.337 0.381 0.470 0.468 0.409 0.424

E
T

T
m

1

96 0.300 0.353 0.290 0.341 0.293 0.347 0.287 0.335 0.289 0.343 0.284 0.328 0.300 0.345 0.295 0.337
192 0.341 0.380 0.328 0.363 0.329 0.367 0.328 0.359 0.329 0.368 0.322 0.355 0.336 0.366 0.331 0.358
336 0.374 0.396 0.368 0.386 0.365 0.387 0.364 0.380 0.362 0.390 0.359 0.376 0.367 0.386 0.361 0.378
720 0.429 0.430 0.415 0.415 0.429 0.422 0.424 0.413 0.416 0.423 0.410 0.412 0.419 0.416 0.415 0.409
Avg 0.361 0.390 0.350 0.376 0.354 0.381 0.351 0.372 0.349 0.381 0.344 0.368 0.356 0.378 0.351 0.370

E
T

T
m

2

96 0.175 0.266 0.166 0.254 0.168 0.258 0.163 0.245 0.165 0.255 0.163 0.246 0.164 0.255 0.163 0.247
192 0.242 0.312 0.227 0.295 0.227 0.298 0.222 0.288 0.221 0.293 0.219 0.284 0.224 0.304 0.220 0.290
336 0.282 0.337 0.278 0.330 0.276 0.334 0.271 0.322 0.276 0.327 0.273 0.320 0.277 0.337 0.277 0.329
720 0.375 0.394 0.375 0.388 0.364 0.394 0.350 0.373 0.362 0.381 0.357 0.374 0.371 0.401 0.366 0.390
Avg 0.269 0.327 0.262 0.317 0.259 0.321 0.252 0.307 0.256 0.314 0.253 0.306 0.259 0.324 0.257 0.314

So
la

r

96 0.190 0.244 0.180 0.215 0.184 0.239 0.189 0.226 0.170 0.234 0.167 0.211 0.199 0.265 0.202 0.236
192 0.193 0.257 0.201 0.239 0.202 0.252 0.208 0.239 0.204 0.302 0.182 0.226 0.220 0.282 0.224 0.250
336 0.203 0.266 0.195 0.232 0.232 0.274 0.235 0.251 0.212 0.293 0.187 0.232 0.234 0.295 0.237 0.256
720 0.223 0.281 0.232 0.265 0.229 0.276 0.242 0.256 0.215 0.307 0.197 0.237 0.243 0.301 0.245 0.260
Avg 0.202 0.262 0.202 0.238 0.212 0.260 0.219 0.243 0.200 0.284 0.183 0.227 0.224 0.286 0.227 0.251

W
ea

th
er

96 0.157 0.207 0.154 0.196 0.147 0.199 0.145 0.189 0.150 0.200 0.149 0.189 0.170 0.230 0.169 0.221
192 0.200 0.248 0.197 0.239 0.188 0.238 0.186 0.228 0.191 0.239 0.189 0.229 0.216 0.273 0.216 0.262
336 0.252 0.287 0.249 0.278 0.239 0.276 0.239 0.269 0.242 0.279 0.240 0.270 0.258 0.307 0.253 0.293
720 0.320 0.336 0.319 0.335 0.316 0.328 0.316 0.323 0.312 0.330 0.314 0.322 0.323 0.362 0.319 0.346
Avg 0.232 0.270 0.230 0.262 0.223 0.260 0.221 0.252 0.224 0.262 0.223 0.252 0.242 0.293 0.239 0.280

E
le

ct
ri

ci
ty 96 0.134 0.230 0.131 0.226 0.132 0.227 0.133 0.227 0.143 0.247 0.143 0.244 0.140 0.237 0.140 0.235

192 0.154 0.250 0.149 0.242 0.149 0.241 0.147 0.239 0.158 0.260 0.158 0.257 0.154 0.251 0.154 0.247
336 0.169 0.265 0.163 0.257 0.165 0.258 0.163 0.256 0.168 0.267 0.165 0.259 0.169 0.268 0.169 0.264
720 0.194 0.288 0.195 0.284 0.203 0.292 0.203 0.290 0.214 0.307 0.214 0.304 0.204 0.301 0.203 0.295
Avg 0.163 0.258 0.160 0.252 0.162 0.255 0.162 0.253 0.171 0.270 0.170 0.266 0.167 0.264 0.167 0.260

Tr
af

fic

96 0.363 0.265 0.366 0.261 0.396 0.278 0.393 0.270 0.370 0.262 0.369 0.254 0.395 0.275 0.396 0.270
192 0.384 0.273 0.387 0.271 0.413 0.285 0.412 0.275 0.386 0.269 0.385 0.260 0.407 0.280 0.407 0.274
336 0.396 0.277 0.397 0.275 0.421 0.291 0.422 0.286 0.396 0.275 0.395 0.266 0.417 0.286 0.415 0.279
720 0.445 0.308 0.444 0.306 0.456 0.307 0.456 0.304 0.435 0.295 0.432 0.286 0.454 0.308 0.449 0.298
Avg 0.397 0.281 0.399 0.278 0.422 0.290 0.421 0.284 0.397 0.275 0.395 0.267 0.418 0.287 0.417 0.280

across all backbone models and significantly outperforms MSE loss in most cases. This validates
the robustness and broad applicability of the proposed loss function. Furthermore, DBLoss achieves
significant improvements on models that have already adopted trend-seasonal decomposition to
further extract better model representations, such as DLinear [Zeng et al., 2023]. This indicates that
performing trend-seasonal decomposition during the loss computation does not conflict with the
previous trend-seasonal decomposition operations but rather enhances model performance.

4.3 Comparison with Other Loss Functions

To better validate the effectiveness of DBLoss, we compare it with several other loss functions—see
Table 2. TILDE-Q emphasizes shape similarity using transformation-invariant loss terms. FreDF
cleverly circumvents complex correlation modeling between labels by performing learning and
prediction in the frequency domain. PSLoss incorporates patch-wise statistical properties into the
loss function, enabling a more granular structural measurement of the data. The results indicate that
DBLoss achieves the lowest MSE and MAE in most cases across various datasets and forecasting
horizons. This is due to its ability to refine the characterization and representation of time series
through decomposition within the forecasting horizon, thereby achieving a more precise alignment
between the ground truth and predictions.

6



Table 2: Comparison between the proposed DBLoss and other loss functions. The model is DLinear
and we report the result of three datasets-ETTh2, ETTm1, and Traffic. The best results are highlighted
in bold, and the second-best results are highlighted in underline.

Dataset ETTh2 ETTm1 Traffic

Forecast horizon 96 192 336 720 Avg 96 192 336 720 Avg 96 192 336 720 Avg

Ori
MSE 0.300 0.387 0.490 0.704 0.470 0.300 0.336 0.367 0.419 0.356 0.395 0.407 0.417 0.454 0.418
MAE 0.364 0.423 0.487 0.597 0.468 0.345 0.366 0.386 0.416 0.378 0.275 0.280 0.286 0.308 0.287

TILDE-Q MSE 0.287 0.362 0.425 0.599 0.418 0.302 0.336 0.371 0.425 0.359 0.416 0.422 0.423 0.461 0.431
(2022) MAE 0.345 0.395 0.445 0.551 0.434 0.342 0.362 0.386 0.417 0.377 0.294 0.296 0.293 0.316 0.300

FreDF MSE 0.284 0.362 0.420 0.587 0.413 0.302 0.333 0.363 0.415 0.353 0.398 0.408 0.416 0.452 0.419
(2025e) MAE 0.342 0.396 0.445 0.546 0.432 0.344 0.363 0.381 0.411 0.375 0.270 0.275 0.280 0.302 0.282

PSLoss MSE 0.283 0.358 0.411 0.614 0.417 0.296 0.332 0.361 0.416 0.351 0.398 0.408 0.416 0.452 0.419
(2025) MAE 0.343 0.393 0.434 0.549 0.430 0.339 0.361 0.380 0.413 0.373 0.270 0.274 0.279 0.299 0.281

DBLoss MSE 0.284 0.357 0.407 0.586 0.409 0.295 0.331 0.361 0.415 0.351 0.396 0.407 0.415 0.449 0.417
(Ours) MAE 0.342 0.390 0.430 0.533 0.424 0.337 0.358 0.378 0.409 0.370 0.270 0.274 0.279 0.298 0.280

Table 3: Zero-shot forecasting results on ETT datasets. The forecasting horizon is 720. The
parameters for the baselines are kept consistent with those of TFB [Qiu et al., 2024]. The better
results are highlighted in bold.

Model iTransformer Amplifier PatchTST DLinear

Loss Ori DBLoss Ori DBLoss Ori DBLoss Ori DBLoss

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1→ETTh2 0.461 0.470 0.434 0.446 0.393 0.427 0.401 0.431 0.402 0.437 0.389 0.427 0.647 0.573 0.542 0.520
ETTh1→ETTm1 1.061 0.676 0.771 0.592 0.777 0.571 0.758 0.576 0.753 0.590 0.722 0.570 0.754 0.602 0.735 0.584
ETTh1→ETTm2 0.454 0.447 0.434 0.420 0.406 0.415 0.412 0.414 0.403 0.414 0.400 0.410 0.640 0.566 0.535 0.510
ETTh2→ETTh1 0.672 0.593 0.557 0.521 0.678 0.592 0.530 0.515 0.593 0.556 0.484 0.490 0.506 0.521 0.450 0.477
ETTh2→ETTm1 0.969 0.659 0.802 0.594 0.761 0.585 0.714 0.564 0.762 0.577 0.738 0.551 0.752 0.608 0.738 0.579
ETTh2→ETTm2 0.417 0.428 0.436 0.422 0.403 0.417 0.403 0.415 0.393 0.409 0.395 0.404 0.787 0.629 0.580 0.526
ETTm1→ETTh1 0.705 0.598 0.528 0.516 0.500 0.494 0.482 0.488 0.710 0.594 0.553 0.534 0.460 0.481 0.445 0.468
ETTm1→ETTh2 0.433 0.460 0.409 0.444 0.425 0.446 0.421 0.445 0.418 0.451 0.431 0.452 0.427 0.464 0.404 0.444
ETTm1→ETTm2 0.369 0.389 0.370 0.387 0.369 0.384 0.372 0.384 0.370 0.391 0.367 0.384 0.389 0.416 0.367 0.394
ETTm2→ETTh1 1.001 0.704 0.775 0.613 0.542 0.524 0.479 0.491 0.896 0.695 0.617 0.577 0.488 0.497 0.460 0.481
ETTm2→ETTh2 0.477 0.486 0.456 0.468 0.444 0.464 0.414 0.439 0.412 0.449 0.400 0.431 0.415 0.452 0.410 0.445
ETTm2→ETTm1 0.662 0.566 0.551 0.498 0.652 0.547 0.478 0.452 0.484 0.451 0.452 0.429 0.449 0.439 0.436 0.430

4.4 Zero-shot Forecasting Results

To evaluate the effectiveness of DBLoss in enhancing the generalization ability on unseen datasets,
we follow the methods outlined in [Chen et al., 2024, Kudrat et al., 2025] and conduct zero-shot
forecasting experiments. Specifically, we sequentially use ETTh1, ETTh2, ETTm1, and ETTm2 as
source datasets, while the remaining datasets serve as target datasets.

Table 3 shows the results measured on the target datasets when the forecasting horizon is set to 720.
These results highlight the consistent advantages of DBLoss. In most cases, DBLoss outperforms
MSE loss, indicating that it can significantly improve the model’s generalization performance across
different datasets and sampling frequencies. These improvements stem from DBLoss’s ability to
better capture the intrinsic trends and seasonal patterns within the datasets, thereby enabling the
model to more effectively adapt to unseen data patterns.

4.5 Results on Time Series Foundation Models

To further evaluate the effectiveness of the proposed DBLoss, we conducted 5% few-shot experiments
on four time series foundation models, using DBLoss only during the fine-tuning stage. These models
include two LLM-based time series forecasting models: CALF [Liu et al., 2025c], GPT4TS [Zhou
et al., 2023], as well as two time series pre-trained models: UniTS [Gao et al., 2024], TTM [Ekam-
baram et al., 2024]. The results in Table 4 show that incorporating DBLoss consistently outperforms
the standard MSE loss. These findings highlight that DBLoss not only enhances performance on
specific models but also improves the performance of foundation models, further demonstrating its
significant role in multivariate time series forecasting.
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Table 4: Foundation models results in the 5% few-shot setting. The table reports average MSE and
MAE for four forecasting lengths F ∈ {96, 192, 336, 720}. The parameters for the baselines are kept
consistent with those of TSFM-Bench [Li et al., 2025c]. The better results are highlighted in bold.
Full results are provided in Table 10 of Appendix G

Model GPT4TS CALF TTM UniTS

Loss Ori DBLoss Ori DBLoss Ori DBLoss Ori DBLoss

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.467 0.470 0.453 0.462 0.443 0.454 0.433 0.446 0.405 0.425 0.395 0.417 0.436 0.434 0.425 0.427
ETTh2 0.373 0.414 0.368 0.406 0.373 0.407 0.368 0.404 0.342 0.383 0.332 0.378 0.372 0.405 0.357 0.393
ETTm1 0.388 0.404 0.377 0.394 0.372 0.396 0.358 0.382 0.356 0.376 0.354 0.372 0.377 0.402 0.362 0.386
ETTm2 0.278 0.335 0.266 0.320 0.271 0.332 0.259 0.316 0.258 0.313 0.257 0.308 0.292 0.344 0.270 0.320

Solar 0.262 0.335 0.254 0.279 0.229 0.297 0.246 0.300 0.219 0.269 0.224 0.266 0.206 0.261 0.214 0.246
Weather 0.253 0.293 0.248 0.284 0.238 0.277 0.236 0.272 0.225 0.260 0.225 0.256 0.230 0.269 0.231 0.260

Electricity 0.207 0.317 0.207 0.309 0.172 0.268 0.171 0.264 0.179 0.277 0.178 0.274 0.180 0.275 0.181 0.274
Traffic 0.433 0.309 0.428 0.295 0.435 0.316 0.433 0.309 0.484 0.341 0.481 0.339 0.422 0.289 0.420 0.282

4.6 Impact of DBLoss on Generalization

To examine how DBLoss affects training dynamics and generalization capabilities, we use both MSE
loss and DBLoss as objective functions and visualize the MSE on the training and testing datasets
across all training epochs—see Figure 3. We observe a consistent trend across all datasets. During
training, models optimized with only MSE loss have lower errors per epoch compared to those
optimized with DBLoss. However, on the test data, models trained with MSE loss exhibit higher
errors per epoch than those trained with DBLoss. These observations indicate that while models
trained with MSE loss have lower losses during the training phase, they generalize poorly on test data.
In contrast, DBLoss enhances the model’s generalization and prediction accuracy by encouraging
the model to learn the trends and seasonal patterns in the dataset. Additionally, models trained with
MSE loss show significant MSE fluctuations in the test loss on some datasets (e.g., Figure 3b and
Figure 3d), whereas DBLoss demonstrates greater stability.
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(a) Results on ETTh1 dataset
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(b) Results on ETTm2 dataset
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(c) Results on Weather dataset
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(d) Results on Solar dataset

Figure 3: Training and testing MSE loss curves across all training epochs for the iTransformer model
trained with MSE loss and DBLoss on the ETTh1, ETTm2, Weather, and Solar datasets. Notably, the
model trained with DBLoss exhibits higher training errors but achieves lower testing errors. This
highlights the effectiveness of DBLoss in enhancing generalization and mitigating overfitting.
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4.7 Hyperparameter Sensitivity

Our method has two hyperparameters: the score weight β for weighted loss and the smooth-
ing factor α for EMA decomposition. To handle extreme cases, we manually replace α = 0
and α = 1 with approximate values close to 0 and 1, respectively. Specifically, a larger β in-
creases the proportion of the seasonal component in the loss calculation, while a smaller α results
in heavier smoothing, making the trend smoother and the seasonal component more prominent.
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Figure 4: The impact of the hyperparameter on ETTh2 and
Traffic based DLinear (horizon 96).

Conversely, a larger α results in less
smoothing, making the trend less
smooth and the seasonal component
less noticeable. From Figure 4, we
have the following observations: 1)
When β is too large (e.g., β = 1) or
too small (e.g., β = 0), the model’s
performance is poor. 2) For datasets
with pronounced seasonality, such as
traffic, a larger score weight β (i.e.,
considering a higher proportion of the
seasonal component in the loss cal-
culation) yields better performance.
A smaller smoothing factor α (i.e.,
making the seasonal component more
prominent) also improves performance. 3) For datasets with less pronounced seasonality, such as
ETTh2, a moderate β value (e.g., 0.4 or 0.5) achieves better results, indicating that the proportions of
the seasonal and trend components should be balanced. The variation in the smoothing factor α has a
minimal impact on performance. 4) However, we find that the optimal values of α and β may vary
across different algorithms. At present, there is no definitive method for selecting these parameters.
We discuss this limitation in Appendix H and leave it as an open problem for future research.

4.8 Forecasting Visualization

Figure 5 shows the visualization of forecasting results for samples from the ETTh1 dataset. We can
observe that the predictions obtained with DBLoss are closer to the ground truth. This is mainly
because DBLoss encourages the model to better learn the seasonal and trend patterns in the dataset.
More visualization results are provided in Appendix D.
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Figure 5: Forecasting visualization comparing DBLoss and MSE loss as objective functions.

5 Conclusion

In this study, we propose DBLoss to address the traditional MSE that sometimes fails to accurately
capture the seasonality or trend within the forecasting horizon, even when decomposition modules
are used in the forward propagation to model the trend and seasonality separately. Specifically, our
method uses exponential moving averages to decompose the time series into seasonal and trend
components within the forecasting horizon, and then calculates the loss for each of these components
separately, followed by weighting them. By introducing DBLoss into the baseline model, we have
achieved performance that surpasses the state-of-the-art on eight real-world datasets. Additionally,
all datasets and code are available at https://github.com/decisionintelligence/DBLoss.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and introduction accurately reflect our contri-
butions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of DBLoss in the Appendix H.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: This paper includes the theoretical analysis.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide complete experimental details in Section 4.1. Additionally, we have
shared the full reproducible code and datasets in an anonymous repository (link provided
under the abstract).

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide an anonymous link to the code (under the abstract) and describe
how to reproduce the experimental results in the README file of the code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We describe the complete experimental details in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the standard deviations of the results for all the loss functions under
different settings in Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The proposed DBLoss is generally applicable to arbitrary deep neural networks
with negligible cost.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research aligns with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper focuses on advancing the field of machine learning. While our work
may have various societal implications, we believe none are significant enough to warrant
specific mention here.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

18

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The code and datasets used in the paper are publicly available and properly
credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will make the code publicly available upon acceptance of the paper and
provide detailed documentation.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our propsosed method does not include any component related to LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Datasets

To conduct comprehensive and fair comparisons for different models, we conduct experiments on
eight well-known forecasting benchmarks as the target datasets, including (I) ETT (Electricity
Transformer Temperature, 4 subsets) data contains seven features of electricity transformer data
collected from two separate counties between July 2016 and July 2018. These datasets vary in
granularity, with “h” indicating hourly data and “m” indicating 15-minute intervals. The suffixes “1”
and “2” refer to two different regions from which the datasets originated. (II) Weather data includes
21 meteorological factors recorded every 10 minutes in 2020 at the Max Planck Biogeochemistry
Institute’s Weather Station. (III) Electricity data contains hourly electricity consumption data of 321
clients from 2012 to 2014. (IV) Solar data records the solar power production of 137 PV plants in
2006, which are sampled every 10 minutes. (V) Traffic data contains road occupancy rates measured
by 862 sensors on freeways in the San Francisco Bay Area from 2015 to 2016, recorded hourly.

Table 5: Statistics of datasets.

Dataset Domain Frequency Lengths Dim Split Description

ETTh1 Electricity 1 hour 14,400 7 6:2:2 Power transformer 1, comprising seven indicators such as oil temperature and useful load
ETTh2 Electricity 1 hour 14,400 7 6:2:2 Power transformer 2, comprising seven indicators such as oil temperature and useful load
ETTm1 Electricity 15 mins 57,600 7 6:2:2 Power transformer 1, comprising seven indicators such as oil temperature and useful load
ETTm2 Electricity 15 mins 57,600 7 6:2:2 Power transformer 2, comprising seven indicators such as oil temperature and useful load
Weather Environment 10 mins 52,696 21 7:1:2 Recorded every for the whole year 2020, which contains 21 meteorological indicators
Electricity Electricity 1 hour 26,304 321 7:1:2 Electricity records the electricity consumption in kWh every 1 hour from 2012 to 2014
Solar Energy 10 mins 52,560 137 6:2:2 Solar production records collected from 137 PV plants in Alabama
Traffic Traffic 1 hour 17,544 862 7:1:2 Road occupancy rates measured by 862 sensors on San Francisco Bay area freeways

B Related Works

Time series forecasting (TSF) predicts future observations based on historical observations. TSF
methods are mainly categorized into four distinct approaches: (1) statistical learning-based methods,
(2) machine learning-based methods, (3) deep learning-based methods, and (4) foundation methods.

Early TSF methods primarily rely on statistical learning approaches such as ARIMA [Box and Pierce,
1970], ETS [Hyndman et al., 2008], and VAR [Godahewa et al., 2021]. With advancements in
machine learning, methods like XGBoost [Chen and Guestrin, 2016], Random Forests [Breiman,
2001], and LightGBM [Ke et al., 2017] gain popularity for handling nonlinear patterns. However,
these methods still require manual feature engineering and model design [Wu et al., 2024b, Lu
et al., 2024, Li et al., 2025d, Fu et al., 2025, Lu et al., 2025, Li et al., 2025e, Zhou et al., 2025].
Leveraging the representation learning of deep neural networks (DNNs) [Qiu et al., 2025d, Li
et al., 2025f, Huang et al., 2025c, Yang et al., 2024, Lu et al., 2023, Wang et al., 2025f], many
deep learning-based methods emerge. TimesNet [Wu et al., 2023] and SegRNN [Lin et al., 2023]
model time series as vector sequences, using CNNs or RNNs to capture temporal dependencies.
Additionally, Transformer architectures, including DUET [Qiu et al., 2025a], Informer [Zhou et al.,
2021], DAG [Qiu et al., 2025e], FEDformer [Zhou et al., 2022], Triformer [Cirstea et al., 2022], and
PatchTST [Nie et al., 2023], capture complex relationships between time points more accurately,
significantly improving forecasting performance. MLP-based methods, including Hdmixer [Huang
et al., 2024], SparseTSF [Lin et al., 2024b], CycleNet [Lin et al., 2024a], APN [Liu et al., 2025d],
SRSNet [Wu et al., 2025b], NLinear [Zeng et al., 2023], and DLinear [Zeng et al., 2023], adopt
simpler architectures with fewer parameters but still achieve highly competitive forecasting accuracy.

However, many of these methods struggle with generalization across domains due to their reliance on
domain-specific data [Li et al., 2025b]. To address this, foundation methods are proposed, categorized
into LLM-based methods and time series pre-trained methods. LLM-based methods [Zhou et al.,
2023, Jin et al., 2024, Liu et al., 2024a, Pan et al., 2024] leverage the strong representational capacity
and sequential modeling capability of LLMs to capture complex patterns for time series modeling.
Time series pre-trained methods [Liu et al., 2024b, Gao et al., 2024, Goswami et al., 2024, Das
et al., 2024] focus on pre-training over multi-domain time series data, enabling the method to learn
domain-agnostic features that are transferable across various applications. This strategy not only
enhances performance on specific tasks but also provides greater flexibility when adapting to new
datasets or scenarios.
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C Theoretical Proofs

In this section, we provide a theoretical analysis to explain why the proposed DBLoss is more
effective than the conventional MSE loss in time series forecasting.

Motivated by the success of recent methods such as DLinear Zeng et al. [2023], DUET Qiu et al.
[2025a], TimeMixer Wang et al. [2024], and xPatch Stitsyuk and Choi [2025], which model time
series by decomposing them into trend and seasonal components, achieving excellent performance,
we assume that the trend and seasonal components are highly independent..

C.1 Problem Formulation

Let the original time series be denoted as yt, which can be decomposed into a trend component Tt

and a seasonal component St:
yt = Tt + St. (4)

Similarly, the model prediction ŷt can be expressed as:

ŷt = T̂t + Ŝt. (5)

C.2 Analysis of MSE Loss

Under this setting, the Mean Squared Error (MSE) can be expanded as:

LMSE = ∥yt − ŷt∥22 = ∥(Tt + St)− (T̂t + Ŝt)∥22
= ∥(Tt − T̂t) + (St − Ŝt)∥22
= ∥Tt − T̂t∥22 + ∥St − Ŝt∥22 + 2 · (Tt − T̂t)(St − Ŝt). (6)

The key part from MSE lies in the cross term 2 · (Tt − T̂t)(St − Ŝt). Our assumption is that
the trend and seasonal components are highly independent.However, this cross term introduces an
interaction between them, potentially making it difficult for the model to optimize the two components
independently, which can degrade the overall prediction performance. For instance, if the trend
component is poorly predicted while the seasonal component is well captured, the interaction term
can still yield a large negative value of 2 · (Tt − T̂t)(St − Ŝt), disproportionately affecting the total
loss.

C.3 Gradient Analysis of MSE

We further analyze the MSE loss from the perspective of gradient propagation, and reveal MSE
loss being unable to independently consider these two components during the optimization process.
According to the chain rule:

∇ΘLt = 2 · [(Tt − T̂t) + (St − Ŝt)] · ∇Θ(−T̂t − Ŝt)

= −2 · [(Tt − T̂t) + (St − Ŝt)] · (∇ΘT̂t +∇ΘŜt). (7)

Let the Jacobians of the trend and seasonal components be:

JT := ∇ΘT̂t, JS := ∇ΘŜt. (8)

Then the gradient can be expressed as:

∇ΘLt = −2 ·
[
(Tt − T̂t)JT + (Tt − T̂t)JS + (St − Ŝt)JT + (St − Ŝt)JS

]
. (9)

We decompose this gradient into two parts:

(1) Ideal Decoupled Term

Gideal = −2 ·
[
(Tt − T̂t)JT + (St − Ŝt)JS

]
, (10)

which represents the desired independent optimization of the two components.
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(2) Coupled Term
Gcoupling = −2 ·

[
(Tt − T̂t)JS + (St − Ŝt)JT

]
. (11)

The coupled term Gcoupling causes mutual interference: the trend error influences the seasonal
optimization and vice versa. As long as Tt ̸= T̂t or St ̸= Ŝt (i.e., the model has not converged),
Gcoupling ̸= 0, meaning that the optimization of one component will inevitably affect the other.

C.4 Analysis of DBLoss

LDB = β · ∥Ŝt − St∥22 + (1− β) · ∥T̂t − Tt∥1, (12)
where β is hyperparameters controlling the relative weights of the trend and seasonal components.

Unlike MSE, DBLoss explicitly separates the optimization of the two components, thus removing the
coupling term Gcoupling from the gradient computation. Furthermore, by adjusting the coefficients or
using different distance norms, one can precisely control the loss scale for each component, enabling
targeted learning and better modeling of both parts.

D Visualization
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(a) Forecasting visualization on ETTh1 dataset
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(b) Forecasting visualization on ETTm2 dataset
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(c) Forecasting visualization on Weather dataset
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(d) Forecasting visualization on Solar dataset

Figure 6: Forecasting visualization comparing DBLoss and MSE loss as objective functions.
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E Comparison with Other Loss Functions

Table 6: Comparison between the proposed DBLoss and other loss functions. The model is DLinear
and we report the result of ETTh2. The best results are highlighted in bold, and the second-best
results are highlighted in underline. The standard deviation of methods calculated through 5 random
seeds are also reported.

Dataset ETTh2

Forecast horizon 96 192 336 720 Avg

Ori
MSE 0.300±0.002 0.387±0.001 0.490±0.001 0.704±0.004 0.470±0.001

MAE 0.364±0.002 0.423±0.002 0.487±0.002 0.597±0.001 0.468±0.002

TILDE-Q MSE 0.287±0.002 0.362±0.001 0.425±0.002 0.599±0.001 0.418±0.002

(2022) MAE 0.345±0.004 0.395±0.001 0.445±0.002 0.551±0.002 0.434±0.001

FreDF MSE 0.284±0.001 0.362±0.001 0.420±0.002 0.587±0.002 0.413±0.001

(2025e) MAE 0.342±0.003 0.396±0.002 0.445±0.004 0.546±0.003 0.432±0.003

PSLoss MSE 0.283±0.002 0.358±0.002 0.411±0.002 0.614±0.003 0.417±0.002

(2025) MAE 0.343±0.003 0.393±0.004 0.434±0.002 0.549±0.003 0.430±0.002

DBLoss MSE 0.284±0.002 0.357±0.003 0.407±0.002 0.586±0.001 0.409±0.001

(Ours) MAE 0.342±0.001 0.390±0.001 0.430±0.001 0.533±0.004 0.424±0.002

Table 7: Comparison between the proposed DBLoss and other loss functions. The model is DLinear
and we report the result of ETTm1. The best results are highlighted in bold, and the second-best
results are highlighted in underline. The standard deviation of methods calculated through 5 random
seeds are also reported.

Dataset ETTm1

Forecast horizon 96 192 336 720 Avg

Ori
MSE 0.300±0.003 0.336±0.002 0.367±0.002 0.419±0.003 0.356±0.005

MAE 0.345±0.002 0.366±0.002 0.386±0.003 0.416±0.003 0.378±0.003

TILDE-Q MSE 0.302±0.002 0.336±0.002 0.371±0.002 0.425±0.003 0.359±0.003

(2022) MAE 0.342±0.005 0.362±0.003 0.386±0.002 0.417±0.002 0.377±0.002

FreDF MSE 0.302±0.003 0.333±0.004 0.363±0.001 0.415±0.001 0.353±0.003

(2025e) MAE 0.344±0.001 0.363±0.001 0.381±0.003 0.411±0.002 0.375±0.002

PSLoss MSE 0.296±0.001 0.332±0.003 0.361±0.001 0.416±0.004 0.351±0.001

(2025) MAE 0.339±0.002 0.361±0.001 0.380±0.002 0.413±0.001 0.373±0.001

DBLoss MSE 0.295±0.001 0.331±0.002 0.361±0.002 0.415±0.001 0.351±0.002

(Ours) MAE 0.337±0.001 0.358±0.001 0.378±0.001 0.409±0.001 0.370±0.002

Table 8: Comparison between the proposed DBLoss and other loss functions. The model is DLinear
and we report the result of Traffic. The best results are highlighted in bold, and the second-best
results are highlighted in underline. The standard deviation of methods calculated through 5 random
seeds are also reported.

Dataset Traffic

Forecast horizon 96 192 336 720 Avg

Ori
MSE 0.395±0.001 0.407±0.001 0.417±0.001 0.454±0.003 0.418±0.002

MAE 0.275±0.002 0.280±0.001 0.286±0.001 0.308±0.001 0.287±0.002

TILDE-Q MSE 0.416±0.003 0.422±0.004 0.423±0.001 0.461±0.002 0.431±0.003

(2022) MAE 0.294±0.002 0.296±0.001 0.293±0.002 0.316±0.003 0.300±0.002

FreDF MSE 0.398±0.001 0.408±0.004 0.416±0.002 0.452±0.001 0.419±0.001

(2025e) MAE 0.270±0.001 0.275±0.003 0.280±0.002 0.302±0.002 0.282±0.001

PSLoss MSE 0.398±0.001 0.408±0.001 0.416±0.003 0.452±0.005 0.419±0.002

(2025) MAE 0.270±0.001 0.274±0.001 0.279±0.001 0.299±0.003 0.281±0.002

DBLoss MSE 0.396±0.001 0.407±0.001 0.415±0.001 0.449±0.005 0.417±0.002

(Ours) MAE 0.270±0.001 0.274±0.001 0.279±0.001 0.298±0.003 0.280±0.002
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F Efficiency

Table 9 presents the epoch-level training times (in seconds) of PatchTST when using DBLoss and
MSE across different datasets. The results show the average values for the four forecasting horizons
of each dataset, with the same parameters, where only MSE is replaced by DBLoss. Based on the
experimental results in the table, we can observe that DBLoss does lead to an increase in training time
compared to MSE, but this increase is not significant. As the dataset size grows, the time difference
becomes even more negligible.

Table 9: Comparison of average epoch-level training times (in seconds) between DBLoss and MSE
using PatchTST across four forecasting horizons on different datasets.

Train Time ETTh1 ETTh2 ETTm1 ETTm2 Solar Weather Electricity Traffic

MSE 2.36 2.37 14.45 14.39 183.11 36.07 258.47 1035.77
DBLoss 3.11 3.37 15.93 15.73 186.31 37.23 260.85 1039.67

G Full Results on Time Series Foundation Models

Table 10 presents the results of foundation models under the 5% few-shot setting. It reports both
MSE and MAE across different forecasting horizons F ∈ 96, 192, 336, 720. The baseline parameters
are kept consistent with those used in TSFM-Bench [Li et al., 2025c]. The best results are highlighted
in bold.

H Limitations

Potential limitations The DBLoss demonstrates its efficacy in TSF scenarios. However, there are
several potential limitations of DBLoss that warrant discussion here:

• Lack of Automated Hyperparameter Tuning Strategy: The proposed method involves
two critical hyperparameters: the score weight β for the weighted loss and the smoothing
factor α for Exponential Moving Average (EMA) decomposition. Specifically, a larger β
increases the proportion of the seasonal component in the loss calculation, while a smaller α
results in stronger smoothing, making the trend smoother and the seasonal component more
prominent. However, the current research has not yet proposed an automated strategy to
optimize the selection of these two parameters. The absence of a systematic tuning approach
may still limit the model’s performance improvement and generalization capability. There-
fore, developing an efficient automated hyperparameter tuning mechanism to adaptively
determine the optimal parameter combination is an important direction for future research.

26



Table 10: Foundation models results in the 5% few-shot setting. The table reports MSE and MAE
for different forecasting lengths F ∈ {96, 192, 336, 720}. The parameters for the baselines are kept
consistent with those of TSFM-Bench [Li et al., 2025c]. The better results are highlighted in bold.

Model GPT4TS CALF TTM UniTS

Loss Ori DBLoss Ori DBLoss Ori DBLoss Ori DBLoss

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.438 0.445 0.439 0.446 0.405 0.426 0.401 0.422 0.363 0.392 0.361 0.390 0.381 0.394 0.381 0.393
192 0.460 0.458 0.455 0.456 0.428 0.442 0.423 0.436 0.391 0.409 0.387 0.405 0.421 0.428 0.405 0.424
336 0.462 0.467 0.449 0.460 0.443 0.454 0.437 0.447 0.411 0.429 0.404 0.422 0.443 0.437 0.429 0.429
720 0.509 0.511 0.470 0.486 0.495 0.494 0.472 0.479 0.453 0.471 0.429 0.448 0.498 0.475 0.486 0.463
Avg 0.467 0.470 0.453 0.462 0.443 0.454 0.433 0.446 0.405 0.425 0.395 0.417 0.436 0.434 0.425 0.427

E
T

T
h2

96 0.329 0.380 0.323 0.371 0.302 0.362 0.308 0.363 0.271 0.329 0.270 0.328 0.305 0.353 0.299 0.346
192 0.368 0.406 0.364 0.399 0.385 0.400 0.383 0.397 0.339 0.373 0.329 0.374 0.369 0.403 0.357 0.390
336 0.378 0.421 0.374 0.412 0.387 0.418 0.375 0.412 0.372 0.401 0.346 0.392 0.388 0.412 0.361 0.399
720 0.418 0.450 0.412 0.442 0.416 0.449 0.407 0.445 0.385 0.428 0.382 0.419 0.425 0.451 0.410 0.439
Avg 0.373 0.414 0.368 0.406 0.373 0.407 0.368 0.404 0.342 0.383 0.332 0.378 0.372 0.405 0.357 0.393

E
T

T
m

1

96 0.343 0.379 0.330 0.368 0.317 0.366 0.299 0.347 0.299 0.343 0.294 0.337 0.313 0.363 0.300 0.349
192 0.375 0.398 0.361 0.387 0.346 0.380 0.337 0.369 0.341 0.367 0.340 0.365 0.357 0.390 0.338 0.373
336 0.394 0.406 0.384 0.398 0.385 0.405 0.371 0.391 0.365 0.381 0.363 0.379 0.381 0.405 0.370 0.392
720 0.440 0.434 0.432 0.425 0.439 0.433 0.427 0.420 0.420 0.412 0.419 0.409 0.457 0.448 0.438 0.428
Avg 0.388 0.404 0.377 0.394 0.372 0.396 0.358 0.382 0.356 0.376 0.354 0.372 0.377 0.402 0.362 0.386

E
T

T
m

2

96 0.190 0.279 0.181 0.266 0.180 0.272 0.170 0.258 0.164 0.250 0.162 0.244 0.188 0.278 0.173 0.255
192 0.241 0.312 0.231 0.300 0.237 0.310 0.228 0.295 0.222 0.290 0.224 0.287 0.255 0.317 0.247 0.302
336 0.296 0.349 0.281 0.330 0.295 0.348 0.277 0.328 0.282 0.330 0.278 0.323 0.321 0.366 0.285 0.331
720 0.385 0.401 0.371 0.384 0.372 0.397 0.363 0.382 0.364 0.381 0.363 0.376 0.404 0.415 0.374 0.392
Avg 0.278 0.335 0.266 0.320 0.271 0.332 0.259 0.316 0.258 0.313 0.257 0.308 0.292 0.344 0.270 0.320

So
la

r

96 0.253 0.326 0.243 0.267 0.203 0.274 0.238 0.295 0.201 0.254 0.201 0.244 0.186 0.244 0.186 0.226
192 0.266 0.336 0.252 0.281 0.224 0.290 0.243 0.294 0.225 0.270 0.235 0.267 0.198 0.255 0.206 0.241
336 0.262 0.341 0.260 0.284 0.243 0.308 0.252 0.303 0.222 0.274 0.231 0.271 0.208 0.259 0.222 0.254
720 0.265 0.335 0.261 0.285 0.247 0.314 0.251 0.306 0.226 0.277 0.229 0.283 0.231 0.284 0.243 0.265
Avg 0.262 0.335 0.254 0.279 0.229 0.297 0.246 0.300 0.219 0.269 0.224 0.266 0.206 0.261 0.214 0.246

W
ea

th
er

96 0.187 0.244 0.181 0.234 0.163 0.217 0.162 0.210 0.147 0.195 0.148 0.191 0.154 0.206 0.156 0.198
192 0.225 0.274 0.220 0.265 0.206 0.253 0.205 0.250 0.194 0.238 0.194 0.233 0.199 0.248 0.199 0.237
336 0.268 0.304 0.265 0.297 0.260 0.297 0.257 0.292 0.244 0.277 0.243 0.272 0.248 0.285 0.248 0.275
720 0.330 0.348 0.327 0.340 0.322 0.339 0.322 0.338 0.314 0.329 0.316 0.327 0.320 0.337 0.320 0.329
Avg 0.253 0.293 0.248 0.284 0.238 0.277 0.236 0.272 0.225 0.260 0.225 0.256 0.230 0.269 0.231 0.260

E
le

ct
ri

ci
ty 96 0.178 0.294 0.179 0.286 0.141 0.240 0.140 0.236 0.146 0.246 0.146 0.245 0.150 0.249 0.152 0.248

192 0.192 0.306 0.192 0.300 0.156 0.254 0.154 0.250 0.165 0.264 0.165 0.262 0.167 0.264 0.168 0.263
336 0.208 0.318 0.208 0.310 0.174 0.271 0.174 0.268 0.181 0.281 0.180 0.278 0.181 0.277 0.182 0.276
720 0.248 0.348 0.248 0.339 0.216 0.306 0.214 0.302 0.223 0.315 0.223 0.313 0.220 0.309 0.224 0.310

Avg 0.207 0.317 0.207 0.309 0.172 0.268 0.171 0.264 0.179 0.277 0.178 0.274 0.180 0.275 0.181 0.274

Tr
af

fic

96 0.411 0.300 0.408 0.286 0.406 0.298 0.405 0.290 0.448 0.324 0.445 0.322 0.401 0.278 0.400 0.272
192 0.422 0.304 0.416 0.289 0.423 0.309 0.420 0.301 0.466 0.330 0.463 0.329 0.414 0.284 0.412 0.278
336 0.432 0.308 0.426 0.293 0.436 0.317 0.432 0.310 0.491 0.345 0.487 0.343 0.421 0.290 0.417 0.280
720 0.468 0.325 0.463 0.311 0.477 0.340 0.476 0.335 0.533 0.365 0.527 0.361 0.452 0.305 0.451 0.298
Avg 0.433 0.309 0.428 0.295 0.435 0.316 0.433 0.309 0.484 0.341 0.481 0.339 0.422 0.289 0.420 0.282

27


	Introduction
	Related works
	Time Series Forecasting Methods
	Loss Functions for Time Series Forecasting

	DBLoss
	Overview
	EMA Decomposition Module
	Weighted Loss Function

	Experiments
	Setup
	Main results
	Comparison with Other Loss Functions
	Zero-shot Forecasting Results
	Results on Time Series Foundation Models
	Impact of DBLoss on Generalization
	Hyperparameter Sensitivity
	Forecasting Visualization

	Conclusion
	Datasets
	Related Works
	Theoretical Proofs
	Problem Formulation
	Analysis of MSE Loss
	Gradient Analysis of MSE
	Analysis of DBLoss

	Visualization
	Comparison with Other Loss Functions
	Efficiency
	Full Results on Time Series Foundation Models
	Limitations

