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ABSTRACT

Multimodal large language models (MLLMs) have shown remarkable potential in
various domains, yet their application in the medical field is hindered by several
challenges. General-purpose MLLMs often lack the specialized knowledge re-
quired for medical tasks, leading to uncertain or hallucinatory responses. Knowl-
edge distillation from advanced models struggles to capture domain-specific ex-
pertise in radiology and pharmacology. Additionally, the computational cost
of continual pretraining with large-scale medical data poses significant effi-
ciency challenges. To address these issues, we propose InfiMed-Foundation-
1.7B and InfiMed-Foundation-4B, two medical-specific MLLMs designed to de-
liver state-of-the-art performance in medical applications. We combined high-
quality general-purpose and medical multimodal data and proposed a novel five-
dimensional quality assessment framework to curate high-quality multimodal
medical datasets. We employ low-to-high image resolution and multimodal se-
quence packing to enhance training efficiency, enabling the integration of exten-
sive medical data. Furthermore, a three-stage supervised fine-tuning process en-
sures effective knowledge extraction for complex medical tasks. Evaluated on the
MedEvalKit framework, InfiMed-Foundation-1.7B outperforms Qwen2.5VL-3B,
while InfiMed-Foundation-4B surpasses HuatuoGPT-V-7B and MedGemma-27B-
IT, demonstrating superior performance in medical visual question answering and
diagnostic tasks. By addressing key challenges in data quality, training efficiency,
and domain-specific knowledge extraction, our work paves the way for more reli-
able and effective AI-driven solutions in healthcare.

1 INTRODUCTION

In recent years, multimodal large language models (MLLMs) have demonstrated remarkable capa-
bilities across various domains (Hurst et al., 2024; Team et al., 2025a; Zhu et al., 2025), achieving
near-expert-level performance in tasks such as visual question answering (VQA), image caption-
ing, and text generation. However, general-purpose MLLMs often lack the specialized knowledge
required to address domain-specific challenges, particularly in the medical field (Lee et al., 2023).
When tasked with medical queries, these models frequently produce uncertain or even hallucinatory
responses (Li et al., 2023; Chen et al., 2024b), highlighting the need for domain-specific adapta-
tions. The medical domain demands a high level of precision, reliability, and domain expertise, as
inaccurate outputs can have significant consequences in clinical settings.

Recent efforts have focused on integrating medical multimodal data with general-purpose MLLMs
to develop medical-specific models (Hyland et al., 2023; Team et al., 2025b). For instance, Ling-
shu (Team et al., 2025b) utilized a diverse set of open-source medical data, general-purpose data, and
high-quality synthetic medical data to train a model that achieved promising results across various
medical evaluation benchmarks. These advancements underscore the potential of tailored MLLMs
in tasks such as medical VQA and report generation. Despite these achievements, existing medical
MLLMs face several challenges that limit their effectiveness and scalability. Firstly, many medical
MLLMs rely on knowledge distillation from advanced general-purpose models (Hurst et al., 2024;
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Jaech et al., 2024) to curate training data. While effective in some contexts, this approach struggles to
capture the extensive domain-specific expertise required for fields such as radiology, pharmacology,
and pathology. Secondly, the absence of supervision by medical professionals during the distillation
process consequently elevates the risk of generating model hallucinations. Thirdly, to inject com-
prehensive medical knowledge through continual pretraining, large-scale high-quality medical data
is essential. However, processing such data is computationally expensive, necessitating strategies to
enhance pretraining efficiency.

In this work, we propose InfiMed-Foundation-1.7B and InfiMed-Foundation-4B, two medical-
specific MLLMs that achieve state-of-the-art performance across multiple medical benchmarks.
To address the aforementioned challenges, we curated a high-quality multimodal medical dataset,
combining carefully selected medical data with general-purpose multimodal data. In collaboration
with medical professionals, we developed a novel five-dimensional quality assessment framework
to ensure the reliability and relevance of the training data. During continual pretraining, we opti-
mized computational efficiency by reducing the number of image patches to 144 and introducing
multimodal sequence packing, which allowed us to incorporate a larger volume of medical data.
Furthermore, we designed a three-stage supervised fine-tuning (SFT) process, comprising general
instruction following, medical instruction following, and cross-distribution instruction adaptation.
This structured approach enables our models to progressively acquire the ability to address complex
medical tasks effectively.

We evaluated our models using the MedEvalKit framework (Team et al., 2025b), a comprehensive
suite of medical benchmarks. Experimental results demonstrate that InfiMed-Foundation-1.7B out-
performs the Qwen2.5VL-3B model (Bai et al., 2025), while InfiMed-Foundation-4B surpasses both
the HuatuoGPT-V-7B (Chen et al., 2024b) and MedGemma-27B-IT (Sellergren et al., 2025) models.
Through ablation studies, we validated the critical role of our multi-stage SFT strategy. Addition-
ally, case studies in medical VQA and diagnostic tasks highlight the superior performance of our
models, showcasing their potential to assist clinicians in real-world scenarios.

Our contributions can be summarized as follows:

• Data Curation: We introduce a five-dimensional quality assessment framework, developed in
collaboration with medical professionals, to select high-quality medical datasets, ensuring robust-
ness and reliability in training.

• Training Efficiency: We enhance pretraining efficiency by adopting multimodal sequence pack-
ing and reducing image patch counts, enabling the incorporation of extensive medical data while
minimizing computational costs.

• Performance: Our InfiMed-Foundation models achieve outstanding results across multiple med-
ical evaluation benchmarks, setting a new standard for medical-specific MLLMs.

2 RELATED WORK

Medical-Specific Multimodal Models Medical-specific MLLMs have gained traction for tasks such
as clinical reasoning, medical VQA, and report generation. LLaVA-Med (Li et al., 2023) pioneered
this domain by utilizing large-scale biomedical image-text pairs from PubMed Central for concept
alignment, enabling the model to learn domain-specific visual vocabulary, followed by instruction
tuning with GPT-4-generated data. However, the low quality of PubMed data often leads to hallu-
cinations and weak reasoning capabilities, as the instruction data relies solely on textual captions
and contexts without leveraging biomedical images. In contrast, HuatuoGPT-Vision (Chen et al.,
2024b) employs GPT-4V, a multimodal model capable of processing both images and text, to denoise
PubMed data and create the high-quality PubMedVision dataset for SFT, improving performance in
medical VQA. MedGemma (Sellergren et al., 2025) adopts a multi-stage training pipeline. First,
the vision encoder is enhanced using medical image-text pairs. Subsequently, the language model
undergoes continual pretraining and is then re-adapted with the vision encoder. Finally, the model is
refined through distillation and reinforcement learning. Despite these advances, existing models of-
ten lack robust data quality control and professional supervision, limiting their reliability in clinical
settings. Our InfiMed-Foundation models address these issues by combining high-quality general
and medical multimodal data. A novel five-dimensional quality assessment framework, developed
with medical professionals, ensures robust performance.
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Figure 1: The pipeline of our dataset curation.

Efficient Training Strategies for Multimodal Models MLLM pretraining aims to align differ-
ent modalities in a shared embedding space, requiring large-scale image-text pair datasets. Many
approaches train only the vision-language projector to mitigate catastrophic forgetting and reduce
computational costs while freezing the vision encoder and language model (Jin et al., 2024). How-
ever, TinyLLaVA (Zhou et al., 2024) notes that training only the projector may lead to suboptimal
alignment in small-scale LLMs, proposing partial unfreezing of the vision encoder and LLM to im-
prove modality alignment. Similarly, VILA (Lin et al., 2024) demonstrates that unfreezing LLM
parameters during pretraining is essential for inheriting in-context learning capabilities, which are
critical for personalized medical recommendations in clinical settings. To further enhance efficiency,
Idefics2 (Laurençon et al., 2024) employs a perceiver resampler to reduce visual token counts. It
adopts a two-stage pretraining approach, using lower image resolutions in the initial stage to ac-
celerate basic alignment. Inspired by these works, our InfiMed-Foundation models unfreeze both
the projector and LLM parameters during pretraining and introduce multimodal sequence packing
with a reduced image patch count of 144, significantly improving computational efficiency while
enabling the integration of extensive medical data.

3 DATASET CURATION

To train our proposed InfiMed-Foundation series models, we curated a large-scale, heterogeneous
dataset comprising both medical and general-domain multimodal data. The pipeline of our dataset
curation is shown in Figure 1. The medical dataset covers diverse modalities, body parts, question
types, and multiple languages. To improve the model’s generalization and linguistic capabilities, we
further curated a large-scale general-domain dataset encompassing diverse real-world scenarios. To
ensure data quality, we developed an evaluation pipeline based on LLMs, which was used to assess
and filter the collected datasets. An overview of all collected datasets is provided in Table 1.

3.1 DATA COLLECTION

Medical Data To build a high-quality medical dataset for training our InfiMed-Foundation models,
we collected and aggregated a range of multimodal medical datasets from public sources, which
include image-text pairs. Moreover, we divided them into two categories: caption and instruction.
The collected multimodal medical data span various modalities (e.g., pathology, microscopy, and
CT), body parts (e.g., head, neck, and chest), question types (e.g., open-ended, closed-ended, and
multiple-choice), and multiple languages (e.g., English and Chinese).

General Data To enable the multimodal large language model to achieve strong multimodal under-
standing and visual reasoning capabilities, it is necessary to conduct continual pretraining on large-
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Table 1: Overview of Training datasets.

Type of Data Collected Datasets
General Caption Data DataComp (Gadre et al., 2023), CCS (Li et al., 2022)

General Interleaved Data OBELICS (Laurençon et al., 2023), mmc4 (Zhu et al., 2023)

General Instruction Data Mammoth-VL (Guo et al., 2024)

Medical Caption Data IU-Xray (Chen et al., 2020), LLaVA-Med (Li et al., 2023),
LLaVA-Med-60K-IM-text (Kang, 2024), Medtrinity-25M (Xie
et al., 2025), MedPix-2.0 (Siragusa et al., 2025), PMC-OA (Lin
et al., 2023), PubMedVision (Chen et al., 2024a), ROCO (Pelka
et al., 2018), ROCOv2 (Rückert et al., 2024)

Medical Instruction Data LLaVA-Med (Li et al., 2023), Path-VQA (He et al., 2020), PMC-
VQA (Zhang et al., 2023), PubMedVision (Chen et al., 2024a),
SLAKE (Liu et al., 2021), VQA-Med-2019 (Ben Abacha et al.,
2019), VQA-RAD (Lau et al., 2018)

scale image-text caption datasets and interleaved datasets. For general data collection, we followed
the highly open-source Open-Qwen2VL (Wang et al., 2025). Specifically, for general caption data,
we used two subsets of DataComp-Medium-128M (Gadre et al., 2023), filtered by Data-Filtering-
Network (DFN) (Fang et al., 2023) and MLM-Filter (Wang et al., 2024), respectively. Additionally,
we incorporated high-quality caption data from the BLIP (Li et al., 2022), which was filtered from
a combination of three web datasets: CC3M (Changpinyo et al., 2021), CC12M (Changpinyo et al.,
2021), and SBU (Ordonez et al., 2011) (CCS). For general interleaved data, we employed high-
quality subsets of the OBELICS dataset (Laurençon et al., 2023) and the MMC4 dataset (Zhu et al.,
2023) to enhance the multimodal in-context learning ability. And we utilized the MAmmoTH-VL-
10M (Guo et al., 2024) to bolster the model’s instruction-following and reasoning capabilities.

3.2 DATA EVALUATION

We performed quality control on medical data using both LLM-based and manual inspection. To
evaluate data quality, we randomly sampled 500 samples from each dataset and conducted a detailed
evaluation. We collaborated with a group of medical professionals to define five evaluation criteria:

1. Medical Information Accuracy: Assess how medically accurate and clinically appropriate the
information in the sample is.

2. Language Clarity and Fluency: Assess how well the content is communicated in natural, read-
able, and professional language.

3. Caption/Dialogue Completeness: Access whether the caption/dialogue directly, sufficiently,
and contextually addresses the input question or medical concern.

4. Medical Imaging Relevance: For samples that include an image, assess whether the image
clearly supports or corresponds to the associated text.

5. Practicality: Assess how useful the data sample is for real-world medical applications, such as
clinical decision support or patient communication.

Each dimension was rated on a scale of 1 to 5. Detailed scoring guidelines are provided in Ap-
pendix A.2. We employed GPT-o3 as an automated evaluator to rate the sampled data according to
the above criteria. The results guided our filtering process and informed our overall data quality as-
sessment. After our quality assessment, we excluded some datasets, including IU-Xray, MedPix-2.0,
PMC-OA, and VQA-Med-2019.

3.3 MULTIMODAL SEQUENCE PACKING

Owing to the variable sequence lengths inherent in multimodal data, direct training often necessitates
padding all samples to a uniform maximum length. This practice introduces a substantial number of
padding tokens, resulting in significant computational inefficiency. To address this issue, we employ
a multimodal sequence-packing strategy during continuous pretraining. This method reorganizes
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Figure 2: The training pipeline of InfiMed-Foundation models, which consists of four stages: contin-
ual pretraining, general instruction following, medical instruction following, and cross-distribution
instruction adaption.
multiple multimodal samples into consolidated sequences with total lengths approaching the model’s
maximum context window of 4,096 tokens.

The multimodal sequence packing procedure consists of the following three steps:

1. Compute Multimodal Length: The token length of each multimodal sample, which incorpo-
rates both visual and textual elements, is calculated.

2. Apply Bin-Packing Algorithm: Samples are sorted in descending order of their lengths and sub-
sequently packed into bins using the First-Fit-Decreasing (FFD) bin packing algorithm (Johnson,
1973). The objective is to aggregate samples into bins such that the cumulative length of each
bin is as close as possible to, but does not exceed, 4,096 tokens.

3. Store Packed Sequences: Each consolidated bin of packed sequences is saved into a JSON file.
The structure of the file is organized as a dictionary containing the following two key fields:
• "data": A list of the regrouped samples. Each sample within the list is a dictionary itself,

containing the Base64-encoded image data, the corresponding text, and other metadata.
• "lengths": A list of integers that records the original multimodal sequence length of each

constituent sample within the bin.

4 MODEL TRAINING

InfiMed-Foundation models consist of three key components: a LLM, a vision encoder, and a
lightweight MLP-based visual projector. We adopt this architecture with Qwen3-Instruct series
LLMs (Yang et al., 2025), SigLIP-SO-400M Vision Encoder (Tang et al., 2002), and Adaptive
Average-Pooling Visual Projector (Yao et al., 2024). Specifically, the visual projector consists of
an Adaptive Average-Pooling layer followed by a two-layer MLP. The adaptive pooling layer allows
us to flexibly rescale the fixed output of 729 visual patches from the SigLIP encoder to any desired
number of visual tokens. During pretraining, we downsample the visual representation to 144 visual
tokens per image to reduce computational cost and encourage global abstraction. In the supervised
fine-tuning (SFT) stage, we revert to the full 729 patches resolution to capture more detailed visual
cues. This design offers a good trade-off between efficiency and flexibility, allowing the model to
adaptively balance global and local visual features across different training phases.

4.1 TRAINING RECIPE

During both the pretraining and supervised fine-tuning (SFT) stages, we freeze the parameters of the
vision encoder to reduce computational cost. Only the LLM and the projector are trainable.
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In the pretraining stage, we train the model on a large corpus comprising general-domain multimodal
samples (∼25B tokens) and medical samples (∼5B tokens). And inspired by Allen-Zhu & Li (2024),
we adopt Instruct series models instead of base series models for pretraining, aiming to enhance the
model’s contextual understanding and adaptation efficiency in the subsequent alignment stages.

Inspired by the multi-stage alignment strategy proposed in Lingshu (Team et al., 2025b), we design
a three-stage SFT pipeline to progressively inject and align different capabilities into the model
as illustrated in Figure 2. The three stages in our pipeline are: 1) General Instruction Following:
Enhancing the model’s ability to follow general-purpose instructions in diverse contexts. 2) Medical
Instruction Following: Fine-tuning the model for medical-domain tasks that require domain-specific
reasoning and understanding. 3) Cross-distribution Instruction Adaptation: To ensure generalization
across heterogeneous data sources, we apply down-sampling to each dataset, enforcing inter-dataset
balance. This prevents overfitting to high-resource instruction types and encourages the model to
adapt to a wide range of data distributions. The details of the data mixture for different training
stages are provided in Appendix A.3.

4.1.1 COMPUTE-EFFICIENT PRETRAINING

The primary objective of pretraining multimodal medical models is to achieve robust alignment be-
tween image and text modalities while injecting domain-specific medical knowledge into the model.
This alignment enhances the model’s ability to understand medical visual data, laying a critical foun-
dation for subsequent knowledge extraction in tasks such as medical VQA and diagnostic support (Li
et al., 2023; Chen et al., 2024b). However, pretraining large-scale multimodal models, especially
with high-resolution medical images and diverse text data, is computationally intensive.

In our pretraining phase, we freeze the vision encoder to preserve its pretrained feature extraction
capabilities, while updating the parameters of the LLM and the projector. Our pretraining dataset
comprises high-quality general-purpose multimodal data and medical image-text pairs curated us-
ing our five-dimensional quality assessment framework. To enhance the efficiency of pretraining,
we employ multimodal sequence packing, a strategy that concatenates multimodal data of varying
lengths into sequences approaching a maximum length of 4096 tokens. This approach maximizes
computational resource utilization by minimizing padding and ensuring dense data processing. Ad-
ditionally, we implement adaptive average-pooling to reduce the number of tokens representing
images to 144. This reduction mitigates computational overhead while preserving essential visual
features.

4.1.2 GENERAL INSTRUCTION FOLLOWING

The first stage of our SFT pipeline, termed General Instruction Following, aims to endow the
InfiMed-Foundation models with robust multimodal reasoning and instruction-following capabil-
ities, establishing a strong foundation for subsequent medical domain adaptation. Unlike medical-
specific fine-tuning, which focuses on domain knowledge, this stage emphasizes general multimodal
understanding, ensuring the model can handle complex reasoning tasks before specializing in med-
ical applications. We leverage the MAmmoTH-VL-10M dataset (Guo et al., 2024), a large-scale
multimodal instruction-tuning dataset designed to foster reasoning-intensive capabilities.

The MAmmoTH-VL-10M dataset is specifically curated to address the limitations of traditional
instruction datasets, which often focus on simple VQA tasks with phrase-based responses lacking
detailed reasoning processes. To construct MAmmoTH-VL-10M, data sources underwent manual
screening to categorize based on the information density of responses. Subsequently, a combination
of MLLMs and LLMs was used to rewrite responses, generating detailed rationales. Finally, an
MLLM-based filtering step ensured logical consistency and reliability of the rationales. By training
on MAmmoTH-VL-10M’s detailed rationales, our models develop enhanced reasoning abilities,
which are critical for subsequent medical-specific fine-tuning stages.

4.1.3 MEDICAL INSTRUCTION FOLLOWING

To equip the model with medical question-answering capabilities, the second stage of our fine-tuning
pipeline is dedicated to medical instruction tuning. In this stage, the model is trained on a collection
of high-quality medical VQA datasets that have passed the rigorous data quality assessment detailed
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Medical Instruction Following Cross-distribution Instruction Adaption

CT: 32%

Microscopy: 25%

CT: 28%  

Microscopy: 19%

MR: 22% MR: 19%

Pathology: 7%

Pathology: 20%

X-Ray: 5% X-Ray: 7%

Ultrasound: 3%Ultrasound: 4%
Endoscopy: 2%Endoscopy: 2%

Other: 2% Other: 2%
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Figure 3: The modality distribution of the dataset in the Medical Instruction Following stage and the
Cross-distribution Instruction Adaptation stage.

in Section 3.2. These datasets span a diverse range of medical subdomains, including clinical di-
agnostics, radiological interpretation, and pathological analysis, each requiring varying degrees of
domain-specific reasoning and precision.

To avoid catastrophic forgetting of general capabilities acquired in the first stage, we incorporate
general instruction-following data into this phase. This joint training strategy allows the model
to retain its general multimodal abilities while enhancing its understanding of medical knowledge.
Importantly, this approach prevents the model from overfitting to narrow medical domains and pro-
motes better generalization across both general-domain and medical-domain tasks.

4.1.4 CROSS-DISTRIBUTION INSTRUCTION ADAPTION

Naively fine-tuning on a mixture of medical VQA datasets in a single stage risks overfitting to
high-resource datasets, as they disproportionately influence the training objective. This imbalance
undermines the model’s generalization to low-resource tasks and diverse instruction distributions.
To address this, the third stage introduces cross-distribution instruction adaptation. In this stage,
we construct mixed instruction datasets by sampling from multiple datasets across both general and
medical domains. Furthermore, we also balance the number of samples between medical and general
instruction datasets to prevent distributional bias during training. To ensure inter-dataset balance,
we down-sample large datasets to bring all sources to a similar scale, avoiding domination by high-
resource datasets. The modality distribution of the dataset in the Medical Instruction Following
stage and the Cross-distribution Instruction Adaptation stage is shown in Figure 3.

Importantly, this stage retains the same architectural configuration and optimization settings as pre-
vious stages. This approach preserves training stability while enhancing the model’s ability to gen-
eralize across heterogeneous datasets and instruction formats.

5 EXPERIMENTS

To comprehensively evaluate our model, InfiMed-Foundation, we compare its performance against a
diverse set of baseline models on various medical benchmarks. These baselines include proprietary
and open-source models, with the latter encompassing general-purpose and medical-specific models.
Specifically, our evaluation includes the following models: Proprietary Models: GPT-5, GPT-
5-mini, GPT-5-nano, GPT-4.1 (OpenAI, 2025), Claude Sonnet 4 (Anthropic, 2025), Gemini-2.5-
Flash (Comanici et al., 2025). General Open-source Models: Qwen2.5-VL-Instruct (Bai et al.,
2025), InternVL3 (Zhu et al., 2025). Medical Open-source Models: MedGemma (Sellergren et al.,
2025), LLaVA-Med (Li et al., 2023), HuatuoGPT-V (Chen et al., 2024b), Lingshu (Team et al.,
2025b), BioMediX2 (Mullappilly et al., 2024).

To ensure a fair comparison, all models are evaluated using MedEvalKit (Team et al., 2025b), a
systematic evaluation framework. This framework assesses performance across mainstream medical
benchmarks, including multiple-choice questions, open-ended questions, and other task formats.

5.1 EVALUATION BENCHMARK

To comprehensively evaluate the performance of medical MLLMs, we utilized a diverse set of
medical benchmark datasets. These benchmarks include multiple-choice, open-ended, and closed-
ended questions, covering datasets such as the Health & Medical subset of MMMU (Yue et al.,
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Table 2: Results of comparison of InfiMed with other MLLMs on medical multimodal benchmarks.
Note that OMVQA and MedXQA indicate OmniMedVQA and MedXpertQA-Multimodal bench-
marks, respectively. Models colored in gray denote our InfiMed.

Model MMMU-Med VQA-RAD SLAKE PathVQA PMC-VQA OMVQA MedXVQA Avg.
Proprietary Models

GPT-5 83.6 67.8 78.1 52.8 60.0 76.4 71.0 70.0
GPT-5-mini 80.5 66.3 76.1 52.4 57.6 70.9 60.1 66.3
GPT-5-nano 74.1 55.4 69.3 45.4 51.3 66.5 45.1 58.2
GPT-4.1 75.2 65.0 72.2 55.5 55.2 75.5 45.2 63.4
Claude Sonnet 4 74.6 67.6 70.6 54.2 54.4 65.5 43.3 61.5
Gemini-2.5-Flash 76.9 68.5 75.8 55.4 55.4 71.0 52.8 65.1

General Open-source Models
Qwen2.5VL-3B 51.3 56.8 63.2 37.1 50.6 64.5 20.7 49.2
Qwen2.5VL-7B 50.6 64.5 67.2 44.1 51.9 63.6 22.3 52.0
InternVL3-8B 59.2 65.4 72.8 48.6 53.8 79.1 22.4 57.3

Medical Open-source Models
MedGemma-4B-IT 43.7 49.9 76.4 48.8 49.9 69.8 22.3 51.5
LLaVA-Med-7B 29.3 53.7 48.0 38.8 30.5 44.3 20.3 37.8
HuatuoGPT-V-7B 47.3 67.0 67.8 48.0 53.3 74.2 21.6 54.2
Lingshu-7B 54.0 67.9 83.1 61.9 56.3 82.9 26.7 61.8
BioMediX2-8B 39.8 49.2 57.7 37.0 43.5 63.3 21.8 44.6
MedGemma-27B-IT 56.2 62.3 74.9 44.4 49.5 66.3 33.9 55.4

InfiMed-Foundation-1.7B 34.7 56.3 75.3 60.7 48.1 58.9 21.8 50.8
InfiMed-Foundation-4B 43.3 57.9 77.7 63.4 56.6 76.8 21.9 56.4

2024), VQA-RAD (Lau et al., 2018), SLAKE (Liu et al., 2021), PathVQA (He et al., 2020), PMC-
VQA (Zhang et al., 2023), the open-source portion of OmniMedVQA (Hu et al., 2024), and the
multimodal subset of MedXpertQA (Zuo et al., 2025). These datasets encompass various medi-
cal imaging modalities, including CT scans, dermoscopy, X-rays, and microscopy images. This
variety enables a robust assessment of the model’s ability to process and interpret diverse medical
visual data, ensuring a comprehensive evaluation of its medical reasoning and multimodal under-
standing capabilities. Our evaluation framework and implementation details can be found in the
Appendix A.4 and Appendix A.5.

5.2 MAIN RESULTS

Table 2 presents a comprehensive comparison of our proposed models, InfiMed-Foundation-1.7B
and InfiMed-Foundation-4B, against both proprietary and open-source MLLMs across seven repre-
sentative medical benchmarks. The final column shows the macro-average across all benchmarks.

InfiMed-Foundation-4B achieves an average accuracy of 56.4%, outperforming all general and med-
ical open-source MLLMs of comparable scale and closing the gap with several strong proprietary
systems. Notably, InfiMed-Foundation-4B exceeds MedGemma-27B-IT (+1.0%) and HuatuoGPT-
V-7B (+2.2%) despite having fewer parameters, demonstrating superior parameter efficiency. Com-
pared to LLaVA-Med-7B, a widely-used baseline, InfiMed-Foundation-4B shows a substantial
+18.6% gain on average performance. Among individual benchmarks, InfiMed-Foundation-4B
achieves particularly strong results on PathVQA (63.4%), outperforming all open-source medical
baselines, and on SLAKE (77.7%), where it ranks second only to Lingshu-7B (83.1%). While
performance on MedXVQA remains modest (21.9%), this is consistent with trends across other
open models and highlights the dataset’s unique challenges. Interestingly, InfiMed-Foundation-1.7B
maintains competitive performance across most datasets despite its smaller scale, indicating that our
architecture and training approach are robust across sizes. For instance, it surpasses BioMediX2-8B
by +6.2% on average, despite having one-fifth the parameter count. We include a set of comparative
case studies of our InfiMed-Foundation-4B model versus Qwen2.5-VL-7B in the Appendix A.6.

While proprietary models like GPT-5 (70.0%) and Gemini-2.5-Flash (65.1%) still lead in overall ac-
curacy, our results demonstrate that InfiMed-Foundation-4B achieves state-of-the-art performance
among open-source medical MLLMs, and narrows the performance gap with closed models signifi-
cantly, especially considering compute and scale limitations.
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Table 3: Ablation study results for SFT stages on medical multimodal benchmarks.

SFT Stage Medical Benchmarks

Stage 1 Stage 2 Stage 3 MMMU-Med VQA-RAD SLAKE PathVQA PMC-VQA OMVQA MedXVQA Avg.

✓ 42.7 53.7 62.3 51.6 54.2 71.8 21.9 51.2
✓ ✓ 41.3 53.0 73.1 50.5 58.8 77.8 19.0 53.4
✓ ✓ 41.3 53.4 76.0 61.7 51.0 72.0 21.3 53.8
✓ ✓ ✓ 43.3 57.9 77.7 63.4 56.6 76.8 21.9 56.4

5.3 ABLATION STUDY

To investigate the contributions of each stage in the SFT process outlined in Section 4.1, we con-
ducted an ablation study by selectively applying the three SFT stages: General Instruction Following
(Stage 1), Medical Instruction Following (Stage 2), and Cross-distribution Instruction Adaptation
(Stage 3). This study aims to quantify the impact of each stage on the performance of our mul-
timodal medical large language model across various benchmarks. The results are summarized in
Table 3.

Each SFT stage contributes differently to the model’s performance across various tasks. When
omitting Stage 2 (Medical Instruction Following) and performing only Stage 1 (General Instruction
Following), we observe a significant performance drop on benchmarks such as SLAKE, PMC-VQA,
and OmniMedVQA. This underscores the importance of incorporating high-quality medical VQA
datasets during Stage 2, which enhances the model’s ability to address domain-specific medical
queries effectively.

In contrast, the inclusion of Stage 3 (Cross-distribution Instruction Adaptation) leads to substan-
tial performance improvements, particularly on VQA-RAD, SLAKE, and PathVQA, with accuracy
gains of 4.9%, 4.6%, and 12.9%, respectively, over the configuration with only Stages 1 and 2. This
indicates that Stage 3 effectively mitigates the risk of model domination by larger medical datasets,
enabling better generalization across diverse data distributions. By adapting the model to handle
cross-distribution variations, Stage 3 ensures robust performance on benchmarks with differing data
characteristics, such as the radiologically focused VQA-RAD and the pathology-oriented PathVQA.
Furthermore, when performing only Stages 1 and 3, we observe improved performance on SLAKE
and PathVQA compared to the configuration with only Stages 1 and 2, with accuracy gains of 3.1%,
and 11.2%, respectively. This improvement is attributed to Stage 3’s ability to mitigate the risk
of model domination by larger medical datasets. However, this configuration results in a notable
performance drop on PMC-VQA and OmniMedVQA, with accuracy reductions of 7.8% and 5.8%,
respectively. These results highlight the necessity of including Stage 2 to leverage more medical-
related data for maintaining robust performance. Therefore, the optimal configuration requires all
three stages.

The ablation study demonstrates the complementary nature of the three stages: Stage 1 establishes a
strong foundation in general instruction following, Stage 2 enhances medical domain expertise, and
Stage 3 ensures adaptability to diverse data distributions. Together, these stages enable our model to
achieve state-of-the-art performance in multimodal medical tasks.

6 CONCLUSION

In this work, we introduce InfiMed-Foundation-1.7B and InfiMed-Foundation-4B, two medical-
specific multimodal large language models. We present a novel five-dimensional quality assessment
framework developed with medical professionals to obtain a curated high-quality multimodal med-
ical dataset. By optimizing pretraining efficiency with multimodal sequence packing and scaling
down image patches, we incorporated extensive medical data cost-effectively. Our three-stage su-
pervised fine-tuning process enabled robust performance across complex medical tasks. Evaluations
using the MedEvalKit framework showed that InfiMed-Foundation-1.7B outperforms Qwen2.5VL-
3B, while InfiMed-Foundation-4B surpasses HuatuoGPT-V-7B and MedGemma-27B-IT, setting
new standards for medical MLLMs. Ablation studies and case studies in medical VQA and di-
agnostics confirmed the critical role of our SFT strategy and data curation, highlighting the models’
potential to assist clinicians. Our contributions in data curation, training efficiency, and performance
pave the way for scalable medical AI, with future work aimed at optimizing the vision encoder and
expanding data diversity to further enhance model capabilities.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) to check for grammatical inaccuracies and to improve the
clarity and flow of the text. By helping to articulate the presented ideas more precisely, the use of
LLMs contributed to enhancing the document’s readability.

A.2 SCORING GUIDELINES

This appendix provides the detailed scoring guidelines used to evaluate the quality of the sampled
data across five dimensions: (1) Medical Information Accuracy, (2) Language Clarity and Fluency,
(3) Dialogue Completeness, (4) Medical Imaging Relevance, and (5) Practicality. Each dimension
is scored on a 1–5 scale, with higher scores indicating better quality. The guidelines were designed
in collaboration with medical experts to ensure domain relevance and consistency.

Prompt for Quality Assessment

You are evaluating the quality of a single data sample from medical datasets, including three
types: visual question answering, captioning, and case reporting. Rate the sample on a scale
of 1 to 5 for each of the following five dimensions, and provide a clear explanation for your
score. Your response must be in a valid JSON format, strictly following the structure below.
Evaluation Dimensions and Guidelines
1. Medical Information Accuracy: Definition: How medically accurate and clinically
appropriate is the information in this sample? Evaluate whether the diagnosis, symptoms,
treatment, terminology, and reasoning are factually correct and aligned with standard medi-
cal knowledge.
• 1 – Contains serious factual errors or misinformation; could lead to harm.
• 2 – Includes noticeable inaccuracies or misconceptions; questionable clinical logic.
• 3 – Mostly accurate, but includes some outdated, vague, or imprecise information.
• 4 - Clinically sound and reliable, with only minor wording or factual issues.
• 5 - Fully medically accurate, consistent with guidelines and expert-level clarity.
2. Language Clarity and Fluency: Definition: How well is the information communi-
cated in natural, readable, and professional language? Assess grammar, clarity, flow, and
appropriateness for medical or patient-facing communication.
• 1 – Unclear or disorganized; major grammar issues that hinder understanding.
• 2 – Awkward, ambiguous, or frequently incorrect language.
• 3 – Understandable but with some unnatural phrasing or awkward sentence structure.
• 4 – Clear and coherent; only minor language flaws.
• 5 – Highly fluent, polished, and well-suited for clinical or academic contexts.
3. Caption/Dialogue Completeness: Definition: For multi-turn dialogue, does the ex-
change include all key components of a meaningful clinical interaction (e.g., symptoms,
history, reasoning, advice)? Evaluate whether the conversation flows logically and covers
necessary content. For single-turn samples or caption, assess whether the response directly,
sufficiently, and contextually addresses the input question or concern.
• 1 – Severely incomplete or off-topic; the response fails to address the input meaningfully.
• 2 – Major gaps; the response is only partially relevant or lacks necessary context.
• 3 – Generally appropriate, but missing some useful clarifications or elaboration.
• 4 – Mostly complete; clear and contextually suitable with minor detail omissions.
• 5 – Fully complete and coherent; the response provides an informative and context-aware

answer, proportional to the input.
Note: For multi-turn dialogue, completeness includes aspects like logical progression, topic
coverage, and closure. For single-turn Q&A, completeness means answering the question
clearly, relevantly, and with appropriate medical insight.
4. Medical Imaging Relevance: Definition: If an image is present, does it clearly support
or correspond to the associated text? Judge how well the image reinforces or illustrates the
medical concepts being discussed.
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• 1 – No image provided, or image is irrelevant/inappropriate. (Assign 1 by default if no
image.)

• 2 – Weak connection; image adds little or may be confusing.
• 3 – Somewhat related; offers limited value or context.
• 4 – Relevant and supports the written content effectively.
• 5 – Strong alignment between image and text; image enhances understanding.
Note: If no image is provided in the sample, write: "No image provided.
Assigning a score of 1 by default." and assign score = 1
5. Practicality: Definition: How useful is this data sample for real-world medical applica-
tions? Consider utility in model training, clinical decision support, educational value, or real
patient interaction systems.
• 1 – No practical use; irrelevant or flawed content.
• 2 – Very limited applicability in specialized cases only.
• 3 – Somewhat useful; suitable for non-critical training or analysis.
• 4 – Practical and usable with minor improvements.
• 5 – Highly valuable for real-world use; clinically or technically actionable.
Overall Score Definition: Based on your evaluation across all five dimensions, assign a final
overall score that reflects the holistic quality of the data sample. Consider accuracy, clarity,
completeness, image relevance (if applicable), and practical usability as a whole. This score
is not necessarily the average, but should represent your expert judgment of the sample’s
real-world value.
• 1 – Very poor overall; unreliable, misleading, or unusable.
• 2 – Weak quality; flawed in multiple aspects, limited usability.
• 3 – Adequate; some issues, but can be useful in certain contexts.
• 4 – Good quality; mostly solid with minor areas for improvement.
• 5 – Excellent; reliable, polished, and ready for real-world use or modeling.
The response fomat is:
{"Medical Information Accuracy": {"score": <1-5>,

"comment": "<explanation>"}, "Language Clarity and
Fluency": {"score": <1-5>, "comment": "<explanation>},
"Dialogue Completeness": {"score": <1-5>, "comment":
"<explanation>}, "Medical Imaging Relevance": {"score":
<1-5>, "comment": "<explanation>}, "Practicality":
{"score": <1-5>, "comment": "<explanation>"}, "Overall":
{ "score": <1-5>, "comment": "<summary comment>}}
Here is the sample: {s}

A.3 DATA MIXING DETAILS

The training pipeline employs a structured four-stage data mixture strategy to progressively build
the model’s capabilities, as detailed in Table 4.

The process begins with continual pretraining on a large-scale foundation of both general-domain
multimodal data (e.g., DataComp, OBELICS) and extensive medical caption data (e.g., Medtrinity-
25M, ROCO), totaling approximately 30 billion tokens. This stage aims to establish robust visual
and linguistic representations.

Next, the model’s instruction-following ability is honed in two distinct phases. First, general instruc-
tion following is trained exclusively on the Mammoth-VL-10M dataset (∼10.1M samples). This is
followed by medical instruction following, which combines a filtered portion of Mammoth-VL-10M
with multiple medical instruction datasets (e.g., Path-VQA, PMC-VQA), resulting in a mixture of
∼11.69M samples.

Finally, for cross-distribution instruction adaption, the data is subsampled to create a balanced and
high-quality mixture. This stage uses a small, curated set of ∼304k samples, comprising 180K from
Mammoth-VL-10M and a balanced blend from key medical instruction datasets (e.g., 13K from
LLaVA-Med-Instruct, 20K from PMC-VQA).
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Table 4: The overview of the data mixture across the four training stages. Noted that
mammoth-VL-10M-filtered variant excludes safety refusal responses (e.g., ”Sorry, I can’t...”),
and #number denotes the number of samples after downsampling.

Stage Training Data Composition Amount
Continual Pretraining 1. General Multimodal Data ∼ 30B tokens

DataComp, CCS, OBELICS, mmc4
2. Medical Caption Data
LLaVA-Med-60K-IM-Text, LLaVA-Med-Alignment, LLaVA-Med-Fig-Caption, Medtrinity-25M,
PubMedVision-Alignment, ROCO-radiology, ROCOv2-radiology

General Instruction Following Mammoth-VL-10M ∼ 10.1M samples
Medical Instruction Following 1. General Instruction Data ∼11.69M samples

Mammoth-VL-10M-filtered
2. Medical Instruction Data
LLaVA-Med-Instruct, Path-VQA, PMC-VQA, PubMedVision-Instruct Tuning, SLAKE, VQA-RAD

Cross-Distribution Instruction Adaptation 1. Sampled General Instruction Data ∼ 304K samples
Mammoth-VL-10M-filtered#180K
2. Sampled Medical Instruction Data
LLaVA-Med-Instruct#13K, Path-VQA, PMC-VQA#20K, PubMedVision-Instruct Tuning#60K, SLAKE, VQA-RAD

Table 5: Implementation details and hyperparameters for InfiMed-Foundation pretraining and su-
pervised fine-tuning.

Details Pretraining SFT
Vision Encoder SigLIP-so400m-384px SigLIP-so400m-384px
Visual Projector Adaptive Average Pooling + MLP MLP
LLM Qwen3-1.7B-Instruct / Qwen3-4B-Instruct Qwen3-1.7B-Instruct / Qwen3-4B-Instruct
Tokens per Image 144 729
Context Length 4096 4096
Sequence Packing Yes No

Global Batch Size 256 128
Training Epoch 1 1 per stage
Optimizer AdamW AdamW
Peak LR 5e-5 2e-5
Warmup Ratio 3% 3%
Weight Decay 0.01 0.01

A.4 EVALUATION FRAMEWORK

To improve the efficiency and fairness of the evaluation, we adopt the MedEvalKit evaluation frame-
work (Team et al., 2025b). This framework is designed to support a comprehensive set of main-
stream medical benchmarks. MedEvalKit employs a standardized data preprocessing and postpro-
cessing pipeline to ensure consistency and comparability of results. The framework implements a
rule-based evaluation approach for closed-ended questions, which provides precise and objective
scoring based on predefined criteria. For open-ended questions, MedEvalKit leverages an LLM-as-
a-Judge strategy, utilizing advanced language models to assess response quality. Furthermore, the
framework integrates vLLM (Kwon et al., 2023) for inference acceleration, significantly improving
computational efficiency and scalability.

A.5 IMPLEMENTATION DETAILS

The implementation details and hyperparameters for InfiMed-Foundation model pretraining and
SFT are presented in Table 5. We used Qwen3-1.7B-Instruct and Qwen3-4B-Instruct as the large
language model (LLM) backbones, and SigLIP as the vision transformer (ViT) backbone. The LLM
input length is truncated at 4096 tokens. For pretraining, we utilized 32 NVIDIA H800 (80GB)
GPUs. The optimizer is AdamW with a learning rate of 5e-5, weight decay of 0.01, and a warmup
ratio of 0.03. The pretrain global batch size is 256. We pretrain the MLLM for one epoch. For su-
pervised fine-tuning (SFT), we used 16 GPUs. The optimizer remains AdamW, but with a learning
rate of 2e-5, a larger weight decay of 0.1, and the same warmup ratio of 0.03. The SFT global batch
size is set to 128. Each stage of SFT is trained for one epoch.
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A.6 CASE STUDY

This section presents a series of case studies comparing the responses of Qwen2.5-VL-7B and our
InfiMed-Foundation-4B model. Through qualitative analysis of specific examples, we demonstrate
that InfiMed-Foundation-4B, despite its smaller size, exhibits a more solid grasp of medical knowl-
edge, providing more accurate and reliable answers than its larger counterpart.

Qwen2.5-VL-7B Answer:

InfiMed-Foundation-4B Answer:

Question: Ground Truth:
What modality was used to obtain this image capture?

A: CT scan   B: Ultrasound   C: MRI   D: Echocardiogram

C: MRI

<think>\nThe image appears to be a cross-sectional view of the abdomen, which is characteristic of a CT scan. 
The high contrast and the ability to visualize internal structures in detail are typical of CT imaging. 
Ultrasound images are usually in grayscale and show different textures, MRI images often have a different 
contrast pattern, and echocardiograms are used for heart imaging.\n</think>\n\\boxed{A. CT scan}

The image provided is a cross-sectional view of the abdomen, showing various internal structures such as the liver, kidneys, and intestines. The image 
has a high level of detail and contrast, which is characteristic of certain imaging modalities.\n\nLet's analyze the options:\n\nA. CT scan: CT scans 
use X-rays to create detailed images of the body. They often have a high level of detail and contrast, but the image provided does not have the 
typical appearance of a CT scan.\n\nB. Ultrasound: Ultrasound images are typically grainy and have a different appearance due to the use of sound 
waves. The image provided does not match this description.\n\nC. MRI: MRI uses strong magnetic fields and radio waves to create detailed images of 
the body. MRI images often have high contrast and can show soft tissues in great detail, which matches the characteristics of the provided
image.\n\nD. Echocardiogram: Echocardiograms are used to visualize the heart and blood vessels. They typically produce images of the heart and do 
not show abdominal structures.\n\nBased on the analysis, the most likely modality used to obtain this image is MRI.\n\nFinal Answer: \\boxed{C}

Figure 4: Case study No.1: Qwen2.5-VL-7B vs. InfiMed-Foundation-4B on Medical VQA.

Qwen2.5-VL-7B Answer:

InfiMed-Foundation-4B Answer:

Question: Ground Truth:
Is the image showing any indication of abnormality?
A: It's difficult to determine if there is an abnormality based on this image.
B: I'm not sure, but there might be a slight abnormality.
C: No, It's normal.
D: There is a possibility of abnormality, but further tests are needed for confirmation.

C. No, It's normal.

<think>\nThe image appears to be a medical scan, likely an MRI or CT scan, showing a cross-section of the body. 
The structures within the scan are not clearly identifiable without medical expertise, but there are no obvious 
signs of abnormality such as masses, irregularities, or asymmetry that would immediately suggest a problem. 
However, a definitive assessment requires a professional medical interpretation.\n</think>\n\\boxed{A. It's 
difficult to determine if there is an abnormality based on this image.}

To determine if there is an indication of abnormality in the image, we need to carefully analyze the structures and compare them to normal anatomy. 
The image appears to be an MRI scan of the pelvic region, showing the symmetrical appearance of the hip bones, muscles, and surrounding 
tissues.\n\n1. Symmetry: The image shows a symmetrical appearance of the hip bones and surrounding muscles, which is generally a good sign.\n2. 
Muscle and tissue integrity: The muscles and tissues appear to be intact without any obvious signs of damage or irregularities.\n3. No visible masses 
or lesions: There are no visible masses, lesions, or abnormal growths in the image.\n\nBased on these observations, it seems that the image does not 
show any indication of abnormality. Therefore, the most appropriate answer is:\n\n\\boxed{C. No, It's normal.}

Figure 5: Case study No.2: Qwen2.5-VL-7B vs. InfiMed-Foundation-4B on Medical VQA.
Qwen2.5-VL-7B was unable to make a judgment due to a lack of medical knowledge.
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Qwen2.5-VL-7B Answer:

InfiMed-Foundation-4B Answer:

Question: Ground Truth:
Is the anomaly observed in this image benign or malignant?

A: Benign image.
B: Malignant

A: Benign image.

<think>\nThe image shows a skin lesion with irregular borders and a slightly elevated surface, which are 
characteristics often associated with malignant melanomas. The presence of a ruler for scale suggests the 
lesion is larger than 6mm, which is a significant size for a mole that should be evaluated by a dermatologist. 
However, without professional medical evaluation, it's not possible to definitively determine the nature of 
the lesion.\n</think>\n\\boxed{B. Malignant}

The reasoning process is as follows:\n\n1. The image shows a skin lesion with a brownish color and a slightly irregular shape.\n2. The lesion appears to 
be a mole or a nevus, which is a common type of skin growth.\n3. The color and shape of the lesion are important factors in determining whether it is 
benign or malignant.\n4. Benign moles typically have a uniform color and shape, while malignant moles may have an irregular shape, uneven color, and a 
raised or pitted surface.\n5. Based on the image, the lesion appears to have a relatively uniform color and shape, which suggests that it is likely 
benign.\n\nTherefore, the most likely answer is:\n\nA. Benign image."

Figure 6: Case study No.3: Qwen2.5-VL-7B vs. InfiMed-Foundation-4B on Medical VQA.
Qwen2.5-VL-7B made an incorrect estimation of the lesion size.

Qwen2.5-VL-7B Answer:

InfiMed-Foundation-4B Answer:

Question: Ground Truth:
Is there any indication of abnormality that can be observed in this 
image?

A: Yes               B: No

B: No

<think>\nThe image appears to be a CT scan of the chest. There is a large, well-defined mass in the right 
upper lobe of the lung, which is not typical for a normal lung. This could be indicative of a pathological 
condition such as a tumor or a mass lesion. However, a definitive diagnosis would require clinical correlation 
and further imaging or biopsy.\n</think>\n\\boxed{A. Yes.}

The image provided is a CT scan of the chest, showing the heart, lungs, and surrounding structures. To determine if there are any indications of 
abnormality, we need to carefully examine the key features in the image.\n\n1. **Heart**: The heart appears to be of normal size and shape. There 
are no visible signs of enlargement or abnormal contours.\n2. **Lungs**: The lungs are clear, with no evidence of masses, nodules, or areas of 
consolidation. The lung fields are well-aerated.\n3. **Major Blood Vessels**: The aorta and pulmonary arteries appear normal in size and shape.\n4. 
**Bones**: The ribs and vertebrae are intact, with no signs of fractures or lesions.\n5. **Soft Tissues**: There are no abnormal masses or fluid 
collections in the soft tissues surrounding the chest.\n\nGiven this detailed examination, there are no indications of abnormality in the 
image.\n\nFinal Answer: \\boxed{B. No}

Figure 7: Case study No.4: Qwen2.5-VL-7B vs. InfiMed-Foundation-4B on Medical VQA.
Qwen2.5-VL-7B produced an erroneous judgment, whereas InfiMed-Foundation-4B conducted a
systematic analysis.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Qwen2.5-VL-7B Answer:

InfiMed-Foundation-4B Answer:

Question: Ground Truth:
What modality was used to obtain this image capture? Is the 
abnormality in this image a benign or malignant image?

A: Malignant B: Benign image

B: Benign image

<think>\nThe image shows a brownish spot on a light-colored surface, which could be indicative of a mole or a 
skin lesion. However, without professional medical evaluation, it's not possible to determine if this is benign 
or malignant. The appearance could be consistent with a variety of skin conditions, including benign moles or 
potentially more serious issues like melanoma. A dermatologist's examination is necessary for a definitive 
diagnosis.\n</think>\n\\boxed{A. Malignant}

The image depicts a skin lesion that appears to be a mole or a similar type of skin marking. To determine whether it is benign or malignant, we need to 
consider several factors such as its size, shape, color, and borders. \n\n1. **Size**: The lesion appears to be relatively small, which is often a 
characteristic of benign moles.\n2. **Shape**: The shape of the lesion is somewhat irregular but not extremely so, which can sometimes be seen in 
benign moles.\n3. **Color**: The lesion has a uniform brown color, which is common in benign moles.\n4. **Borders**: The borders of the lesion 
appear to be well-defined, which is another characteristic often seen in benign moles.\n\nGiven these observations, the lesion seems to have features 
that are more consistent with a benign mole rather than a malignant one. Therefore, the most likely classification for this lesion is:\n\nSimple
Answer: B

Figure 8: Case study No.5: Qwen2.5-VL-7B vs. InfiMed-Foundation-4B on Medical VQA.
Qwen2.5-VL-7B exhibits a deficiency in medical knowledge.
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