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ABSTRACT

When training machine learning (ML) models over private, federated user data,
a common approach is to train models on-device using distributed, differentially-
private optimization techniques (e.g., federated learning with DP-SGD). This has
several drawbacks: (1) user devices are too resource-limited to train large models
on-device, (2) training on-device is communication- and computation-intensive
for users, and (3) on-device training can be complicated to deploy. To address
these problems, we propose Private Evolution-Text (PrE-Text), a method for gen-
erating differentially private (DP) synthetic textual data from federated client data,
which can be used to train or finetune language models centrally. First, we show
that across multiple datasets, training small models (i.e., models that fit on user de-
vices) with PrE-Text synthetic data outperforms those same model architectures
trained on-device in the high privacy regime (ϵ = 1.29), in the sense that they
achieve lower test cross-entropy loss. We achieve these results while using 7x less
total client computation and 40x less communication than on-device training. Al-
together, these results suggest in the high-privacy regime, training on DP synthetic
data could be a better option than training models on-device on private distributed
data.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2017a) is a prominent technique for learning machine
learning models from private client data; it trains models on user devices (on-device training) and
aggregates the resulting models (model updates) at a central server. FL combined with differential
privacy (DP) (Dwork, 2006)—a combination we refer to as DP-FL—protects privacy while also
improving model performance in user applications (McMahan et al., 2017b; Kairouz et al., 2021b;a;
Nguyen et al., 2022; Xu et al., 2023a).

On-device training or federated learning has several drawbacks. (1) Due to limited on-device stor-
age and computation, client devices cannot be used to train large language models (LLMs) (Radford
et al., 2019; Touvron et al., 2023). As LLMs become more critical in many use-cases, this becomes
more limiting Charles et al. (2023). (2) On-device training can have high communication and com-
putation costs for clients (Cai et al., 2022). Indeed, there is a large body of literature studying how to
improve the efficiency of on-device training (Wang et al., 2020; Li et al., 2020; Karimireddy et al.,
2020; Hou et al., 2021; Wang et al., 2021; Mishchenko et al., 2022; Sadiev et al., 2022; Grudzień
et al., 2023). (3) On-device training is difficult to deploy and debug (Augenstein et al., 2019), re-
quiring extensive infrastructure investment (Authors, 2018; Zhao et al., 2023; Authors, 2024).

An alternative paradigm: Train or finetune on differentially private (DP) synthetic data. We
propose to have the central server first generate DP synthetic data from private client data, then
centrally finetune a pretrained language model on that private synthetic data. As in FL, clients
send DP information to the server; this is used by the server to generate high-quality synthetic data.
Unlike FL, clients do not need to help train the downstream model. Finetuning on DP synthetic
data located on-server (1) eliminates the model size constraints of on-device training, (2) is easier
to debug as we can observe the training process without compromising DP, and (3) does not require
new training infrastructure unlike on-device training.

∗Work done while at Meta
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Table 1: PrE-Text provides the privacy guarantees of on-device training while being nearly as easy
to use as centralized non-private training when data is federated among users.

Method Train
LLMs? (a)

Is comm.
cheap? (b)

Is comp.
cheap? (c)

Easy to
deploy? (d)

Privacy
preserving?

Private on-device training
DP-FedAvg (McMahan et al., 2017b)

✗ ✗ ✗ ✗ ✓

Centralized
non-private training ✓ ✓ ✓ ✓ ✗

PrE-Text
(proposed)

✓ ✓ ✓ ✓ ✓

(a) Training LLMs. On-device finetuning of large models (like LLMs) is not feasible because LLMs are
too big. PrE-Text allows us to finetune LLMs because the resulting synthetic data is located on-server.

(b) Communication cost. PrE-Text required 40x less communication per round in our experiments.
(c) Client computation cost. PrE-Text required 7x less client computation per round on-device training in

our experiments. This comes at the cost of server-side computation resources, which is less constrained.
(d) Practicality. PrE-Text produces synthetic data on-server, which allows practitioners to see the training

process end-to-end; this improves debugability (Augenstein et al., 2019). On-device training only returns
final model weights.

Unfortunately, existing techniques for generating DP synthetic language data from federated clients
are too low-quality to train or fine-tune a lanugage model Augenstein et al. (2019). We fill this gap
by leveraging Private Evolution (PE) (Lin et al., 2023), a recent algorithmic breakthrough in DP
synthetic data. PE is a framework for generating realistic DP synthetic image data (Lin et al., 2023),
which achieves high scores in realism metrics like FID (Heusel et al., 2017). However, Lin et al.
(2023) do not apply PE to text, nor do they show that training on DP synthetic data is a competitive
alternative to direct DP training (DP-FL or DP-SGD (Abadi et al., 2016)) on private data. Our work
utilizes PE in the natural language setting (which is a nontrivial adaptation) as part of our overall
algorithm, then demonstrates empirically that the synthetic data can produce competitive models
with DP-FL at a fraction of the cost. We list our contributions below:

(1) PrE-Text (Private Evolution-Text) algorithm. We propose PrE-Text, a new algorithm for DP
synthetic text generation. We build on the following insights: (1) In Lin et al. (2021), PE must
generate variations of samples (e.g., similar images). We adapt this requirement to the language
domain by carefully utilizing mask-filling models (Devlin et al., 2018; Lewis et al., 2019) instead of
the diffusion models used for images. (2) PE alone does not generate enough high-quality synthetic
data to effectively finetune an LLM. Hence, we add a post-processing phase, in which we use the
outputs of PE to seed high-quality LLMs trained on public data to generate more similar text.1

(2) Experimental results. We produce high-quality DP synthetic language data using PrE-Text,
and demonstrate its usefulness for finetuning models that are small enough to fit on user devices
(i.e, the kinds of models that might otherwise be trained using FL). We demonstrate that in this
setting, models trained on synthetic data produced by PrE-Text achieve similar or better test loss
than models trained on-device when ϵ = 1.29 (a privacy used in prior DP-FL literature (McMahan
et al., 2017b)), with ∼40x less communication per round, ∼7x lower client computation per round,
and a similar number of rounds. However, when ϵ = 7.58 (a typical setting in the DP-FL literature
(Kairouz et al., 2021b)), on-device training outperforms PrE-Text in eval loss. This suggests that, at
least in the high-privacy regime (ϵ ≈ 1), PrE-Text is a compelling alternative to on-device training.

We present a detailed related work section in Appendix A.2.

1In concurrent work released after the submission of our paper, Lin et al. (2021) extend PE to the text
domain using similar techniques to ours. Two differences are: (1) their approach relies on a closed-source
model (ChatGPT), whereas ours relies on open-source models (LLaMA). This matters because the prompts for
synthetic data generation that work on ChatGPT did not work well on LLaMA, so we use different prompts
and a post-processing phase to address this issue. (2) Their work does not explore the downstream effects of
using synthetic data as a replacement for on-device training, which is the main focus of our work.
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Figure 1: A high-level description of PrE-Text (Section 3). PrE-Text consists of two main phases:
(1) (Iterative) DP synthetic seed collection, (2) (Single-shot) synthetic seed expansion.

2 PRELIMINARIES

Definition 2.1 (Neighboring datasets). Two federated datasets X,X ′ are said to be neighboring
(denoted X ∼ X ′) if they differ at most with respect to only one user’s data. Note that we consider
a user-level (McMahan et al., 2017b) notion of neighboring datasets.
Definition 2.2 (Differential Privacy). A randomized algorithmA is (ϵ, δ)-differentially private (DP)
if for any pair of neighboring datasets X , X ′ and for all subsets E of outputs, we have

Pr[A(X) ∈ E] ≤ eϵ Pr[A(X ′) ∈ E] + δ. (1)

In this work, we use the Gaussian Mechanism (Dwork, 2006) for DP, which adds Gaussian noise of
a specific scale to released statistics. The required scale of noise depends on the sensitivity of the
statistical query we wish to release.
Definition 2.3 (ℓ2 sensitivity (Dwork et al., 2014)). Let g : X → Rp be a vector-valued function
operating on datasets. Let X,X ′ be neighboring datasets. The ℓ2-sensitivity of g is defined as
∆g := maxX∼X′ ∥g(X)− g(X ′)∥2.

2.1 PROBLEM FORMULATION

Private clients setup. We consider a setting where a central server wishes to learn a model M
from N user devices (or, “clients”). Client i has the language dataset Di which consists of |Si|
language samples. M of these clients, Ctest ⊂ [N ] are considered test clients, and we cannot access
their data during synthetic data generation and the training process. The remaining N −M clients,
Ctrain ⊂ [N ], are considered training clients, and their data can be accessed during model training
and/or synthetic data generation. We assume that the client language datasets are drawn from a
distribution of possible client datasets D̂, so each Di is drawn independently from D̂, Di ∼ D̂. We
study models which can fit on client devices.

Server setup. The server has access to pretrained LLMs (for example, the LLaMA models in our
setting (Touvron et al., 2023)) which were trained only on public data.

Task. We focus on the language modeling task, where a language model predicts token sk from
the previous tokens s0, · · · , sk−1 for each text sample. The server’s final goal is to learn a language
model that performs well on next-token-prediction on the private test dataset Ctest.

Privacy and threat model. We consider an honest-but-curious threat model (Nguyen et al., 2022).
Using secure aggregation (Bonawitz et al., 2016), the server does not see individual client uploads,
but rather aggregated uploads from all clients. By adding DP noise, clients prevent the server from
inferring any single client’s data from the aggregated upload. The server aims to learn an (ϵ, δ)-DP
language model (central DP); during the training process, the clients’ data shared with the server
should satisfy a local DP guarantee. We consider user-level DP (McMahan et al., 2017b).
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3 PRE-TEXT

The main intuition of PrE-Text (and PE) is that to generate DP synthetic data similar to private data,
we steer the output of a public foundation model (privately) towards the user data in a multi-round
process. Briefly, we make several important changes to the PE algorithm: (1) we adapt it to the text
setting; (2) we exploit synthetic data from the entire PE process, rather than only the last round; and
(3) we add a post-processing phase that uses the output of PE as seeds for another LLM. We provide
pseudocode in Algorithm 1, and highlight the new contributed steps in light blue.

(1) Population of synthetic samples. We start with an initial population (set) of text samples S1

(Line 5). These samples can come from many different sources as long as they do not contain
private information—for example, public samples collected from the Internet or samples randomly
generated by a public generative foundation model.

Algorithm 1 PrE-Text
Input: Private data: Clients {Ci}i∈Ctrain

1: Number of iterations: T
2: Number of generated samples: Nsyn
3: Noise multiplier for histogram: σ
4: Threshold for histogram: H
5: Initial population: S1

6: Output: Synthetic data Ssyn
7: for t← 1 . . . T do
8: // SEE ALGORITHM 2
9: histt ← DPNN({Ci}i∈Ctrain , St, σ,H)

10: Pt ← histt/sum(histt)
11: S′

t ← draw Ksyn samples from Pt

12: St ← Variation(S′
t)

13: end for
14: Ssyn ← Expand(

⋃T
t=1 Set(S

′
t))

15: return Ssyn

Algorithm 2 DPNN
Input: Private data: Clients {Ci}i∈Ctrain

1: Generated samples S = {zi}ni=1
2: Number of generated samples: Nsyn
3: Noise for DP-NN histogram: σ
4: Threshold for DP-NN Histogram: H
5: Distance function: d(·, ·)
6: Output: DP-NN histogram on S
7: for i ∈ Ctrain do
8: histogrami ← [0, . . . , 0]
9: for xpriv ∈ Di do

10: l = argminj∈[n]d(xpriv, zj)

11: histi[l]← hist[l] + 1
12: end for
13: histi ← histi +N (0, (σ/|Ctrain|)I)
14: end for
15: hist←

∑
i∈Ctrain

histi
16: hist← max(hist−H, 0) (elementwise)
17: return hist

(2) Clients vote for the best synthetic samples. For round t ≥ 1, the clients determine which of
the samples in St best represent the clients’ private samples. In round 1, the samples in St may not
be synthetic, but for rounds t > 1, the samples in St will be generated by a generative model. The
server first sends all the samples in St to each client. Each client counts for each sample s ∈ St

how many of its private samples in Di had s as their nearest neighbor in St. The higher this count,
the “better” a generated sample is. Thus, each client produces a nearest neighbors histogram with
|St| entries (Line 8). We determine nearest neighbors according to a distance function d(y, z) =
∥Φ(y)− Φ(z)∥2, where Φ is an embedding model.

Lookahead. To more accurately assess the closeness of a synthetic sample to a private sample, we
amend the distance function from d(y, z) = ∥Φ(y)−Φ(z)∥2 to d(y, z) = ∥Φ(y)− 1

K

∑K
i=1 Φ(z

i)∥2,
where z0, . . . , zK are K variations of z produced by using Variation. Lin et al. (2023) also use
this modification. Instead of sending the actual generated samples directly to all the clients, we send
1
K

∑K
i=1 Φ(z

i) to all the clients for every i for their nearest neighbors calculation (Line 10).

(a) DP Noise. In Line 13 each client adds noise to their nearest neighbors histogram to ensure
differential privacy. We compute client-level sensitivity assuming a known upper bound on the
number of samples per client (e.g., via thresholding).

(b) Federated Secure Aggregation In Line 15 we securely aggregate the histograms across the users.
Because the generated samples given to all the clients are the same, we sum them using secure
aggregation (Bonawitz et al., 2016) to get a histogram representing the “best” generated samples.
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(c) Thresholding. When we generate many samples, the majority of the probability mass of the
histogram will be noise. We improve the signal-to-noise ratio by thresholding the histogram at H in
Line 16 (Lin et al., 2023).

(3) Use votes to choose the surviving samples. We sample from the nearest neighbors histogram
to produce surviving generated samples in Line 11, S′

t+1. This new list of generated samples (there
may be duplicates) tends to give more representation to generated samples that had more private
samples close to them.

(4) Produce variations of surviving samples. We use Variation to generate a variation of the
surviving samples S′

t+1 as the new population of samples (Line 12). In PE, this was accomplished
using diffusion models, which cannot be used for text. We instead implement Variation as
follows. For each sample in S′

t, we produce a variation of it by masking MASK% of the tokens
randomly, then filling in those masked tokens in with a masked language model, like BERT (Devlin
et al., 2018). The resulting sample is then masked and filled-in again. This mask-fill process happens
Wsteps times, and then we return the final variation. We use RoBERTa-large (Liu et al., 2019) as the
masked language model.

(5) Making efficient use of iterates We make several major modifications to the core Private Evolu-
tion algorithm to improve our usage of the iterates. First, Lin et al. (2023) use the final ST (Line 12)
as the synthetic dataset. However, S′

T contains more information about the private dataset than ST

because Variation destroys information. Therefore, we use S′
T instead of ST . Second, we find

that S′
t for t = 1, . . . , T all have valuable synthetic samples and show significant diversity between

iterations. Therefore, we choose to utilize
⋃T

t=1 Set(S
′
t) (Line 14) instead of just S′

T . This more
effectively utilizes our privacy budget.

(6) Post-processing: Use LLM to expand the DP seed set. PE originally used the final ST as the
target synthetic data. However, we find that these samples are not sufficiently high-quality to fine-
tune an LLM. We instead use Expand to generate more samples similar to the synthetic samples⋃T

t=1 Set(S
′
t), which we use as our (DP) seed set to prompt the LLM. Expand utilizes the synthetic

data generation capabilities of large language models (LLMs) to generate a larger and more useful
synthetic dataset. Note that by the post-processing property of differential privacy (Dwork, 2006),
Expand will not leak any additional privacy. Next we describe how Expand works.

Inspired by highly successful synthetic text generation (Taori et al., 2023; Wang et al., 2022; Hon-
ovich et al., 2022; Rozière et al., 2023), we generate synthetic text by using large foundational
language models. Like Honovich et al. (2022), we randomly choose three text samples to emulate
from

⋃T
t=1 Set(S

′
t) (our DP seed set) and then ask a large language model to produce more text

samples. We use open-source LLaMA-2-7B (Touvron et al., 2023) as our large language model. We
provide the full prompt (Fig. 2).

Privacy analysis. As noted in Lin et al. (2023), the only function that utilizes private information
is Algorithm 2: the histogram that counts the quality of each synthetic sample with respect to the
private datasets (Line 15) contains private information. Like Lin et al. (2023), we use the Gaussian
mechanism with constant noise multiplier σ each time we receive a histogram. As this is a basic
Gaussian mechanism, we can use the moments accountant from the Opacus library (Yousefpour
et al., 2021). In particular, we use OPACUS.ACCOUNTANTS.ANALYSIS.RDP to compute the privacy
guarantee for both the DP-FL baseline (it is built into FLSim (Zhao et al., 2023)) and PrE-Text (we
input T = 11 steps, q = 1.0, and set the NOISE MULTIPLIER to be the ratio of σ to the sensitivity
(the max number of samples per client for PrE-Text), setting σ to the value that gets us the desired ϵ
value).

4 EXPERIMENTS

Our goal in this section is to compare PrE-Text against the most common technique for privacy-
preserving on-device learning, DP-FL.

Models. To compare with DP-FL, we require a downstream language model that can fit on device;
we use DistilGPT2 as a representative such model, which has 82M parameters. We use RoBERTa-
large (Liu et al., 2019) for mask-filling. To compute text embeddings, we use all-MiniLM-L6-
v2, all-mpnet-v2 (Reimers & Gurevych, 2019), BART-base, and BART-large (Lewis et al., 2019).
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Table 2: We compare the eval cross-entropy losses achieved by FL and PrE-Text, under (1.29, 3 ×
10−6)-DP and (7.58, 3× 10−6)-DP. We see that PrE-Text either outperforms or performs similarly
to DP-FL on all datasets when ϵ = 1.29, but the opposite is true when ϵ = 7.58. These test
performances come at a dramatic reduction in communication and per-round runtime (Section 4).

Method Privacy Budget JOBS (↓) FORUMS(↓) MICROBLOG (↓)
DP-FL

PrE-Text ϵ = 1.29
4.185 ± 0.014
3.814 ± 0.001

4.258 ± 0.021
4.284 ± 0.005

4.317 ± 0.080
4.070 ± 0.002

DP-FL
PrE-Text ϵ = 7.58

3.073 ± 0.018
3.702 ± 0.004

3.157 ± 0.007
4.268 ± 0.001

3.243 ± 0.024
4.053 ± 0.005

MiniLM-L6-v2 and all-mpnet-v2 are designed to capture the meanings of sentences and are meant
to be more invariant to stylistic language choices. BART-base and BART-large are mask-filling
models, so their embeddings are meant to be sensitive to style choices. Finally, we use LLaMA-2-
7B (Touvron et al., 2023) for synthetic seed expansion.

Datasets. We use the c4 English (c4-en) dataset (Raffel et al., 2019) to construct 3 datasets: JOBS,
FORUMS, and MICROBLOG which are federated datasets of 1250 clients each. JOBS, FORUMS,
and MICROBLOG are constructed from text found on linkedin.com, reddit.com, and twitter.com
respectively. We give details on their construction in Appendix B.2.

Baseline. We use the FedAvg federated optimization algorithm (McMahan et al., 2017a) to fully
finetune DistilGPT2 (we do not use linear probing, as it has been shown to perform poorly in DP
language models (Li et al., 2021)). We perform full participation where every client participate in
every round, both for DP-FL and for PrE-Text. We ensure that the training has a privacy guarantee of
(ϵ, δ)-DP where δ = 3 ·10−6 and ϵ = 1.29 or ϵ = 7.58, to evaluate two privacy regimes. We include
hyperparameter tuning details on learning rate, batch size, sequence length, and communication
rounds in Appendix B.3. We report the best validation loss observed.

PrE-Text. We first perform PrE-Text such that the privacy guarantee is (1.29, 3 · 10−6) or (7.58, 3 ·
10−6) DP depending on the privacy regime to produce 2M synthetic samples. We keep roughly
the same number of communication rounds with DP-FL (10 rounds for DP-FL vs 11 for PrE-Text).
Then we fully finetune DistilGPT on the synthetic samples. More details on the parameters for
PrE-Text T , Nsyn, σ, Φ, H , Wsteps, MASK% as well as the finetuning parameters are reported in
Appendix B.3.

Task. We focus on the language modeling task, and report evaluation cross entropy losses as our
evaluation metric.2

Results. Table 2 gives the evaluation cross-entropy loss achieved by DP-FL and PrE-Text at two
different privacy regimes. We see that PrE-Text either outperforms or performs similarly to the FL
baseline on every dataset when ϵ = 1.29 (comparable to McMahan et al. (2017b), which has ϵ =
1.152) while the DP-FL baseline outperforms PrE-Text on all datasets when ϵ = 7.58 (comparable
to Kairouz et al. (2021b), which has ϵ = 7.51). The results show that in the high privacy regime,
PrE-Text is able to outperform DP-FL. As synthetic data generation methods improve (for example,
better prompts and models for expand), it is plausible that synthetic data may outperform DP-FL
in other privacy regimes as well.

Efficiency differences. We compare the efficiency of DP-FL vs PrE-Text for clients with 8 samples
each in Section 4; a detailed explanation of these numbers can be found in Appendix B.1. These
results demonstrate that PrE-Text is more efficient than DP-FL in per-round runtime (7× improve-
ment) and communication (40× improvement).

5 CONCLUSION

We propose PrE-Text, a method for generating DP synthetic text from user devices. Our results
suggest that one can use PrE-Text’s DP synthetic text data generation process to replace DP-FL

2Code is provided at https://anonymous.4open.science/r/PrE-Text-8745/README.md
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Method
Per-Round Communication
(Number of floats transmitted) Per-Round Runtime

(s)Upload Download

DP-FL 82M 82M 24
PrE-Text 1024 1.8M 3.1

Reduction 80,000× 46× 7.7×

Table 3: Communication and runtime cost of PrE-Text vs DP-FL. We find that PrE-Text achieves at
least a 40× reduction in communication and a 7× reduction in per-round runtime in our experiments.
These results are dataset-agnostic and run for private clients with 8 samples each.

in the high privacy regime; however, we have not observed similar gains in the low-privacy regime.
Understanding exactly when PrE-Text outperforms DP-FL is an important direction for future work.
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A APPENDIX

A.1 ABLATION STUDIES

We chose the hyperparameters in our algorithm based on results from empirical evaluations. In the
following section we study the effect of changes in the following parameters: Nsyn (the number of
synthetic samples generated per round by the server before the Expand part of PrE-Text, the choice
of embedding vector, and M STEPS (the amount to vary each sample when executing Variation).

Experimental setup. In this section, we start with a baseline setting for PrE-Text and change one
factor at a time. The baseline setting is as follows: we set Nsyn = 1024, the embedding vector
is computed from concatenating all-mpnet-v2 and BART-large, Wsteps = 2, and MASK% = 30%.
During Expand we generate 100,000 samples, and set the context length during generation and
during the finetuning evaluation to be 64. The model we finetune is DistilGPT2, and we use a batch
size of 8192. We finetune for 10 epochs and use the final eval loss. We use only the JOBS dataset.
Otherwise, we follow the experimental setup of ??. All results are means of eval cross entropy over
three trials.

1. Choosing Nsyn. We use the baseline setting and vary Nsyn. Unlike in Lin et al. (2023), we see
larger Nsyn is not always better. Moreover, we found that Nsyn of 1024 or 4096 work well. As a
result of this ablation, we chose to use Nsyn = 1024 in our experiments.

Nsyn 1024 2048 4096

JOBS (↓) 4.374 4.380 4.372

2. Choosing the embedding model. In this section, we compare three embedding models: BART-
large (Lewis et al., 2019) (bart), all-mpnet-v2 (Reimers & Gurevych, 2019), and the concatenation
of the two (mpnet+bart). Note BART-large is a model that fixates more on sentence structure and
style, while all-mpnet-v2 (mpnet) focuses on meaning.

Embedding mpnet bart mpnet+bart

JOBS (↓) 4.414 4.410 4.374

We find that mpnet+bart performs the best. For our main experiments, we chose to use mpnet+bart
for Φ.

3. Choosing the amount of variation. In this section, we study the impact of the amount and type
of variation. MASK% controls the amount of masking per step and Wsteps is the number of times we
mask and fill per communication round. We find that Wsteps = 2, and MASK% = 30%.
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MASK% 0.3 0.15 0.3 0.15
Wsteps 2 5 4 1

JOBS (↓) 4.374 4.391 4.379 4.394

A.2 RELATED WORK

DP Federated Learning. Differentially Private Federated Learning (FL) is a widely-used approach
for learning ML models from distributed private data (McMahan et al., 2017b; Kairouz et al., 2021c).
In DP-FL, model weights are sent to users who train the model locally on their private data; pri-
vate local model updates are then collected at a central server. Researchers have many techniques
for improving privacy-utility tradeoffs in DP-FL. Some include shuffle-based privacy amplification
Bonawitz et al. (2016); Girgis et al. (2021); Agarwal et al. (2018), pretraining on public datasets Xu
et al. (2023b), private selection of the best pretraining datasets Hou et al. (2023); Gu et al. (2022),
and DP-FL methods that do not rely on uniform sampling/shuffling (Kairouz et al., 2021b).

Today, growing efforts study how to train larger models on client data. Charles et al. (2022) propose
to have users optimize slices of large models, though they have not demonstrated the approach on
models larger than shallow logistic regression and convolutional neural network models. Collins
et al. (2023); Cai et al. (2022); Zhang et al. (2023a); Zhao et al. (2022); Guo et al. (2023) only tune
sub-components of the models in the federated setting to reduce client computational burden and
communication, but this still requires having clients store and perform inference with large models
on their device. Zhang et al. (2023b) use foundation models to produce synthetic data to pretrain
smaller models. None of these methods consider privacy. Prior to our work, there was no clear path
on how to train large models over federated client data, even without privacy.

Synthetic Data. Synthetic data is increasingly being used to train language models (Taori et al.,
2023; Wang et al., 2022; Honovich et al., 2022). Common approaches involve carefully designing
prompts to ChatGPT (Radford et al., 2019) to generate synthetic training data for another open
source model, e.g. LLaMA (Touvron et al., 2023), to replicate ChatGPT behavior. In these works,
the synthetic data is used solely to enhance final model utility, and does not satisfy any formal privacy
guarantees. In the image setting, useful synthetic data is often produced using dataset distillation
(Wang et al., 2018; Zhao et al., 2020; Cazenavette et al., 2022). This approach has been adapted to
the federated setting (Song et al., 2023).

DP Synthetic Data. Much of the work on producing private (i.e., DP) synthetic data from deep
generative models is in the image domain (Lin et al., 2021; Cao et al., 2021; Dockhorn et al., 2022;
Chen et al., 2022). Common approaches involve training a generative adversarial network (GAN) or
diffusion model in a differentially private way, e.g., via DP-SGD, a DP version of stochastic gradient
descent (SGD) (Abadi et al., 2016). Tang et al. (2023) generate DP synthetic text in the federated
setting, but their method requires users to send private data to ChatGPT (which is located on-server).
Such actions are not allowed under our threat model, where the central server is not trusted to hold
private data. They do not train any models on their synthetic data.

DP Language Models. In the text domain, (Li et al., 2021; Yu et al., 2021) demonstrate that it is
possible to finetune pretrained large language models in a central-DP manner (i.e., the private data
is available to the model developer). This is a different privacy setting from ours.

B PROMPT

We provide the prompt used for expand here.

B.1 DETAILED EFFICIENCY ANALYSIS

(1) Communication cost. DP-FL requires each client to download and upload the model (Distil-
GPT2) to/from the server. DistilGPT2 has a size of 82M parameters, which means clients are
downloading and uploading 82M floats each round. On the other hand, PrE-Text requires clients
to download 1024 embedding vectors of size 1792 representing the synthetic samples each round.
This means each client downloads 1024 × 1792 = 1.8M floats. On upload, clients upload 1024
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List of 6 diverse original text samples:

Original Text Sample 1
As you meet with employers this summer, get in touch with the team 
and find out how they plan to find the person that will build their 
organization.

Original Text Sample 2
You can also of course change culture across your organization to 
ensure your team members work as a unit, with each working 
together to accomplish the company goal.

Original Text Sample 3
We're here to tell you how too take a close look and view the journey 
you've made here, based on how you left the hero behind.

Original Text Sample 4
Risk points can be validated in two or more ways. Here are some 
procedures that can be used in decision-making:

Original Text Sample 5
…

Figure 2: The synthetic data generation prompt for Expand. The blue text after “Original Text
Sample 4” is generated. We parse the generated text for the text between Original Text Sample 4
and Original Text Sample 5 and use that as a synthetic sample.

floats (the size of the histogram). So client download cost is 40× cheaper with PrE-Text per round,
and upload cost is 80,000× cheaper with PrE-Text per round. Conservatively, this is at least a 40×
improvement in communication cost per round when using PrE-Text (likely much more, given that
upload speeds are usually 15x slower than download (spe, 2023)). We do not account for download-
ing the embedding models such as BART-large or all-mpnet-v2, as this can be done offline in one
communication round (not during the course of running the algorithm).

(2) Client computation cost. PrE-Text is also much more computation-efficient for the clients. We
assume that user devices only have access to CPU computation, as most smartphones do not have
GPUs (or have fairly limited GPUs). When tested on a VM with five Intel(R) Xeon(R) Gold 6248
CPU @ 2.50GHz, training on 8 samples (each client has 8 samples in our experiment) using Distil-
GPT2 takes 24 seconds while the client computation component of PrE-Text takes 1.18 seconds for
the private embedding calculation and 2 seconds for the nearest neighbors calculation. This compu-
tation gain comes from the fact that clients perform inference rather than training: inference requires
fewer operations than training and can be sped up with various tricks (Kwon et al., 2023; Reimers
& Gurevych, 2019). This gives at least a 6x improvement in computation cost per round for clients
with PrE-Text. Meanwhile, the total number of rounds used is similar (10 or 100 for DP-FL and 11
for PrE-Text). This comes at the cost of more server-side compute in our experiments. However,
using server compute is often more acceptable.

Hence, PrE-Text’s DP synthetic language data offers many practical advantages over training on-
device: (1) comparable or better model performance, (2) efficiency gains (3) the ability to in-
spect (synthetic) training data (4) no need to implement FL training infrastructure like TensorFlow-
Federated, Pytorch-iOS, etc.

B.2 DATASET CONSTRUCTION DETAILS

We use the train split of the c4 English (c4-en) dataset (Raffel et al., 2019). We start by producing
three federated private datasets from c4-en: JOBS, FORUMS, and MICROBLOG. We illustrate the
process for JOBS; the process is similar for the other two. First, we take the first 10,000 samples
in the c4-en dataset that come from linkedin.com. The private evaluation set consists of the next
1,000 samples in the c4-en dataset from linkedin.com. The federated dataset is then constructed
by splitting the 10,000 training samples into 1250 clients of 8 samples each. The same is done for
FORUMS (from reddit.com) and MICROBLOG (from twitter.com). For the initial population used in
Algorithm 1, we take random samples from c4-en that are not in the private training sets. Note that
many LLMs do not document what datasets were used in the pretraining, which means the only sure
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way to prevent dataset contamination is to use data that was created after the release of the model.
(Touvron et al., 2023). We used the most recent large-scale dataset we could find (though it was
released before LLaMA-2) that is (a) compliant with terms of service (for example, many sources
of recent text data have closed their APIs for ML training) and (b) readily accessible–figuring out
ways to systematically detect consequential dataset contamination is an important open problem in
large language model research (Gunasekar et al., 2023)

B.3 EXPERIMENTAL DETAILS

B.3.1 FEDAVG EXPERIMENTAL DETAILS

We use the FedAvg federated optimization algorithm (McMahan et al., 2017a) to fully finetune
DistilGPT2 (we do not use linear probing, as it has been shown to perform poorly in DP language
models (Li et al., 2021)). We use a batch size of 2, a sequence length of 64, and full participation
when training (i.e. every client participates in every round). For DP, we use secure aggregation
(Bonawitz et al., 2016) and add Gaussian noise (McMahan et al., 2017b). We report evaluation
cross entropy scores across different choices for the number of training epochs over the clients. We
tune the learning rate in {3.0, 1.0} (Kairouz et al., 2021b), the number of communication rounds in
{10, 100} and choose the model that performs the best on the evaluation set to report. The noise is
scaled such that the resulting privacy guarantee will be (ϵ, δ)-DP where δ = 3 · 10−6 and ϵ = 1.29
or ϵ = 7.58, to evaluate two different privacy regimes.

B.3.2 PRE-TEXT EXPERIMENTAL DETAILS

We use T = 11, Nsyn = 1024. We scale σ such that the privacy guarantee is δ = 3 · 10−6 and
ϵ = 1.29 (with H = 94.4) or ϵ = 7.58 (with H = 16.0). The Φ we use is a concatenation of the
mean pooled representation from BART-large and the representation from all-mpnet-v2 (i.e., we pass
a text sample through BART-large to get a vector of dimension 1024, then pass the same text sample
through all-mpnet-v2 to get a vector of dimension 768, and concatenate these vectors together to
get a vector of dimension 1792 that altogether represents the text sample). In Variation we use
RoBERTa-large as the mask filling model with top p parameter set to 1.0 and temperature set to
1.0, Wsteps = 2, and MASK% = 30%. In Expand we use LLaMA-2-7B with top p set to 1.0 and
temperature set to 1.0. When implementing Expandwe use the library vLLM to speed up inference
(Kwon et al., 2023). DistilGPT2 is then fully finetuned on 2 million DP synthetic samples that were
generated using Expand. Finetuning is done for 10 epochs with a batch size of 65536. We report
the best validation loss, as done in the baselines.
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