
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ENHANCING UNSUPERVISED SENTENCE EMBED-
DINGS VIA KNOWLEDGE-DRIVEN DATA AUGMEN-
TATION AND GAUSSIAN-DECAYED CONTRASTIVE
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, using large language models (LLMs) for data augmentation has led to
considerable improvements in unsupervised sentence embedding models. How-
ever, existing methods encounter two primary challenges: limited data diversity
and high data noise. Current approaches often neglect fine-grained knowledge,
such as entities and quantities, leading to insufficient diversity. Additionally, un-
supervised data frequently lacks discriminative information, and the generated
synthetic samples may introduce noise. In this paper, we propose a pipeline-
based data augmentation method via LLMs and introduce the Gaussian-decayed
gradient-assisted Contrastive Sentence Embedding (GCSE) model to enhance un-
supervised sentence embeddings. To tackle the issue of low data diversity, our
pipeline utilizes knowledge graphs (KGs) to extract entities and quantities, en-
abling LLMs to generate more diverse, knowledge-enriched samples. To address
high data noise, the GCSE model uses a Gaussian-decayed function to limit the
impact of false hard negative samples, enhancing the model’s discriminative capa-
bility. Experimental results show that our approach achieves state-of-the-art per-
formance in semantic textual similarity (STS) tasks, using fewer data samples and
smaller LLMs, demonstrating its efficiency and robustness across various models.

1 INTRODUCTION

Sentence representation learning, a fundamental task in natural language processing (NLP), aims to
produce accurate sentence embeddings, thereby improving performance in downstream tasks such as
semantic inference (Reimers & Gurevych, 2019), retrieval (Thakur et al., 2021; Wang et al., 2022a),
and question answering (Sen et al., 2020). To enhance computational efficiency and reduce labor
costs, unsupervised sentence embedding methods based on contrastive learning, such as SimCSE
(Gao et al., 2021) and ESimCSE (Wu et al., 2022c), have emerged as highly effective paradigms.
In general, contrastive learning methods operate on the principle that effective sentence embeddings
should pull similar sentences closer while pushing dissimilar ones further apart. The performance of
unsupervised contrastive learning methods largely depend on the quantity and quality of the samples
(Chen et al., 2022), making it crucial to develop strategies that effectively improve both.

Previous studies mainly focused on increasing the number of samples using rule-based word mod-
ifications (Wang & Dou, 2023; Wu et al., 2022c) or feature sampling and perturbation techniques
(Xu et al., 2023; Chuang et al., 2022a). Recent studies (Zhang et al., 2023; Wang et al., 2024a)
use either few-shot manually constructed samples or zero-shot generalized refactoring instructions
to create prompts that guide large language models (LLMs) in generating new samples from orig-
inal sentences, increasing both the quantity and quality of the data. Although these methods have
achieved commendable performance, two limitations remain:

Low Data Diversity. Diverse data samples in sentence representation learning should contain varied
expressions of the same knowledge. However, existing approaches often struggle to distinguish fine-
grained semantic knowledge like entities and quantities in the context. Traditional methods modify
sentences using limited patterns without considering fine-grained knowledge, restricting their ef-
fectiveness in enhancing sample diversity. Recent LLM-based methods like Wang et al. (2024b),

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

SynCSE (Zhang et al., 2023) and MultiCSR (Wang et al., 2024a), adjust topic and entailment cat-
egories in prompts to guide the model in generating varied samples. These methods focus on the
global context but lack precise control over the knowledge in the samples. Consequently, the di-
versity of generated samples is constrained by the probability distributions of LLMs, resulting in
unpredictable data quality.

0
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SimCSE RankCSE SynCSE Ours

FP FN

Figure 1: Comparison of false positives (FP)
and negatives (FN). Both the predicted scores
and labels are normalized (see details in Ap-
pendix I), where positives have a score greater
than the label, while negatives lower than the
label. False samples are identified when the
root mean square error (RMSE) between the
prediction and the label exceeds 0.2.

High Data Noise. Unsupervised sentence represen-
tation learning often suffers from data noise caused
by confusing negative samples, which mainly arise
from two sources. First, traditional methods gener-
ate datasets by duplicating samples to create pos-
itive instances, leading to negatives with similar
surface-level semantics that affect the model’s per-
formance (Miao et al., 2023; Zhou et al., 2022).
Second, in data synthesis, differences in seman-
tic distributions can cause the LLM’s criteria for
distinguishing between positive and negative sam-
ples to misalign with the target domain, introduc-
ing additional noise (Huang et al., 2023; Poerner
& Schütze, 2019). The existing MultiCSR method
attempts to remove noisy samples using linear pro-
gramming, but this can eliminate potentially valu-
able samples and reduce data diversity. Figure 1
compares various baselines on the STS-Benchmark
development set. The results show that the predic-
tion of false positives outnumber false negatives,
and data synthesis in SynCSE increases false nega-
tives, further supporting the above analysis.

Methods Synthesis Approach Use Knowledge Denoise
SynCSE Few-shot Synthesis No No

MultiCSR Zero-shot Synthesis No Yes
Ours Zero-shot Synthesis Yes Yes

Table 1: Comparison of our methods and re-
lated LLM-based methods.

In this paper, we propose a pipeline-based data
augmentation method using LLMs and introduce
the Gaussian-decayed gradient-assisted Contrastive
Sentence Embedding (GCSE) model to improve the
performance of unsupervised sentence embedding
methods. To address the issue of low data diver-
sity, we begin by extracting entities and quantities
from the data samples and constructing a knowledge
graph (KG) with the extracted data. Next, we create
a sentence construction prompt using the extracted knowledge to guide LLM in generating more
diverse positive samples. To tackle high data noise, we employ an evaluation model to annotate
the synthesized data and initially filter out false samples. However, this procedure is ineffective
in filtering out false negatives with similar surface-level semantics. To balance sample diversity
while minimizing the impact of noise from false negatives, we aim to align all hard negatives with
the distribution of the evaluation model in the initial training step. Then, we leverage other in-
batch negative samples to optimize the semantic space. Therefore, we propose the GCSE model
that employs a Gaussian-decayed function to calculate the prediction distinctions between GCSE
and the evaluation model. It first declines the gradients of hard negatives. As training progresses,
the gradient weights for hard negatives that diverge farther from the evaluation model’s distribution
progressively recover. This function helps prevent false negatives from being pushed further away
in the semantic space, leading to a more uniform distribution. We highlight the key innovations
of our approach in Table 1: (i) We are the first to incorporate fine-grained knowledge for sample
synthesis in LLM-based methods. (ii) Unlike MultiCSR’s denoising approach, our method retains
more false samples for training rather than discarding them. (iii) Our data selection strategy focuses
on domain-specific samples, using a local LLM with fewer samples for synthesis, leading to im-
proved performance. Experimental results demonstrate the efficiency of our model, outperforming
previous best methods in average scores for semantic textual similarity (STS) tasks by 1.05% with
BERT-base, 1.62% with BERT-large, 0.49% with RoBERTa-base, and 1.50% with RoBERTa-large.

In summary, our contributions are as follows: (1) New method. We introduce a pipeline-based
data augmentation method using LLM for few-shot domain data and propose a Gaussian-decayed
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Model Training (§𝟑.𝟐)

Data Augmentation Pipeline (§𝟑.𝟏)

1. Knowledge Extraction 2. Data Synthesis
Evaluation Model

1. Clone as backbone for GCSE

Source Data

Source Data

Synthesized Data

Filtered 
Synthesized Data

GCSE

2. Set frozen for evaluation

1. Training with Standard
Contrastive Learning

2. Initially filter 
false samples

Figure 2: The overall workflow of our method.

gradient-assisted Contrastive Sentence Embedding (GCSE) model to reduce data noise. (2)
New perspective. To the best of our knowledge, we are the first to explore combining knowledge
graphs with LLM to synthesize data, enhancing fine-grained sentence representation learning by
generating diverse positive and negative samples. (3) State-of-the-art performance. Experimental
results demonstrate that our method achieves superior performance on STS tasks while using fewer
samples for data synthesis with smaller LLM parameters.

2 RELATED WORK

Early work on sentence embeddings builds on the distributional hypothesis, predicting surround-
ing sentences (Kiros et al., 2015; Logeswaran & Lee, 2018; Hill et al., 2016) or extending the
word2vec framework (Mikolov et al., 2013) with n-gram embeddings (Pagliardini et al., 2018). Post-
processing techniques like BERT-flow (Li et al., 2020) and BERT-whitening (Su et al., 2021) address
the anisotropy issue in pre-trained language models (PLMs), and more recent methods focus on gen-
erative approaches (Wang et al., 2021; Wu & Zhao, 2022) and regularizing embeddings to prevent
representation degeneration (Huang et al., 2021). Recently, contrastive learning approaches have
become prominent, using various augmentation methods to derive different views of the same sen-
tence (Zhang et al., 2020; Giorgi et al., 2021; Kim et al., 2021; Gao et al., 2021). Among these, Sim-
CSE uses dropout as a simple augmentation and achieves strong results in unsupervised STS tasks,
inspiring further approaches like ArcCSE (Zhang et al., 2022), DiffCSE (Chuang et al., 2022a),
GS-InfoNCE (Wu et al., 2022b), and RankCSE (Liu et al., 2023).

With the advent of LLM (OpenAI, 2023; Bai et al., 2023; Touvron et al., 2023), some works at-
tempt to utilize LLM for sentence representation learning. For example, Ni et al. (2022) uses T5
with mean pooling to obtain a sentence embedding model by fine-tuning on a large-scale NLI cor-
pus; Cheng et al. (2023) uses prompt learning to measure the semantic similarity of sentence pairs;
Springer et al. (2024) employs sentence repetition to enhance the capacity for sentence representa-
tion; AoE (Li & Li, 2024a) optimize angle differences for improving supervised text embedding;
and BeLLM (Li & Li, 2024b) designs a Siamese structure for learning sentence embeddings.

3 METHODOLOGY

In this section, we present the data augmentation pipeline via LLM and the specific structure of the
GCSE. As shown in Figure 2, we start by using a data augmentation pipeline to synthesize new
samples from the source data, and then train our model with the filtered synthetic data.

3.1 DATA AUGMENTATION

In the data augmentation pipeline, we utilize both domain data and partial general data to balance
domain-specific relevance and general-domain applicability. We start by extracting knowledge from
the source data and then synthesize new data for our model training. The detailed structure of the
pipeline is shown in Figure 3.

Knowledge Extraction and Integration. The variety and relationships between samples directly
impact model performance in sentence representation learning. A major challenge with existing
LLM-based data synthesis methods is the limited diversity they generate for each short text. To
trade off the low diversity of the generated samples with their relevance to the domain semantic
space, we first design an extraction prompt to obtain entities and quantities from the given data.

3
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kids

boy

people

activity

playing with a dog

Quantity: 2

LLM

Extraction Prompt

Domain Data General Data

Entity KG

Formatter

LLM

Rewriting Prompt

Sample Text

Two kids playing with a dog.

Syntactic Antisense Prompt

Entity Revision Prompt

Synthesized Instances

Two children engaging in play with a canine.

Two kids hate playing with the dog.

Two kids playing with a cat.

KG Support

Stage 1: Knowledge Extraction

Stage 2: Data Synthesis

Entity Text

Entity Type

Entity Quantity

Figure 3: The pipeline of knowledge extraction and data synthesis, where the solid black arrows in
the Entity KG are hard edges, and dotted yellow lines are soft edges.

Formally, we denote the extraction prompt as Pe, and LLM L, suppose we finally extract instances
with d sample number, the knowledge set Ki = {ki1, . . . , kin} of each instance xi is computed in
Equation 1, where tj , cj and qj represent the entity text, entity type and quantity of ki. ni is the
size of Ki, and F(·) is the formatting function that convert text to triplet. Next, we integrate all
knowledge by establishing an entity knowledge graph G = ⟨V,E⟩, where the node set V contains
all the ⟨t, c, q⟩ from K:

K =

d⋃
i=1

F([Pe;xi],L) =
d⋃

i=1

{⟨tij , cij , qij⟩ | j ∈ [1, ni]}, (1)

V = {tij , cij , qij | i ∈ [1, d]; j ∈ [1, ni]}. (2)

The edges E consist of hard edges Er and soft edges Es. As shown in Equations 3 and 4, Er

represents the relationship between the entity text, type and quantity of each k ∈ K, and Es indicates
the relationship between entity text in kij and other entity text or type in the same instance xi.

Er = {(tij , cij) ∪ (tij , qij) | i ∈ [1, d]; j ∈ [1, ni]}, (3)

Es =
d⋃

i=1

{(tij , tik), (tij , cil) | k, l ̸= j; j, k, l ∈ [1, ni]}. (4)

By defining hard and soft edges, we can more efficiently identify and replace entity nodes near the
current node, improving the correlation between the synthesized instance and the source instance.

Data Synthesis via LLM. Empirical evidence and model performance on standard datasets show
that sentence embedding models struggle more with accurately identifying negative samples than
positives (Chuang et al., 2022a; Miao et al., 2023). In the contrastive learning methods, the model
acquires sentence embedding representation by calculating the distance between sentence-pairs. It
aims to minimize the spatial distance between positive pairs and increase the spatial distance be-
tween negative pairs. Thus, it is essential to obtain negative samples that closely resemble the
source instance in surface-level features, while positive samples should have diverse representations
but still convey the same meaning as the source instance.

In this study, we use LLM to generate positive samples through a rewrite prompt. We also focus on
the impact of variations in entities and quantities within the samples. Negative samples are generated
by the LLM at both the syntactic and fine-grained knowledge levels. The data synthesis prompts are
divided into three main types: (1) Rewriting prompt, (2) Syntactic antisense prompt, and (3) Entity
revision prompt. The first type is used to create positive samples, while the second and third types
are used to create negative samples at the syntactic and knowledge levels, respectively.
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The “rewriting prompt” can be classified into three forms: directly requesting LLM to generate a
new sentence instance using the “rewrite” instruction, creating the preceding part of the sentence
instance, and generating based on the knowledge set of the instance. As the diversity of synthetic
samples increases, the likelihood of generating false positives also rises. To address this, the next
section involves scoring the generated samples using an evaluation model. The “syntactic antisense
prompt” aims to modify the semantics to create a contradiction at the syntactic level. Such as trans-
forming it into a positive/negative statement using explicit positive/negative words, or by expressing
a contrary sentiment. This is an initial approach to synthesizing negative samples that preserves a
strong coherence with the source instance in terms of sequence structure. However, it is deficient in
generation diversity. To alleviate the issue, the “entity revision prompt” aims to enhance text diver-
sity by replacing the entity text and quantity compared to the source instance. Simultaneously, to
ensure the semantic relevance between the synthetic samples and the source instance, replacement
entities are selected by searching for neighboring nodes on entity KG. We define T (·) as the search
function, and the replacement entity of tij are computed as:

Tr(tij) = {tip | (tij , cik) ∈ Er ∧ (tip, cik) ∈ Er}, (5)

Ts(tij) = {tip | (tij , tip) ∈ Es}, (6)
Tp(tij) = {tip | tik ∈ Ts(tij) ∩ Ts(tip) ∧ tip ∈ Tr(tij)}, (7)

T (tij) = Tr(tij) ∪ Tp(tij), (8)

where the function Tr(·) is used to search for entities that have a hard edge with the current entity,
and Ts(·) is used to search for entities that have a soft edge with the current entity. Tp(·) aims
to search for tip, that is of the same type as tij , and they both have soft edges with another in-
context entity tik. Finally, the replacement entity can be randomly selected from the result of the
search function T (tij). Compared to randomly replacing entities, our strategy enhances the semantic
relevance between the generated sample and the source instance.

3.2 MODEL TRAINING

The training process of our model consists of two stages. First, we combine general and domain-
specific data to train an evaluation model using standard unsupervised contrastive learning. This
improves the uniformity of sentence embeddings in general scenarios and reduces the impact of
semantic distribution limitations in the synthesized data, enhancing model robustness. Then, we
freeze the evaluation model to filter synthetic data and help the GCSE model eliminate false hard
negative sample noise.

General Contrastive Learning. In the first stage, we follow the formulation of SimCSE (Gao et al.,
2021) to train the evaluation model. Formally, we define the encoder of the evaluation model as E′,
each unlabeled sentence instance as xi, and its positive sample as x+

i = xi. The representation of
each instance is denoted as h′ = FE′(x), the representations of xi and x+

i are computed as h′
i and

h′+
i , respectively. Since the dropout mask in E′ is random, h′

i and h′+
i are computed with the same

input but with slightly different results. Then, the loss of evaluation model is defined as:

− log
esim(h′

i,h
′+
i )/τ∑N

j=1 e
sim(h′

i,h
′+
j )/τ

, (9)

where N represents the size of each mini-batch, τ is a temperature hyperparameter, and sim(·) is
the cosine similarity function.

Denoising Training. In the second stage, we adopt a copy of the evaluation model as the back-
bone of GCSE and continue training on synthesized data. In this stage, each input is set as a triplet
(xi, x

+
i , x

−
i ), where x+

i and x−
i stand for the positive and negative samples of xi, respectively. Nev-

ertheless, the synthesized data contains many potential false positive and false negative samples, ne-
cessitating the implementation of a filtering process. We use the frozen evaluation model to initially
correct these inaccurate samples and build the ultimate triplet dataset. Let S(xi) = {x̂i1, . . . x̂im}
denotes the synthetic data set of xi, where m is the size of the set, and x+

i , x−
i are calculated as:

x+
i =

{
x̂ij , sim(h′

i, ĥ
′
ij) ≥ α, j ∈ [1,m]

xi, else
, (10)
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A boy looking at a computer screen.

E EStill refusing to answer my questions?

Three bottles are on a table.

Still answering my questions?

Refusing to answer my questions?

A boy staring at a computer monitor.

A young man gazes at a computer monitor.

Eight bottles are on a table.

Three bottles arranged on the table.
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Figure 4: In-batch training with Gaussian-decayed on GCSE.

x−
i =

{
x̂ij , sim(h′

i, ĥ
′
ij) ≤ β, j ∈ [1,m]

xk, k ∈ [1, N ], k ̸= i
, (11)

where α, β are the threshold for positives and negatives, respectively. xk denotes a randomly se-
lected instance from in-batch data. We can set a high value for α to reduce false positive samples.
However, filtering out false negatives in synthetic data is more challenging. In theory, smaller β
can reduce more false negatives, but samples with low similarity to the source instance are easy to
distinguish due to significant surface-level differences. As a result, training on these samples does
not effectively improve the model’s ability to distinguish fine-grained false positives. Therefore,
we opt for a higher value of β. During training, we use a Gaussian-decayed function to align the
distances of hard negative samples between the GCSE encoder E and the frozen encoder E′. As
shown in Figure 4, for each mini-batch of triplet inputs, both E and E′ compute similarity scores for
the negative samples and their corresponding source instances. The loss for each instance in GCSE
is defined as:

− log
esim(hi,h

+
i )/τ∑N

j=1 e
sim(hi,h

+
j )/τ +

∑N
j=1
j ̸=i

esim(hi,h
−
j )/τ +G(si, s′i, τ, σ)

, (12)

G(si, s
′
i, τ, σ) = si

(
1− e−

(si−s′i)
2τ2

2 σ2

)
, (13)

where si = sim(hi,h
−
i ), s

′
i = sim(h′

i,h
′−
i ). G(·) is the Gaussian-decayed function, where the loss

attenuation of the hard negative sample grows as the distance between si and s′i decreases, and σ is
a hyperparameter that controls the width of G(·). This implies that when E initially calculates the
hard negative sample, it follows the spatial distribution of E′ as the “established guidelines” and uses
other in-batch negative samples to further increase the spatial distance between negatives, effectively
reducing the influence of false negatives. As training progresses, the spatial distribution of true hard
negatives between E and E′ will progressively increase, and its gradient will be restored.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Training: We utilize the subset of NLI dataset from Gao et al. (2021) as the general data, and use the
training sets from STS-Benchmark (STS-B) (Cer et al., 2017) with 5.7k samples and SICK (Marelli
et al., 2014) with 4.5k samples as the domain data for a fair comparison with related approaches.
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To simulate the unsupervised scenario, we exclusively include unlabeled samples from the dataset.
In this experiment, the ratio of sample numbers between domain data and general data was 1:3. We
adopt ChatGLM3-6B (GLM et al., 2024), GLM4-9B (GLM et al., 2024) and ChatGPT (OpenAI,
2022) as LLMs for data synthesis, respectively. We choose BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019) as the backbone models of GCSE. In the stage of Gaussian-decayed training on
synthesized data, the filtering thresholds of α and β are set as 0.9 and 0.75, respectively. The
temperature of τ is set as 0.05, and the σ of G(·) is set as 0.01. In the first stage training, the
evaluation model is firstly trained on the unlabeled dataset of all general data and domain data. One
copy instance of the evaluation model is then utilized as the pre-trained model for GCSE, while the
original instance is set to be frozen to filter synthesized data and provide guidance for GCSE. In
the second stage, GCSE is trained on the filtered synthesized data, and the sentence embedding is
obtained from the last output hidden states of the first token.

Evaluation: To validate our method for sentence embeddings, we evaluated the model’s perfor-
mance on semantic textual similarity (STS) tasks, we use the standard evaluation method, mea-
suring model performance with Spearman’s correlation, and we adopt SentEval1 (Conneau & Kiela,
2018) as the evaluation tool, which contains seven STS subsets: STS 2012-2016 (Agirre et al., 2012;
2013; 2014; 2015; 2016), the STS-Benchmark (Cer et al., 2017) and the SICK Relatedness (Marelli
et al., 2014). To compare the ranking performance of our method on retrieval tasks, we evaluated
the model using the MTEB benchmark (Muennighoff et al., 2023) with four reranking datasets:
AskUbuntuDupQuestions (Lei et al., 2016), MindSmallReranking (Wu et al., 2020), SciDocsRR
(Cohan et al., 2020) and StackOverflowDupQuestions (Liu et al., 2018), and follow the same set-
tings of Zhang et al. (2023) by using Mean Average Precision (MAP) as the metric. Additionally,
we compared the performance of our model with other methods on transfer tasks in SentEval to
evaluate its applicability in Appendix C.

Baselines: We compare our method with mainstream unsupervised sentence embedding baselines:
BERT-whitening (Su et al., 2021), SimCSE (Gao et al., 2021), DiffCSE (Chuang et al., 2022b),
PromptBERT (Jiang et al., 2022), PCL (Wu et al., 2022a), CARDS (Wang et al., 2022b), DebCSE
(Miao et al., 2023) and RankCSE (Liu et al., 2023). In addition, we further compare two baselines:
SynCSE (Zhang et al., 2023) and MultiCSR (Wang et al., 2024a), which use LLM for data synthe-
sizing in whole NLI datasets. To verify the effectiveness of our data synthesis method, we choose
their results of using ChatGPT for comparison.

4.2 MAIN RESULTS

STS Tasks: The overall results of the STS tasks are shown in Table 2. Our approach, utilizing
synthetic samples from ChatGPT, achieves state-of-the-art performance across all backbones when
compared to other unsupervised baselines. Even with synthetic samples from ChatGLM3-6B, our
method still outperforms previous approaches on BERT-base, BERT-large, and RoBERTa-large.
This highlights the applicability of our method, as it can be effectively applied to multiple models.
Compared to the standard unsupervised SimCSE, Spearman’s correlation of GCSE (ChatGLM3-6B)
is improved by an average of 17.24% on the base models and 3.44% on the large models. On the
strong baseline RankCSE, GCSE (ChatGLM3-6B) achieved a 1.36% improvement over its average
performance, demonstrating the effectiveness of the LLM data synthesis process. Furthermore,
we compare two baseline models: SynCSE and MultiCSR, both of which utilize LLM as the data
synthesis model. We specifically analyze the results of using ChatGPT for both models and the
results show that our approach outperforms both models in most cases. It should be noted that our
method only utilizes 14% of the sample size compared to the other two methods that employ the
entire NLI datasets. This demonstrates the effectiveness of our data synthesis strategy and domain-
oriented sample selection strategy.

Reranking Tasks: Table 3 presents the MAP results of our approach and related baselines on the
reranking benchmark, and all models are evaluated on the test sets of the reranking benchmark with-
out using the training sets. The results indicate that various approaches exhibit varying performance
on different datasets, which can be attributed to the distinct semantic distribution and evaluation scale
of each dataset. Our GCSE outperforms SynCSE by 0.39% in average MAP score and achieves the

1https://github.com/facebookresearch/SentEval
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Model Method STS-12 STS-13 STS-14 STS-15 STS-16 STS-B SICK-R Avg.

BERT-base

whitening† 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
SimCSE† 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
DiffCSE† 72.28 84.43 76.47 83.90 80.54 80.59 71.23 78.49
PromptBERT♣ 71.56 84.58 76.98 84.47 80.60 81.60 69.87 78.54
PCL♠ 72.84 83.81 76.52 83.06 79.32 80.01 73.38 78.42
DebCSE† 76.15 84.67 78.91 85.41 80.55 82.99 73.60 80.33
RankCSE♠ 75.66 86.27 77.81 84.74 81.10 81.80 75.13 80.36
SynCSE (ChatGPT)* 75.86 82.19 78.71 85.63 81.11 82.35 78.79 80.66
MultiCSR (ChatGPT)♣ 74.86 84.19 79.46 84.70 80.34 83.59 79.37 80.93
GCSE (ChatGLM3-6B) 76.91 86.23 80.49 85.16 81.45 82.54 75.71 81.21
GCSE (GLM4-9B) 78.19 84.88 80.28 84.39 81.81 83.89 77.74 81.60
GCSE (ChatGPT) 78.20 85.90 81.17 84.88 81.44 83.56 78.69 81.98

BERT-large

SimCSE† 70.88 84.16 76.43 84.50 79.76 79.26 73.88 78.41
PCL♠ 74.87 86.11 78.29 85.65 80.52 81.62 73.94 80.14
DebCSE† 76.82 86.36 79.81 85.80 80.83 83.45 74.67 81.11
RankCSE♠ 75.48 86.50 78.60 85.45 81.09 81.58 75.53 80.60
SynCSE (ChatGPT)* 74.24 85.31 79.41 85.71 81.76 82.61 79.25 81.18
GCSE (ChatGLM3-6B) 76.99 87.34 80.88 85.47 80.55 82.97 75.68 81.41
GCSE (GLM4-9B) 76.94 86.69 81.16 85.53 81.44 84.47 78.88 82.16
GCSE (ChatGPT) 78.70 87.30 81.94 86.10 81.60 84.08 79.86 82.80

RoBERTa-base

whitening† 46.99 63.24 57.23 71.36 68.99 61.36 62.91 61.73
SimCSE† 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
DiffCSE† 70.05 83.43 75.49 82.81 82.12 82.38 71.19 78.21
PromptRoBERTa♣ 73.94 84.74 77.28 84.99 81.74 81.88 69.50 79.15
PCL♠ 71.13 82.38 75.40 83.07 81.98 81.63 69.72 77.90
DebCSE† 74.29 85.54 79.46 85.68 81.20 83.96 74.04 80.60
RankCSE♠ 73.20 85.95 77.17 84.82 82.58 83.08 71.88 79.81
SynCSE (ChatGPT)†† 74.61 83.76 77.89 85.09 82.28 82.71 78.88 80.75
MultiCSR (ChatGPT)♣ 75.61 84.33 80.10 84.98 82.13 84.54 79.67 81.62
GCSE (ChatGLM3-6B) 76.06 85.30 80.38 85.28 83.26 84.07 74.55 81.27
GCSE (GLM4-9B) 77.13 85.05 80.25 84.89 83.08 84.78 76.63 81.69
GCSE (ChatGPT) 78.03 83.79 80.61 86.28 82.76 84.31 79.01 82.11

RoBERTa-large

SimCSE† 72.86 83.99 75.62 84.77 81.80 81.98 71.26 78.90
PCL♠ 74.08 84.36 76.42 85.49 81.76 82.79 71.51 79.49
DebCSE† 77.68 87.17 80.53 85.90 83.57 85.36 73.89 82.01
RankCSE♠ 73.20 85.83 78.00 85.63 82.67 84.19 73.64 80.45
SynCSE (ChatGPT)†† 75.45 85.01 80.28 86.55 83.95 84.49 80.61 82.33
GCSE (ChatGLM3-6B) 78.24 87.24 81.93 86.80 83.52 85.08 76.70 82.79
GCSE (GLM4-9B) 77.18 86.72 82.62 85.89 83.97 85.75 77.97 82.87
GCSE (ChatGPT) 77.76 87.45 82.62 88.38 84.43 86.08 80.09 83.83

Table 2: Comparison of Spearman’s correlation results on STS tasks, where the value highlighted in
bold is the best value, and the value underlined is the second-best value. “†”: results from Miao et al.
(2023), “♣”: results from Wang et al. (2024a), “♠”: results from Liu et al. (2023), “††”: results from
Zhang et al. (2023). “*”: we reproduce the results with the officially released corpus from Zhang
et al. (2023). GCSE has significant differences with all comparable baselines on the t-test (p<0.5%).

best results in all backbone models, demonstrating the efficacy of our approach in enhancing the
precision of unsupervised ranking tasks.

4.3 ANALYSIS

Ablation Studies: We analyze the impact of each module or strategy in GCSE and report the results
in Table 4. First, “w/o stage-2” refers to the results obtained without training in the second stage.
This leads to a significant decrease in performance compared to the default model, which is the
performance of the evaluation model and is similar to the conventional unsupervised SimCSE. Then,
“w randomly” refers to the direct use of the instance itself as a positive sample in the combination
dataset of domain and general data, while randomly selecting a negative instance from the dataset.
We can observe that its performance in this case is even worse than the evaluation model. This
demonstrates that the diversity of positive samples and the quality of negative samples significantly
impact the performance of the model. “w/o filtering” indicates the results of training by skipping
evaluation model filtering and directly using the data synthesized by LLM. The results show that
the performance of the model is significantly affected when false positive and negative samples
are introduced without filtering. We investigate the impact of the Gaussian-decayed function by
removing it, and the results are shown in “w/o decay”. We can observe that the default model
performs better overall than when the Gaussian-decayed function is removed, indicating that it can
filter out potential false negative sample noise. Finally, we analyze the necessity of including general
data and domain data in “w/o general” and “w/o domain” respectively. It can be observed that
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removing either of them results in a decline in performance, which indicates the significance of
domain data and the essentiality of general data in our method.

Method Spearman’s
unsup-SimCSE 75.59

RankCSE 79.74
SynCSE (ChatGPT) 91.58

GCSE (ChatGLM3-6B) 93.77

Table 5: Comparison of Spearman’s correla-
tion results on the synthetic data of the STS-
Benchmark development set.

Analysis of entities and quantities aware-
ness: We analyze GCSE awareness of entities
and quantities by constructing a dataset using
the data synthesis method in Section 3.1 on
the STS-Benchmark development set. Then,
the similarity scores of each triplet in the
dataset are annotated by two supervised pre-
trained models: “sup-simcse-bert-large” and
“sup-simcse-roberta-large”. The final label is
the average score of the similarity calculated by
both models. We evaluate Spearman’s correla-
tion scores of GCSE and the other three strong
baselines on the backbone of the BERT-base
model, and the results are shown in Table 5. Our GCSE achieves the best result and outperforms
RankCSE by 14.03%. In this case, both SynCSE and GCSE achieve significant improvements over
methods without LLM. This might be due to the similarity of the semantic representation space be-
tween the training set and the development set, both of which are synthesized via LLM. Nevertheless,
GCSE shows a notable enhancement in performance of 2.19% compared to SynCSE, demonstrating
that its understanding of the entities and quantities in sentences has enhanced to a certain degree.

Impact on the ratio between domain and general data: Figure 5 presents the trend of the GCSE
Spearman’s correlation result as the proportion of general data introduced increases, where “d”
represents that only using the domain data. The results show that adding a certain amount of general
data improves performance on STS tasks. However, when the size of general data exceeds three
times that of domain data, performance starts to decline. This suggests that incorporating a moderate
amount of external data enhances the uniformity of sentence embeddings. But as the out-of-domain
data grows, the influence of domain-specific data on training weakens. Overall, the results indicate
that domain data improves the model’s ability to represent target domain sentences, while general
data helps with sentence embedding uniformity.

Impact of the Gaussian-decayed: To further investigate the effectiveness of the Gaussian-decayed
function, we analyze the GCSE performance against the weight of σ on the synthesized data, both
with and without filtering. As shown in Figure 6, we use the synthesized data without filtering to
evaluate the efficacy of the Gaussian-decayed function in eliminating false negative samples, and

Model Method AskU. Mindsmall SciDocsRR StackO. Avg.

BERT-base

SimCSE 51.89 28.68 67.88 39.60 47.01
PCL 52.46 28.72 68.03 41.30 47.63

SynCSE (ChatGPT)* 52.61 29.17 68.46 38.60 47.21
GCSE (ChatGLM3-6B) 52.62 28.79 70.67 39.53 47.90

BERT-large

SimCSE 53.10 29.59 71.94 40.68 48.83
PCL 52.03 29.11 70.30 42.33 48.44

SynCSE (ChatGPT)* 53.24 30.09 71.45 39.24 48.50
GCSE (ChatGLM3-6B) 53.40 29.43 73.04 39.68 48.89

RoBERTa-base

SimCSE†† 52.78 29.91 65.96 39.25 46.95
CARDS†† 52.94 27.92 64.62 41.51 46.75

PCL†† 51.85 27.92 64.70 41.18 46.41
SynCSE (ChatGPT)†† 53.27 30.29 67.55 39.39 47.63

GCSE (ChatGLM3-6B) 53.44 29.35 67.89 41.13 47.95

RoBERTa-large

SimCSE†† 55.10 29.23 68.54 42.56 48.86
CARDS†† 53.83 29.07 68.26 43.24 48.60

PCL†† 53.43 28.56 66.06 41.54 47.40
SynCSE (ChatGPT)†† 55.48 30.27 70.85 40.00 49.15

GCSE (ChatGLM3-6B) 54.05 30.30 71.23 41.65 49.31

Table 3: Comparison of Mean Average Precision (MAP) results on reranking tasks, where the value
highlighted in bold is the best value, and the value underlined is the second-best value. “††”: results
from Zhang et al. (2023). “*”: we reproduce the results with the officially released corpus from
Zhang et al. (2023).
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Method STS-12 STS-13 STS-14 STS-15 STS-16 STS-B SICK-R Avg.
GCSE (ChatGLM3-6B) 76.91 86.23 80.49 85.16 81.45 82.54 75.71 81.21

w/o stage-2 71.85 83.65 76.84 83.37 78.74 79.10 71.69 77.89
w randomly 71.94 84.03 76.99 83.65 79.11 78.66 69.28 77.67
w/o filtering 74.65 83.54 77.39 83.27 79.97 79.66 74.27 78.96
w/o decay 76.15 85.83 79.77 85.19 80.72 82.59 75.55 80.83
w/o general 75.44 85.55 79.19 84.91 80.23 81.57 74.14 80.15
w/o domain 75.59 85.66 78.93 84.09 80.87 82.29 76.00 80.49

Table 4: Ablation studies of STS tasks on BERT-base. Other PLMs yield similar patterns to BERT-
base.
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Figure 5: Spearman’s correlation
against the ratio of domain data to
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(a) Default training set (b) w/o filtering training set

Figure 6: Spearman’s correlation against the weight of the
Gaussian-decayed on the STS tasks.

(a) w/o decay (b) 𝝈 = 𝟎.𝟑𝟐 (c) Gold

Figure 7: Density plots of the STS-Benchmark development set with labels ≥ 4, which is evaluated
by GCSE with different σ weights. (c) is the density plot of gold labels.

results are presented in Figure 6 (b). It is clear that the model’s performance improves as the weight
of σ grows. This suggests that a greater σ weight enhances the model’s effectiveness in mitigat-
ing the impact of false negative samples. It is important to acknowledge that a higher σ does not
necessarily indicate better performance. As shown in Figure 6 (a), an increase in σ at the initial
stage contributes to enhancing the model’s performance. Nevertheless, as the weight of σ increases,
the performance of backbones generally declines, resulting in the model adhering too strictly to the
“established guidelines”. Consequently, it impacts the efficacy of learning from the hard negative
samples. We further use the density plots to visualize the prediction on the STS-Benchmark de-
velopment set in Figure 7. These models are trained on the synthesized data without filtering. We
can observe that in Figure 7 (a), the distribution of prediction results for labels ≥ 4 is significantly
shifted to the left. Compared with the results in Figure 7 (b), this issue is effectively alleviated,
demonstrating the effectiveness of the Gaussian-decayed function in reducing the influence of false
negative samples. To further verify the applicability of the Gaussian-decayed function, we applied
it to SynCSE and verified the performance in Appendix E.

5 CONCLUSION

In this paper, we propose a pipeline-based data augmentation method using LLM to enhance data di-
versity in sentence representation learning. By leveraging knowledge of entities and quantities, our
approach improves the model’s ability to capture fine-grained semantic distinctions. The Gaussian-
decayed function in our GCSE model further reduces noise in the generated data. Extensive experi-
ments on STS and reranking tasks show that our method achieves state-of-the-art results with fewer
synthesized samples and a more lightweight LLM, demonstrating its effectiveness and efficiency.
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Jianmo Ni, Gustavo Hernández Ábrego, Noah Constant, Ji Ma, Keith B. Hall, Daniel Cer, and
Yinfei Yang. Sentence-t5: Scalable sentence encoders from pre-trained text-to-text models. In
Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Findings of the Association
for Computational Linguistics: ACL 2022, Dublin, Ireland, May 22-27, 2022, pp. 1864–1874.
Association for Computational Linguistics, 2022. doi: 10.18653/V1/2022.FINDINGS-ACL.146.
URL https://doi.org/10.18653/v1/2022.findings-acl.146.

OpenAI. Chatgpt: Optimizing language models for dialogue, 2022. URL https://openai.
com/blog/chatgpt/. Accessed: 2024-11-19.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774:1–100, 2023. doi: 10.48550/ARXIV.2303.
08774. URL https://doi.org/10.48550/arXiv.2303.08774.

Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi. Unsupervised learning of sentence embed-
dings using compositional n-gram features. In Marilyn Walker, Heng Ji, and Amanda Stent
(eds.), Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp.
528–540, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi:
10.18653/v1/N18-1049. URL https://aclanthology.org/N18-1049.

Bo Pang and Lillian Lee. A sentimental education: sentiment analysis using subjectivity summa-
rization based on minimum cuts. In Proceedings of the 42nd Annual Meeting on Association for
Computational Linguistics, ACL ’04, pp. 271–es, USA, 2004. Association for Computational Lin-
guistics. doi: 10.3115/1218955.1218990. URL https://doi.org/10.3115/1218955.
1218990.

15

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=rJvJXZb0W
https://openreview.net/forum?id=rJvJXZb0W
http://www.lrec-conf.org/proceedings/lrec2014/summaries/363.html
https://doi.org/10.1145/3583780.3614833
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://aclanthology.org/2023.eacl-main.148
https://doi.org/10.18653/v1/2022.findings-acl.146
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://doi.org/10.48550/arXiv.2303.08774
https://aclanthology.org/N18-1049
https://doi.org/10.3115/1218955.1218990
https://doi.org/10.3115/1218955.1218990


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Bo Pang and Lillian Lee. Seeing stars: exploiting class relationships for sentiment categorization
with respect to rating scales. In Proceedings of the 43rd Annual Meeting on Association for Com-
putational Linguistics, ACL ’05, pp. 115–124, USA, 2005. Association for Computational Lin-
guistics. doi: 10.3115/1219840.1219855. URL https://doi.org/10.3115/1219840.
1219855.

Nina Poerner and Hinrich Schütze. Multi-view domain adapted sentence embeddings for low-
resource unsupervised duplicate question detection. In Kentaro Inui, Jing Jiang, Vincent Ng, and
Xiaojun Wan (eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 1630–1641, Hong Kong, China, November 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/D19-1173. URL https://aclanthology.org/
D19-1173.

Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing, pp.
3973–3983, 2019.

Jaydeep Sen, Chuan Lei, Abdul Quamar, Fatma Özcan, Vasilis Efthymiou, Ayushi Dalmia, Greg
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APPENDIX

A DATA SYNTHESIS PROMPTS

In this section, we provide the specifics of our prompts for knowledge extraction and integration,
and data synthesis. The particular prompts are presented in Table 6.

B VISUALIZATION OF SYNTHETIC SAMPLE DISTRIBUTION

(a) (b)

Figure 8: t-SNE visualization of the synthetic sample generated by ChatGLM3-6B, where the trans-
parency of “Antisense” and “Revision” samples in subgraph (b) is reduced to 10% for better obser-
vation.

In this section, we use the supervised SimCSE model to generate sentence embeddings for the syn-
thesized samples and utilize t-SNE to project the vectors into two-dimensional space for a visual
analysis of the diversity. To facilitate observation, we group the synthesized samples into three cate-
gories: “Rewrite” refers to positive samples synthesized using “Rewriting Prompt 1” and “Rewriting
Prompt 2” from Table 6, while “Antisense” denotes the negative samples generated using “Syntac-
tic Antisense Prompt”. “Revision” denotes the negative samples generated using “Entity Revision
Prompt”, “Quantity Revision Prompt” and “Rewriting Prompt 3”, which are related to knowledge
modification. And “Source” indicates the original samples from the dataset. We randomly selected
5k “Source” samples and corresponding synthetic samples from our dataset for visualization, and
the results are illustrated in Figure 8. We observe that “Rewrite” samples basically cover the spa-
tial distribution of “Source” samples while expanding into the neighborhood space to some extent.
“Antisense” and “Revision” samples further enhance the information density within the target se-
mantic space. Comparing Figure 8 (a) and (b), it can be observed that the “Revision” samples cover
areas with sparse information, while their overall spatial distribution remains consistent with the
semantic distribution of ‘Source” samples. This indicates that the sample synthesis with knowledge
effectively increases sample diversity within the semantic space.

C PERFORMANCE ON TRANSFER TASKS

We also evaluate our GCSE following the same settings as SimCSE on seven transfer tasks: MR
(Pang & Lee, 2005), CR (Hu & Liu, 2004), SUBJ (Pang & Lee, 2004), MPQA (Wiebe et al., 2005),
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Knowledge Extraction Prompt Instruction: Predicts the subject categories, contained entities, and quantified infor-
mation of the following text
Rules: The category is an item in [{categories name}, ...], quantified information
refers to information contained in the text with numerical values or units, such as
‘2GB’, ‘three cups’, ‘two dogs’, etc
Output format: json format data, the data format is: {
cls: [], // category
entities: [{text: “”, type: “”}], // entities, ‘text’ must be subsequences in the Input text
quantities: [{text: “”, type: “”, quantity: 0}] // To quantify the information, ‘text’
must be a subsequence in the Input text
}
Input: {x}

Rewriting Prompt 1 Instruction: You are an excellent storyteller; rewrite the input sentence in a different
way. Please try to recreate the sentence using different expressions, including varied
tones, synonyms, and sentence patterns, while ensuring that the new sentence has the
same meaning as the original sentence.
Input: {x}

Rewriting Prompt 2 Instruction: You are a great storyteller; I would be grateful if you could employ
your creativity to devise an illustration of the preceding segment of the sentence. The
preceding statement must not exceed {number} words, and it follows the original
text.
Input: {x}

Rewriting Prompt 3 Instruction: You are a great rewriter, and I want you to generate new sentence
according to the classification, entities and quantities info provided by the json.
Rules: You should aware that the new text in “quantities” should be rewrite follows
the “quantity” value. e.g. “text”: “A man”, “quantity”: 5 should rewrite as “five
men”.
Metadata: {
“cls”: “{categories name}”,
“entities”: [{

“text”: “{entity text}”,
“type”: “{entity type}”
}, ...],
“quantities”: [{
“text”: “{entity text}”,
”quantity”: {entity quantity}
}, ...] }
Input: {x}

Syntactic Antisense Prompt Instruction: You are dishonest; you ought to reformulate the input sentence so that
the NLI model perceives it as an opposing sample.
Rules: 1. If the statement asserts negation, you should affirm; conversely, if the
statement asserts affirmation, you should negate. 2. If an individual loves something,
one should assert that it does not reciprocate that affection. 3. If an individual is
engaged in one activity, state that they are performing a different activity. 4. If the
statement is affirmative/negative, express it as negative/affirmative.
Input: {x}

Entity Revision Prompt Instruction: You are a great story teller, rewrites the input sentence, and change the
entity ‘{original entity text}’ to another {entity type} ‘{new entity text}’.
Input: {x}

Quantity Revision Prompt Instruction: You are a great story teller, rewrites the input sentence, and
change the quantity {original quantity value} of ‘{original quantity text}’ to
{random quantity value}.
Input: {x}

Table 6: Examples of data synthesis prompts, where {variable name} refers to a variable.

SST2 (Socher et al., 2013), TREC (Voorhees & Tice, 2000), and MRPC (Voorhees & Tice, 2000).
The results are shown in Table 7, it can be observed that our GCSE (ChatGPT) achieves the best per-
formance on all backbone models, outperforming second-best methods in average scores of 0.89%
with BERT-base, 0.79% with BERT-large, 0.44% with RoBERTa-base, and 0.40% with RoBERTa-
large, demonstrating the potential capability in downstream tasks.
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Model Method MR CR SUBJ MPQA SST2 TREC MRPC Avg.

BERT-base

SimCSE♠ 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
DiffCSE♠ 72.28 84.43 76.47 83.90 80.54 80.59 71.23 78.49
PCL♠ 72.84 83.81 76.52 83.06 79.32 80.01 73.38 78.42
RankCSE♠ 75.66 86.27 77.81 84.74 81.10 81.80 75.13 80.36
MultiCSR (ChatGPT)♣ 82.70 88.15 94.97 90.08 86.87 87.70 75.46 86.56
SynCSE (ChatGPT)* 83.34 88.80 93.88 90.39 88.96 83.60 75.94 86.42
GCSE (ChatGLM3-6B) 82.22 88.43 94.59 90.09 86.88 89.40 76.06 86.81
GCSE (GLM4-9B) 84.63 89.78 95.01 90.54 88.96 86.00 76.12 87.29
GCSE (ChatGPT) 84.59 90.15 94.97 90.39 89.68 86.00 76.35 87.45

BERT-large

SimCSE♠ 70.88 84.16 76.43 84.50 79.76 79.26 73.88 78.41
PCL♠ 74.87 86.11 78.29 85.65 80.52 81.62 73.94 80.14
RankCSE♠ 75.48 86.50 78.60 85.45 81.09 81.58 75.53 80.60
SynCSE (ChatGPT)* 85.78 90.47 94.77 90.41 90.50 89.00 75.77 88.10
GCSE (ChatGLM3-6B) 83.97 89.38 95.13 90.22 89.57 90.60 75.71 87.80
GCSE (GLM4-9B) 86.01 90.94 95.40 90.24 92.15 92.00 75.48 88.89
GCSE (ChatGPT) 85.93 90.44 94.94 90.52 92.04 88.80 75.25 88.27

RoBERTa-base

SimCSE♠ 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
DiffCSE♠ 70.05 83.43 75.49 82.81 82.12 82.38 71.19 78.21
PCL♠ 71.13 82.38 75.40 83.07 81.98 81.63 69.72 77.90
RankCSE♠ 73.20 85.95 77.17 84.82 82.58 83.08 71.88 79.81
MultiCSR (ChatGPT)♣ 84.70 90.69 94.40 89.38 89.42 89.62 77.01 87.89
SynCSE (ChatGPT)†† 85.47 91.44 92.53 89.67 90.94 81.60 76.06 86.82
GCSE (ChatGLM3-6B) 84.39 90.81 94.02 88.90 91.05 89.40 76.12 87.81
GCSE (GLM4-9B) 86.49 92.24 94.70 89.63 92.37 86.60 76.29 88.33
GCSE (ChatGPT) 86.32 91.58 94.37 90.04 92.42 84.00 76.12 87.84

RoBERTa-large

SimCSE♠ 72.86 83.99 75.62 84.77 81.80 81.98 71.26 78.90
PCL♠ 74.08 84.36 76.42 85.49 81.76 82.79 71.51 79.49
RankCSE♠ 73.20 85.83 78.00 85.63 82.67 84.19 73.64 80.45
SynCSE (ChatGPT)†† 87.24 92.16 93.75 90.81 91.87 84.00 76.29 88.02
GCSE (ChatGLM3-6B) 85.65 90.78 94.16 90.08 90.44 92.80 73.74 88.24
GCSE (GLM4-9B) 87.45 91.60 94.62 90.30 92.42 88.40 71.77 88.08
GCSE (ChatGPT) 87.56 91.76 94.56 90.69 92.26 88.80 74.84 88.64

Table 7: Comparison of different sentence embedding models accuracy on transfer tasks. “♠”:
results from Liu et al. (2023), “♣”: results from Wang et al. (2024a), “††”: results from Zhang et al.
(2023). “*”: we reproduce the results with the officially released corpus from Zhang et al. (2023).

Premise Hypothesis Gold SimCSE RankCSE SynCSE GCSE

A woman is cooking eggs . A woman is cooking something . 3.00 4.37 (1.372) 4.23 (1.320) 3.66 (0.662) 3.24 (0.236)
Two little girls are talking on the phone. A little girl is walking down the street. 0.50 3.38 (2.881) 3.64 (3.139) 1.97 (1.468) 1.85 (1.351)

A chef is preparing some food . A chef prepared a meal . 4.00 4.27 (0.270) 4.59 (0.588) 4.56 (0.561) 4.41 (0.408)
Five kittens are eating out of five dishes . Kittens are eating food on trays. 2.75 3.81 (1.056) 3.71 (0.957) 3.28 (0.535) 3.12 (0.373)

A woman is cutting some herbs . A woman is chopping cilantro . 2.80 3.58 (0.777) 3.58 (0.967) 3.11 (0.313) 2.61 (0.185)

Table 8: Case studies on model prediction similarity with gold labels in the STS-Benchmark devel-
opment set, where Gold represents the label score of the sentence pair (ranging from zero to five).
The similarity scores of all models are multiplied by a coefficient of five for better comparison, and
the value in parentheses denotes the RMS error between the predicted score and the label. Words
highlighted in blue denote the entity alteration in the sentence-pair, whereas words in yellow indicate
the quantities that change inside the sentence-pair.

D CASE STUDIES

To further verify the improvement in our method’s awareness of entity and quantity, we selected
five sample sets from the STS-Benchmark development set that explicitly contained alterations in
entity or quantity within the sentence-pair, and presented the prediction cosine-similarity scores of
GCSE and related methodologies with the backbone of BERT-base in Table 8. We can observe
from the results that the prediction score of our model achieves the minimum root-mean-square
error compared to the label in most cases, which indicates that our model has a stronger capacity to
distinguish information.
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E ABLATION STUDIES OF GAUSSIAN-DECAYED AND FEW-SHOT SAMPLES

Method STS-12 STS-13 STS-14 STS-15 STS-16 STS-B SICK-R Avg.
SynCSE (ChatGPT)* 75.86 82.19 78.71 85.63 81.11 82.35 78.79 80.66

w sampled 75.48 85.60 78.76 84.78 80.38 82.12 76.46 80.51
w sampled & G.D. 75.71 85.24 79.09 85.15 80.82 82.68 77.54 80.89
w G.D. 75.89 85.26 79.24 85.67 80.79 82.63 78.19 81.10
w sampled & domain & G.D. 75.88 86.02 79.46 86.10 80.27 82.87 76.91 81.07

Table 9: Ablation studies of sample size and the Gaussian-decayed function by utilizing SynCSE.
“*”: we reproduce the results with the officially released corpus from Zhang et al. (2023).

We employ the Gaussian-decayed function on SynCSE and sample SynCSE training data with a
sample size the same as our synthetic data to evaluate the efficacy of the proposed Gaussian-decayed
function and our domain-oriented selection strategy in the ablation experiment. The data sample
size is 64k, and the weight of σ in G(·) is assigned the same value as specified in Section 4.1.
The results of various policies implemented in SynCSE are presented in Table 9. “w sampled”
denotes the utilization of purely the sampled data in SynCSE, and a performance decrease can be
observed when training on a reduced number of samples without extra configurations. “w sampled
& G.D.” denotes the additional incorporation of G(·) based on “w sampled”. “w G.D.” indicates the
results by training on the full dataset utilizing G(·). In both configurations, the average performance
outperforms the vanilla model, illustrating the module’s efficacy. “w sampled & domain & G.D.”
denotes the concurrent utilization of sample data, domain data, and G(·), with a sample size of
48k for the SynCSE dataset and 16k for the synthesized domain dataset. The results reveal that
”w sampled & domain & G.D.” attains the second-best performance, suggesting that incorporating
domain data can decrease the required training samples while enhancing model efficacy.

F UNSUPERVISED SENTENCE EMBEDDING ON LLM

Model Avg. Model Avg.

Unsupervised Data Augmentation

Llama3.2-3B LoRA 71.34 Llama3.2-3B LoRA 78.26
Llama-3-8B LoRA 72.73 Llama-3-8B LoRA 78.24
ChatGLM3-6B LoRA 69.38 ChatGLM3-6B LoRA 79.04
GLM4-9B LoRA 71.77 GLM4-9B LoRA 79.52
Qwen2.5-14B LoRA 68.49 Qwen2.5-14B LoRA 78.02

Table 10: Performance comparison of different LLMs on STS tasks, where results of “Unsuper-
vised” refers to models trained on the same unsupervised settings as Gao et al. (2021), and “Data
Augmentation” refers to models trained with the synthetic data generated by ChatGLM3-6B.

In this section, we utilize contrastive learning on multiple LLMs to evaluate the alignment of LLM-
generated similarities with the gold labels and the effectiveness of our data augmentation strategy.
We use Llama3.2-3B (Dubey et al., 2024), Llama3-8B (Dubey et al., 2024), ChatGLM3-6B (GLM
et al., 2024), GLM4-9B (GLM et al., 2024) and Qwen2.5-14B (Team, 2024; Yang et al., 2024)
with a low-rank adapter (LoRA) layer for training. The sentence embedding vectors are obtained
from the output hidden states of the last position, which is followed by the method of pretended
chain of thought (Pretended CoT) (Zhang et al., 2024). We may derive two major conclusion from
the results in Table 10: (1) In conventional unsupervised settings, decoder-based LLMs have no
significant performance advantage over encoder-based PLMs for sentence representation learning
tasks. The model performance does not increase significantly with the increase of the number of
model parameters. To reduce expenses, we assert that fully leveraging the capabilities of LLMs for
distilling smaller models is the better option. (2) The application of our data augmentation technique
to sentence representation learning tasks in LLMs significantly enhances performance relative to the
“Unsupervised” settings, which further proves the applicability and efficacy of our strategy.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

G VISUALIZATION OF PREDICTION SCORES AND GRADIENT COMPARISONS
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Figure 9: Heatmap visualization of the prediction scores and gradients.

To further analyze the effectiveness of the Gaussian-decayed function in mitigating the impact of
false negative noise, we visualized the changes in predicted scores and gradients during the train-
ing process using heatmaps. In the training procedure of GCSE, each input consists of a source
sample, its corresponding positive sample, and a hard negative sample. We visualize the cosine sim-
ilarity scores and gradient heatmaps for negative samples within a batch in Figure 9. Each cell of
a heatmap represents the relationship between the source sample and the negative sample, and the
diagonal cells highlight the relationships between source samples and their hard negatives. Since
synthetic samples lack manual annotations, we use supervised SimCSE models (Gao et al., 2021)
based on different backbones to compute their similarity scores as the ground truth. We normal-
ized the output scores of each model with min-max scaling and averaged them as the final scores
to address distributional differences across models, and the results are shown in Figure 9 (a-1). It
can be observed that several hard negatives on the diagonal display scores biased towards positive
similarity, indicating the presence of false negative noise. In the framework of contrastive learning,
when optimized using standard contrastive loss, these hard negatives are positioned further from the
source samples in the semantic space, negatively impacting the model’s representational capacity.
Figure 9 (a-2) displays the normalized cosine similarity scores of hard negatives in the initial step as
calculated by the evaluation model in GCSE. The initial score distribution of hard negatives shows a
strong correlation with the ground truth, suggesting that these scores could efficiently guide GCSE
in gradient correction.

Figures 9 (b-1) and (b-2) present the backward gradient values of the model trained without and
with the Gaussian-decayed function, respectively. For better visualization, all gradient values are
amplified by 104, and all similarities are amplified by 20 by the temperature. By comparing the
gradients of hard negative samples in these two figures, it can be observed that the gradient values
on false hard negatives are significantly smaller when the Gaussian-decayed function is applied.
Additionally, Figures 9 (c-1) and (c-2) present a comparison of cosine similarity scores after 125
training steps with and without the Gaussian-decayed function. The scores for false hard negatives
are significantly higher when the Gaussian-decayed function is employed, while the true hard nega-
tives had lower scores. The overall score distribution aligns more accurately with the ground truth,
and these results demonstrate that the Gaussian-decayed function effectively prevents false negatives
from being pushed farther away from source samples in the semantic space, thereby validating its
effectiveness in mitigating noise and improving model performance.
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H ABLATION ANALYSIS OF FILTERING THRESHOLDS
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Figure 10: Spearman’s correlation against the weight of α and β on the STS tasks. When adjusting
the weight of one parameter, the other parameter is fixed at its default value as specified in the
experimental settings.

To study the impact of different filtering thresholds, we evaluate the performance on the backbone
of the BERT-base, and the results are shown in Figure 10. When α > 0.9, the model’s performance
declines significantly, primarily because the high threshold filters out too many samples, heavily
reducing the number of positive samples. In the range α ∈ [0.8, 0.9], performance degradation is
observed due to noise introduced by false positive samples. Similarly, when α < 0.8, the model
suffers from a performance drop caused by an excessive number of false positives being included in
the training process. The threshold for β demonstrates a noticeable impact on model performance
when it deviates from 0.75. Specifically, when β > 0.75, the model’s performance declines sig-
nificantly due to the inclusion of excessive false negative noise, which severely affects the model
performance. Conversely, when β < 0.75, the selected negative samples become easier for the
model to distinguish, providing limited benefit for enhancing its representation learning capacity.
The results highlight the influence of filtering thresholds on sample quality and distribution.

I SCORE NORMALIZATION METHODOLOGY

In this work, the labels in datasets are normalized with standard min-max normalization. To ad-
dress the discrepancy in score distributions among different models, we applied a variant min-max
normalization method to align their predicted scores. For each label l ∈ [0,MAX], we collect all
predicted scores with l = 0 as list C0, and all predicted scores with l = MAX as list C1. Specif-
ically, we computed the median prediction scores for C0 and C1 as minp = median(C0) and
maxp = median(C1), respectively. The use of medians, rather than the minimum predicted score
for C0 or the maximum predicted score for C1, avoids reliance on outlier values that may dispropor-
tionately skew the normalization, ensuring a more balanced score distribution. For a given score s,
the normalized score s′ is calculated as:

s′ = clip
(

s−minp

maxp −minp
, 0, 1

)
, (14)

where the function clip(x, 0, 1) ensures the normalized score is bounded within [0, 1]. This method
adjusts the score range to maintain consistency across models while preserving relative score differ-
ences.
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