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ABSTRACT

Recently, using large language models (LLMs) for data augmentation has led to
considerable improvements in unsupervised sentence embedding models. How-
ever, existing methods encounter two primary challenges: limited data diversity
and high data noise. Current approaches often neglect fine-grained knowledge,
such as entities and quantities, leading to insufficient diversity. Additionally, un-
supervised data frequently lacks discriminative information, and the generated
synthetic samples may introduce noise. In this paper, we propose a pipeline-
based data augmentation method via LLMs and introduce the Gaussian-decayed
gradient-assisted Contrastive Sentence Embedding (GCSE) model to enhance un-
supervised sentence embeddings. To tackle the issue of low data diversity, our
pipeline utilizes knowledge graphs (KGs) to extract entities and quantities, en-
abling LLMs to generate more diverse, knowledge-enriched samples. To address
high data noise, the GCSE model uses a Gaussian-decayed function to limit the
impact of false hard negative samples, enhancing the model’s discriminative capa-
bility. Experimental results show that our approach achieves state-of-the-art per-
formance in semantic textual similarity (STS) tasks, using fewer data samples and
smaller LLMs, demonstrating its efficiency and robustness across various models.

1 INTRODUCTION

Sentence representation learning, a fundamental task in natural language processing (NLP), aims to
produce accurate sentence embeddings, thereby improving performance in downstream tasks such as
semantic inference (Reimers & Gurevychl|[2019), retrieval (Thakur et al.l 2021; Wang et al.| [2022a)),
and question answering (Sen et al., 2020). To enhance computational efficiency and reduce labor
costs, unsupervised sentence embedding methods based on contrastive learning, such as SImCSE
(Gao et al., 2021) and ESimCSE (Wu et al., 2022c)), have emerged as highly effective paradigms.
In general, contrastive learning methods operate on the principle that effective sentence embeddings
should pull similar sentences closer while pushing dissimilar ones further apart. The performance of
unsupervised contrastive learning methods largely depend on the quantity and quality of the samples
(Chen et al.} 2022), making it crucial to develop strategies that effectively improve both.

Previous studies mainly focused on increasing the number of samples using rule-based word mod-
ifications (Wang & Doul, 2023 Wu et al.| [2022c) or feature sampling and perturbation techniques
(Xu et al, 2023} |[Chuang et al.l 2022a). Recent studies (Zhang et al., [2023} [Wang et al., |2024a)
use either few-shot manually constructed samples or zero-shot generalized refactoring instructions
to create prompts that guide large language models (LLMs) in generating new samples from orig-
inal sentences, increasing both the quantity and quality of the data. Although these methods have
achieved commendable performance, two limitations remain:

Low Data Diversity. Diverse data samples in sentence representation learning should contain varied
expressions of the same knowledge. However, existing approaches often struggle to distinguish fine-
grained semantic knowledge like entities and quantities in the context. Traditional methods modify
sentences using limited patterns without considering fine-grained knowledge, restricting their ef-
fectiveness in enhancing sample diversity. Recent LLM-based methods like |Wang et al.| (2024b),



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

SynCSE (Zhang et al.| [2023)) and MultiCSR (Wang et al, [2024a)), adjust topic and entailment cat-

egories in prompts to guide the model in generating varied samples. These methods focus on the
global context but lack precise control over the knowledge in the samples. Consequently, the di-
versity of generated samples is constrained by the probability distributions of LLMs, resulting in
unpredictable data quality.

High Data Noise. Unsupervised sentence represen-
tation learning often suffers from data noise caused
by confusing negative samples, which mainly arise
from two sources. First, traditional methods gener-
ate datasets by duplicating samples to create pos- 600
itive instances, leading to negatives with similar

surface-level semantics that affect the model’s per- 400
formance (Miao et al, 2023} [Zhou et all 2022).

Second, in data synthesis, differences in seman- 200
tic distributions can cause the LLM’s criteria for
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distinguishing between positive and negative sam- 0 - s
ples to misalign with the target domain, introduc- SimCSE ~ RankCSE ~ SynCSE  Ours
ing additional noise (Huang et all, [2023; [Poerner|

[2019). The existing MultiCSR method

attempts to remove noisy samples using linear pro-
gramming, but this can eliminate potentially valu-
able samples and reduce data diversity. Figure []
compares various baselines on the STS-Benchmark
development set. The results show that the predic-
tion of false positives outnumber false negatives,
and data synthesis in SynCSE increases false nega-
tives, further supporting the above analysis.

In this paper, we propose a pipeline-based data
aUgmentatlon method using LLMs and introduce Methods  Synthesis Approach Use Knowledge Denoise

the Gaussian-decayed gradient-assisted Contrastive ~ gynCSE Few-shot Synthesis No No
Sentence Embedding (GCSE) model to improve the =~ MultiCSR  Zero-shot Synthesis No Yes
Ours Zero-shot Synthesis Yes Yes

performance of unsupervised sentence embedding

methods. To address the issue of low data diver- ... |. Comparison of our methods and re-

sity, we begin by extracting entities and quantities lated LLM-based methods.

from the data samples and constructing a knowledge

graph (KG) with the extracted data. Next, we create

a sentence construction prompt using the extracted knowledge to guide LLM in generating more
diverse positive samples. To tackle high data noise, we employ an evaluation model to annotate
the synthesized data and initially filter out false samples. However, this procedure is ineffective
in filtering out false negatives with similar surface-level semantics.

This function helps prevent false negatives from being pushed further away
in the semantic space, leading to a more uniform distribution. We highlight the key innovations
of our approach in Table [T} (i) We are the first to incorporate fine-grained knowledge for sample
synthesis in LLM-based methods. (ii) Unlike MultiCSR’s denoising approach, our method retains
more false samples for training rather than discarding them. (iii) Our data selection strategy focuses
on domain-specific samples, using a local LLM with fewer samples for synthesis, leading to im-
proved performance.

In summary, our contributions are as follows: (1) New method. We introduce a pipeline-based
data augmentation method using LLM for few-shot domain data and propose a Gaussian-decayed
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Figure 2: The overall workflow of our method.

gradient-assisted Contrastive Sentence Embedding (GCSE) model to reduce data noise. (2)
New perspective. To the best of our knowledge, we are the first to explore combining knowledge
graphs with LLM to synthesize data, enhancing fine-grained sentence representation learning by
generating diverse positive and negative samples. (3) State-of-the-art performance. Experimental
results demonstrate that our method achieves superior performance on STS tasks while using fewer
samples for data synthesis with smaller LLM parameters.

2 RELATED WORK

Early work on sentence embeddings builds on the distributional hypothesis, predicting surround-
ing sentences (Kiros et al, 2015} [Logeswaran & Leel, 2018}, [Hill et al, 2016) or extending the
word2vec framework (Mikolov et al.;,2013)) with n-gram embeddings (Pagliardini et al.}, 2018). Post-
processing techniques like BERT-flow (Li et al.,[2020) and BERT-whitening (Su et al., 2021) address
the anisotropy issue in pre-trained language models (PLMs), and more recent methods focus on gen-

erative approaches (Wang et al, 2021 [Wu & ZanL [2022) and regularizing embeddings to prevent

representation degeneration (Huang et al. . Recently, contrastive learning approaches have

3 METHODOLOGY

In this section, we present the data augmentation pipeline via LLM and the specific structure of the
GCSE. As shown in Figure [2| we start by using a data augmentation pipeline to synthesize new
samples from the source data, and then train our model with the filtered synthetic data.

3.1 DATA AUGMENTATION

In the data augmentation pipeline, we utilize both domain data and partial general data to balance
domain-specific relevance and general-domain applicability. We start by extracting knowledge from
the source data and then synthesize new data for our model training. The detailed structure of the
pipeline is shown in Figure[3]

Knowledge Extraction and Integration. The variety and relationships between samples directly
impact model performance in sentence representation learning. A major challenge with existing
LLM-based data synthesis methods is the limited diversity they generate for each short text. To
trade off the low diversity of the generated samples with their relevance to the domain semantic
space, we first design an extraction prompt to obtain entities and quantities from the given data.
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Figure 3: The pipeline of knowledge extraction and data synthesis, where the solid black arrows in
the Entity KG are hard edges, and dotted yellow lines are soft edges.

Formally, we denote the extraction prompt as P., and LLM L, suppose we finally extract instances
with d sample number, the knowledge set KC; = {k;1, ..., ki, } of each instance x; is computed in
Equation [I} where t;, ¢; and g; represent the entity text, entity type and quantity of k;. n; is the
size of K;, and F(-) is the formatting function that convert text to triplet. Next, we integrate all
knowledge by establishing an entity knowledge graph G = (V| E), where the node set V' contains
all the (¢, ¢, ¢) from KC:

d d
K =JF([Pe; i), £) = [J{tijr cijraij) | 5 € [1,ma]}, (1)

i=1 i=1
Vo= {tij, cijy qij | i € [1,d]; 5 € [1,n4]}. )

The edges E consist of hard edges E, and soft edges Es. As shown in Equations 3] and 4} E,
represents the relationship between the entity text, type and quantity of each k& € K, and E; indicates
the relationship between entity text in k;; and other entity text or type in the same instance z;.

E. = {(tij, cij) U (tij, qi5) | i € [1,d]; 5 € [1,n4]}, 3)
d
E, = U{(tij7tik); (tij,car) | koL # §ig k1€ [1,n]}. )

i=1

By defining hard and soft edges, we can more efficiently identify and replace entity nodes near the
current node, improving the correlation between the synthesized instance and the source instance.

Data Synthesis via LLM. Empirical evidence and model performance on standard datasets show
that sentence embedding models struggle more with accurately identifying negative samples than
positives (Chuang et al., 2022a; Miao et al., |2023). In the contrastive learning methods, the model
acquires sentence embedding representation by calculating the distance between sentence-pairs. It
aims to minimize the spatial distance between positive pairs and increase the spatial distance be-
tween negative pairs. Thus, it is essential to obtain negative samples that closely resemble the
source instance in surface-level features, while positive samples should have diverse representations
but still convey the same meaning as the source instance.

In this study, we use LLM to generate positive samples through a rewrite prompt. We also focus on
the impact of variations in entities and quantities within the samples. Negative samples are generated
by the LLM at both the syntactic and fine-grained knowledge levels. The data synthesis prompts are
divided into three main types: (1) Rewriting prompt, (2) Syntactic antisense prompt, and (3) Entity
revision prompt. The first type is used to create positive samples, while the second and third types
are used to create negative samples at the syntactic and knowledge levels, respectively.
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The “rewriting prompt” can be classified into three forms: directly requesting LLM to generate a
new sentence instance using the “rewrite” instruction, creating the preceding part of the sentence
instance, and generating based on the knowledge set of the instance. As the diversity of synthetic
samples increases, the likelihood of generating false positives also rises. To address this, the next
section involves scoring the generated samples using an evaluation model. The “syntactic antisense
prompt” aims to modify the semantics to create a contradiction at the syntactic level. Such as trans-
forming it into a positive/negative statement using explicit positive/negative words, or by expressing
a contrary sentiment. This is an initial approach to synthesizing negative samples that preserves a
strong coherence with the source instance in terms of sequence structure. However, it is deficient in
generation diversity. To alleviate the issue, the “entity revision prompt” aims to enhance text diver-
sity by replacing the entity text and quantity compared to the source instance. Simultaneously, to
ensure the semantic relevance between the synthetic samples and the source instance, replacement
entities are selected by searching for neighboring nodes on entity KG. We define 7 (+) as the search
function, and the replacement entity of ¢;; are computed as:

Tr(tij) = {tip | (tij, cix) € Er A (tip, cir) € Er}, )
Ts(tis) = {tip | (tij, tip) € Es}, (6)

Tp(tij) = {tip | tix € Ts(tiy) N Ts(tip) Atip € Tr(tiz)}, @)
T (tij) = Tr(tij) U Tp(tij), ®)

where the function 7.(+) is used to search for entities that have a hard edge with the current entity,
and T4(-) is used to search for entities that have a soft edge with the current entity. 7,(-) aims
to search for ¢;;,, that is of the same type as ?;;, and they both have soft edges with another in-
context entity ¢;;. Finally, the replacement entity can be randomly selected from the result of the
search function 7 (¢;;). Compared to randomly replacing entities, our strategy enhances the semantic
relevance between the generated sample and the source instance.

3.2 MODEL TRAINING

The training process of our model consists of two stages. First, we combine general and domain-
specific data to train an evaluation model using standard unsupervised contrastive learning. This
improves the uniformity of sentence embeddings in general scenarios and reduces the impact of
semantic distribution limitations in the synthesized data, enhancing model robustness. Then, we
freeze the evaluation model to filter synthetic data and help the GCSE model eliminate false hard
negative sample noise.

General Contrastive Learning. In the first stage, we follow the formulation of SimCSE (Gao et al.,
2021) to train the evaluation model. Formally, we define the encoder of the evaluation model as E’,
each unlabeled sentence instance as z;, and its positive sample as :cj' = z;. The representation of
each instance is denoted as h’ = Fp/(z), the representations of z; and ;" are computed as h/ and
h§+, respectively. Since the dropout mask in E’ is random, h} and h;+ are computed with the same
input but with slightly different results. Then, the loss of evaluation model is defined as:

esim(hi, i) /7

—log 9

Z;‘Vfl 6sim(h;,h;'")/fr7

where N represents the size of each mini-batch, 7 is a temperature hyperparameter, and sim(-) is
the cosine similarity function.

Denoising Training. In the second stage, we adopt a copy of the evaluation model as the back-
bone of GCSE and continue training on synthesized data. In this stage, each input is set as a triplet
(w4, 2, ; ), where 2 and x; stand for the positive and negative samples of x;, respectively. Nev-
ertheless, the synthesized data contains many potential false positive and false negative samples, ne-
cessitating the implementation of a filtering process. We use the frozen evaluation model to initially
correct these inaccurate samples and build the ultimate triplet dataset. Let S(z;) = {Z1, ... Zim}
denotes the synthetic data set of x;, where m is the size of the set, and x,f, x; are calculated as:

ot 25, sim(h}, hi;) > a,j € [1,m] 7 (10)

! x;, else
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Figure 4: In-batch training with Gaussian-decayed on GCSE.
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where «, [ are the threshold for positives and negatives, respectively. xj, denotes a randomly se-
lected instance from in-batch data. We can set a high value for « to reduce false positive samples.
However, filtering out false negatives in synthetic data is more challenging. In theory, smaller
can reduce more false negatives, but samples with low similarity to the source instance are easy to
distinguish due to significant surface-level differences. As a result, training on these samples does
not effectively improve the model’s ability to distinguish fine-grained false positives. Therefore,
we opt for a higher value of 3. During training, we use a Gaussian-decayed function to align the
distances of hard negative samples between the GCSE encoder E and the frozen encoder E’. As
shown in Figure[d] for each mini-batch of triplet inputs, both E and E’ compute similarity scores for
the negative samples and their corresponding source instances. The loss for each instance in GCSE
is defined as:

esim(hi bl /7

—log - - = ) (12)
Z;\le emm(hi,h;r)/‘r + Zé\le emm(hi,hj )/ T + G(SZ‘,S/Z-,T7O')
J#i
(s;—s4)%2
G(Sia 8277—7 J) = S5 (]- —e 202 > ) (13)

where s; = sim(h;, h; ), s; = sim(hj, h}"). G(-) is the Gaussian-decayed function, where the loss
attenuation of the hard negative sample grows as the distance between s; and s, decreases, and o is
a hyperparameter that controls the width of G(-). This implies that when E initially calculates the
hard negative sample, it follows the spatial distribution of E’ as the “established guidelines” and uses
other in-batch negative samples to further increase the spatial distance between negatives, effectively
reducing the influence of false negatives. As training progresses, the spatial distribution of true hard
negatives between E and E’ will progressively increase, and its gradient will be restored.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Training: We utilize the subset of NLI dataset from|Gao et al.|(2021) as the general data, and use the
training sets from STS-Benchmark (STS-B) (Cer et al., 2017) with 5.7k samples and SICK (Marelli
et al., 2014) with 4.5k samples as the domain data for a fair comparison with related approaches.
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To simulate the unsupervised scenario, we exclusively include unlabeled samples from the dataset.
In this experiment, the ratio of sample numbers between domain data and general data was 1:3. We
adopt ChatGLM3-6B (GLM et al.| [2024)), GLM4-9B (GLM et al.l [2024) and ChatGPT (OpenAl,
2022) as LLMs for data synthesis, respectively. We choose BERT (Devlin et al.|[2019) and RoBERTa
(Liu et al., 2019) as the backbone models of GCSE. In the stage of Gaussian-decayed training on
synthesized data, the filtering thresholds of o and /3 are set as 0.9 and 0.75, respectively. The
temperature of 7 is set as 0.05, and the o of G(-) is set as 0.01. In the first stage training, the
evaluation model is firstly trained on the unlabeled dataset of all general data and domain data. One
copy instance of the evaluation model is then utilized as the pre-trained model for GCSE, while the
original instance is set to be frozen to filter synthesized data and provide guidance for GCSE. In
the second stage, GCSE is trained on the filtered synthesized data, and the sentence embedding is
obtained from the last output hidden states of the first token.

Evaluation: To validate our method for sentence embeddings, we evaluated the model’s perfor-
mance on semantic textual similarity (STS) tasks, we use the standard evaluation method, mea-
suring model performance with Spearman’s correlation, and we adopt SentEva (Conneau & Kiela,
2018)) as the evaluation tool, which contains seven STS subsets: STS 2012-2016 (Agirre et al.,2012;
2013;12014;12015;2016), the STS-Benchmark (Cer et al.,[2017) and the SICK Relatedness (Marell1
et al., 2014). To compare the ranking performance of our method on retrieval tasks, we evaluated
the model using the MTEB benchmark (Muennighoff et al. [2023) with four reranking datasets:
AskUbuntuDupQuestions (Lei et al., [2016), MindSmallReranking (Wu et al., 2020), SciDocsRR
(Cohan et al., [2020) and StackOverflowDupQuestions (Liu et al.l [2018), and follow the same set-
tings of Zhang et al.| (2023)) by using Mean Average Precision (MAP) as the metric. Additionally,
we compared the performance of our model with other methods on transfer tasks in SentEval to
evaluate its applicability in Appendix [C]

Baselines: We compare our method with mainstream unsupervised sentence embedding baselines:
BERT-whitening (Su et al., 2021), SimCSE (Gao et al., 2021), DiffCSE (Chuang et al., [2022b),
PromptBERT (Jiang et al.| 2022), PCL (Wu et al.| 2022a), CARDS (Wang et al.| [2022b), DebCSE
(Miao et al., |2023) and RankCSE (Liu et al., [2023). In addition, we further compare two baselines:
SynCSE (Zhang et al., 2023)) and MultiCSR (Wang et al., [2024a), which use LLM for data synthe-
sizing in whole NLI datasets. To verify the effectiveness of our data synthesis method, we choose
their results of using ChatGPT for comparison.

4.2 MAIN RESULTS

STS Tasks: The overall results of the STS tasks are shown in Table [2| Our approach, utilizing
synthetic samples from ChatGPT, achieves state-of-the-art performance across all backbones when
compared to other unsupervised baselines. Even with synthetic samples from ChatGLM3-6B, our
method still outperforms previous approaches on BERT-base, BERT-large, and RoBERTa-large.
This highlights the applicability of our method, as it can be effectively applied to multiple models.
Compared to the standard unsupervised SimCSE, Spearman’s correlation of GCSE (ChatGL.M3-6B)
is improved by an average of 17.24% on the base models and 3.44% on the large models. On the
strong baseline RankCSE, GCSE (ChatGLM3-6B) achieved a 1.36% improvement over its average
performance, demonstrating the effectiveness of the LLM data synthesis process. Furthermore,
we compare two baseline models: SynCSE and MultiCSR, both of which utilize LLM as the data
synthesis model. We specifically analyze the results of using ChatGPT for both models and the
results show that our approach outperforms both models in most cases. It should be noted that our
method only utilizes 14% of the sample size compared to the other two methods that employ the
entire NLI datasets. This demonstrates the effectiveness of our data synthesis strategy and domain-
oriented sample selection strategy.

Reranking Tasks: Table [3] presents the MAP results of our approach and related baselines on the
reranking benchmark, and all models are evaluated on the test sets of the reranking benchmark with-
out using the training sets. The results indicate that various approaches exhibit varying performance
on different datasets, which can be attributed to the distinct semantic distribution and evaluation scale
of each dataset. Our GCSE outperforms SynCSE by 0.39% in average MAP score and achieves the

'https://github.com/facebookresearch/SentEval
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Model | Method | STS-12 STS-13 STS-14 STS-15 STS-16 STS-B  SICK-R  Avg.
whitening 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28

SimCSE+ 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25

DiffCSEf 72.28 84.43 76.47 83.90 80.54 80.59 71.23 78.49

PromptBERT& 71.56 84.58 76.98 84.47 80.60 81.60 69.87 78.54

PCL& 72.84 83.81 76.52 83.06 79.32 80.01 73.38 78.42

BERT-base DebCSET 76.15 84.67 78.91 85.41 80.55 82.99 73.60 80.33
) RankCSE# 75.66 86.27 77.81 84.74 81.10 81.80 75.13 80.36
SynCSE (ChatGPT)* 75.86 82.19 78.71 85.63 81.11 8235 78.79 80.66

MultiCSR (ChatGPT)é 74.86 84.19 79.46 84.70 80.34 83.59 79.37 80.93

GCSE (ChatGLM3-6B) 76.91 86.23 80.49 85.16 81.45 82.54 75.71 81.21

GCSE (GLM4-9B) 78.19 84.88 80.28 84.39 81.81 83.89 77.74  81.60

GCSE (ChatGPT) 78.20 85.90 81.17 84.88 81.44 83.56 78.69 81.98

SimCSE+ 70.88 84.16 76.43 84.50 79.76 79.26 73.88 78.41

PCL& 74.87 86.11 78.29 85.65 80.52 81.62 73.94 80.14

DebCSET 76.82 86.36 79.81 85.80 80.83 83.45 74.67 81.11

BERT-large RankCSE& 75.48 86.50 78.60 85.45 81.09 81.58 75.53 80.60
SynCSE (ChatGPT)* 74.24 85.31 79.41 85.71 81.76 82.61 79.25 81.18

GCSE (ChatGLM3-6B) 76.99 87.34 80.88 85.47 80.55 82.97 75.68 81.41

GCSE (GLM4-9B) 76.94 86.69 81.16 85.53 81.44 84.47 78.88 82.16

GCSE (ChatGPT) 78.70 87.30 81.94 86.10 81.60 84.08 79.86  82.80

whiteningf 46.99 63.24 57.23 71.36 68.99 61.36 62.91 61.73

SimCSE+ 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57

DiffCSET 70.05 83.43 75.49 82.81 82.12 82.38 71.19 78.21
PromptRoBERTad 73.94 84.74 77.28 84.99 81.74 81.88 69.50  79.15

PCL& 71.13 82.38 75.40 83.07 81.98 81.63 69.72 77.90

ROBERTa-base DebCSET 74.29 85.54 79.46 85.68 81.20 83.96 74.04 80.60
) RankCSE# 73.20 85.95 77.17 84.82 82.58 83.08 71.88 79.81
SynCSE (ChatGPT)f 74.61 83.76 77.89 85.09 82.28 82.71 78.88 80.75

MultiCSR (ChatGPT)é 75.61 84.33 80.10 84.98 82.13 84.54 79.67 81.62

GCSE (ChatGLM3-6B) 76.06 85.30 80.38 85.28 83.26 84.07 74.55 81.27

GCSE (GLM4-9B) 77.13 85.05 80.25 84.89 83.08 84.78 76.63 81.69

GCSE (ChatGPT) 78.03 83.79 80.61 86.28 82.76 84.31 79.01 82.11

SimCSE+ 72.86 83.99 75.62 84.77 81.80 81.98 71.26 78.90

PCL& 74.08 84.36 76.42 85.49 81.76 82.79 71.51 79.49

DebCSET 77.68 87.17 80.53 85.90 83.57 85.36 73.89 82.01

RoBERTa-large RankCSE& 73.20 85.83 78.00 85.63 82.67 84.19 73.64 80.45
SynCSE (ChatGPT) 75.45 85.01 80.28 86.55 83.95 84.49 80.61 82.33

GCSE (ChatGLM3-6B) 78.24 87.24 81.93 86.80 83.52 85.08 76.70  82.79

GCSE (GLM4-9B) 77.18 86.72 82.62 85.89 83.97 85.75 77.97 82.87

GCSE (ChatGPT) 71.76 87.45 82.62 88.38 84.43 86.08 80.09 83.83

Table 2: Comparison of Spearman’s correlation results on STS tasks, where the value highlighted in
bold is the best value, and the value underlined is the second-best value. “{”’: results from Miao et al.
(2023)), “&’: results from[Wang et al.|(2024a), “#”: results from|Liu et al.| (2023), “{1”: results from
Zhang et al.| (2023). “*”: we reproduce the results with the officially released corpus from [Zhang
et al. (2023). GCSE has significant differences with all comparable baselines on the t-test (p<<0.5%).

best results in all backbone models, demonstrating the efficacy of our approach in enhancing the
precision of unsupervised ranking tasks.

4.3  ANALYSIS

Ablation Studies: We analyze the impact of each module or strategy in GCSE and report the results
in Table [d] First, “w/o stage-2” refers to the results obtained without training in the second stage.
This leads to a significant decrease in performance compared to the default model, which is the
performance of the evaluation model and is similar to the conventional unsupervised SimCSE. Then,
“w randomly” refers to the direct use of the instance itself as a positive sample in the combination
dataset of domain and general data, while randomly selecting a negative instance from the dataset.
We can observe that its performance in this case is even worse than the evaluation model. This
demonstrates that the diversity of positive samples and the quality of negative samples significantly
impact the performance of the model. “w/o filtering” indicates the results of training by skipping
evaluation model filtering and directly using the data synthesized by LLM. The results show that
the performance of the model is significantly affected when false positive and negative samples
are introduced without filtering. We investigate the impact of the Gaussian-decayed function by
removing it, and the results are shown in “w/o decay”. We can observe that the default model
performs better overall than when the Gaussian-decayed function is removed, indicating that it can
filter out potential false negative sample noise. Finally, we analyze the necessity of including general
data and domain data in “w/o general” and “w/o domain” respectively. It can be observed that
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removing either of them results in a decline in performance, which indicates the significance of
domain data and the essentiality of general data in our method.

Analysis of entities and quantities aware-
ness: We analyze GCSE awareness of entities

o . . Method Spearman’s
and quantities by constructing a dataset using
the data synthesis method in Section [3.1] on unsup-SimCSE 75.59
the STS-Benchmark development set. Then, RankCSE 79.74
the similarity scores of each triplet in the SynCSE (ChatGPT) 91.58
dataset are annotated by two supervised pre- GCSE (ChatGLM3-6B) 93.77

trained models: “sup-simcse-bert-large” and
“sup-simcse-roberta-large”. The final label is Table 5: Comparison of Spearman’s correla-
the average score of the similarity calculated by  tion results on the synthetic data of the STS-
both models. We evaluate Spearman’s correla-  Benchmark development set.

tion scores of GCSE and the other three strong

baselines on the backbone of the BERT-base

model, and the results are shown in Table E} Our GCSE achieves the best result and outperforms
RankCSE by 14.03%. In this case, both SynCSE and GCSE achieve significant improvements over
methods without LLM. This might be due to the similarity of the semantic representation space be-
tween the training set and the development set, both of which are synthesized via LLM. Nevertheless,
GCSE shows a notable enhancement in performance of 2.19% compared to SynCSE, demonstrating
that its understanding of the entities and quantities in sentences has enhanced to a certain degree.

Impact on the ratio between domain and general data: Figure [5 presents the trend of the GCSE
Spearman’s correlation result as the proportion of general data introduced increases, where “d”
represents that only using the domain data. The results show that adding a certain amount of general
data improves performance on STS tasks. However, when the size of general data exceeds three
times that of domain data, performance starts to decline. This suggests that incorporating a moderate
amount of external data enhances the uniformity of sentence embeddings. But as the out-of-domain
data grows, the influence of domain-specific data on training weakens. Overall, the results indicate
that domain data improves the model’s ability to represent target domain sentences, while general
data helps with sentence embedding uniformity.

Impact of the Gaussian-decayed: To further investigate the effectiveness of the Gaussian-decayed
function, we analyze the GCSE performance against the weight of o on the synthesized data, both
with and without filtering. As shown in Figure [6] we use the synthesized data without filtering to
evaluate the efficacy of the Gaussian-decayed function in eliminating false negative samples, and

Model | Method | AskU.  Mindsmall SciDocsRR StackO. Avg.
SimCSE 51.89 28.68 67.88 39.60 47.01

BERT-base PCL 52.46 28.72 68.03 41.30 47.63
) SynCSE (ChatGPT)* 52.61 29.17 68.46 38.60 47.21

GCSE (ChatGLM3-6B) 52.62 28.79 70.67 39.53 47.90

SimCSE 53.10 29.59 71.94 40.68 48.83

BERT-large PCL 52.03 29.11 70.30 42.33 48.44
SynCSE (ChatGPT)* 53.24 30.09 71.45 39.24 48.50

GCSE (ChatGLM3-6B) 53.40 29.43 73.04 39.68 48.89

SimCSEft 52.78 2991 65.96 39.25 46.95

CARDS{t 52.94 27.92 64.62 41.51 46.75

RoBERTa-base PCLtt 51.85 27.92 64.70 41.18 46.41
SynCSE (ChatGPT)1t 53.27 30.29 67.55 39.39 47.63

GCSE (ChatGLM3-6B) 53.44 29.35 67.89 41.13 47.95

SimCSEft 55.10 29.23 68.54 42.56 48.86

CARDSTt 53.83 29.07 68.26 43.24 48.60

RoBERTa-large] PCLtt 53.43 28.56 66.06 41.54 47.40
SynCSE (ChatGPT){t 55.48 30.27 70.85 40.00 49.15

GCSE (ChatGLM3-6B) 54.05 30.30 71.23 41.65 49.31

Table 3: Comparison of Mean Average Precision (MAP) results on reranking tasks, where the value
highlighted in bold is the best value, and the value underlined is the second-best value. “7”: results
from [Zhang et al.| (2023). “*”: we reproduce the results with the officially released corpus from
Zhang et al.|(2023)).
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Method STS-12 STS-13 STS-14 STS-15 STS-16 STS-B  SICK-R  Avg.
GCSE (ChatGLM3-6B) 76.91 86.23 80.49 85.16 81.45 82.54 75.71 81.21
w/o stage-2 71.85 83.65 76.84 83.37 78.74  79.10 71.69  77.89
w randomly 71.94 84.03 76.99 83.65 79.11 78.66 69.28  77.67
wio filtering 74.65 83.54 71.39 83.27 79.97 79.66 74.27  78.96
w/o decay 76.15 85.83 79.77 85.19 80.72  82.59 75.55 80.83
w/o general 75.44 85.55 79.19 84.91 80.23 81.57 74.14 80.15
w/o domain 75.59 85.66 78.93 84.09 80.87 82.29 76.00  80.49

Table 4: Ablation studies of STS tasks on BERT-base. Other PLMs yield similar patterns to BERT-
base.
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Figure 7: Density plots of the STS-Benchmark development set with labels > 4, which is evaluated
by GCSE with different ¢ weights. (c) is the density plot of gold labels.

results are presented in Figure[6](b). It is clear that the model’s performance improves as the weight
of o grows. This suggests that a greater o weight enhances the model’s effectiveness in mitigat-
ing the impact of false negative samples. It is important to acknowledge that a higher o does not
necessarily indicate better performance. As shown in Figure [f] (a), an increase in o at the initial
stage contributes to enhancing the model’s performance. Nevertheless, as the weight of ¢ increases,
the performance of backbones generally declines, resulting in the model adhering too strictly to the
“established guidelines”. Consequently, it impacts the efficacy of learning from the hard negative
samples. We further use the density plots to visualize the prediction on the STS-Benchmark de-
velopment set in Figure [/} These models are trained on the synthesized data without filtering. We
can observe that in Figure (/| (a), the distribution of prediction results for labels > 4 is significantly
shifted to the left. Compared with the results in Figure [/| (b), this issue is effectively alleviated,
demonstrating the effectiveness of the Gaussian-decayed function in reducing the influence of false
negative samples. To further verify the applicability of the Gaussian-decayed function, we applied
it to SynCSE and verified the performance in Appendix [E]

5 CONCLUSION

In this paper, we propose a pipeline-based data augmentation method using LLM to enhance data di-
versity in sentence representation learning. By leveraging knowledge of entities and quantities, our
approach improves the model’s ability to capture fine-grained semantic distinctions. The Gaussian-
decayed function in our GCSE model further reduces noise in the generated data. Extensive experi-
ments on STS and reranking tasks show that our method achieves state-of-the-art results with fewer
synthesized samples and a more lightweight LLM, demonstrating its effectiveness and efficiency.

10
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982 A DATA SYNTHESIS PROMPTS

983

984 In this section, we provide the specifics of our prompts for knowledge extraction and integration,
985 and data synthesis. The particular prompts are presented in Table[6]

986

B VISUALIZATION OF SYNTHETIC SAMPLE DISTRIBUTION
988

989 «  Source
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991 5] | ren
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993 2
994
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997 =50
998 _75
999
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1022 C PERFORMANCE ON TRANSFER TASKS

1024
1025  We also evaluate our GCSE following the same settings as SimCSE on seven transfer tasks: MR

(Pang & Leel [2003)), CR (Hu & Liul 2004), SUBJ (Pang & Leel, 2004), MPQA (Wiebe et al.} [2003)),

100 +  Source
© Rewrite

Antisense
Revision
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Instruction: Predicts the subject categories, contained entities, and quantified infor-
mation of the following text

Rules: The category is an item in [{categories_name}, ...], quantified information
refers to information contained in the text with numerical values or units, such as
2GB’, ‘three cups’, ‘two dogs’, etc

Output format: json format data, the data format is: {

cls: [1, // category

entities: [{text: “, type: “”’}], // entities, ‘text’ must be subsequences in the Input text
quantities: [{text: 7, type: “”, quantity: 0}] // To quantify the information, ‘text’
must be a subsequence in the Input text

o

}
Input: {z}

Instruction: You are an excellent storyteller; rewrite the input sentence in a different
way. Please try to recreate the sentence using different expressions, including varied
tones, synonyms, and sentence patterns, while ensuring that the new sentence has the
same meaning as the original sentence.

Input: {z}

Instruction: You are a great storyteller; I would be grateful if you could employ
your creativity to devise an illustration of the preceding segment of the sentence. The
preceding statement must not exceed {number} words, and it follows the original
text.

Input: {z}

Instruction: You are a great rewriter, and I want you to generate new sentence
according to the classification, entities and quantities info provided by the json.
Rules: You should aware that the new text in “quantities” should be rewrite follows
the “quantity” value. e.g. “text”: “A man”, “quantity”: 5 should rewrite as “five
men”.

Metadata: {

“cls™: “{categories_name}”,

“entities”: [{

“text”: “{entity_text}”,
“type™: “{entity_type}”
oo,

“quantities™: [{

“text™: “{entity_text}”,
“quantity”: {entity_quantity}

Input: {2}

Instruction: You are dishonest; you ought to reformulate the input sentence so that
the NLI model perceives it as an opposing sample.

Rules: 1. If the statement asserts negation, you should affirm; conversely, if the
statement asserts affirmation, you should negate. 2. If an individual loves something,
one should assert that it does not reciprocate that affection. 3. If an individual is
engaged in one activity, state that they are performing a different activity. 4. If the
statement is affirmative/negative, express it as negative/affirmative.

Input: {z}

Instruction: You are a great story teller, rewrites the input sentence, and change the
entity ‘{original_entity_text}’ to another {entity_type} ‘{new_entity_text}’.
Input: {z}

Instruction: You are a great story teller, rewrites the input sentence, and
change the quantity {original_quantity_value} of ‘{original_quantity text}” to
{random_quantity_value}.

Input: {z}

Table 6: Examples of data synthesis prompts, where {variable name} refers to a variable.

SST2 (Socher et al., 2013)), TREC (Voorhees & Ticel, [2000), and MRPC (Voorhees & Ticel, [2000).
The results are shown in Table[/} it can be observed that our GCSE (ChatGPT) achieves the best per-
formance on all backbone models, outperforming second-best methods in average scores of 0.89%
with BERT-base, 0.79% with BERT-large, 0.44% with RoBERTa-base, and 0.40% with RoBERTa-
large, demonstrating the potential capability in downstream tasks.
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Model | Method | MR CR SUBJ MPQA SST2 TREC MRPC Avg.

SimCSE# 68.40 8241 7438 8091 7856 76.85 7223 7625

DiffCSE# 7228 84.43 7647 8390 80.54 8059 7123 7849

PCL& 72.84 8381 7652 83.06 79.32 80.01 7338 7842

RankCSE# 75.66 8627 7781 8474 81.10 81.80 7513 80.36

BERT-base MultiCSR (ChatGPT)% | 82.70 88.15 9497 90.08 86.87 87.70 7546 86.56

SynCSE (ChatGPT)* 83.34 88.80 9388 9039 8396 83.60 7594 86.42

SimCSE# 70.88 84.16 7643 8450 79.76 79.26  73.88 78.41

PCL& 7487 86.11 7829 8565 80.52 81.62 7394 80.14

RankCSE# 7548 8650 78.60 8545 81.09 8158 7553  80.60

BERT-large SynCSE (ChatGPT)* 8578 9047 9477 90.41 90.50 89.00  75.77

SimCSE# 70.16 81.77 7324 8136 80.65 8022 6856 76.57

DiffCSE# 70.05 83.43 7549 8281 82.12 8238  71.19 7821

PCL& 71.13 8238 7540 83.07 8198 81.63 69.72 77.90

RankCSE# 7320 8595 77.17 8482 8258 83.08 71.88 79.81

RoBERTa-base | MultiCSR (ChatGPT)& | 84.70 90.69 9440 8938 8942 89.62 77.01 87.89
SynCSE (ChatGPT)tt

SimCSE# 7286 8399 7562 8477 81.80 8198  71.26 78.90

PCL& 74.08 8436 7642 8549 81.76 8279 7151 79.49

RankCSE# 7320 8583 78.00 85.63 82.67 84.19 73.64 8045

RoBERTa-large | SynCSE (ChatGPT)tf 8724 9216 9375 90.81 91.87 8400 7629  88.02

Table 7: Comparison of different sentence embedding models accuracy on transfer tasks. “#:

results from Liu et al.|(2023), “&": results from Wang et al.| (2024a), “1”: results from |[Zhang et al.|
2023)). “*”: we reproduce the results with the officially released corpus from [Zhang et al. ©023).

Premise Hypothesis Gold SimCSE RankCSE SynCSE GCSE
A woman is cooking [€g8S]- A woman is cooking [SOmething 3.00  437(1372) 423(1.320) 3.66 (0.662) 3.24 (0.236)
Two little girls are talking on the phone. A little girl is walking down the street.  0.50  3.38 (2.881) 3.64 (3.139) 1.97 (1.468) 1.85 (1.351)
A chef is preparing [some  [food!. A chef prepared a [meal . 400 4.27(0.270) 459 (0.588) 4.56(0.561) 4.41 (0.408)
Five kittens are eating out of five 5 Kittens are eating on trays. 275  3.81(1.056) 3.71(0.957) 3.28(0.535) 3.12(0.373)
A woman is cutting some 5 A woman is chopping 5 2.80 3.58(0.777) 3.58(0.967) 3.11(0.313) 2.61(0.185)

Table 8: Case studies on model prediction similarity with gold labels in the STS-Benchmark devel-
opment set, where Gold represents the label score of the sentence pair (ranging from zero to five).
The similarity scores of all models are multiplied by a coefficient of five for better comparison, and
the value in parentheses denotes the RMS error between the predicted score and the label. Words
highlighted in blue denote the entity alteration in the sentence-pair, whereas words in yellow indicate
the quantities that change inside the sentence-pair.

D CASE STUDIES

To further verify the improvement in our method’s awareness of entity and quantity, we selected
five sample sets from the STS-Benchmark development set that explicitly contained alterations in
entity or quantity within the sentence-pair, and presented the prediction cosine-similarity scores of
GCSE and related methodologies with the backbone of BERT-base in Table [§] We can observe
from the results that the prediction score of our model achieves the minimum root-mean-square
error compared to the label in most cases, which indicates that our model has a stronger capacity to
distinguish information.
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E ABLATION STUDIES OF GAUSSIAN-DECAYED AND FEW-SHOT SAMPLES

Method STS-12 STS-13 STS-14 STS-15 STS-16 STS-B  SICK-R  Avg.
SynCSE (ChatGPT)* 75.86 82.19 78.71 85.63 81.11 82.35 78.79 80.66
w sampled 75.48 85.60 78.76 84.78 80.38 82.12 76.46 80.51
w sampled & G.D. 75.71 85.24 79.09 85.15 80.82 82.68 77.54 80.89
w G.D. 75.89 85.26 79.24 85.67 80.79 82.63 78.19  81.10

w sampled & domain & G.D.  75.88 86.02 79.46 86.10 80.27 82.87 76.91 81.07

Table 9: Ablation studies of sample size and the Gaussian-decayed function by utilizing SynCSE.
7. we reproduce the results with the officially released corpus from [Zhang et al.| (2023).

We employ the Gaussian-decayed function on SynCSE and sample SynCSE training data with a
sample size the same as our synthetic data to evaluate the efficacy of the proposed Gaussian-decayed
function and our domain-oriented selection strategy in the ablation experiment. The data sample
size is 64k, and the weight of o in G(-) is assigned the same value as specified in Section
The results of various policies implemented in SynCSE are presented in Table “w sampled”
denotes the utilization of purely the sampled data in SynCSE, and a performance decrease can be
observed when training on a reduced number of samples without extra configurations. “w sampled
& G.D.” denotes the additional incorporation of G(-) based on “w sampled”. “w G.D.” indicates the
results by training on the full dataset utilizing G(+). In both configurations, the average performance
outperforms the vanilla model, illustrating the module’s efficacy. “w sampled & domain & G.D.”
denotes the concurrent utilization of sample data, domain data, and G(+), with a sample size of
48k for the SynCSE dataset and 16k for the synthesized domain dataset. The results reveal that
”w sampled & domain & G.D.” attains the second-best performance, suggesting that incorporating
domain data can decrease the required training samples while enhancing model efficacy.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Cotunn dex Coum e o index
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Figure 9: Heatmap visualization of the prediction scores and gradients.
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