
Under review as a conference paper at ICLR 2021

Towards Practical Second Order Optimization
for Deep Learning

Anonymous authors
Paper under double-blind review

Abstract

Optimization in machine learning, both theoretical and applied, is presently
dominated by first-order gradient methods such as stochastic gradient descent.
Second-order optimization methods, that involve second derivatives and/or second
order statistics of the data, are far less prevalent despite strong theoretical properties,
due to their prohibitive computation, memory and communication costs. In an
attempt to bridge this gap between theoretical and practical optimization, we present
a scalable implementation of a second-order preconditioned method (concretely,
a variant of full-matrix Adagrad), that along with several critical algorithmic and
numerical improvements, provides significant convergence and wall-clock time
improvements compared to conventional first-order methods on state-of-the-art
deep models. Our novel design effectively utilizes the prevalent heterogeneous
hardware architecture for training deep models, consisting of a multicore CPU
coupled with multiple accelerator units. We demonstrate superior performance
compared to state-of-the-art on very large learning tasks such as machine translation
with Transformers, language modeling with BERT, click-through rate prediction on
Criteo, and image classification on ImageNet with ResNet-50.

1 Introduction
Second order methods are among the most powerful algorithms in mathematical optimization.
Algorithms in this family often use a preconditioning matrix to transform the gradient before applying
each step. Classically, the preconditioner is the matrix of second-order derivatives (i.e., the Hessian)
in the context of exact deterministic optimization (e.g., Fletcher, 2013; Lewis & Overton, 2013;
Nocedal, 1980). While second-order methods often have significantly better convergence properties
than first-order methods, the size of typical problems prohibits their use in practice, as they require
quadratic storage and cubic computation time for each gradient update. Approximate algorithms such
as quasi-Newton methods are aimed at significantly reducing these requirements; nonetheless, they
still impose non-trivial memory costs equivalent to storing several copies of the model (and often
quadratic computation, as in the popular two-loop recursion (Nocedal, 1980)), which severely limits
their use at the immense scale of present-day deep learning.

Arguably, one of the greatest challenges of modern optimization is to bridge this gap between
theoretical and practical optimization towards making second-order methods feasible to implement
and deploy at immense scale. Besides the compelling scientific and mathematical developments it
may stimulate, this challenge has also a clear real-world significance: recent practice of training
deep learning models suggests that the utility of common first-order methods is quickly reaching
a plateau, in large part because their time-per-step is already negligible (compared to other parts
of the computation) and cannot be optimized further; thus, the only way to obtain faster training
performance is by drastically reducing the number of update steps. To this end, utilizing second-order
methods seem a very natural and promising approach.

In this paper we attempt to narrow the gap between theory and practice of second-order methods,
focusing on second-order adaptivemethods for stochastic optimization. These methods can be thought
of as full-matrix analogues of common adaptive algorithms such as AdaGrad (Duchi et al., 2011;
McMahan & Streeter, 2010) and Adam (Kingma & Ba, 2014): they precondition each gradient with
a second moment matrix, akin to a covariance matrix, that accumulates the outer products of the
stochastic gradients. Full-matrix versions are potentially more powerful than first-order methods as
they can exploit statistical correlations between (gradients of) different parameters; geometrically,

1

Under review as a conference paper at ICLR 2021

they can scale and rotate gradients whereas first order methods only scale gradients. However they
suffer from similar prohibitive runtime and memory costs as Hessian-based methods.

Recent developments in the space of second-order methods, on which we focus on in this paper,
include the K-FAC (Heskes, 2000; Martens & Grosse, 2015) and Shampoo (Gupta et al., 2018)
algorithms that exploit the structure of deep networks (and more generally, models described by a
collection of tensors) for mitigating the space and runtime costs of full-matrix second-order algorithms.
These methods approximate each preconditioning matrix using a factored representation that stems
from the network structure. However, in very large applications, such algorithms are still impractical
due to a number of numerical and infrastructural pitfalls and are difficult to parallelize.

Contributions. We provide solutions to practical concerns and challenges that arise in implementing
and using second-order methods at large scale. Our focus will be on the Shampoo algorithm, but
most of the challenges we address are relevant to the implementation of many other second-order
methods. These include:

• We design and implement an pipelined version of the optimization algorithm, critically
exploiting the heterogeneity and computing power of CPU-Accelerator coupled architectures;

• We extend Shampoo in a number of ways so as to make it applicable to a larger range of deep
architectures; in particular, the extensions allow Shampoo to be used for training very large
layers such as embedding layers ubiquitous in language and translation models;

• We replace expensive spectral decompositions (e.g., SVD) used formanipulating preconditioners
with an efficient and numerically-stable iterative method for computing roots of PSD matrices;

• We describe practical challenges and limitations we faced in our design, which we argue could
be useful for the design considerations of next-generation accelerator hardware architectures.

Our distributed implementation demonstrates significant improvements in performance, both in terms
of number of steps, and often in actual wall-clock time, on some extremely large deep learning tasks:

• Machine translation: we train Transformer models (Vaswani et al., 2017) on the WMT’14
English to French translation task (Bojar et al., 2014) in half as many steps compared to
state-of-the-art (well tuned Adam), resulting with up to 45% reduction in wall-time.

• Language modeling: we trained BERT (Devlin et al., 2018) in 16% fewer steps and achieve
higher masked-LM accuracy compared to state-of-the-art optimizer (You et al., 2019) at 32K
batch size; overall wall-time decreased by 4% from 3.8 to 3.65 hours. (For this task, our system
has not yet been tuned for performance; we discuss several possible optimizations below.)

• Click-Through Rate (CTR) prediction: we trained the DLRM model (Naumov et al., 2019)
on the terabyte Criteo dataset (Criteo Labs, 2015) at 64K batch size in half as many steps
as the current state-of-the-art optimizer, with a wall-time reduction of 37.5%. We achieve a
new state-of-the-art performance of 80.56% AUC (≈ 0.3% improvement) on this task. (An
improvement of 0.1% is considered significant; see Rong et al., 2020; Wang et al., 2017.)

• Image classification: we achieve MLPerf target accuracy of 75.9% (Mattson et al., 2019) at 32K
batch size on the standard ResNet-50 ImageNet benchmark in 10% fewer steps than previous
state-of-the-art. Here we do not see wall-time gains, mainly because the problem is too small
(only few thousand steps for convergence which does not allow for amortization of costs).
However, we expect that one would be able to better exploit parallelism via improved software
and hardware support.

We note that one of our main points in this work was to demonstrate wall-time speedups with second-
order methods implemented on a real-world distributed setup being used to train state-of-the-art deep
models. In our view, this is important for influencing future hardware accelerator design and runtime
software. Indeed, first-order methods have received huge investments in tuning, implementation,
platform support and tailored accelerator hardware over the last decade; we believe there are numerous
opportunities to improve the per-step time performance of preconditioned methods as well. For
example, our results provide a concrete justification for incorporating 64bit accumulation units in
hardware for distributed training, adding larger on-chip memory, better model parallelism and tighter
coupling between accelerators and CPUs, which would make second order methods feasible across
more domains and models.

Related work. Classic techniques for addressing the high storage and computation costs of second-
order methods mostly belong to the quasi-Newton or the trust-region families of algorithms (Conn
et al., 2000; Nocedal & Wright, 2006). Traditionally, these methods need nearly-accurate gradients in

2

Under review as a conference paper at ICLR 2021

order to construct useful quadratic approximations and implement reliable line searches, rendering
them as suitable for training with very large batch sizes, and resulting in expensive iterations that make
the overall algorithm slow compared with stochastic first-order methods (see, e.g., Bollapragada et al.,
2018 for a recent account). Hence, our focus in this paper is on adaptive second-order methods which
are directly applicable in a stochastic setting. That said, our effort could be relevant to quasi-Newton
and trust-region methods as well: e.g., each iteration of typical trust-region methods amounts to
solving a certain generalized eigenvalue problem, which presents numerical difficulties of similar
nature to those encountered in matrix root/inverse computations, being addressed here.

Various approximations to the preconditioning matrix have been proposed in the recent literature
(e.g., Gonen & Shalev-Shwartz, 2015; Erdogdu & Montanari, 2015; Agarwal et al., 2016; Xu et al.,
2016; Pilanci & Wainwright, 2017). However, so far the only prevalent and pragmatic approximation
is the diagonal approximation. Some recent approaches for approximating a full-matrix preconditioner
are K-FAC (Martens & Grosse, 2015), Shampoo (Gupta et al., 2018) and GGT (Agarwal et al., 2018).
K-FAC uses a factored approximation of the Fisher-information matrix as a preconditioner. While
our focus in this paper is on Shampoo, we believe that many of the techniques presented here could
also be applied to make K-FAC practical in large scale (see Appendix C). GGT uses a clever trick to
compute a low-rank approximation to the AdaGrad preconditioner. However, GGT maintains several
hundred copies of the gradient in memory, which is too expensive even for mid-sized models.

Ba et al. (2017) took a first important step at experimenting with distributed K-FAC for training deep
models, using a single machine with 8 GPUs to simulate a distributed environment for training. In
contrast, a main thrust of our work is to demonstrate wall-time speedups with second-order methods
on a real-world distributed setup used for training state-of-the-art deep models, that call for design
considerations crucially different than in (Ba et al., 2017). More recently, Osawa et al. (2019) scaled
up K-FAC for training convolutional networks, but fell short of reaching the accuracy of first order
methods, despite making changes to data augmentation and model architecture.

2 Preliminaries
Adaptive preconditioning methods. First order methods iteratively update the parameters solely based
on gradient information: wt+1 = wt − ηt ḡt where wt and ḡt are (column) vectors in Rd. Here ḡt
denotes a linear combination of the current and past gradients g1, . . . ,gt , where different algorithms
use different combinations. Preconditioned methods take the form wt+1 = wt − Pt ḡt where Pt is
an d × d matrix. Whereas in Newton-type methods this matrix is related to the Hessian matrix of
second-order derivatives, adaptive preconditioning is based on gradient-gradient correlations.

The parameters of a deep network are structured as a set of tensors of order two (i.e., a matrix),
three, or four. For simplicity of presentation we focus on the matrix case—however our design,
analysis, and implementation hold for tensors of arbitrary order. We denote the space of parameters
by the matrix W ∈ Rm×n and an estimate of its gradient by G. Full matrix Adagrad flattens W,G to
vectors of dimension mn, it thus requires m2n2 space to store the preconditioner and m3n3 time to
perform the update. m and n are in the 1000’s in state-of-the-art models, thus rendering full-matrix
preconditioning impractical. For this reason, both AdaGrad and Adam constrain the preconditioning
matrices to be diagonal. Shampoo bridges the gap between full matrix preconditioning and the
diagonal version by approximating the matrices.

The Shampoo algorithm. We describe Shampoo in the context of the Online Convex Optimization
(OCO) framework, which generalizes stochastic optimization (see, e.g., Shalev-Shwartz, 2012; Hazan,
2016). In OCO, learning progresses in rounds where on round t the learner receives an input Xt

and then uses the parameters Wt to form a prediction denoted ŷt . After making the prediction, the
true outcome yt is revealed. The discrepancy between the true and predicted outcomes is assessed
by a loss function ` which takes values in R+. The learner then uses the discrepancy to update the
matrix to Wt+1 and prepare for the next round. For instance, the input on round t can be an example
xt ∈ Rn for which the learner predicts ŷ = f (Wt, xt) where f : Rm → R and the loss is a function
` : R ×R→ R+ such as `(ŷ, y) = (y − ŷ)2 or `(ŷ, y) = log(1 + exp(−yŷ)).

Stochastic gradient methods use the gradient Gt = ∇W`(f (W, xt), yt), thus Gt ∈ Rm×n if the
parameters are shaped as a matrix W ∈ Rm×n. For matrix-shaped parameters, Shampoo tracks two
statistics over the course of its run, Lt and Rt , which are defined as follows:

Lt = εIm +
∑t

s=1 GsG
T
s ; Rt = εIn +

∑t
s=1 GT

sGs .

3

Under review as a conference paper at ICLR 2021

Note that Lt ∈ R
m×m and Rt ∈ R

n×n. These are used to precondition the gradient and update W :

Wt+1 = Wt − η L−1/4
t GtR

−1/4
t .

The primary complexity of Shampoo arises from the computation of L−1/4
t and R−1/4

t , which was
naively implemented using spectral decompositions (i.e., SVD).

3 Full-Matrix Preconditioning: Challenges
Wediscuss themain challenges and design choices in the development of the distributed implementation
of Shampoo. These largely arose from the fact that modern accelerators are highly optimized for
training using first-order optimizers, which have low computational and memory requirements. The
Shampoo algorithm is computationally expensive. The extra computation in Shampoo compared to
standard first-order methods is in the following steps:

• Preconditioner statistics computation: Lt = Lt−1 + GtGT
t and Rt = Rt−1 + GT

t Gt ;
• Inverse p’th root computation: L−1/4

t and R−1/4
t ;

• Preconditioned gradient computation: L−1/4
t GtR

−1/4
t .

Preconditioner statistics and gradient computations are expensive for large fully connected as well as
embedding layers, we address these below. For other layers we show in Section 5 that they do not add
significantly to the runtime of each step. Computing the inverse p’th roots is very slow—as much as
100 times the step time in some cases—and performing these without slowing down training was a
key challenge in our system.

3.1 Algorithmic challenges

Modern ML architectures often use very large embedding layers, where the longer dimension can be
in the millions. For example, DLRM (Naumov et al., 2019) on Criteo-1Tb uses a vocabulary with
∼186 million hash buckets, while in Transformer models (Shazeer et al., 2018) the largest layer can
have up to 65536 units per dimension. This makes preconditioning impossible due to O(d2) memory
and O(d3) computational complexity. We show how to extend Shampoo to overcome these problems;
we provide proofs and convergence results in Appendix B.

Large layers. For embedding layers specifically, we extend the Shampoo algorithm to allow us use
only one of the preconditioners, in case both preconditioners are too expensive to compute. Our
choice is empirically supported by the experiments shown in Figs. 2b, 3a and 5a which suggest that
there is a benefit from preconditioning one dimension of the large softmax and embedding layers with
minimal increase in time. The following result allows us to choose a subset of preconditioners:
Lemma 1. Let G1, . . . ,Gt ∈ Rm×n be matrices of rank at most r. Let gs = vec(Gs) and define
Ĥt = εImn+

∑t
s=1 gsg

T
s .Let Lt,Rt be defined as above: Lt = εIm+

∑t
s=1 GsGT

s ,Rt = εIn+
∑t

s=1 GT
sGs .

Then for any p,q > 0 such that 1/p + 1/q = 1, we have Ĥt � rL1/p
t ⊗ R1/q

t .

A consequence is that for any p,q > 0 such that 1/p + 1/q = 1, the full AdaGrad preconditioned
gradient Ĥ−1/2

t gt is approximated by (L1/p
t ⊗ R1/q

t)
−1/2gt , giving us G̃t = L−1/2p

t GtR−1/2q
t . Now, by

choosing (p,q) = (1,∞) and (p,q) = (∞,1) we obtain the simple preconditioned gradients: GtR
−1/2
t

and L−1/2
t Gt . Theorem 3 shows that Lemma 1 can be used to prove a regret bound for this extended

Shampoo in the online convex optimization setting – this provides intuitive justification for the
usefulness of this approximation. We further optimize the computation of these preconditioned
gradients for embedding layers by taking advantage of the sparse inputs, see details in Appendix D.

Preconditioning blocks from large tensors. In addition to embedding layers, large models occasionally
have large fully connected layers. To reduce the computational cost of computing statistics and
preconditioned gradient: we divide the tensor into blocks and treating individual block as a separate
tensor. Concretely this would entail dividing tensor W ∈ Rkm×kn, into W1,1 . . .Wm,n such that
Wi, j ∈ R

k×k ∀i, j. Shampoo still converges in this case in the convex setting (Theorem 4), showing
that the extension is justified.
Lemma 2. Assume that g1, . . . ,gt ∈ R

mk are vectors, and let gi = [gi,1, . . . ,gi,k] where gi, j ∈ R
m.

Define Ĥt = εImn +
∑t

s=1 gsg
T
s , and let Bt ∈ Rmk×mk be the block diagonal matrix with k m × m

blocks, where the j-th block is B(j)t = εIm +
∑t

s=1 gs, jg
T
s, j . Then Ĥt � kBt .

4

Under review as a conference paper at ICLR 2021

We performed experiments to study the effect of partitioning intermediate layers into blocks, in which
we observed that the latter had minimal impact on quality of the solution while providing faster step
time as well as reduced memory overheads; see Fig. 3b.

Delayed preconditioners. As remarked above, computing the preconditioners is the most expensive
computation in every Shampoo step. In Fig. 3c we show that we can compute the preconditioners
once every few hundred steps without a significant effect on the accuracy which indicates that
the loss function landscape does not change significantly with each step. We observe that there
is a performance/quality tradeoff here — in our experiments we set the frequency of computing
preconditioners to the smallest value that does not degrade performance, i.e. the number of training
steps that can be completed in the amount of time needed to compute the largest preconditioner. The
only way to increase the frequency of computing preconditioners is with better hardware/software
support.

3.2 Numerical challenges

Inverse p’th roots (where typically p = 2,4,8) can be computed using SVD, but there are efficient
iterative algorithms such as the coupled Newton iteration algorithm (Guo & Higham, 2006; Iannazzo,
2006) that can compute the inverse p’th root via a sequence of matrix-vector and matrix-matrix
products, which are highly optimized on modern accelerators. However, our experiments suggest
that on real workloads the condition numbers of the Lt,Rt matrices are very large (see Fig. 6 in
Appendix E) so both SVD and the coupled iteration must be run in double-precision, but this is very
expensive on accelerators. We applied several further optimizations to speedup the coupled Newton
iteration in our implementation; these are described in Appendix E.

3.3 Infrastructural challenges

Heterogeneous training hardware. Neural network accelerators are custom designed to run machine
learning workloads faster and at lower cost. Accelerator design is trending towards preferring
lower-precision (8-bit/16-bit) arithmetic that satisfy both of these goals on existing benchmarks. Our
method demands double-precision arithmetic as described above, which makes running computation
on accelerators a non-starter, and therefore we had to design the system to leverage the existing
underutilized CPUs attached to the accelerators (Section 4).

API inflexibility. Deep learning libraries such as TensorFlow (Abadi et al., 2016) offer APIs for
optimizer implementation that are well suited for first-order optimizers and for mini-batch training.
Our design requires that we interact with the training loop in non-standard ways, which requires
framework level changes. Our Transformer experiments were carried out in the Lingvo (Shen et al.,
2019) TensorFlow framework, while BERT-Large, DRLM, as well as ResNet-50 used the MLPerf
v0.7 Tensorflow baselines (Mattson et al., 2019). Experimentation required changes to the training
loop such as gathering statistics at regular intervals, distributing computation across all the CPUs
available in the cluster without blocking the TPU training, as well as updating the preconditioners. We
anticipate that this proof-of-concept for full-matrix preconditioning will encourage the development
of more flexible API’s to fully utilize heterogeneous hardware.

4 Distributed System Design
We present our distributed system design of the modified Shampoo algorithm. Our method is designed
to run effectively on modern neural network accelerators such as TPUs (Jouppi et al., 2017) or
GPUs. We first describe the standard paradigm of data parallelism used in training models on these
accelerators (Dean et al., 2012). Parameters are replicated on each core of the accelerator, and each
core computes forward propagation and back propagation on a sub-batch (a subset of a mini-batch,
which itself is a small randomly selected subset of the training set) of input examples. These gradients
are averaged across all cores via all-reduction to get the average gradient for the mini-batch. Each
core uses the average mini-batch gradient to update its copy of the parameters.

All-reduction adds a barrier as all the cores need to synchronize to compute the mini-batch gradient.
In Fig. 2b we measure the overhead of each of the steps on a Transformer model (Vaswani et al., 2017)
described in the experiment section. We observe that the overheads from all-reduction and weight
updates are a minor part (< 5%) of the overall step time.

The overall design of our implementation is illustrated by the timeline in Fig. 1. As discussed in the
previous section the preconditioner computation (inverse pth root) is expensive and requires double

5

Under review as a conference paper at ICLR 2021

9èĆä

̐������������̑ ���

Figure 1: Timeline illustrating the design of the optimization algorithm. Preconditioner statistics (Lt and Rt)
are computed at each step by the accelerators. Preconditioners (L1/4

t and R1/4
t) are only computed every N steps

and this computation is distributed to all available CPU cores.

precision, also we need to do this computation once every few hundred steps. These observations
naturally suggested using the often underutilized CPUs on the machines to which the accelerators such
as GPUs or Cloud TPUs are attached. CPUs offer double precision arithmetic but are slower than GPUs
or Cloud TPUs, which makes them a perfect choice to run the preconditioner computation without
adding any extra cost to the training run, as the computation is pipelined and runs asynchronously
without blocking the training loop.

Preconditioners need to be computed for every layer of the network so we distribute the computation
across all the CPUs that are part of the training system. As a result, the most expensive step in
Shampoo adds almost nothing to the overall training time. Moreover, the computational overhead of
preconditioned gradient is independent of the batch size. Thus, increasing the batch size allows us to
linearly decrease the overhead making Shampoo practical for very large scale training setups. On
smaller problems such as CIFAR-10, we find that our design still results in training time improvements
(Appendix G.3) as preconditioner computations take very little time.

5 Experiments
We compare our method against various widespread optimization algorithms for training large
state-of-the-art deep models for machine translation, language modeling, recommendation systems
as well as image classification. Details of the experiments are given in Appendix G and we will
opensource our code before publication.

5.1 Machine Translation with a Transformer

We demonstrate the effectiveness of our implementation on the standard machine translation dataset
from WMT’14 English to French (en→fr) with 36.3M sentence pairs. We used the state-of-the-art
Transformer architecture (Vaswani et al., 2017). This architecture contains 93.3M parameters and
consists of 6 layers for its encoder and decoder. Each layer is composed of 512 model dimensions,
2048 hidden dimensions, and 8 attention heads. The model makes use of a sub-word vocabulary that
contains 32K word pieces (Schuster & Nakajima, 2012). The experiment was run on 32 cores of a
Cloud TPU v3 Pod, and the implementation of the optimizer was carried out in the Lingvo (Shen
et al., 2019) sequence to sequence modeling based on TensorFlow. Our results are shown in Fig. 2a:
our algorithm achieves the same accuracy as AdaGrad or Adam in about half as many steps.

Preconditioning of embedding and softmax layers. Following the first extension in Section 3.1 the
algorithm preconditions the large layers with only one of the preconditioners (GtR

−1/2
t or L−1/2

t Gt) to
make it tractable. Fig. 2b shows the increase in step time is only 6% while Fig. 3a shows that we can
reduce the number of steps to convergence by ≈20%.

Reducing overhead in fully-connected layers. Following the second extension in Section 3.1 we ran
two experiments where we partitioned fully connected layer of size [512, 2048] into two blocks of
size [512, 1024] and four blocks of size [512, 512]. Our experiments show no drop in quality under
this approximation with a small reduction in runtime (<3%).

6

Under review as a conference paper at ICLR 2021

50K 100K 150K 200K 250K 300K
steps

2.30

2.40

2.50

2.60

2.70

2.80

-lo
g(

pe
rp

le
xi

ty
)

Adagrad
Adam
Shampoo

(a)

Diagonal Adagrad

Our algorithm for
layers <= 2048

Our algorithm on
all layers

0 ms
20 ms

40 ms
60 ms

80 ms
100 ms

120 ms
140 ms

160 ms

Forward Gradient All reduction of gradients
Preconditioner statistics Preconditioned gradient

Parameter updates

(b)
Figure 2: Results for a Transformer model on WMT’14 en→fr, trained with batch size of 1536. (a) Test
log-perplexity vs. number of steps; the algorithm converges 1.95x faster in steps, while being only ≈ 16%
slower per step. This allows the method to attain a particular log-perplexity in 40% less wall-time. (b) Detailed
breakdown of latency of a single step (Appendix G.6). Diagonal AdaGrad optimizer: 134ms, Shampoo: 145ms
(all layers except embedding and softmax layers) and 155ms (all layers). Preconditioner computation is pipelined
and distributed over CPUs, thus not adding any overhead, and transfer latency (≈100ms) is amortized over
hundreds of steps.

40K 60K 80K 100K 120K 140K 160K 180K 200K
steps

2.30

2.40

2.50

2.60

2.70

2.80

-lo
g(

pe
rp

le
xi

ty
)

All but softmax+embedding layers
All layers

(a)

30K 40K 50K 60K 70K 80K 90K 100K
steps

2.30

2.40

2.50

2.60

2.70

2.80

-lo
g(

pe
rp

le
xi

ty
)

Unblocked Baseline
Blocked FFN: 2 x [512, 1024]
Blocked FFN: 4 x [512, 512]

(b)

40K 60K 80K 100K 120K 140K 160K 180K 200K
steps

2.30

2.40

2.50

2.60

2.70

2.80

-lo
g(

pe
rp

le
xi

ty
)

100 steps
1000 steps
1200 steps
1500 steps
2000 steps

(c)
Figure 3: Impact of Shampoo extensions on WMT’14 en→fr training: (a) preconditioning applied to all layers
except embedding and softmax layers, vs. applied to all layers; (b) preconditioning with fully-connected layers
partitioned into sub-blocks; (c) varying interval between preconditioner updates.

5.2 Transformer-Big model

We also ran experiments with a larger Transformer model with 375.4M parameters, consisting of
6 layers for its encoder and decoder. Each layer is composed of 1024 model dimensions, 8192
hidden dimensions, and 16 attention heads. Results are presented in Fig. 4a where again we see
an improvement in the end-to-end wall-clock time. For the softmax, embedding and the projection
fully-connected layer (with 8192 hidden dimensions) we only make use of the left preconditioner. We
note that step time is dominated by the preconditioned gradient computation which can be reduced by
sub-blocking the layers.

On the overhead of the optimizer. We show the computational and memory complexity of the
Shampoo extensions described in Section 3.1 in Table 2 in the appendix. We note that the overhead
from computing the statistics, as well as from computing the preconditioned update for single step of
training, can be further reduced by increasing the batch sizes (indeed, these overheads are independent
of the batch size) as shown in Fig. 4b where the overhead dramatically reduces from 40% to 19%.

5.3 Ads Click-Through Rate (CTR) prediction

We trained the Deep Learning Recommendations Model (DLRM) of Naumov et al. (2019) on the
terabyte Criteo click logs dataset for online advertisement click-through-rate prediction task (Criteo
Labs, 2015). We compared Shampoo against the highly tuned SOTA baseline from MLPerf v0.7
training benchmarks (Wu et al., 2020). We trained the model with a batch size of 65536 for 64000
steps (1 epoch). We trained a version of the model where Shampoo is applied only to the hidden
layers as well as one where we apply it for all layers. We only tune the learning rate, and keep the
exact same setup as the baseline. We found that Shampoo achieves the target accuracy of 80.25%
in only 30.97K steps compared to 64K steps for the baseline. Moreover, Shampoo achieves new

7

Under review as a conference paper at ICLR 2021

50K 100K 150K 200K 250K 300K
steps

2.30

2.40

2.50

2.60

2.70

2.80

-lo
g(

pe
rp

le
xi

ty
)

Adagrad
Adam
Shampoo (same LR as AdaGrad)
Shampoo

(a) Batch size: 384

20K 40K 60K 80K 100K 120K 140K 160K 180K
steps

2.20

2.30

2.40

2.50

2.60

2.70

2.80

-lo
g(

pe
rp

le
xi

ty
)

Adagrad
Shampoo

(b) Batch size: 1536

Figure 4: Test log-perplexity of a Transformer-Big model on WMT’14 en→fr. (a) Shampoo converges faster
than AdaGrad (≈2x faster in steps), and allows larger learning rates; due to the large overhead in step time, this
results in only 30% improvement in wall-time. (b) Larger batch sizes reduce the optimizer overhead from 40% to
19%, resulting in an end-to-end improvement of 41% in wall-time for convergence.

state-of-the-art performance of 80.56% AUC (an ≈0.3% improvement) on this dataset, note that an
improvement of 0.1% is considered significant in this task; see Rong et al., 2020; Wang et al., 2017.
Here preconditioning embedding layers further reduced the number of steps needed to reach the target
accuracy from 39.96K to 30.97K.

10K 20K 30K 40K 50K 60K
steps

78.00

78.50

79.00

79.50

80.00

80.50

AU
C

SGD (MLPerf v0.7) SOTA Baseline
Shampoo (only fully connected layers)
Shampoo (all including embedding layers)

(a) Test AUC on the Criteo-1Tb dataset.

0K 5K 10K 15K 20K 25K 30K
steps

56.00

58.00

60.00

62.00

64.00

66.00

68.00

70.00

72.00

Ac
cu

ra
cy

Lamb
Shampoo

(b) Masked Language accuracy on BERT-Large.

Figure 5: (a) Shampoo reaches a target AUC of 80.25% in half as many steps with preconditioning embedding
layers improving the results, and achieves a new state-of-the-art AUC of 80.56%; (b) Shampoo converges in
≈16% fewer steps, and achieves ≈1% higher MLM accuracy than the baseline on BERT-Large.

5.4 Language modeling

We trained BERT-Large (the Bidirectional Encoder Representation architecture of Devlin et al., 2018)
for the language modeling task on the concatenation of Wikipedia and BooksCorpus, with 2.5B
and 800M words respectively. BERT-Large is a large bidirectional transformer model containing 24
transformer blocks with 1024 hidden dimensions and 16 self attention heads. It has 340M parameters
and is set up to jointly optimize two objectives: (a) masked language model (Masked-LM) loss
where the task is to predict masked tokens based on surrounding context, and (b) next sentence
prediction (NSP) loss where the task is to predict whether two given sentences are consecutive in the
text. In Fig. 5b we compare our results against the current state of the art in training BERT (You
et al., 2019). Models were trained with batch size 16K; in these experiments we replaced the Adam
update rule in Lamb that produces the preconditioned gradient with Shampoo. Both experiments
used existing well-tuned hyperparameters of the baseline.

5.5 Image classification

We trained a ResNet-50 model (He et al., 2016) on the ImageNet-2012 (Russakovsky et al., 2015)
dataset and compared it against the state-of-the-art baseline using SGD+Momentum. We base our
experiments off the Tensorflow baseline available from Mattson et al. (2019) where the target criteria
is reaching 75.9% accuracy. See results in Table 1; in particular, we find that Shampoo reaches the
target accuracy in fewer steps than the current state of the art. Tuning details are in Appendix G.4.

8

Under review as a conference paper at ICLR 2021

Optimizer Batch Size Epochs Steps
SGD+Momentum 4096 85 26586
LARS 4096 45 14040
LARS 32768 64 2512
Shampoo 4096 45 14040
Shampoo 16384 48 3744
Shampoo 32768 58 2262

Table 1: Epochs and steps to MLPerf target accuracy of 75.9% with a ResNet-50.

6 Concluding Remarks
We have presented an implementation of a second order optimizer, and demonstrated step time as
well as wall time improvements on multiple large tasks in different domains — in each case our
implementation performed as well or better than state-of-the-art optimizers specialized for each
domain. The main point of our work is to demonstrate that second order methods implemented on
a real-world distributed setup can be used to train state-of-the-art deep models. We hope that this
work will influence future hardware accelerator design and runtime software — first order methods
have received large investments in tuning, implementation, platform support and hardware tailored
for them, and we believe there are several opportunities to improve the per-step time performance of
second order methods as well:

• Most second order methods use symmetric matrices, but we haven’t found support for typing
operands as symmetric, which can reduce compute flops and storage by upto 50%.

• Several optimizations that are currently tuned towards first order methods could be extended
to second order methods. For example, weight update sharding pattern matches first order
methods (Xu et al., 2020) and dramatically reduces the time spent in the update step as well
as memory used. This change can also be applied to Shampoo with blocked preconditioners
– but we do not have support for it yet as it requires compiler level support, and is not
expressible at the program layer. Currently every core must update all layers which is quite
inefficient.

• Mixed precision algorithms may work for inverse pth roots and can help increase the
frequency of preconditioner computation.

• Increased memory per chip can allow larger preconditioners.

• Hardware support for high-precision arithmetic in accelerators can allow more frequent
preconditioner computation. The benefits of high precision arithmetic for optimization run
counter to the prevailing wisdom in ML1 which has led to the focus on low-precision formats
such as bfloat16 (Wang & Kanwar, 2019).

• Hardware support for storing/packing and using upper/lower triangular matrices efficiently,
as available in LAPACK.

Our hope is that these suggestions could result in innovations that would make second-order methods
practical across more domains and models, especially in data limited regimes where we may not able
to amortize the latency added in the data transfer between the accelerator and the CPU.

1For example, (Gupta et al., 2015) say "It is well appreciated that in the presence of statistical approximation
and estimation errors, high-precision computation in the context of learning is rather unnecessary (Bottou &
Bousquet, 2007)" and (Higham & Pranesh, 2019) say "... machine learning provides much of the impetus for the
development of half precision arithmetic in hardware ..."

9

Under review as a conference paper at ICLR 2021

References
Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg,
Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete
Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system for large-scale
machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), pp. 265–283, 2016.

Naman Agarwal, Brian Bullins, and Elad Hazan. Second order stochastic optimization in linear time.
arXiv preprint arXiv:1602.03943, 2016.

Naman Agarwal, Brian Bullins, Xinyi Chen, Elad Hazan, Karan Singh, Cyril Zhang, and Yi Zhang.
The case for full-matrix adaptive regularization. CoRR, abs/1806.02958, 2018.

Naman Agarwal, Rohan Anil, Elad Hazan, Tomer Koren, and Cyril Zhang. Disentangling adaptive
gradient methods from learning rates. arXiv preprint arXiv:2002.11803, 2020.

Tsuyoshi Ando, Chi-Kwong Li, and Roy Mathias. Geometric means. Linear algebra and its
applications, 385:305–334, 2004.

Jimmy Ba, James Martens, and Roger Grosse. Distributed second-order optimization using kronecker-
factored approximations. In International conference on machine learning, pp. 2408–2417,
2017.

Ondrej Bojar, Christian Buck, Christian Federmann, Barry Haddow, PhilippKoehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu Soricut, Lucia Specia, and Ale s
Tamchyna. Findings of the 2014 workshop on statistical machine translation. In Proceedings of the
Ninth Workshop on Statistical Machine Translation, pp. 12–58, Baltimore, Maryland, USA, June
2014. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/
W/W14/W14-3302.

Raghu Bollapragada, Jorge Nocedal, Dheevatsa Mudigere, Hao-Jun Shi, and Ping Tak Peter Tang. A
progressive batching l-bfgs method for machine learning. In International Conference on Machine
Learning, pp. 620–629, 2018.

Andrew R Conn, Nicholas IM Gould, and Philippe L Toint. Trust region methods. SIAM, 2000.

Criteo Labs. Criteo releases industry’s largest-ever dataset for machine learning to academic
community, July 2015. URL https://www.criteo.com/news/press-releases/2015/07/
criteo-releases-industrys-largest-ever-dataset/.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc' Aurelio
Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Quoc V. Le, and Andrew Y. Ng. Large scale
distributed deep networks. Advances in Neural Information Processing Systems 25, 2012.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

Murat A Erdogdu and Andrea Montanari. Convergence rates of sub-sampled newton methods. In
Proceedings of the 28th International Conference onNeural Information Processing Systems-Volume
2, pp. 3052–3060. MIT Press, 2015.

Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.

Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal Vincent. Fast
approximate natural gradient descent in a Kronecker factored eigenbasis. In Advances in Neural
Information Processing Systems, pp. 9550–9560, 2018.

Alon Gonen and Shai Shalev-Shwartz. Faster sgd using sketched conditioning. arXiv preprint
arXiv:1506.02649, 2015.

10

http://www.aclweb.org/anthology/W/W14/W14-3302
http://www.aclweb.org/anthology/W/W14/W14-3302
https://www.criteo.com/news/press-releases/2015/07/criteo-releases-industrys-largest-ever-dataset/
https://www.criteo.com/news/press-releases/2015/07/criteo-releases-industrys-largest-ever-dataset/

Under review as a conference paper at ICLR 2021

Chun-Hua Guo and Nicholas J Higham. A Schur-Newton method for the matrix p’th root and its
inverse. SIAM Journal On Matrix Analysis and Applications, 28(3):788–804, 2006.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with
limited numerical precision. In International Conference on Machine Learning, pp. 1737–1746,
2015.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor
optimization. In Proceedings of the 35th International Conference onMachine Learning, volume 80,
pp. 1842–1850, 2018.

Elad Hazan. Introduction to online convex optimization. Foundations and Trends in Optimization, 2
(3-4):157–325, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Tom Heskes. On “natural” learning and pruning in multilayered perceptrons. Neural Computation,
12(4):881–901, 2000.

Nicholas J Higham and Srikara Pranesh. Simulating low precision floating-point arithmetic. SIAM
Journal on Scientific Computing, 41(5):C585–C602, 2019.

Bruno Iannazzo. On the Newton method for the matrix p-th root. SIAM journal on matrix analysis
and applications, 28(2):503–523, 2006.

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa,
Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance analysis
of a tensor processing unit. In Computer Architecture (ISCA), 2017 ACM/IEEE 44th Annual
International Symposium on, pp. 1–12. IEEE, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

FrederikKunstner, PhilippHennig, and Lukas Balles. Limitations of the empirical fisher approximation
for natural gradient descent. In Advances in Neural Information Processing Systems, pp. 4156–4167,
2019.

Adrian S Lewis and Michael L Overton. Nonsmooth optimization via quasi-newton methods.
Mathematical Programming, 141(1-2):135–163, 2013.

James Martens and Roger Grosse. Optimizing neural networks with Kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408–2417, 2015.

Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos, Paulius Micikevicius, David Patterson,
Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf, et al. Mlperf training benchmark. arXiv
preprint arXiv:1910.01500, 2019.

H Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex
optimization. COLT 2010, pp. 244, 2010.

Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang, Narayanan Sundaraman,
Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu, Alisson G Azzolini, et al. Deep
learning recommendation model for personalization and recommendation systems. arXiv preprint
arXiv:1906.00091, 2019.

Jorge Nocedal. Updating quasi-newton matrices with limited storage. Mathematics of computation,
35(151):773–782, 1980.

Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business Media,
2006.

11

Under review as a conference paper at ICLR 2021

Kazuki Osawa, Yohei Tsuji, Yuichiro Ueno, Akira Naruse, Rio Yokota, and Satoshi Matsuoka.
Large-scale distributed second-order optimization using kronecker-factored approximate curvature
for deep convolutional neural networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 12359–12367, 2019.

Michael L Overton. Numerical computing with IEEE floating point arithmetic. SIAM, 2001.

Mert Pilanci and Martin J. Wainwright. Newton sketch: A near linear-time optimization algorithm
with linear-quadratic convergence. SIAM Journal on Optimization, 27(1):205–245, 2017.

Haidong Rong, Yangzihao Wang, Feihu Zhou, Junjie Zhai, Haiyang Wu, Rui Lan, Fan Li, Han
Zhang, Yuekui Yang, Zhenyu Guo, et al. Distributed equivalent substitution training for large-scale
recommender systems. In Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 911–920, 2020.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International Journal of Computer Vision, 115(3):211–252, 2015.

Mike Schuster and Kaisuke Nakajima. Japanese and Korean voice search. In ICASSP, pp. 5149–5152.
IEEE, 2012.

Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends in
Machine Learning, 4(2):107–194, 2012.

Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Penporn Koanantakool,
Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff Young, et al. Mesh-tensorflow: Deep
learning for supercomputers. In Advances in Neural Information Processing Systems, pp. 10414–
10423, 2018.

Jonathan Shen, Patrick Nguyen, Yonghui Wu, Zhifeng Chen, et al. Lingvo: a modular and scalable
framework for sequence-to-sequence modeling, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, pp. 5998–6008, 2017.

Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. Deep & cross network for ad click predictions.
In Proceedings of the ADKDD’17, pp. 1–7. 2017.

Shibo Wang and Pankaj Kanwar. Bfloat16: The secret to high performance
on cloud tpus. https://cloud.google.com/blog/products/ai-machine-learning/
bfloat16-the-secret-to-high-performance-on-cloud-tpus, 2019.

Carole-Jean Wu, Robin Burke, Ed Chi, Joseph Konstan, Julian McAuley, Yves Raimond, and Hao
Zhang. Developing a recommendation benchmark for mlperf training and inference. arXiv preprint
arXiv:2003.07336, 2020.

Peng Xu, Jiyan Yang, Farbod Roosta-Khorasani, Christopher Ré, and Michael W Mahoney. Sub-
sampled newtonmethodswith non-uniform sampling. InAdvances in Neural Information Processing
Systems, pp. 3000–3008, 2016.

Yuanzhong Xu, HyoukJoong Lee, Dehao Chen, Hongjun Choi, Blake Hechtman, and Shibo Wang.
Automatic cross-replica sharding of weight update in data-parallel training. arXiv preprint
arXiv:2004.13336, 2020.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep learning:
Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

12

https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus

Under review as a conference paper at ICLR 2021

A Notation
We use lowercase letters to denote scalars and vectors, and uppercase letters to denote matrices. ‖A‖F
denotes the Frobenius norm of A, i.e., ‖A‖2F =

∑
i, j A2

i j . A• B denotes the Hadamard or element-wise
product of A and B which have the same shape, so C = A • B ⇐⇒ Ci j = Ai jBi j . D�α is the
element-wise power, (D�α)i j = Dα

i j .

We use � to denote the Loewner order: given square symmetric matrices A,B, we write A � B iff
B − A is positive semidefinite (PSD).

Given a symmetric PSD matrix A, and α ∈ R, Aα is defined as follows: let A = UDUT be the singular
value decomposition of A, where U is a unitary matrix and D is a diagonal matrix (with Dii ≥ 0 as
A is PSD), then Aα = UDαUT, where (Dα)ii = Dα

ii . If α < 0, this is defined for positive definite
matrices only, where Dii > 0.

We use vec(A) to denote the flattening of the m × n matrix A: if A has rows a1, . . . ,am, then
vec(A) is the mn × 1 column vector vec(A) = (a1, . . . ,am)T. A ⊗ B denotes the Kronecker product
of two matrices A and B, and we will use the identities (A ⊗ B)α = Aα ⊗ Bα for α ∈ R, and
(A ⊗ B) vec(C) = vec(ACBT).

B Deferred Proofs

Proof (of Lemma 1). Lemma 8 in Gupta et al. (2018) shows that Ĥt � rLt ⊗ In and Ĥt � r Im ⊗ Rt .
By using Ando’s inequality (Ando et al., 2004), we get

Ĥt � r(Lt ⊗ In)1/p(Im ⊗ Rt)
1/q

= r(L1/p
t ⊗ In)(Im ⊗ R1/q

t)

= rL1/p
t ⊗ R1/q

t ,

which concludes the proof. �

This lemma immediately allows us to prove a regret bound for Shampoo with extended exponents:
Theorem 3. Assume that the gradients G1, . . . ,GT are matrices of rank at most r . Then the regret of
Shampoo with extended exponents compared to any W? ∈ Rm×n is bounded as follows,

T∑
t=1

ft (Wt) −

T∑
t=1

ft (W?) ≤
√

2rD Tr(L
1

2p
T)Tr(R

1
2q
T) ,

where

LT = εIm +
T∑
t=1

GtGT
t , RT = εIn +

T∑
t=0

GT
t Gt , D = max

t∈[T]
‖Wt −W?‖2 .

and 1/p + 1/q = 1, p,q ≥ 1.

Proof. The proof follows the proof of Theorem 7 in Gupta et al. (2018). Let Ht = L
1

2p
t ⊗ R

1
2q
t . Then

the update rule of the extended Shampoo algorithm is equivalent to wt+1 = wt − ηH−1
t gt . Since

0 � L1 � . . . � LT and 0 � R1 � . . . � RT , standard properties of the Kronecker product and the
operator monotonicity of the function x 7→ xα for α ≤ 1 (an immediate consequence of Ando’s
inequality) ensure that 0 � H1 � . . . � HT .

Following the aforementioned proof, we have the regret bound
T∑
t=1

ft (Wt) −

T∑
t=1

ft (W?) ≤
D2

2η
Tr(HT) +

η

2

T∑
t=1
‖gt ‖

2
H∗t
,

where D = maxt ‖Wt −W?‖2. Define gt = vec(Gt) and Ĥt = (εIm +
∑t

s=1 gsg
T
s)

1/2, then Lemma 1
shows that Ĥt �

√
rHt , using operator monotonicity. Using this equation twice, along with Equation

(6) from the proof of Theorem 7, we have
T∑
t=1
‖gt ‖

2
H∗t
≤
√

r
T∑
t=1
‖gt ‖

2
Ĥ∗t
≤ 2
√

r Tr(ĤT) ≤ 2r Tr(HT).

13

Under review as a conference paper at ICLR 2021

This gives us
T∑
t=1

ft (Wt) −

T∑
t=1

ft (W?) ≤
D2

2η
Tr(HT) + ηr Tr(HT).

Setting η = D/
√

2r and observing that Tr(Ht) = Tr(L1/2p
t)Tr(R1/2q

t) gives us the required bound. �

Proof (of Lemma 2). Let x ∈ Rmk , and x = [x1, x2, . . . , xk], where xj ∈ Rm. Then

xTĤt x = ε‖x‖22 +
t∑

s=1
xTgsg

T
s x = ε‖x‖22 +

t∑
s=1
(gT

s x)2 = ε‖x‖22 +
t∑

s=1

(k∑
j=1

gT
s, j xj

)2

≤ kε‖x‖22 + k
t∑

s=1

k∑
j=1
(gT

s, j xj)
2 = k

k∑
j=1

(
ε‖xj ‖22 +

t∑
s=1

xT
j gs, jg

T
s, j xj

)
= k

k∑
j=1

xT
j

(
εIm +

t∑
s=1

gs, jg
T
s, j

)
xj = k

k∑
j=1

xT
j B(j)t xj = k xTBt x.

Here we used the inequality
(∑k

j=1 αj

)2
≤ k

∑k
j=1 α

2
j , which follows from the convexity of x 7→ x2

(or from the fact that variance of a random variable is non-negative). �

This lemma once again allows us to prove a regret bound, exactly following the proof of the regret
bound above:
Theorem 4. Assume that the gradients are g1, . . . ,gT ∈ Rmk , and let gi = [gi,1, . . . ,gi,k] where
gi, j ∈ R

m. Then the regret of Shampoo with blocking compared to any w? ∈ Rmk is bounded as
follows:

T∑
t=1

ft (wt) −

T∑
t=1

ft (w?) ≤
√

2kD
k∑
j=1

Tr
((
εIm +

T∑
t=1

gt , jg
T
t , j

) 1
2
)
.

The two regret bounds can be combined to show that Shampoo with both extensions also converges.

C Comparison with K-FAC
K-FAC is a natural gradient algorithm, and approximates the curvature of the loss using the Fisher
Information Matrix:

F = E
p(x |θ)

[
∇ log p(x |θ) ∇ log p(x |θ)T

]
= E

p(x |θ)

[
gp(x |θ) g

T
p(x |θ)

]
.

For a fully connected layer with W ∈ Rm×n, where W x = s, the gradient for the layer Gt ∈ R
m×n can

be written via the chain rule as Gt = ∇s`(st, yt)xT and in vectorized form as: ∇s`(st, yt) ⊗ x. We can
then write the Fisher information matrix as:

F = E
p(x |θ)

[
(∇s`(st, yt) ⊗ x) (∇s`(st, yt) ⊗ x)T

]
= E

p(x |θ)

[
(∇s`(st, yt)∇s`(st, yt)T) ⊗ (xt xT

t)
]
.

Assuming independence between ∇s`(st, yt) and x, K-FAC rewrites the Fisher in tractable form as:

F ≈ E
[
(∇s`(st, yt)∇s`(st, yt)T)

]
⊗ E

[
xt xT

t

]
.

If we let D = E
[
(∇s`(st, yt)∇s`(st, yt)T)

]
and X = E

[
xt xT

t

]
, the update rule then becomes:

Wt+1 ≈ Wt − ηD−1Gt X−1.

We note some of the differences and similarities between the two updates here. KFAC preconditioners
use exponent of −1 (as original Fisher is inverted) whereas Shampoo uses −1/2p where p is the rank
of the tensor. KFAC computes statistics based on gradients with labels sampled from the model’s

14

Under review as a conference paper at ICLR 2021

predictive distribution (hence requiring strictly more computation) where as Shampoo relies on the
gradient of the mini-batch.

Now we can compute each term in the Shampoo preconditioners as:
GtGT

t = ∇s`(st, yt)x
T
t xt∇s`(st, yt)T = ‖xt ‖22∇s`(st, yt)∇s`(st, yt)

T;
GT

t Gt = xt∇s`(st, yt)T∇s`(st, yt)xT
t = ‖∇s`(st, yt)‖

2
2 xt xT

t .

Dividing by the scale, and taking expectations on both sides:

E

[
GtGT

t

‖xt ‖22

]
= E

[
∇s`(st, yt)∇s`(st, yt)T

]
= D;

E

[
GT

t Gt

‖∇s`(st, yt)‖22

]
= E

[
xt xT

t

]
= X .

This shows that K-FAC preconditioners are closely related to Shampoo preconditioners, especially
when one uses the empirical Fisher (Kunstner et al., 2019).

The main difficulty in implementing K-FAC on a model is that current optimizer APIs make it
difficult to send additional information such as ‖xt ‖22, ‖∇s`(st, yt)‖

2
2 to the optimizer, so K-FAC

implementations have to register the structure of each layer. Moreover, due to the dependence of
K-FAC on the structure of the network, it is difficult to implement standard operators like batch
norm, weight norm, layer norm, etc., which are prevalent in the tasks and models we considered. For
example, if we write a fully connected layer with weight norm as s = W x/‖W ‖, then the gradient

Gt =
1
‖W ‖
∇s`(st, yt)xT −

∇s`(st, yt)TW x
‖W ‖3

W,

so rewriting E[vec(Gt) vec(Gt)
T] as a Kronecker product is not an easy task.

The similarity between K-FAC and Shampoo preconditioners also allows us to use techniques
explored by the K-FAC community for Shampoo. One of the extensions for KFAC is the E-KFAC
algorithm (George et al., 2018) which constructs a better approximation of the Fisher matrix by
using the eigenbasis computed from the Kronecker approximation, but rescaling the eigenvalues to
match the diagonal of the Fisher matrix in this eigenbasis. This method produces a provably better
approximation, and can immediately be applied to Shampoo too with a simple modification:

Let Ĥt ≈ L1/2
t ⊗ R1/2

t . Let the singular value decompositions of the factors be L1/2
t = UDUT and

R1/2
t = V D′VT. The L1/2

t ⊗ R1/2
t = (U ⊗ V)(D ⊗ D′)(U ⊗ V)T. Now the EKFAC correction replaces

D ⊗ D′ by the optimal diagonal
Λ = diag((U ⊗ V)TĤt (U ⊗ V))

= εI +
t∑

s=1
diag((U ⊗ V)T vec(Gs) vec(Gs)

T(U ⊗ V))

= εI +
t∑

s=1
diag(vec(UTGsV) vec(UTGsV)T)

= εI +
t∑

s=1
vec(UTGsV)�2,

Thus we can approximately compute Λt+1 ≈ Λt + (UTGtV)�2, and the new update becomes:
Wt+1 = Wt − ηtU(Λ−1/2

t • (UTGtV))VT. This technique does have the disadvantage that it requires
computing the singular value decompositions (which we already observed are much slower than
coupled Newton iterations), and doubles the number of matrix multiplications in the preconditioned
gradient computation. At this time our experiments did not show significant improvements over the
standard Shampoo implementation, but we plan to explore this further.

D Shampoo for embedding layers
In modern networks, embedding layers are usually very large, and even computing the left precondi-
tioner as described in Section 3.1 can be prohibitively expensive. However we can take advantage

15

Under review as a conference paper at ICLR 2021

of the fact that the inputs to the network are very sparse, and use this to reduce the computation
significantly.

Let our input example to such a network consist of a set of categorical features: each feature such
as user language, user country etc consists of one out of a set of options. Then the output of the
embedding layer is the concatenation of the embeddings for each such feature. If the embeddings
are of width d and there are N such embeddings, then the embedding layer is W ∈ Rd×N . The input
can be represented as x ∈ RN×m, where m is the number of categorical features, and each column is
one-hot: if the k-th feature is x(k), then xjk = δj ,x(k). The output of the layer is y = W x.

Now G = ∇W` = ∇y` xT, so GGT = ∇y` xT x ∇y T̀. But xT x = Im, so GGT = ∇y`∇y
T̀. Thus we

can compute the preconditioner for W by computing it on the output of the embedding layer, and this
is a much smaller computation since y is of dimension b × m, this computation is O(d2m) rather than
O(d2N). Note that sparse multiplication would also be O(d2m), but accelerators usually implement
sparse operations by densifying the tensors.

If each column of x is multi-hot, as is the case when the features are words and their embeddings are
averaged, xT x is a diagonal matrix, where each diagonal entry is a function of the number of ones in
each column of x. Computing GGT = ∇y`(xT x)∇y T̀ is still O(d2m) � O(d2N).

E A coupled Newton iteration for computation of inverse p-th roots
The Newton method for solving the matrix equation X−p − A = 0 produces the iteration Xk+1 =
1
p [(p + 1)Xk − Xp+1

k
A], where we take X0 =

1
c I. This iteration satisfies Xk → A−1/p as k →∞, but

it is not numerically stable. Introducing the matrix Mk = Xp
k

A, we get

Xk+1 = Xk

(
(p + 1)I − Mk

p

)
, X0 =

1
c

I,

and

Mk+1 = Xp
k+1 A =

(
(p + 1)I − Mk

p

)p
Xp
k

A =
(
(p + 1)I − Mk

p

)p
Mk, M0 =

1
cp

A,

since Xk,Mk and A commute with each other. This is the coupled Newton iteration for computing
inverse p-th roots, and was shown to be numerically stable in (Guo & Higham, 2006; Iannazzo, 2006).

We implemented the following optimizations to the coupled Newton iteration method:

• Warm Start: The coupled Newton iteration to compute G−1/p starts with X = I,M = G and
maintains the invariant M = XpG while driving M → I, resulting in X → G−1/p. We need
to find the p-th root of a sequence Gt , so we instead set X = G−1/p

t ,M = XpGt+1; since the
difference between Gt and Gt+1 is small, this ensures that M is already close to I. In our
experiments warmstart improves convergence (by upto 4x fewer steps).

• Projecting top singular values: In practice our Gt matrices have large condition numbers,
which sometimes leads to inaccurate results. As a rule of thumb, computing G−1/p leads to a
loss of log2(

1
pκ(G)) bits of precision (Overton, 2001), where κ(G) is the condition number of

the G. However we also find that usually there is a sharp falloff within the first few singular
values, so in order to reduce the condition number, we project away the largest singular values,
since these are the least important after taking inverses. We find the top-k singular values
λ1, . . . ,λk and their associated singular vectors using a standard iterative method, and replace
each with λk+1. This produces a better approximation than adding εI to each Gt : the latter can
wash out the smallest (and most crucial) singular values, see Fig. 7 where the smallest singular
value for a layer can be as small as 10−10 to 10−6 during the course of optimization.

• Dynamic tuning of projection: We dynamically tune the number of singular values we need to
project in the previous step, by computing the condition number κ(Gt) and using it to estimate
the smallest singular value of Gt+1 as λmax(Gt+1)/κ(Gt). We then keep projecting out singular
values of Gt+1 until we get an acceptable condition number.

• Correcting for projection: If Gt =
∑

i λivivT
i , then G−1/p

t =
∑

i λ
−1/p
i vivT

i . Projection above
means replacing λ1, . . . λk by λk+1, but since we have already computed the corresponding
v1, . . . vk , we correct the approximate p-th root by adding

∑k
i=1(λ

−1/p
i − λ

−1/p
k+1)viv

T
i . This is a

small effect, but adding it is a straightforward modification (details deferred to Appendix E).

16

Under review as a conference paper at ICLR 2021

Algorithm I A coupled Newton iteration procedure for computing inverse p-th roots of a PSD matrix,
with warm start and singular value projection
1: procedure MaxSV(G)
2: Parameters: ε > 0, nstep
3: v ∈ Rn, where G ∈ Rn×n

4: i = 0, error = ∞, λ = 0
5: while i < nstep and error > ε do
6: v̂ = v/‖v‖
7: v = Gv̂
8: λold = λ;λ = v̂Tv
9: error = |λ − λold |; i = i + 1
10: return λ,v/‖v‖
11:
12: procedure Project(G, κ (optional), κd (optional), nproj (optional))
13: i = 0
14: ∆ = 0
15: λ,v = MaxSV(G)
16: λmax = λ
17: while λ > κd

κ
λmax or i < nproj do

18: G = G − λvvT

19: ∆ = ∆ + vvT

20: λ,v = MaxSV(G)
21: i = i + 1
22: return G + λ∆
23:
24: procedure CoupledIteration(G, p ∈ N, X (optional), κ (optional))
25: Parameters: ε > 0, κd , nproj
26: Outputs: G−1/p

27: G = Project(G,κ,κd,nproj)
28: α = − 1

p

29: if X is provided then
30: M = XpG
31: else
32: z = 1+p

2‖G‖F
33: X = 1

zα I
34: M = zG
35: while ‖M − I‖∞ > ε do
36: M1 = (1 − α)I + αM
37: X = XM1
38: M =Mp

1 M
39: return X

F Implementation Details of Shampoo
Our implementation of the Shampoo algorithm for fully-connected layers is described in Algorithm II.
The algorithm can use heavy-ball momentum for its updates, as well an exponential moving average
over the preconditioners, like Adam. The configuration parameter τ1 denotes the number of steps
between subsequent fetches of the latest available preconditioner by the accelerator. τ1 must be
set sufficiently high so that there is enough time for the CPU to complete the computation of the
preconditioner asynchronously and pipeline it efficiently, but otherwise its setting does not have a
significant effect on convergence. The configuration parameter τ2 (default value = 1) determines the
frequency of gathering gradient statistics - we update Lt,Rt every τ2 steps only for efficiency.

F.1 Computation cost of Shampoo

We capture the computational and memory complexity under various schemes described in Section 3.1
of handling large layers in Table 2.

17

Under review as a conference paper at ICLR 2021

0 1000 2000 3000 4000 5000 6000 7000
Dimension of matrix (n x n)

0.0

100.0

200.0

300.0

400.0

500.0
se

co
nd

s

SVD
Coupled Newton Iterations

0K 20K 40K 60K 80K
steps

107

108

109

Co
nd

iti
on

 n
um

be
r

Evolution of condition numbers

Figure 6: Benchmarks on computing inverse-pth root for statistics of varying dimensions (left), and the condition
numbers for Lt of a layer in the transformer model over time (right). We find that the coupled Newton iteration
method can effectively utilize the CPUs and give large walltime improvements compared to SVD (that relies on
bidiagonal divide-and-conquer). These were measured without warmstart which provides additional speedup of
upto 4x by reducing the number of iterations to the solution.These were measured on Intel Skylake CPUs. Note
that since ∼ log2(

1
pκ(Lt)) bits of precision are lost in computing p-th roots, 64-bit arithmetic becomes necessary.

Algorithm II Sketch of the Shampoo algorithm
1: parameters: learning rate ηt , momentum: β1, β2
2: for t = 1, . . . ,T do
3: Receive stochastic gradients Gt for each layer
4: if t % τ2 = 0 then
5: if β2 < 1 then
6: Lt ← β2 Lt−τ2 + (1 − β2) GtGT

t

7: Rt ← β2 Rt−τ2 + (1 − β2) GT
t Gt

8: else
9: Lt ← Lt−τ2 + GtGT

t

10: Rt ← Rt−τ2 + GT
t Gt

11: Dt ← Dt−1 + Gt • Gt

12: Mt ← β1 Mt−1 + (1 − β1) D�−1/2
t • Gt

13: if t % τ1 = 0 then
14: Gather preconditioners L−1/4

(t−τ1)
,R−1/4
(t−τ1)

from CPUs
15: Send Lt,Rt to CPU host to compute L−1/4

t ,R−1/4
t

16: if t > τ1 then
17: Pt ← β1Pt−1 + (1 − β1) L−1/4

t GtR
−1/4
t

18: ηt ← η0
Mt

F

/Pt

F

19: Wt = Wt−1 − ηtPt

20: else
21: ηt ← η0
22: Wt = Wt−1 − ηt Mt

G Further Details on Experiments
Layer wise learning rates. As seen in Fig. 7 the step size scale for each layer is dependent on the
operator norm of the preconditioners (inverse-pth root of the smallest singular value of the statistics

Type Computation Memory
All preconditioner Wt : [n,m] O(n2m + m2n) O(n2 + m2)

Left only preconditioner for Wt : [n,m] O(n2m) O(n2)
Preconditioner: block size b O(mnb) O(mn)

Table 2: Computational and memory complexity of variants of Shampoo.

18

Under review as a conference paper at ICLR 2021

matrix) has large spread in its range which results in optimization instabilities in practice. Moreover,
as statistics as well as preconditioner computation are amortized across many steps the norm does not
grow at every step. Hence, we rely on a learning rate schedule based on the update directions of a well
tuned first order optimizer (in our experiments we use diagonal AdaGrad for Transformers in machine
translation, as well as Criteo, layer-wise scaling heuristic proposed in LARS/LAMB optimizer, where
each layer’s learning rate is set to be

Wt

F

/Gt

F
for BERT and ResNet training. For example,

when used with diagonal AdaGrad: Shampoo is used to determine the direction of the update, and
AdaGrad to determine its magnitude.

This procedure termed Grafting in (Agarwal et al., 2020) allows us to bootstrap a reasonable learning
rate schedule for a specific problem that is well tuned, and study the effect of preconditioned gradient
directions in isolation. The weight matrix Wt is updated as Wt = Wt−1 − At Ŝt, where:

Dt =

t∑
s=1

Gs • Gs; At = η0
D�−1/2

t • Gt

F

(Adagrad magnitude)

Ŝt =
L−1/4
t GtR

−1/4
tL−1/4

t GtR
−1/4
t

F

(Shampoo direction).

0K 10K 20K 30K 40K 50K 60K 70K
steps

10 10

10 8

10 6

10 4

10 2

100

102

104

m
in

/m
ax

 si
ng

ul
ar

 v
al

ue
s

query projection layer

query projection layer

encoder embedding)

encoder embedding

softmax embedding

softmax embedding

Figure 7: Minimum (dashed) and maximum (solid) singular values for statistics matrices of the
embedding, softmax and intermediate attention query projection layers.

G.1 Transformer model on WMT’14 en→fr

For all optimizers, we make use of a warmup schedule where the learning rate is increased from 0.0
to η over 40k steps. For the smaller transformer experiments, we use a quadratic warmup, and for the
larger transformer experiments we use a linear warmup. We found that quadratic warmup improves
all optimizers equally and provides a better log-perplexity. For the Adam optimizer experiments, we
use a learning rate decay schedule of the form ηt = η

√
d/t, following the suggestion of Vaswani et al.

(2017). For the smaller Transformer experiments, we tuned the hyperparameters for each algorithm
over 100 trials. We took the best settings for the momentum and second-moment parameters, and
tuned the learning rates until either the model became unstable, or did not increase performance.
For Shampoo, we used a per layer learning rate derived from AdaGrad (see Appendix G for details),
and found that for the exact same hyperparameter settings as AdaGrad, Shampoo provides a modest
improvement in performance. Moreover, Shampoo allows for larger learning rates than AdaGrad
does, as shown in Fig. 4a.

G.2 Step time for BERT-Large

Our current implementation showed a 14% increase in step time for BERT-Large, nearly wiping out
all the gains from reduced number of steps (16%). We note that due amount of resources it would
require to tune BERT, we used Shampoo with exact same hyper-parameters as LAMB with grafting
to understand the effect of preconditioner. Moreover, step time can be optimized considerably as the
current implementation is not heavily optimized. For example, larger batch sizes help amortize the
preconditioning overhead, and reduce overall wall time to reach the same accuracy. Furthermore,

19

Under review as a conference paper at ICLR 2021

Experiment (TPU cores) Optimizer Batch Optimizer Parameters Warmup

Transformer (32)
Adam 1536 η = 0.000225, β1 = 0.9, β2 = 0.98 40k steps
Adagrad 1536 η = 0.125, β1 = 0.95 40k steps
Shampoo 1536 η = 0.225, β1 = 0.95, κ = 500 40k steps

τ1 = 1000, τ2 = 1

Transformer-Big (32)
Adam 384 η = 0.000154, β1 = 0.9, β2 = 0.999 40k steps
Adagrad 384 η = 0.03, β1 = 0.9 40k steps
Shampoo 384 η = 0.06, β1 = 0.9, κ = 500 40k steps

τ1 = 1000, τ2 = 1

Transformer-Big (32) Adagrad 1536 η = 0.06, β1 = 0.9 40k steps
Shampoo 1536 η = 0.08, β1 = 0.9, κ = 500 40k steps

τ1 = 1000, τ2 = 1

Bert-Large (256)

LAMB 16384 η = 0.0060 β1 = 0.9, β2 = 0.999 6.4k steps
Shampoo 16384 η = 0.0060 β1 = 0.9, β2 = 0.999, 6.4k steps

λ2 = 10−2, τ1 = 400, τ2 = 10
Block size: 1024

DLRM (32)

SGD 65536 η = 0.1, poly decay(p=2) at 38k steps 2k steps
Shampoo 65536 η = 0.1 poly decay(p=2) at 38k steps 2k steps

β1 = 0.9, τ1 = 999, τ2 = 10
(w/ embd) 65536 ηembd = 0.31

Table 3: Hyperparameter setup used in our experiments.

in our current implementation, all TPU cores compute all the preconditioning statistics and the
preconditioned gradients, which involves over a hundred 1024 × 1024 matrix multiplications. This
repeated work can be avoided by cross-replica sharding of weight update (Xu et al., 2020), which
distributes this computation across cores, and should save at least half the step time overhead.

G.3 CIFAR-10

We train a ResNet-50 model on CIFAR-10 (Krizhevsky et al., 2009) with 2 cores of CloudTPU-v2 at
batch size 2048. Our baseline achieves 93.45% accuracy at 300 epochs, where as Shampoo reaches
the same accuracy in 143 epochs. We see an overall training time reduction of 42% (1428 seconds to
827 seconds). As it is a smaller problem, the time taken for preconditioner inverse computation for
the largest preconditioning matrix is less than 1ms on the CPU. We use a total of 8 CPU cores to run
these inverses.

G.4 ImageNet

For SGD with Momentum, the learning rate is warmed up over the first 5 epochs from 0 to 1.6,
followed by a 10x drops of the learning rate at 30, 60 and 80 epochs. For LARS, we use warmup
learning rate over 20 epochs for 4K and 16K batch sizes, 25 epochs for 32K batch size with a
polynomial decay (p=2) until end of training. For Shampoo we use the same layer-wise heuristics and
hyperparameters as LARS with Grafting such that the direction is changed to the one computed by
Shampoo. We make use weight decay with value: λ2 = 2x10−4 and label smoothing of 10−1.

G.5 Detailed results for experiments

Approximate wall clock times for the various tasks are as follows:

Task Model Baseline Shampoo
Recommendations: Criteo-1Tb DLRM 13 min 8.2 min
Translation: WMT-14 En-Fr Transformer ≈ 12 hrs 6.5 hrs
Translation: WMT-14 En-Fr Transfomer-Big ≈ 47 hrs 29.5 hrs
Language Modeling: Wikipedia+Books BERT-Large 228 mins 219 mins

G.6 Breakdown of step-time in Fig. 2b

Each step of training consists of the following phases, whose times are shown in Fig. 2b.

20

Under review as a conference paper at ICLR 2021

• Forward Pass: Each core independently computes the predictions for each training example
in its sub-batch.

• Gradient: The gradient is for the sub-batch is computed using the back-propagation algorithm.
• All reduction: The gradients for the sub-batches from all cores are averaged to compute the
gradient for the minibatch. This is then sent back to each core.

• Preconditioner statistics: The preconditioner statistics for adaptive algorithms are updated,
e.g. for AdaGrad, we set Hi := Hi + g2

i for all parameters, while for Shampoo, we set
Li := Li + GGT etc.

• Preconditioned gradient: The preconditioned gradient is computed - e.g. for AdaGrad, we
compute gi/

√
Hi , while for Shampoo, we compute L−1/4GR−1/4.

• Parameter updates: The parameters are updated using the preconditioned gradients. This
step is the same for all algorithms: W := W − ηG̃, where G̃ is the preconditioned gradient.

Note that the Shampoo computation of the preconditioners L−1/4,R−1/4 is pipelined on the host CPU,
so does not show up in the step times.

21

	Introduction
	Preliminaries
	Full-Matrix Preconditioning: Challenges
	Algorithmic challenges
	Numerical challenges
	Infrastructural challenges

	Distributed System Design
	Experiments
	Machine Translation with a Transformer
	Transformer-Big model
	Ads Click-Through Rate (CTR) prediction
	Language modeling
	Image classification

	Concluding Remarks
	Notation
	Deferred Proofs
	Comparison with K-FAC
	Shampoo for embedding layers
	A coupled Newton iteration for computation of inverse p-th roots
	Implementation Details of Shampoo
	Computation cost of Shampoo

	Further Details on Experiments
	Transformer model on WMT'14 enfr
	Step time for BERT-Large
	CIFAR-10
	Image Classification
	Detailed results for experiments
	Breakdown of step-time in fig:enfrlatency

